
 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1029/2018WR023892 

 

© 2019 American Geophysical Union. All rights reserved. 

Lee Taesam (Orcid ID: 0000-0001-5110-5388) 

Ouarda Taha BMJ (Orcid ID: 0000-0002-0969-063X) 

 

 

Multivariate Nonstationary Oscillation Simulation of Climate 

Indices with Empirical Mode Decomposition 

 

Taesam Lee
1 

and Taha B. M. J. Ouarda
2
 

 

1
Department of Civil Engineering, ERI, Gyeongsang National University, Jinju, South Korea 

2
Canada Research Chair in Statistical Hydro-Climatology, National Institute for Scientific 

Research, INRS-ETE, 490 de la Couronne, Quebec (QC), Canada G1K 9A9  

 

Corresponding Author: Taesam Lee, Department of Civil Engineering, Gyeongsang National 

University, ERI, 501 Jinju-daero, Jinju, Gyeongsangnam-do, 660-701, 

South Korea, E-mail: tae3lee@gnu.ac.kr, Tel: +82 55 772 1797 

 

 

  

mailto:tae3lee@gnu.ac.kr


 

 

© 2019 American Geophysical Union. All rights reserved. 

Abstract 

The objective of the current study is to build a stochastic model to simulate climate indices 

that are teleconnected with the hydrologic regimes of large-scale water resources systems 

such as the Great Lakes system. Climate indices generally contain nonstationary oscillations 

(NSOs). We adopted a stochastic simulation model based on Empirical Mode Decomposition 

(EMD). The procedure for the model is to decompose the observed series and then to 

simulate the decomposed components with the NSO resampling (NSOR) technique. Because 

the model has only been previously applied to single variables, a multivariate version of 

NSOR (M-NSOR) is developed to consider the links between the climate indices and to 

reproduce the NSO process. The proposed M-NSOR model is tested in a simulation study on 

the Rössler system. The simulation results indicate that the M-NSOR model reproduces the 

significant oscillatory behaviors of the system as well as the marginal statistical 

characteristics. Subsequently, the M-NSOR model is applied to three climate indices (i.e., 

Arctic Oscillation, El Niño-Southern Oscillation, and Pacific Decadal Oscillation) for the 

annual and winter datasets. The results of the proposed model are compared to those of the 

Contemporaneous Shifting Mean and Contemporaneous Autoregressive Moving Average 

(CSM-CARMA) model. The results indicate that the proposed M-NSOR model is superior to 

the CSM-CARMA model for reproducing the NSO process, while the other basic statistics 

are comparatively well preserved in both cases. The current study concludes that the 

proposed M-NSOR model can be a good alternative to simulate NSO processes and their 

teleconnections with climate indices. 
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1. Introduction 

A number of climate indices have been developed to describe the state and the changes 

of regional climate systems such as the Arctic Oscillation (AO) [Lorenz, 1951; Thompson 

and Wallace, 1998], the El Niño-Southern Oscillation (ENSO) [Tsonis et al., 2007; Modarres 

and Ouarda, 2013], and the Pacific Decadal Oscillation (PDO) [Mantua et al., 1997] indices. 

These indices are related to each other as well as with hydro-meteorological variables in 

adjacent or remote regions and such relations are called ‘teleconnections’ [Wallace and 

Gutzler, 1981; Rodionov and Assel, 2000; Alexander et al., 2002; Chiew and McMahon, 2002; 

Jevrejeva et al., 2003; Rodionov and Assel, 2003; Rogers and Coleman, 2003; Hanson et al., 

2004; An et al., 2007; Ouachani et al., 2013; Niranjan Kumar et al., 2016]. For instance, 

Jevrejeva et al. [2003] examined the ice conditions in the Baltic Sea using climate indices 

such as North Atlantic Oscillation and AO with wavelet approach and found that the 

significant phase-linkages between ice conditions and atmospheric circulation exist.  

The teleconnections between climate indices and hydro-meteorological variables (e.g., 

air temperature, precipitation, wind speed, and streamflow) have been reported in the 

literature [Serreze et al., 1998; Rodionov and Assel, 2003; Ghanbari and Bravo, 2008; 

Naizghi and Ouarda, 2017]. Rodionov and Assel [2003] found that a substantial difference in 

the large-scale atmospheric circulation associated with the PDO and ENSO leads to an 

abnormally mild winter in the Great Lakes region. In another study, Ghanbari and Bravo 

[2008] presented significant relations between the levels of the Great Lakes and the PDO in 

interdecadal frequency ranges, as well as these levels and the AO in interannual frequency 

ranges. Barton and Ramírez [2004] showed that the decadal climate variability in the form of 

PDO provides a significant impact on seasonal water supply in the Columbia River Basin. 

Hamlet and Lettenmaier [1999] employed the ENSO and PDO climate signals to predict the 
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streamflow of the Columbia River Basin and showed that the climate information can be 

helpful to increase the lead time and forecasting skill. Those two climate indices were also 

employed to assess their influences on water supply in the Zayandeh-rood River Basin, Iran 

[Ashouria et al., 2008]. The correlation analysis indicates that the inflow volume has a direct 

relation while the Southern Oscillation Index presents an inverse relation. Ouarda et al. 

[2014] showed that the sea surface temperature anomalies Associated to ENSO warm phase 

(El Niño) and cold phase (La Niña) change the weather and precipitation patterns over the 

Arabian Peninsula.  

To analyze the impact of climate variability on a hydrological system (such as the Great 

Lakes system), it might be useful to simulate climate indices while preserving the 

teleconnections. This approach would eventually help water resources managers to develop 

plans and mitigate policies. However, it is known that climate indices commonly contain 

irregular nonstationary oscillation (NSO) processes, also called nonperiodic and quasi-

periodic oscillations [Kwon et al., 2007; Tsonis et al., 2007; Keenlyside et al., 2008]. These 

NSO processes are the reflection of external and internal forcings such as solar activity 

[Stevens and North, 1996] and oceanic circulation [Rahmstorf, 2003]. Therefore, a traditional 

time series model, such as an autoregressive moving average (ARMA), is unsuitable for 

simulating climate indices due to these irregular and oscillatory behaviors.  

To tackle the limitation of traditional time series techniques, a number of stochastic 

simulation models have been developed with the purpose of modeling the oscillatory 

behaviors of climate indices [Sveinsson et al., 2003; Ahn and Kim, 2005; Kwon et al., 2007]. 

Sveinsson et al. [2003] considered the long-term variations of a climate index as sudden mean 

shifts and applied a shifting mean model (SM) originally developed by Salas and Boes [1980]. 

This model was expanded to contemporaneous SM (CSM) and further mixed with 
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contemporaneous ARMA (CARMA) for a multivariate case [Sveinsson, 2002; Salas et al., 

2009]. The mixed model, called CSM-CARMA, conserves the lag zero correlation between 

the underlying processes of the two different models.  

Ahn and Kim [2005] used an autoregressive conditional heteroscedasticity model to 

express the nonlinear property of the Southern Oscillation index. Kwon et al. [2007] devised 

an autoregressive type model assisted by wavelet analysis and reproduced a nonstationary 

process. Modarres and Ouarda [2014] modeled the link between climate oscillation indices 

and drought occurrence using a generalized autoregressive conditional heteroscedasticity (M-

GARCH) model.  

A number of advanced stochastic models using state-of-the-art statistical techniques 

such as copula [Khedun et al., 2014], wavelets [Erkyihun et al., 2016], and independent 

component analysis[Westra and Sharma, 2009] have been developed to model the 

dependence between the oscillations in climate indices and hydrological variables. Khedun et 

al. [2014] developed a copula-based model to analyze the dependence structure between 

climate indices (ENSO and PDO) and average monthly seasonal precipitation. Erkyihun et al. 

[2016] presented a model generating stochastic streamflow projections conditioned on quasi-

oscillatory climate indices (PDO and Atlantic Multi-decadal Oscillation) where the climate 

indices are simulated with wavelet-based k-nearest neighbor resampling. Westra and Sharma 

[2009] used a multivariate model based on independent component analysis to capture the 

principal variability of reservoir inflows. These models reproduce hydroclimatological 

variability well and relate climatic signals to hydrological variables. However, smoothly 

varying NSO processes in climate indices remain difficult to reproduce and there is a strong 

need to develop multivariate models that can mimic the NSOs embedded in more than one 

climate index.   
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Meanwhile, Lee and Ouarda [2012a] proposed a stochastic simulation model to 

adequately reproduce the smoothly varying NSO processes embedded in observed data. The 

proposed model employs a cutting-edge decomposition technique, called Empirical Mode 

Decomposition (EMD) and nonparametric time series models (i.e., k-nearest neighbor 

resampling (KNNR) and block bootstrapping). The EMD approach has since received 

increasing interest in the field of hydro-climate modeling [Lee and Ouarda, 2012a; Basha et 

al., 2015; Durocher et al., 2015]. 

The objective of the present study is to extend the work of Lee and Ouarda [2012a] to 

the multivariate framework in order to simulate climate indices. The primary focus of the 

proposed model is to preserve the teleconnections between the simulated climate indices and 

to reproduce both the NSO processes and the key statistics (e.g., mean, variance, and 

skewness). 

The present paper is organized as follows. The background material concerning EMD 

analysis and the relevant spectral analysis is introduced in section 2. The proposed EMD-

based model is presented in section 3. Section 4 presents the results of the simulation study. 

Section 5 includes a description of the employed dataset. In section 5, the proposed model is 

applied to annual climate indices. Section 7 discusses the critical points associated to the 

proposed model. Finally, a summary of the obtained results is presented in section 8 along 

with the conclusions of the study. 

2. Background 

2.1. Empirical mode decomposition (EMD) 

Empirical mode decomposition (EMD) analysis is a method that extracts oscillation 

components from a targeted time series and changes them to intrinsic mode functions (IMFs) 
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to yield physically meaningful explanations of the time series. For an extracted component to 

be an IMF, it must have symmetry about the local zero mean and the same number of zero 

crossings and extrema [Huang et al., 1998]. The procedure to obtain IMFs from a time series 

variable, x, is summarized below: 

(1) Identify all local extrema and connect all local maxima (minima) with a cubic spline 

as the upper (lower) envelope. 

(2) Obtain the first component, h, by finding the difference between the data (x) and the 

local mean (m) of the upper and lower envelopes, m, as ℎ = 𝑥 − 𝑚. 

(3) Substitute x by h and repeat steps (1) and (2) until a certain criterion is met, such that 

the number of zero crossings and extrema are equal or at most differ by one and stay 

the same consecutively with steps (1) and (2) repeated [Huang and Wu, 2008].  

(4) Designate the final h as the j
th

 IMF, cj, and the residue as rj (i.e., rj=rj-1 - cj where r0 = 

x). 

(5) Repeat steps (1)-(4) by treating the residue rj as the original data (i.e., x) until the final 

residue becomes a monotonic function. The final residue (rn) becomes cn+1.  

(6) Finally, express the original time series at time t, x(t), as the sum of the estimated 

IMFs:  

𝑥(𝑡) = ∑ 𝑐𝑗
𝑛+1
𝑗=1 (𝑡)     (1) 

where t=1,…, N and N denotes the record length. Note that a lower order component 

has a higher frequency level and vice versa. Additionally, 𝑐𝑛+1is not an IMF because it 

represents the overall trend of the time series x(t) [Huang et al., 1998].  

In general, it has been observed that a signal of a similar frequency resides in different 

IMFs [Huang et al., 1998]. Such a phenomenon is termed mode mixing. To avoid its 
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occurrence, Wu and Huang [2009] developed a procedure labeled ensemble EMD (EEMD) 

by adding white noise in the original data and taking the ensemble means of each IMF. Wu 

and Huang [2004] established a statistical significance test for IMF components derived from 

white noise. The fundamental function of the significant test is that when the IMF energy of 

the target data with a certain mean period is higher than the energy of white noise with a 

certain confidence interval, the corresponding IMF is considered statistically significant at the 

given level. However, Lee and Ouarda [2012a] presented some drawbacks of this 

significance test including unreliable test results and the inability to assess the signal 

produced by autocorrelated red noise. Therefore, they recommended selecting the significant 

components subjectively with the help of the significance test and a visual presentation of 

IMF components.  

2.2. Hilbert transform (Hilbert spectral analysis) 

The Hilbert transform [Hilbert, 1953] is thought of as the convolution of x(t), a time series 

data, with the function of g(t)=1/(πt). The Hilbert transform of x(t) (i.e., the complex 

conjugate �̄�(𝑡)) is presented with the Cauchy principal value (PV) from the non-integrable 

property of g(t) [Kanwal, 1996] as:  
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The analytical signal z(t) derived from x(t) and �̄�(𝑡) is represented as:  

𝑧(𝑡) = 𝑥(𝑡) + 𝑖�̄�(𝑡) = 𝑎(𝑡)𝑒𝑖𝜃(𝑡)      (3) 

where 𝑎(𝑡) = √𝑥2(𝑡) + �̄�2(𝑡)is the instantaneous amplitude, 𝜃(𝑡) = 𝑡𝑎𝑛−1( 𝑥(𝑡)/�̄�(𝑡)) is 

the instantaneous phase function, and 𝑖 = √−1 . The instantaneous frequency is defined 
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as𝜔(𝑡) = 𝑑𝜃(𝑡)/𝑑𝑡. At a given time t, the instantaneous frequency 𝜔 and amplitude a are 

simultaneously calculated. The frequency-time distribution of the amplitude is designated as 

the Hilbert amplitude spectrum, H(ω, t). The marginal Hilbert spectrum is a measure of the 

total energy contribution from each frequency over the entire data span, expressed as: 

𝑀(𝜔) = ∫ 𝐻(𝜔, 𝑡)𝑑𝑡
𝑁

0
      (4) 

where N is the total data length. This provides a quantitative way to describe the time-

frequency-energy. The instantaneous energy (IE) provides information about the time 

variation of the energy over all frequency levels. It is expressed as: 

𝐼𝐸(𝑡) = ∫ 𝐻(𝜔, 𝑡)𝑑𝜔
𝜔

     (5) 

3. Model Description 

The proposed model for the current study is an extension of the work of Lee and Ouarda 

[2012a] into the multivariate framework, and is denoted as Multivariate Nonstationary 

Oscillation Resampling (M-NSOR). It simulates the variables of interest (i.e., climate indices) 

while preserving the teleconnections between the variables and reproducing the NSO 

processes.  

The rationale for the critical points of the original NSOR simulation procedure is as 

follows: (1) We employ block bootstrapping since the extracted IMF time series from EMD 

are oscillatory with a certain range for the phase and frequency. These oscillatory 

characteristics can be simulated by bootstrapping the extracted IMF series from observations. 

(2) Instead of bootstrapping the extracted IMF series itself, their change rates are 

bootstrapped to simulate totally new values and to avoid the discontinuity between the blocks. 

(3) Random block length is employed so that the change time for the phase and frequency is 
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not fixed and nonstationary oscillations can be properly simulated. (4) The Poisson 

distribution is applied since it is one of the most flexible discrete distributions and its 

parameter is estimated with the variance inflation factor employing the lagged 

autocorrelations of the selected components derived by Wilks [1997]. Note that the detailed 

distribution selection procedure cannot be applicable since a real block number dataset does 

not exist. 

The procedure is briefly described below and schematically represented in Figure 1. 

(1) Decompose the time series of each considered variable into a finite number of IMFs. 

These IMFs are denoted as 𝑐𝑗
𝑠(𝑡) where s=1,..., S and j =1,..., n+1, S is the total 

number of considered variables. Note that n is the number of IMFs and the last 

component cn+1 represents the overall trend. 

(2) Select significant IMF components for each variable using the significance test [Wu 

and Huang, 2004] and visual illustration of the components showing significantly 

large up and down variations compared to the original time series [Lee and Ouarda, 

2010; 2011].  

(3) Fit stochastic time series models according to the nature of the components 

determined in step (2). In the current study, significant IMF components are 

modeled using M-NSOR (discussed later) and the residuals are modeled using an 

order-1 multivariate autoregressive (MAR(1)) model. 

(4) Simulate the IMF components using the fitted models (M-NSOR and MAR(1)). 

The simulated data are presented as 𝐶𝑗
𝑠(𝑡) where j and s have the same meaning as 

in step (1). 

(5) Sum-up the simulated IMFs from each model and for each variable of interest.  
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The M-NSOR was developed to model the significant IMFs which illustrate the cross-

dependencies of climate indices at different frequency levels. Note that it is these cross- 

dependencies that are referred to as teleconnections in the introduction section. When only 

one variable is simulated (i.e., S=1), the M-NSOR model becomes equivalent to the NSOR 

model. In this case, a certain j
th

 IMF is selected in only one variable while the IMF of the 

other variables is noted as insignificant. 

The simulation procedure of M-NSOR for the selected j
th

 IMF component is described 

below. Note that the subscript j is omitted for the simulated and observed data of the selected 

IMF components 𝐶𝑗
𝑠(𝑡)  and 𝑐𝑗

𝑠(𝑡)  during the following description for simplicity (i.e., 

𝐶𝑗
𝑠(𝑡) = 𝐶𝑠(𝑡) ). The following simulation procedure is applied to all selected IMF 

components that were determined to be significant from step (2) above.  

Assume that the current status is at time t-1 and its simulated data values (𝐶𝑗
𝑠(𝑡 − 1), 

s=1,…,S) are known. Now, the IMF component at time t is simulated with the following 

procedure: 

i. Simulate a block length, LB, using Poisson distribution formula as given below: 

    𝐿𝐵 ~
𝑒𝜏𝜏𝑙−1

(𝑙−1)!
      𝑙 = 1,2,....     (6) 

 Note that the parameter (τ) is the mean of LB. This parameter is selected using a 

variance inflation factor (VIF) as suggested by Wilks [1997] and Lee and Ouarda 

[2011].  

ii. Estimate distances between the observed data and the current status of the simulated 

data. The distances are given by: 

     𝐷𝑗 = 𝜩(𝑡, 𝑗)𝑇𝜱−1𝜩(𝑡, 𝑗)    (7) 

and 
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    𝜩(𝑡, 𝑗) =

[
 
 
 
 
 

𝐶1(𝑡 − 1) − 𝑐1(𝑗)
⋮

𝐶𝑆(𝑡 − 1) − 𝑐𝑆(𝑗)

∆𝐶1(𝑡 − 1) − ∆𝑐1(𝑗)
⋮

∆𝐶𝑆(𝑡 − 1) − ∆𝑐𝑆(𝑗)]
 
 
 
 
 

    (8) 

where j = 2,…, (N- LB) and T implies the transpose of a vector. Additionally, 𝜱 = 

diag(𝜎𝑐
2(1),...,𝜎𝑐

2(𝑆), 𝜎𝛥𝑐
2 (1),…,𝜎𝛥𝑐

2 (𝑆)) where 𝜎𝑐
2(𝑠) and 𝜎𝛥𝑐

2 (𝑠) are the variances of 

the s
th

 component (𝑐𝑠) and of the change rate of the s
th

 component (𝛥𝑐𝑠), respectively. 

𝛥𝑐𝑠and 𝛥𝐶𝑠are change rates of the observed and simulated data, respectively, of the 

s
th

 component such that 𝛥𝑐(𝑡) = 𝑐(𝑡) − 𝑐(𝑡 − 1). 

iii. Arrange the distances in ascending order, select the first k distances, and store their 

time indices. 

iv. Randomly select one of the stored k time indices with the weighting probability given by:  

     𝑤𝑖 =
1/𝑖

∑ 1/𝑗𝑘
𝑗=1

 ,       𝑖 = 1, . . . , 𝑘 

v. Assume the selected time index to be p, and take the change rates of the LB successors 

(i.e., {𝛥𝑐𝑠(𝑝 + 1), . . . , 𝛥𝑐𝑠(𝑝 + 𝐿𝐵)} for s = 1,…,S). 

vi. Obtain the simulated data with length LB using:  

    𝐶𝑠(𝑡 + 𝑙 − 1) = 𝐶𝑠(𝑡 + 𝑙 − 2) + 𝛥𝑐𝑠(𝑝 + 𝑙)  (9) 

 for l = 1,…, LB and s = 1,…,S where 𝐶𝑠 (0) is obtained by bootstrapping one of the 

observed data. 

vii.  Repeat steps i.-vi. until the required data are simulated. 

A simple example of the proposed M-NSOR is presented in the Supplementary Material. 
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4. Simulation Study 

4.1. Application Methodology 

In order to validate the proposed M-NSOR model, one of the most famous and chaotic 

nonlinear dynamic systems, the Rössler attractor is used [Rössler, 1976; 1995]. The attractor 

is designed to behave similarly to the Lorenz attractor [Lorenz, 1963] but with a better 

understanding of the chaotic flow. Similar applications have been made for the univariate 

framework of the NSOR model [Lee and Ouarda, 2012a].    

The attractor is represented by three nonlinear ordinary differential equations �̇� =

−𝑦 − 𝑧 , �̇� = 𝑥 + 𝛼𝑦 , and �̇� = 𝛽 + 𝑥𝑧 − 𝛿𝑧 . Here, (𝑥, 𝑦, 𝑧) ∈ ℜ3 and (𝛼, 𝛽, 𝛿) ∈ ℜ3 are 

dynamical variables and parameters respectively and �̇�  represents the derivative of the 

variable x. In the current study, the parameter set [𝛼, 𝛽, 𝛿]=[1/5, 1/5, 7/2]) is applied as in 

Huang et al. [1998] and Kijewski-Correa and Kareem [2007] , N=500 and with the initial 

state of [x0, y0, z0]=[-3,3,1].  

Lee and Ouarda [2012a] selected the x variable of the Rössler attractor since it 

oscillates within a limited range, but the oscillations are chaotic such that the general 

assumption is met with the NSOR model.  In the current study, we apply the x and y variables 

to test the multivariate version of the NSOR model (M-NSOR) since both x and y variables 

present similar oscillation behaviors as shown in the top panel of Figure 2 (thin line) with 

limited range and frequency. The z variable is not considered in the current simulation due to 

its totally different oscillatory behavior and low coherence with the other two variables. In 

addition, we added the random component for each variable as x+ε and y+ε where ε ~N(0,σε) 

and σε=1/2 is employed after testing a number of values to include its oscillatory behavior and 

randomness.  
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4.2. Results  

For M-NSOR modeling, the Rössler series in the top panel of Figure 2 (thin line) was 

decomposed with EMD as IMFs. The IMFs of the X variable are shown in Figure 3. The 

oscillations in a lower frequency are captured in a lower number and vice versa. The overall 

long-term trend is presented in the last panel of Figure 3. Note that the scale of the y 

coordinate for each component is different. For example, even if the oscillatory behavior is 

clear in c6 and c7, these magnitudes range only from -1 to 1 implying that the significance of 

these IMFs is not always strong enough.  

The result of the significance test [Wu and Huang, 2004] for the IMFs of the Rössler X 

variable is shown in Figure 4 and indicates that the three IMFs c4, c5, and c8 can be 

considered as real oscillatory components and are distinguishable from random noise. 

However, this significance test is not always reliable due to its documented drawbacks such 

as the no consideration for serially correlated series (i.e. white noise) [Wu and Huang, 2004]. 

Therefore, subjective judgement might be used with the additional help of the visual 

presentation of IMF components [Lee and Ouarda, 2012a].  

For example, the result of the significance test is shown in Figure S1 of the 

supplementary material for the IMFs of the Rössler Y variable in Figure S2. The results show 

that c6 and c7 as well as c4, c5, and c8 are significant even with the similar oscillation range to 

the X variable (Figure S2). In order to coincide with the X variable and the relatively small 

magnitude of the normalized energy in Figure S1, the sum of c4, c5, and c8 is modeled with 

the M-NSOR for both the X and the Y variables. The summed components (i.e. c4+ c5+c8) are 

overlaid on the simulated Rössler series shown in the top panel of Figure 2 with thick solid (X 

variable) and dotted (Y variable) lines. The summed series illustrates well the oscillatory 

behavior of the original series.  
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Here, the summed series of the X and Y variables is modeled with the M-NSOR model 

and its residual is modeled with the MAR (1) model. From the model, one hundred series 

with the same record length of the original Rössler series (N=500) are generated. One 

example of the generated series is presented in the bottom panel of Figure 2. The figure 

indicates that the oscillation and randomness in the original series (top panel) is well 

reproduced in the generated series.  

The statistical characteristics of the marginal distribution of the generated series are 

tested with the kernel density estimate [Salas and Lee, 2010] shown in Figure 5. The 

generated kernel density estimates (thin grey dotted lines) follow well the estimate of the 

original series (thick solid line). The indicate that the generated series from the M-NSOR 

model reproduces well the statistical behavior of the original series shown in the top panel of 

Figure 2.  

The frequency domain characteristics of the M-NSOR generated data are tested with 

wavelet analysis. In Figure 6, global wavelet spectra of the 100 generated series from the M-

NSOR model (dotted lines) are presented as well as the original Rössler series for X (top 

panel) and Y (bottom panel). The simulated Rössler series for both the X and Y variables 

have a strong spectral power during the period between 2
6 

=64  and 2
7
=128 shown with a 

thick solid line in Figure 6, and in the top panel of Figure 2 for the original domain. This 

oscillatory characteristic is reproduced well with the generated series from the M-NSOR 

model as indicated in the thin dotted lines of Figure 6.  

The cross coherence in the frequency domain for the generated series from the M-

NSOR model as well as the Rössler series are presented in the bottom and top panels of 

Figure 7, respectively. The high coherence of the Rössler series during the period between 2
6 

=64 and 2
7
=128 is reproduced well in the M-NSOR generated series. Overall, the results 
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indicate that the oscillation characteristics of the Rössler system are represented well by the 

M-NSOR model and reproduce the marginal statistics appropriately.   

5. Data Description of case study 

Three climate indices (AO, PDO, and ENSO) are selected for the case study to evaluate the 

proposed M-NSOR model. These indices are known to be teleconnected to each other and 

with hydro-climatological variables such as in the Great Lakes system [The International 

Upper Great Lakes Study Board 2012]. Therefore, these indices will be employed to simulate 

the net basin supply (NBS) of the Great Lakes system. A brief description of each of these 

climate indices is given in the following paragraphs.  

The AO refers to opposing atmospheric pressure patterns in northern middle latitudes 

(approximately 45 degrees North) and high latitudes (polar regions) ranging from weeks to 

decades [Thompson and Wallace, 1998]. Among the various AO indices, the zonal averaged 

version produced by Li and Wang [2003] was employed in this study because it explains a 

large portion of the variance of the sea level pressure over the Atlantic region for all time 

scales such as monthly, seasonal, and annual and provides the strongest correlation pattern 

with surface air temperature [Li and Wang, 2003]. The dataset ranging from 1873 to 2009 

was downloaded from http://www.lasg.ac.cn/staff/ljp/data-NAM-SAM-NAO/NAM-AO.htm. 

This record length was set since the current model development was made to analyze the 

hydrological changes of the Great Lakes system and the outputs of the current work must be 

compatible with the previous study [Ehsanzadeh et al., 2013]. 

The PDO index represents the leading principal component of sea-surface temperature 

anomalies in the North Pacific Ocean, polewards of 20°N. Among a number of PDO indices, 

the most commonly used one, developed by Mantua and Zhang and their colleagues [Mantua 

http://www.lasg.ac.cn/staff/ljp/data-NAM-SAM-NAO/NAM-AO.htm
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et al., 1997; Zhang et al., 1997], was employed in the current study with the dataset ranging 

from 1900 to 2009. It was downloaded from http://jisao.washington.edu/pdo/PDO.latest. 

The ENSO is a climatic pattern occurring across the tropical Pacific Ocean, causing 

climate variability in 3~7 year periods [Alexander et al., 2002]. Among the various ENSO 

indices [Trenberth, 1997], the ENSO index, developed by Wolter and Timlin [1993], was 

employed in the current study because it includes the fundamental tropical atmospheric 

bridges. The dataset, ranging between 1950-2009, was downloaded from 

http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/. 

The annual (average of the monthly values from January to December) and winter 

season (average of January, February, and March; JFM) values of these climate indices were 

used in the current study. Because the annual and winter dataset might have different 

characteristics, separate models were used in each case and corresponding results are reported 

in sections 6 and supplementary material.  

6. Annual Climate Indices 

6.1. Application Methodology 

The observed datasets of the annual climate indices are presented in the top panel of Figure 8. 

All climate indices shared long-term oscillation [Lee et al., 2013], though the long-term 

pattern of the ENSO index is not obvious due to its relatively short record length. An EEMD 

on the PDO and AO indices was performed to investigate both the long-term and short-term 

oscillations. Note that, in the current study, we employed EEMD instead of EMD to avoid 

mode mixing as discussed in the background section. The decomposed IMFs from the AO 

and PDO indices are presented in Figure 9 and Figure 10, respectively. As presumed, the 5
th

 

IMF components of the two indices (c5 in Figure 9 and Figure 10) varied in a similar fashion. 

http://jisao.washington.edu/pdo/PDO.latest
http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/
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This behavior of sharing the same long-term oscillation between PDO and other climate 

indices such as the Southern Oscillation Index and Cold Tongue Index was previously 

reported by Mantua et al. [1997] and further analyzed by Lee et al. [2013].  

The cross-correlations between the annual AO and PDO indices with each IMF 

component, as well as the observed data, are presented in the second row of Table 1. It is 

evident that there is no significant correlation with the observed data (-0.012). However, the 

correlations of each IMF component behaved differently. The 4
th

 and 5
th

 IMF components (c4 

and c5), capturing the low-frequency oscillation, are significantly positively correlated, while 

the other components (c1, c2, and c3), capturing high frequency oscillations, showed negative 

correlation.  

Individual modeling of these indices does not take into account the teleconnection 

between them. Therefore, to preserve the cross-correlation at different frequency levels, the 

M-NSOR model for low-frequency components and the Multivariate AutoRegressive (1) 

model (MAR(1)) for high-frequency components was applied in the following way.  

(1) Assuming that AO and PDO share the same long-term NSO, the M-NSOR model was 

applied to the sum of the 4
th

 and 5
th

 IMF components of the two indices.  

(2) The MAR(1) model was fit to the residuals of the AO and PDO indices (c1 + c2 + c3 + 

c6). Note that the overall trend component, c6, was included in the MAR(1) model to 

be used as the overall mean, as in Lee and Ouarda [2012a].  

To simulate the ENSO index, a simple linear regression model was fitted to the ENSO index, 

treating the PDO index as predictor, due to the following reasons: (i) the ENSO and PDO are 

highly correlated (as much as 0.73) as shown in Figure 11; (ii) no significant nonlinearity was 

observed between the ENSO and PDO; and (iii) a similar EEMD analysis and modeling, as in 

the case of AO and PDO indices, is not applicable for the ENSO index due to its relatively 

short record length. Note that graphical assessment with scatterplot and nonlinear 
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measurement based on mutual information [Khan et al., 2006] indicate that not much 

significant nonlinear relationship exists between ENSO and PDO (result not shown).   

To compare the proposed model, the existing CSM-CARMA model was applied. The 

CSM model was applied for the AO and PDO indices and the CARMA model was applied 

for the ENSO index as it was not possible to fit the CSM model to the ENSO index. The 

model was implemented through the software package Stochastic Analysis Modeling and 

Simulation (SAMS-2009) downloaded from http://www.sams.colostate.edu/. The brief 

description of the SM model is shown in the Appendix. Further details regarding the 

CARMA and SM models can be obtained in Sveinsson et al. [2003]. 

6.2. Results 

To evaluate the performance of the proposed model, we simulated a dataset containing 

the three climate indices each of which had a length of 50,000. Then, the dataset was divided 

into 500 sequences, each having a record length of 100, to obtain a comparable record length 

to the observed data. Note that the record lengths of the observed AO and PDO indices are 

137 and 110, respectively, and the length of ENSO is 60. This long dataset was divided into 

500 sequences as [x1,…,x100], [x101,…, x200],…, [x49901,…, x50000] where [x1,…,x100]= 

[x
1
1,…,x

1
100; x

2
1,…, x

2
100; x

3
1,…, x

3
100]. Note that the superscript indicates the number of each 

climate variable as ENSO, PDO, and AO, respectively. The separated sequence contains the 

temporal dependency from M-NSOR and MAR(1) modeling (see the model description in 

section 3) as well as the spatial dependency due to the multivariate framework of the models. 

One of the divided 500 sequences is illustrated in Figure 8 for the M-NSOR model (middle 

panel) and the CSM-CARMA model (bottom panel).  

Figure 8 indicates that climate indices simulated from the M-NSOR model (middle 

panel) show a long-term oscillation pattern similar to that of the observed climate indices (top 

http://www.sams.colostate.edu/
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panel). In contrast, each climate index simulated from the CSM-CARMA model (bottom 

panel) shows a different oscillation pattern. Comparing the two plots (middle and bottom 

panels) shows that the long-term NSO process of the climate indices is well preserved by the 

M-NSOR model compared with the CSM-CSARMA model. This is because the latter treats 

the long-term pattern as the shifting mean process which consequently leads to the 

preservation of only the lag zero cross-correlation.  

 The scatter plot between the observed climate indices is shown in Figure 11 and for 

the simulated data of the M-NSOR model and the CSM-CARMA model in Figure 12 and 

Figure 13, respectively. Also, the bottom row of Table 2 presents the correlation between the 

climate indices. Note that the correlation at the historic AO column (the second column, 0.17) 

indicates the correlation between AO and ENSO; the ENSO column (third column, 0.17) 

shows the correlation between ENSO and AO; the PDO column (the fourth column, 0.73) 

does the correlation between PDO and ENSO. The same presentation is applied to the model 

outputs. 

Not much strong dependency is present between the AO and PDO climate indices (the 

correlation is 0.17 as shown in Table 2) due to the offset of a positive correlation in the low 

frequency level and a negative correlation in the high frequency level as mentioned earlier 

(see Table 1). The same implication can be drawn regarding the relation between AO and 

ENSO in Figure 11 (the correlation is 0.17 as shown in Table 2). In contrast, ENSO and PDO 

have a significant linear correlation and its correlation is 0.73 (as shown in Table 2). The 

simulated data from the M-NSOR and CSM-CARMA models reproduce well these 

dependencies as shown in Figure 12 and Figure 13, respectively and also in Table 2. A 

stronger correlation between the ENSO and PDO indices is observed in the simulated data of 

the M-NSOR model (0.7 as shown in Table 2) than for that of the CSM-CARMA model 

(0.58 as shown in Table 2). 
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The key statistics of the simulated data from the M-NSOR model and the CSM-

CARMA model were estimated using the divided 500 sequences and are presented in 

boxplots in Figure 14 and Figure 15, respectively and also in Table 2. For the boxplot, the 

end lines of the box are the 25
th

 and 75
th

 percentiles; the cross lines above the box on the 

whisker correspond to the 90
th

 percentile and the maximum; and the cross lines below the box 

on the whisker represent the 10
th

 percentile and the minimum. The circle represents the 

statistics of the observed data.  

A slight overestimation of the skewness of the AO is observed with both models. The 

observed skewness is -0.22 and the skewness of the simulated data from both models is 

almost zero as shown in the fifth row of Table 2. The lag-1 correlation of the PDO index is 

underestimated by the CSM-CARMA model. Cross-correlations between climate indices are 

estimated for the M-NSOR and CSM-CARMA models as shown in Figure 16 and Table 2. 

The cross-correlation between AO and ENSO for both models is slightly underestimated, but 

for ENSO-PDO the underestimation is observed only in the case of the CSM-CARMA model. 

This correlation of the observed data is 0.73 and the ones of the simulated data from M-

NSOR and CSM-CARMA are 0.7 (0.06) and 0.58(0.09) respectively as shown in the bottom 

row of Table 2. Note that the bracket values indicate the standard deviation of the estimated 

statistics from the 500 simulated series. In general, the results illustrate that both models 

preserve fairly well the observed key statistics and cross-correlations. Also, the marginal 

distributions of the observed climate indices are well reproduced with both models, M-NSOR 

and CSM-CARMA as indicated from the kernel density estimates shown in Figure S3 and 

Figure S4 of the supplementary material, respectively.  

The long-term lagged correlations (LLC) were estimated up to lag-80 and presented in 

Figure 17. As discussed, the lag-1 correlation of the simulated PDO data with the CSM-

CARMA model (0.26, see the eighth row of Table 2) underestimates the one of the observed 
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data (0.53) while the M-NSOR model (0.52) well reproduces these observed statistics. 

Furthermore, a significant difference can be seen between the LLC of the simulated data from 

the M-NSOR and CSM-CARMA. The LLC for the M-NSOR model presents a long-term 

oscillation similar to the observed data especially for the AO and PDO data (See the top and 

bottom of the left panels in Figure 17, respectively). Since the ENSO data contains the 

shorter record than the other climate indices, this behavior of the LLC is rather vague. The 

observed LLC of the PDO is well reproduced at the M-NSOR model while the LLC of the 

AO is slightly offset after the 40
th

 lag. This reproduction of the long-term oscillation is the 

major advantage for the NSOR modeling as indicated by Lee and Ouarda [2012a]. This 

advantage is inherited to the multivariate version of the NSOR model (M-NSOR). We further 

discussed why this reproduction of the long-term oscillation is critical in the discussion 

section of the current study. 

Meanwhile, the CSM-ARMA model cannot reproduce the long-term oscillation 

behavior of the observed data. This is not surprising because the original SM model 

[Sveinsson et al., 2003] has the same lagged correlation structure of the simple autoregressive 

moving average model (i.e. ARMA(1,1)) in that the lagged correlation is decreased 

exponentially along with lags. This correlation structure of the SM model is inherited to the 

multivariate version of the SM model (CSM). This long-term LLC behavior of the CSM 

model is well presented in the right panels of Figure 17. Therefore, it is obvious that the CSM 

model cannot reproduce the long-term oscillation of the observed climate indices while the 

M-NSOR model has this capability. 

The Hilbert marginal spectrum (see Eq.(4)) was estimated for the PDO index as shown 

in Figure 18 as well as for the AO and ENSO indices in Figures S5 and S6 of the 

supplementary material, respectively with a thick dark line for the spectrum of observed data 

and a thin gray line for the spectrum of the simulated data. Note that the intermittency of the 
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observed Hilbert marginal spectrum, particularly in the ENSO index (see, thick line in Figure 

S6), exists because the Hilbert transform is evaluated from the IMF components whose 

estimates may not exist for all frequencies. The observational spectra of the PDO index 

(Figure 18) as well as the AO index in Figure S5 illustrate high amplitudes in low frequencies 

(1×10
^-2

 -9×10
-1

). The figures indicate that the M-NSOR model reproduces the high 

observational Hilbert spectrum in low frequencies better than the CSM-CARMA model. 

Because the record length of the ENSO index is short, the relevant low frequency spectrum of 

the ENSO indices cannot be observed (Figure S6). However, if the ENSO is consistently 

correlated with the PDO, as observed for the period of 1900-1950, a similar observation, as in 

the cases of AO and PDO, is possible. 

The global wavelet spectra (GWP) of the three climate indices were estimated and 

shown in Figure 19 and Figure 20 for the proposed M-NSOR model and the CSM-CARMA 

model, respectively. The observed global wavelet spectra indicate that there are high 

amplitudes in relatively large periods around 2
5
 and 2

6
. These high amplitudes in the large 

periods are well reproduced from the M-NSOR model as in Figure 19 while the CSM-

CARMA model cannot reproduce these high amplitudes of the AO and PDO (see Figure 20). 

This result of the global wavelet spectra is well matched with the result of the Hilbert spectra 

as mentioned earlier (Figure 18). 

The peaks of the GWP are located around 2
5
-2

7
 with a slight deviation for each climate 

index as shown in Figure 19. The proposed M-NSOR model reproduces the overall GWP 

peak period but not each specific detail since the long-term oscillation components are 

simulated together with the summed up long-term EMD components. A separate NSOR 

modeling can be carried out to preserve the individual peak. However, its interconnection for 

the long-term oscillations cannot be preserved in individual modeling.  
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The short-term GWP in ENSO around 5-6 years was not reproduced by both models 

since the current study focuses on the long-term oscillation. More elaborate modeling can be 

carried out to reproduce this oscillation. Also, the GWP ENSO peak in the period of 2
6
 =64 

year is regarded as a monotonic trend since the record length of ENSO is only 60 years. 

 

7. Discussion 

The simulated climate indices were used to assess the future aspects of hydro-

meteorological variables by interconnecting these indices to hydro-meteorological variables 

such as in the Great Lakes system. The long-term behavior of hydro-meteorological variables 

(e.g. precipitation and streamflow) is important for the design of hydrologic structures that 

are intended to mitigate hydro-meteorological extremes (droughts and floods) . For example, 

when a future projection of hydro-meteorological variables by Global Climate Models 

(GCMs) predicts an increase of hydro-meteorological variables and subsequently higher 

chance of floods, hydrologic structures must be redesigned to adapt to this increase. In 

general, GCM predictions provide information concerning a monotonic increase or decrease. 

In contrast, the assumption we make in the current study is that the climate system that 

affects the Great Lakes region evolves in the long-term in an oscillatory mode rather than a 

monotonic increase or decrease. The main capability of the stochastic simulation model 

developed in the current study is to mimic this long-term oscillation in the observed climate 

indices.  

The results of the LLC (long-term lagged correlation) for the annual climate indices in 

Figure 17 indicates that the M-NSOR model reproduces the observed LLC behavior 

especially for the AO and PDO while the CSM-CARMA model has an ARMA(1,1) structure 

with an exponentially decreasing magnitude along with the lags. Furthermore, the global 
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wavelet spectra of the annual AO and PDO indices shown in Figure 19, indicate that the M-

NSOR model reproduces the low frequency behavior of the observed data better than the 

CSM-CARMA model shown in Figure 20. Frequency is the reciprocal of the duration of one 

cycle (i.e. frequency=one cycle/duration). The low frequency behavior reflects the long-term 

oscillation evolution. In other words, a better preservation of the low frequency behavior of 

the observed data implies a better performance of the long-term oscillation as in the M-NSOR 

model. Finally, the good reproduction of the long-term oscillation of the observed data by the 

M-NSOR model indicates that the M-NSOR model and its simulated data can be used as a 

viable alternative for the future assessment of the hydro-meteorological variables in the Great 

Lakes systems compared to the monotonic increase (or decrease) predicted by GCM outputs.   

8. Summary and Conclusions 

Climate indices possess long-term oscillations and are interconnected to each other and to 

hydro-meteorological variables in adjacent or remote regions. In the current study, we 

developed a simulation model based on the EMD and NSOR techniques in a multivariate 

framework (called M-NSOR) to reproduce the long-term oscillation patterns and their 

interconnections.  

The proposed model was tested using the nonlinear chaotic Rössler system. The results 

indicate that the proposed M-NSOR model reproduces well the oscillatory behavior of the 

system and its marginal statistical characteristics. The proposed M-NSOR model is also 

applied to the three climate indices and compared to the existing nonstationary simulation 

model (CSM-CARMA) using spectral analysis, key statistics, and cross-correlation. The 

performance of the M-NSOR model is comparable to the CSM-CARMA model for key-

statistics and cross-correlation. The spectral analysis (i.e., Hilbert marginal spectrum and 

wavelet analysis) and the LLC result reveals that the M-NSOR model reproduces well the 
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long-term oscillation embedded in the climate indices whereas the CSM-CARMA model 

does not have this capability. The overall results demonstrate that the M-NSOR model 

reproduces better the observed long-term oscillation pattern.  

The simulated data can be further employed to study the variability of hydrological 

variables such as the NBS of the Great Lakes system [The International Upper Great Lakes 

Study Board 2012] or as input to stochastic optimal management models, such as Ouarda and 

Labadie [2001] and Sreekanth and Datta [2014]. The study of hydrological variables 

employing the simulated climate indices as covariables is crucial for assessing the future 

evolution of these variables and for a better understanding of climate impacts on water 

resources.  

The proposed model can also be applied to more complex hydrological systems such as 

the 20 streamflow stations of the Upper Colorado River Basin. A strategical modeling 

scheme is required to apply the developed M-NSOR model to such a complex hydrological 

system. We also want to note that the proposed scheme of the separate modeling over 

different combinations can be potentially problematic when a highly nonlinear system is 

combined in target variables and care must be taken in such cases. Further research is 

required to build an approach that simulates the multivariate NSO series without resorting to 

separate modeling over different combinations. 
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Appendix: Description of the shifting mean model (SM)  

The SM model, developed by Salas and Boes [1980], was devised to model an abrupt shift 

process. Sveinsson et al. [2003] further improved this model and applied it to hydro-

meteorological datasets. Note that the physical background of the SM process is a sudden 

systematic shift from volcanic activities or regulatory (human) effects rather than random 

processes. 

The basic formula of the SM is presented as follows for a sequence of a random 

variable, x(t). A general definition of the SM model is given by: 

𝑥(𝑡) = 𝑢(𝑡) + 𝑧(𝑡)   

 (A.1) 

where u(t) is a sequence of independent identically distributed (iid) variables with mean 

𝜇𝑈and variance 𝜎𝑢
2. z(t) is a sequence with mean zero and variance𝜎𝑧

2 and is expressed as 

follows:  

     𝑧(𝑡) = ∑ 𝑚𝑖𝐼(𝑠𝑖−1,𝑠𝑖]
(𝑡)𝑡

𝑖=1    

 (A.2) 

where mi is a real-valued random variable with a zero mean and variance 𝜎𝑚
2 representing the 

different mean levels over the time span. 𝑆𝑖 = 𝑁1 + 𝑁2+. . . +𝑁𝑖  with 𝑆0 = 0and Ni is the 

span at a certain noise level, i, and a positive geometric random variable with its parameter p 

as E(N)=1/p. 𝐼(𝑎,𝑏](𝑡) is the indicator function which takes the value 1 if 𝑡 ∈ (𝑎, 𝑏], otherwise 

it takes the value 0. The sequences mi, Ni, and x(t) are assumed to be mutually independent. 

The correlation structure is expressed as follows:  
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𝜌𝑋(ℎ) =
𝜎𝑚

2

𝜎𝑢
2+𝜎𝑚

2 (1 − 𝑝)ℎ, h=1,2,…    

 (A.3) 

The parameters are estimated in terms of �̂�𝑋 , �̂�𝑋
2, �̂�𝑋(ℎ)  for h=1, 2, where the hat 

indicates the method of moments estimates of the corresponding parameters. These estimates 

are [Salas, 1993]:  

�̂� = 1 −
�̂�𝑋(2)

�̂�𝑋(1)
      

 (A.4) 

�̂�𝑀
2 = �̂�𝑋

2 �̂�𝑋
2 (1)

�̂�𝑋(2)
      

 (A.5) 

�̂�𝑈 = �̂�𝑋      

 (A.6) 

�̂�𝑈
2 = �̂�𝑋

2 − �̂�𝑀
2       

 (A.7) 
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Notations: 

x: time series variable 

h: candidate of an IMF component 

cj: j
th

 component of IMF 

m: local mean of the upper and lower envelopes  

rj: residual of the j
th

 IMF 

H(ω, t): Hilbert amplitude spectrum at frequency w and time t  

M(w): Marginal Hilbert Spectrum 

IE(t): Instantaneous Energy 

c
s
j and C

s
j: j

th
 component of IMF for the s

th
 variable and its random variable, respectively  

LB: block length generated from Poisson distribution with the parameter τ 

Ξ(t,j): vector whose elements are the distances between the current status at time t and 

j
th

 observed value of IMF component for all the considered S variables as well as their change 

rates 

Φ: Diagonal matrix whose diagonal elements are the variances of IMF components for 

all the S variables as well as their change rates  

wi: weighting probability 

AO: Arctic Oscillation 

ARMA: AutoRegressive Moving Average 

CSM: Contemporaneous SM 

EEMD: Ensemble EMD  

EMD: Empirical Mode Decomposition 

ENSO: El Niño-Southern Oscillation 

IMF: Intrinsic Mode Function 

KNNR: k nearest neighbor resampling  

MAR(1): lag-1 Multivariate AutoRegressive model 

M-NSOR: Multivariate NSOR 

NSOR: Nonstationary Oscillation Resampling 

PDO: Pacific Decadal Oscillation 

SM: Shifting Mean Model 

VIF: Variance Inflation Factor 
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Rössler, O. E. (1976), An equation for continuous chaos, Physics Letters A, 57(5), 397-

398. 
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 Table 1. Cross-correlation between the oscillation IMFs of the AO and POD indices for 

annual and winter data. Note that the approximate 95 percent confidence interval (±2/sqrt(N)) 

is ± 0.19. 

  Obs. C1 C2 C3 C4 C5 

Annual -0.012 -0.187 -0.285 -0.275 0.438 0.894 

Winter -0.12 -0.134 -0.286 -0.604 -0.316 0.873 
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Table 2. Key statistics and correlation of the observed and modeled data for the annual 

climate indices. Note that the values inside the parentheses indicate the standard deviation of 

the estimated statistics from 500 simulated series while the values in front of the parentheses 

present the mean of the estimated statistics. 

 

 
Obs. 

 
M-NSOR   CSM-CARMA 

  AO ENSO PDO 
 

AO ENSO PDO 
 

AO ENSO PDO 

Mean 0.01 0.05 0.03 
 

0.08(0.14) 0.13(0.11) 0.01(0.14) 
 

0(0.14) 0.05(0.11) 0.05(0.14) 

Std 0.76 0.77 0.77 
 

0.81(0.07) 0.74(0.06) 0.78(0.08) 
 

0.73(0.07) 0.73(0.06) 0.76(0.08) 

Skew -0.22 -0.06 0.08 
 

0.02(0.23) 0.02(0.24) 0.03(0.24) 
 

-0.05(0.23) -0.04(0.24) 0(0.24) 

Max 1.94 1.66 1.99 
 

2.09(0.36) 1.99(0.34) 1.94(0.37) 
 

1.75(0.36) 1.82(0.34) 1.96(0.37) 

Min -1.98 -1.61 -1.95 
 

-1.88(0.35) -1.7(0.32) -1.87(0.36) 
 

-1.88(0.35) -1.77(0.32) -1.83(0.36) 

Auto1
†
 0.43 0.29 0.53 

 
0.45(0.1) 0.25(0.11) 0.52(0.09) 

 
0.38(0.38) 0.35(0.35) 0.26(0.26) 

Auto2 0.31 -0.15 0.27 
 

0.29(0.12) 0.17(0.11) 0.35(0.12) 
 

0.29(0.29) 0.25(0.25) 0.04(0.04) 

Corr.
‡
 0.17 0.17 0.73 

 
0.04(0.12) 0.06(0.12) 0.7(0.06) 

 
-0.03(0.18) 0.18(0.13) 0.58(0.09) 

†
Auto1 and Auto2 indicate the autocorrelations of the lag-1 and lag-2, respectively. 

‡
Corr. indicates the correlations between the climate indices. The AO column presents the 

correlation between AO-ENSO (e.g. 0.04 for M-NSOR), the ENSO column between ENSO-

PDO (e.g. 0.06 for M-NSOR), and the PDO column between PDO-AO (e.g. 0.07 for M-

NSOR).  
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Figure 1. Overall process of the proposed model M-NSOR.  
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Figure 2. Time series of the simulated X (thin solid line) and Y (thin dotted line) variables 

from Rössler attractor (top panel) and the generated variables with the proposed M-NSOR 

model (bottom panel). The thick lines indicate the sum of the selected IMF components from 

EMD as c4+c5+c8.  



 

 

© 2019 American Geophysical Union. All rights reserved. 

 

Figure 3. IMFs for the simulated X variable from Rössler attractor. Note that the extracted 

IMFs are ordered as they are extracted from the procedure in the section 2.1; a component 

with a lower number (e.g. c1 or c2) presents a higher frequency and vice versa; and the last 

component (c8) represents the overall trend. 
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Figure 4. Significance test of the simulated X variable from Rössler attractor with 95% (solid 

line) and 99% (dotted line) confidence limits. Each point (*) below the lines indicates that the 

hypothesis that the corresponding IMF of the observed series is not distinguishable from the 

corresponding IMF of a random noise series cannot be rejected with the confidence levels (95% 

and 99% respectively). Notice that c4, c5, and c8 are significant while c4 has the highest mean 

normal energy and the first component c1 is generally considered as random component in 

EMD analysis and neglected in the test [Wu and Huang, 2004; Lee and Ouarda, 2012b]. 
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Figure 5. Kernel densities for the X (top panel) and Y (bottom panel) variables from the 

Rössler attractor (thick line) and the ones from 100 generation series (thin lines) with the M-

NSOR model.  
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Figure 6. Global wavelet spectra of the simulated X and Y variables from Rössler attractor 

(thick solid line) and one hundred simulated series (thin dotted lines) with the M-NSOR 

model.  
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Figure 7. Cross wavelet spectra [Grinsted et al., 2004] of the simulated X and Y variables 

from Rössler attractor (top panel) and one sample (bottom panel) with the M-NSOR model. 

Note that the 5% significance level against red noise is shown as a thick contour.  
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Figure 8. Time series of the observed (top panel) and simulated annual climate indices with 

N=100 for the M-NSOR (middle panel) and CSM-CARMA models (bottom panel). Note that 

the record lengths of the observed AO and PDO indices are 137 years and 110 years, 

respectively and the length of ENSO is 60 years. The lengths of the generated data are 100 

for both models (see the middle and bottom panels). 
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Figure 9. IMFs for the observed annual AO index. Note that the extracted IMFs are ordered 

as they are extracted from the procedure in the section 2.1; a component with a lower number 

(e.g. c1 or c2) presents a higher frequency and vice versa; and the last component (c6) 

represents the overall trend. 
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Figure 10. IMFs for the observed annual PDO index. Note that the extracted IMFs are 

ordered as they are extracted from the procedure in the section 2.1; a component with a lower 

number presents a higher frequency vice versa; and the last component (c6) represents the 

overall trend. 
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Figure 11. Histograms and scatterplots between the observed annual climate indices (AO, 

ENSO, and PDO).  
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Figure 12. Histograms and scatterplots between the simulated annual climate indices from the 

M-NSOR model. 
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Figure 13. Histograms and scatterplots between the simulated annual climate indices from the 

CSM-CARMA model. 
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 Figure 14. Key statistics of the annual climate indices for the observed (circle) and simulated 

data from the M-NSOR model (boxplot). For the boxplot, the end lines of the box are the 25
th

 

and 75
th

 percentiles, the cross lines above the box on the whisker correspond to the 90
th

 

percentile and the maximum, and the cross lines below the box on the whisker represent the 

10
th

 percentile and the minimum. The circle represents the statistics of the observed data. 
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Figure 15. Same as Figure 14 but for simulated data from the CSM-CARMA model. 
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Figure 16. Cross-correlation of the annual climate indices for the observed (circles) and 

simulated data from the M-NSOR model (see the top panel) and the CSM-CARMA model 

(see the bottom panel). See Figure 14 for further information about a boxplot.  
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Figure 17. Lagged correlation of the annual climate indices for the observed (red thick solid 

line with cross marker) and simulated data from the M-NSOR model (see the left panels) and 

the CSM-CARMA model (see the right panels). Thin dotted blue line presents the mean of 

the estimated correlations from 500 series and grey shade depicts the 95 percentiles of the 

estimated statistics from 500 series while the thick red line with cross markers shows the 

observed one. Note that the lagged correlation for the ENSO data was estimated up to 55 lags 

because its record length is relatively shorter than the other climate indices. 
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Figure 18. Hilbert marginal spectrum (see Eq. (4)) for the annual PDO index (thick solid line) 

and the simulated series (grey lines) from the M-NSOR model (top panel) and the CSM-

CARMA model (bottom panel).  
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Figure 19. Global wavelet spectrum for the annual climate indices (thick solid line) and the 

simulated series (95percent interval) from the M-NSOR model.  
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Figure 20. Global wavelet spectrum for the annual climate indices (thick solid line) and the 

simulated series (95percent interval) from the CSM-CARMA model. 

 


