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[1] Long‐term nonstationary oscillations (NSOs) are commonly observed in
climatological data series such as global surface temperature anomalies (GSTA) and
low‐frequency climate oscillation indices. In this work, we present a stochastic model
that captures NSOs within a given variable. The model employs a data‐adaptive
decomposition method named empirical mode decomposition (EMD). Irregular oscillatory
processes in a given variable can be extracted into a finite number of intrinsic mode
functions with the EMD approach. A unique data‐adaptive algorithm is proposed in the
present paper in order to study the future evolution of the NSO components extracted
from EMD. To evaluate the model performance, the model is tested with the synthetic
data set from Rössler attractor and with GSTA data. The results of the attractor show
that the proposed approach provides a good characterization of the NSOs. For GSTA data,
the last 30 observations are truncated and compared to the generated data. Then the
model is used to predict the evolution of GSTA data over the next 50 years. The results
of the case study confirm the power of the EMD approach and the proposed NSO
resampling (NSOR) method as well as their potential for the study of climate variables.
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decomposition, J. Geophys. Res., 116, D06107, doi:10.1029/2010JD015142.

1. Introduction

[2] Nonstationary oscillations (NSOs), also referred to as
nonstationary sinusoids [Kuznetsova and Tsirulnik, 2004] or
quasi periodicity [Meyers and Pagani, 2006], have been
observed in climatological data such as global surface tem-
perature anomalies (GSTA), the North Atlantic Oscillation
(NAO) and the Pacific Decadal Oscillation (PDO) index
values. For example, global surface temperature shows long‐
term (or low‐frequency) nonstationary processes such as
decadal [Ghil and Vautard, 1991] and multidecadal oscil-
lations [Schlesinger and Ramankutty, 1994a]. However, these
oscillations are often so irregular that they cannot be repre-
sented with a simple sine or cosine wave. In other words,
the phase and modulus are changing with time, which
implies nonstationarity.
[3] A stochastic model that reproduces an NSO is useful

to predict the variations of climatic processes and study their
impacts on other variables such as hydrologic regimes. It is,
however, a difficult task to model a NSO process. For
example, a simple linear and Autoregressive Moving Average
(ARMA) model [Salas et al., 1980] can be applicable for
the stochastic modeling of climatic variables. However, the
model assumes the applied time series is stationary and the
NSO process is not adoptable. Another alternative is to

employ data‐adaptive simulation techniques such as the index
sequential method [Ouarda et al., 1997], block bootstrapping
[Efron and Tibshirani, 1993; Vogel and Shallcross, 1996], and
k‐nearest neighbor resampling (KNNR) [Lall and Sharma,
1996]. However, these methods are also not able to capture
a long‐term NSO process.
[4] One applicable model for NSO processes is the shifting

mean level (SML) model developed by Salas and Boes
[1980] and Sveinsson et al. [2003] in which the long‐term
oscillation pattern is modeled with the shifting mean process.
However, the correlation structure of the model decreases
exponentially, implying that the oscillation is not properly
conveyed. The best way of preserving a long‐term NSO
process in a stochastic model still remains in question.
[5] Another alternative might be (1) to extract the long‐

term NSOs from observed data into different frequency
components and (2) to build a time series model for indi-
vidual NSO components. Therefore, we need an algorithm
that properly separates the long‐term NSOs embedded in
observed data into few components to be manageable.
However, in general, extraction algorithms for frequency
decomposition require preinformation about the observed
signals, and their performance is downgraded when an
overall trend exists [Elsner and Tsonis, 1994; Schlesinger
and Ramankutty, 1994a; Elsner and Tsonis, 1996]. Other
algorithms such as wavelet analysis [Torrence and Compo,
1998] and the multitaper method [Thomson, 2001] provide
too many components to manipulate.
[6] Meanwhile, Huang et al. [1998] proposed a decompo-

sition technique to disclose a hidden intrinsic NSO structure
in a time series, named the empirical mode decomposition
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(EMD). From this decomposition, oscillation structures
embedded in a time series with different frequency levels are
expressed as intrinsic mode functions (IMFs). It has been
proven that this data‐adaptive decomposition method, EMD,
extracts well the NSOs into a finite number of IMFs even if
combined with a long‐term trend. Furthermore, [Wu and
Huang [2004] experimented with a Monte Carlo simulation
to investigate howEMDperforms onwhite noise. They derived
a way to test the significance of IMFs from this experiment.
EMD analysis has been applied in climate research for instance
by Xie et al. [2002], Li and Davis [2006], Pegram et al. [2008],
McMahon et al. [2008], and Lee and Ouarda [2010].
[7] In the present paper we propose an approach to model

NSO processes. EMD is employed to capture the long‐term
NSO in the data. The decomposed components from EMD,
called IMFs, are tested to determine whether an extracted
component is induced from a white noise or from a physical
force [Wu and Huang, 2004]. These IMFs are categorized
into three types (overall trend, oscillatory, and residuals) and
modeled according to their characteristics.
[8] For the overall trend, the change rate of the trend is fitted

with a polynomial regression model if the trend component
is significant from the test [Wu and Huang, 2004]. For the
oscillatory component, a particular data‐adaptive algorithm is
proposed in this paper in order to extend the future evolution
of the NSO process. To the authors’ knowledge, no stochastic
model exists for the extension of the NSOprocess when its time
series varies smoothly with time and its frequencies and phases
are not stationary. Finally, for the residuals, the sum of the
insignificant components is treated either as random white
noise or autocorrelated red noise. It ismodeled accordinglywith
a short memory time series model. Parametric (e.g., normal
random noise or lag‐1 Autoregressive) or nonparametric
approaches (e.g., bootstrapping or KNNR) can be adopted for
this purpose. Note that even if a climatic system cannot be
precisely predictable in a short‐term range, the overall long‐
term change can be predictable. In this paper, we focus on the
long‐term oscillatory process instead of the short‐term process.
[9] To validate the model performance, the model was

tested with the synthetic data from a nonlinear chaotic sys-
tem, the Rössler attractor [Rössler, 1976, 1995]. As a case
study, the proposed model was applied to GSTA data. The
GSTA observations of the last 30 years were truncated and
compared to the data generated from the model. Finally,
the next 50 years of data were generated to predict the
evolution of GSTA data into the future.
[10] The paper is organized as follows. In section 2, we

describe two fundamental models employed in the proposed
approach, the KNNR and EMD. The procedures of the
proposed model for the selected oscillation components,
the parameter estimation approach, and the modeling of the
other components are presented in section 3. The proposed
model is applied to a synthetic nonlinear oscillation time
series in section 4. The application of the procedure to the
GSTA data is presented in section 5. Finally the summary
and conclusions are presented in section 6.

2. Background

[11] The proposed procedure is based on two existing
models, KNNR and EMD. In the next sections, we present
the fundamentals of these two approaches.

2.1. KNNR

[12] Lall and Sharma [1996] developed KNNR to simu-
late annual and seasonal time series. The background of this
approach is based on a k‐nearest neighbor (KNN) density
estimator that uses the distance to the kth nearest data point
and its volume containing k‐data points. The conditional
probability density function is approximated using KNNs
of the current state. The overall procedure is summarized
as follows:
[13] 1. Find the KNNs to the current state by computing the

distance from the current value to all the historical records.
[14] 2. Select one of the k‐neighbors randomly. The

weighting probability is then given by

wi ¼ 1=iPk
j¼1

1=j

; i ¼ 1; . . . ; k ð1Þ

This weighting probability is derived from approximating
the local k‐nearest neighbor density as a Poisson process
[Lall and Sharma, 1996].
[15] 3. Set the successor of the selected neighbor from

step (2) as the simulated value for the next time step. The
steps are repeated until generating the required simulation.

2.2. EMD: The Sifting Process

[16] EMD is an algorithm that extracts NSO components
with different frequencies from a time series. Any compli-
cated data set can be decomposed into a finite number of
oscillatory modes whose frequencies are significantly apart
from each other. Resolved components from EMD are
defined as IMFs. An IMF is a function that satisfies the
following two conditions: (1) the number of extrema must
be equal to the number of zero crossings or differ from it at
most by one and (2) the mean value of the two envelopes
determined by the local maxima and minima must be zero.
[17] The basic EMD procedure (called sifting process) and

its necessary feature, orthogonality, are described in the
following subsections. Then, the significance test of IMFs is
discussed. For further details, the readers are referred to
Huang et al. [1998] and Huang and Wu [2008].
2.2.1. Sifting Process
[18] The following sifting process serves (1) to eliminate

riding waves and (2) to smooth uneven amplitudes. The
process to obtain the finite number of IMFs from a time
series, x(t) (t = 1, N; N = record length) is described with
an example in Figure 1. The thick solid line of Figure 1
represents the observation data.
[19] To begin with the first component, we need to find

the local maxima and minima of the time series. The local
maxima and minima are connected with a cubic spline line
[Press et al., 2002], called upper and lower envelopes.
These extrema are presented with two thin solid lines in
Figure 1. The mean value of the spline‐connected maxima
and minima, m1 (thick dotted line in Figure 1), is subtracted
from the original time series, x, and denoted as h1, i.e.,

h1 ¼ x� m1 ð2Þ

Here, h1 could be the first IMF. However, the estimated
local maxima and minima are imperfect with undershoots
and overshoots (refer, for instance, to the values of t = 12
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and 25 in Figure 1 for the examples, respectively). Thus, h1
might not satisfy the IMF conditions mentioned above.
Therefore, we have to repeat the sifting process a number of
times by treating h1 as the data, x, then

h11 ¼ h1 � m11 ð3Þ

in which m11 is the mean of the envelopes with h1 as the
data (x) in the first iteration. Notice that the second subscript
index (e.g., h11 and m11) indicates the additional repetition
number for the sifting process. If we repeat the process k
times, then h1k = h1(k−1) − m1k. Then the first IMF compo-
nent is designated as c1 = h1k. Note that the first IMF con-
tains the fastest changing signal.
[20] In practice, no matter how many times the data are

sifted, some asymmetric wave forms can still exist implying
that perfect IMF conditions cannot be met. Therefore, one
should establish a criterion for the sifting process to stop
when it is guaranteed that the IMF retains enough physical
sense of both amplitude and frequency modulations. In this
regard, a number of several stopping criteria for k have been
adopted in the literature [Huang et al., 1998; Huang and
Wu, 2008]. One example in Huang et al. [1998] is SD =PN

t¼1∣hik−1 (t) − hik (t)∣2/
PN

t¼1∣hik−1 (t)2, where this value
must be smaller than a value predetermined by the user
(typically 0.2–0.3; Huang et al. [1998]). The value of 0.2 is
employed in the current study. Pegram et al. [2008] and
Peel et al. [2009] advocated employing rational splines
instead of cubic splines to improve the end effects and to
decrease the number of siftings. In the current study, rational
splines are not used mainly because their use requires
additional adjusting procedures which are time consuming
and need some additional work. The advantage of the
rational spline method is that it allows for an interplay
between spline tension and IMF characteristics, whereas the

original cubic method provides a single output [Pegram
et al., 2008]. Peel et al. [2009] carried out additional
work to assess the performance of rational spline‐based EMD
for a global annual precipitation data set. Future research
efforts on the use of EMD in the prediction of nonstationary
hydroclimatological oscillation processes should integrate
the use of rational splines.
[21] The subsequent components (ci where i = 2, …, n)

are estimated by treating the residual (ri) as the signal (x),
iteratively. The ith residual is defined as

ri ¼ x�
Xi

j¼1
cj ð4Þ

In other words, substituting x by ri in equation (2), the same
procedure as for c1 is repeated. For the last component, rn is
treated as cn+1, where n is the total number of IMFs. Then
x =

Pnþ1
i¼1 ci. Note that the last component, cn+1, represents

the overall trend (but not IMF) in that no further decom-
position is available and no oscillations exist in a given
time span. Wu and Huang [2004] found that EMD is a
dyadic filter bank. Therefore, the number of IMFs on average
is approximately the same as the base 2 logarithm of the
record length.
[22] To obtain better uniqueness of the IMF, the ensemble

EMD (EEMD) algorithm was developed by Wu and Huang
[2009], where the EMD algorithm is assisted by a white
noise term. Since the uniqueness of the components is an
important requirement in a stochastic model, EEMD is
adopted in this study. The algorithm is simple, but still several
details are required in the procedure and need to be addressed,
such as rounding‐off error, the edge effect, etc. These details
are beyond the scope of the present study. Orthogonality,
one of the most important features in EMD analysis for
independent modeling, is discussed in the following.

Figure 1. Example of the sifting process (thick solid line, observations; two thin solid lines, upper and
lower envelopes; thick dotted line, mean of the envelopes (i.e., m1 in equation (2)). Notice that some
overshoots and undershoots are presented (e.g., time = 12 for undershoot, and time = 25 for overshoot).
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2.2.2. Orthogonality
[23] A measurement of local orthogonality was proposed

by Huang et al. [1998]. However, the overall orthogonality
cannot be estimated with this measurement. To obtain a
global orthogonality check, cross‐correlation is employed in
the present study. Here, orthogonality implies no correlation
because the oscillatory IMFs have zero mean. Huang et al.
[1998] mentioned that orthogonality is met only locally but
not guaranteed globally since each component is extracted
from the difference between the signal or the residual of the
preceding component and the local mean (not overall mean)
of its envelopes as in equations (2) or (4).
[24] Orthogonality is an important characteristic that is

required in the present work. The reason is that if each
component is separately modeled while certain components
are significantly correlated with each other, the total vari-
ance in reconstructing the data might be underestimated.
By assuming a zero mean (by excluding the last trend
component, cn+1), the variance of the original signal is

E x2
� � ¼Xn

i¼1

E c2i
� �þ 2

X
i 6¼j

E cicj
� � ¼Xn

i¼1

var cið Þ þ 2
X
i 6¼j

cov cicj
� �
ð5Þ

where E[z] indicates the expectation of the variable z.
Hereby, the orthogonality indicates that if the covariance
term of equation (5) is equal to zero, then the variance of the
original signal, E[x2] = sx

2, is only the summation of the
variance of each component,

Pn
t¼1 var(ci). In other words,

the separate modeling of each component implies that the
total variance is carried by the variance of the individual
components. However, if the components are significantly
correlated, then the variance of the reconstructed data will
be reduced. This is more significant when the highly cor-
related components possess a high variance. In the case
where components are significantly correlated and they are
neighbor components (e.g., j = i ± 1), a good alternative is to
model the correlated components as one by summing them
up (i.e., c′i = ci + cj). In practice, we model the summed
component to avoid the leakage of the total variance in the
generated data.
2.2.3. Significance Test of IMF Components
[25] To see whether an IMF for EMD contains a true

signal or just a random noise component, Wu and Huang
[2004; 2005] developed a significance test. The total energy
of the time series x(t) with Ej = 1/N

PN
t¼1 [cj(t)]

2 is

XN
t¼1

x tð Þ2¼
XN
t¼1

Xnþ1

j¼1

cj tð Þ
" #2

¼ N
Xnþ1

j¼1

Ej ð6Þ

The equality between the second and third components of
equation (6) comes from the assumption that the IMFs are
orthogonal. The numerical experiments in Wu and Huang
[2004] reveal that

lnEj þ ln Tj ¼ 0 ð7Þ

where Tj is the mean oscillation period calculated by the
inverse of the frequency of the Hilbert‐Huang Transform for
the jth IMF. Based on the relationship between the energy and
the mean period at each component, Wu and Huang [2004]

established a statistical significance test for IMF components
derived from white noise. If the IMF energy of the observed
data with a certain mean period is higher than the upper bound
of a certain confidence interval, the corresponding IMF is
considered statistically significant at the given level. Wu and
Huang [2004] showed that the first IMF contains no per-
ceivable physical process so that it can be safely assumed to
be pure noise. Therefore, c1 is not considered in the signifi-
cance test.

3. Methodology

[26] The principle of the applied model here is (1) to
decompose the time series x(t) into a finite number of IMFs,
(2) to find the significant components among them, (3) to fit
a stochastic time series model (parametrically or non-
parametrically) to the selected significant components and
the residuals accordingly, (4) to extend the future evolution
of each component from the fitted models, and (5) finally, to
sum up those separately modeled components. Furthermore,
a unique algorithm, called NSO resampling (NSOR), is
introduced to model the significant IMFs. The overall pro-
cess is schematically presented in Figure 2a and the NSOR
model procedure is presented in Figure 2b.
[27] From the significance test [Wu and Huang, 2004],

the components are categorized into three types according
to their characteristics as (1) oscillatory components, c( j ),
where c( j ) is the significant component determined from the
significance test, j = 1, …, J, and J is the number of the
selected components excluding the overall trend; (2) overall
trend, cn+1, if significant; and (3) a white (random) or red
(autocorrelated) noise component, ", which is the summa-
tion of the residuals (insignificant components), i.e.,

" ¼
x� cnþ1 þ

PJ
j¼1

c jð Þ

 !
if cnþ1 is significant

x� PJ
j¼1

c jð Þ

 !
otherwise

8>>>><
>>>>:

ð8Þ

[28] The time series modeling procedure mainly employs
the change rate of an oscillatory time series, defined as
Dc(t)/Dt, instead of the direct modeling component c(t).
Generally, most data are observed discretely at the same
interval (e.g., a second, an hour, or a year); i.e., Dt = 1.
Subsequently,

Dc tð Þ=Dt ¼ fc tð Þ � c t � 1ð Þg= t � t � 1ð Þð Þ
¼ c tð Þ � c t � 1ð Þ ¼ Dc tð Þ ð9Þ

[29] The main reason to use the change rate in the pro-
posed approach is that if we use the component data
directly, an abrupt change might occur, which is not desir-
able in a smooth oscillation process. Since any given value
includes the previous one as c(t) = c(t − 1) + Dc(t), abrupt
change can be avoided by employing the change rate. The
change rate Dc(t) is employed to model the oscillatory and
overall trend components in the current study.

3.1. NSOR

[30] The crucial characteristics of an oscillatory IMF are
(1) the phases and frequencies vary in a certain range for
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each mode; (2) since the components are oscillatory, past
cycles are repeated in the future in a similar manner but
not with the exact same phase and frequency; and (3) the
components change smoothly, similar to a sine wave. No
ordinary time series model can reproduce these character-
istics of IMF. Therefore, a unique algorithm to simulate this
NSO is proposed here.
[31] Since IMF components containing the NSO process

are repetitive, the observed data contain sufficient infor-
mation to extend the observations and estimate the future
evolution. In other words, time series modeling of the NSO
process can be carried out by resampling the historical
oscillation. A unique original block bootstrapping technique
was developed for multivariate time series simulation by Lee
[2008]. While a common block bootstrapping technique
resamples the subsequent block independently of the pre-
vious block with a fixed block length, Lee [2008] preserves
the relation between blocks with KNNR and sets the block
length as a random variable. The procedure can be briefly
summarized as follows: (1) generate the block length, LB,
from a discrete random variable (e.g., Poisson or geometric);
(2) use KNNR to select the starting value of the following
block; and (3) obtain a block that follows the point selected
by KNNR with length LB. The NSOR method proposed
herein is hence based on the bootstrapping algorithm pre-
sented by Lee [2008].
[32] Before describing the details of the modeling proce-

dure, verifications and hypothesis of the adopted techniques
for NSOR modeling are discussed as follows:
[33] 1. Block bootstrapping is employed because the

sequences are oscillatory within a certain range of the varia-
tion of phases and frequencies. Observations represent suffi-

cient information to generate sequences preserving NSO
characteristics. However, if the observations are used by
themselves, only a historical sequence is repeated with a
different combination and the generated sequences do not
vary smoothly. Therefore, the change rates (equation (9)) are
bootstrapped instead. The generated data, combined with the
following random block length, are totally different sequences
from the historical ones and vary smoothly.
[34] 2. Random block length in block bootstrapping is

employed since the IMF component carries the nonstation-
ary process so that the time to change the phases and fre-
quencies of oscillations is random.
[35] 3. KNNR is employed to choose the starting value

of the next block so that the sequence is smoothly contin-
ued. A particular distance measurement in KNNR should
also be further adopted to manipulate the smooth extension
of future evolution.
[36] Suppose that we have a sequence of a certain IMF

component c(t) where t = 1,.., N and we want to extend the
sequence from its end point (cH(N)), as shown in Figure 3.
The “H” superscript indicates that the sequence represents
observed data, and the “G” is for generated data. Hence
set cH(N) = cG(0). With this setup, the NSOR procedure
is suggested as follows (also illustrated schematically with
a flowchart in Figure 2b).
[37] 1. A block length, LB, is randomly generated from a

discrete distribution (e.g., Poisson or Geometric), for the
extended values that follow cH(N). A Poisson distribution is
employed in the present study, because the distribution shape
is generally close to a normal distribution centered on the
mean rather than a positively skewed shape (e.g., Geometric).
More information on the selection of this discrete distribution

Figure 2. (a) Overall process of the proposed model and (b) procedure of the NSOR modeling.
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in block bootstrapping can be found in Lee [2008]. The
employed Poisson distribution with its parameter (t) is

LB � e� � l�1

l � 1ð Þ! l ¼ 1; 2; . . . : ð10Þ

Note that the parameter (t) is the mean of LB. The parameter
selection for the Poisson distribution (t) is discussed later.
[38] 2. Distances are estimated to find close observations

to the current status in KNNR as follows:

Dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 cG t � 1ð Þ � cH jð Þf g2þ�2 DcG t � 1ð Þ �DcH jð Þð Þ2

q
ð11Þ

where a1 = 1/sc
2 (i.e., variance of the component data, c),

a2 = 1/sDc
2 , and j = 2, …, (N − LB). The last LB elements are

excluded to ensure that the records following the selected
points are at least LB in length. Also, the first element ( j = 1)
is omitted because it is not feasible to estimate the change
rate in this case. The objective of measuring a distance is to
find historical points that are similar to the current condition.
The current condition here is cG(0) = cH(N). The closest
points to the current condition in Figure 3 are [p1, …, p9].
However, the current change rate presents a rising condition.
The second term of the right side of equation (11) takes into
account this discrepancy by yielding large distances for the
points with an opposite slope. To ensure that one of the two
distances does not dominate the other, the weighting factors
(a1 anda2) are multiplied. Another alternative to equation (11)
is to use only the first term (i.e., Dj = ∣cG(t − 1) − cH( j )∣)
and omit the points with opposite slope to the current con-
dition. This approach might not be appropriate when the
selection points are near local extrema of an oscillation
signal, in which case the sign of the slope is not very
meaningful. Therefore, equation (11) is employed through-
out this paper.
[39] 3. The k numbers of the smallest distances among

j = 2, …, N − LB are obtained, and their time indices are

stored; this assumes that the candidate points are [ p2, p4,
p6, p8] when k = 4.
[40] 4. One of the k numbers of points is randomly selected

with the weighting probability given in equation (1).
[41] 5. If p2 is selected, the change rates of the LB suc-

cessors are taken (i.e., {DcH (p2 + 1), …, DcH (p2 + LB)}.
[42] 6. The generated data with length LB are obtained by

cG lð Þ ¼ cG l � 1ð Þ þDcH p2 þ lð Þ; l ¼ 1; . . . ; LB ð12Þ

where cG(0) = cH (N)
[43] 7. Steps 1–6 are repeated until the required data

are generated.

3.2. Parameter Selection of NSOR

[44] In the NSOR process, two parameters (i.e., the
number of nearest neighbors (k) and the block length ran-
dom variable (t)) are to be selected. A heuristic approach
and a generalized cross‐validation (GCV) procedure for the
number of the nearest neighbors (k) can be employed [Lall
and Sharma, 1996]. The heuristic approach k =

ffiffiffiffi
N

p
is

adopted in the present study with its theoretical justification
[Fukunaga, 1990; Lall and Sharma, 1996].
[45] The Poisson distribution parameter for block length

random variable (t in equation (10) and t = E[LB]) is equiv-
alent to the fixed block length in a general block bootstrap-
ping. Hall et al. [1995] suggested an alternative to select the
block length by (1) setting the block length as N1/a and then
(2) finding a by minimizing the mean square error between
the block bootstrap estimates and the estimate from the entire
observed data of a target statistic. This is, however, only
applicable when block bootstrapping is employed for the
estimation of the standard error of a certain statistic. The
objective of the bootstrapping in the current study is, however,
to simulate sequences preserving the NSO characteristics.
[46] Wilks [1997] proposed an applicable alternative to

this case. He induced a rule from trial and error evaluation of
autoregressive synthetic series. By assuming that the given

Figure 3. Artificial NSO time series for the description of NSOR modeling. Notice that there are four
candidate points (k = 4) as p2, p4, p6, and p8 for the current condition c

H(N). Among four candidate points,
p2 is selected and the successors of DcH(p2) with length LB are taken.
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data follows a first‐order or second‐order autoregressive
(AR(1) or AR(2)) model, the block length is selected with a
function of the variance inflation factor (VIF), V, and the
record length, N. Wilks [1997] concluded that the AR(2)
case is much more robust and more widely applicable than
AR(1). Therefore, in the present study we applied this block
length selection with the AR(2) process assumption for the
parameter t in equation (10). This assumption concerning
the block length leads to the preservation of the memory of
the current state. Further serial dependence is ensured
through the selection of the subsequent block with KNNR
instead of independent blocks [Lee, 2008].
[47] The VIF depends on the autocorrelation as shown by

the equation:

V ¼ 1þ 2
XN�1

j¼1

1� j=Nð Þ�j ð13Þ

where rj are the model estimates of the autocorrelations at
lags j and N is the record length. The AR(2) model and its
estimates of rj are explicitly presented in Appendix A. The
bias‐adjusted VIF is V′ = V exp(3V/N). The parameter t in
equation (10) (also, mean value of LB) is chosen by solving
the following equation:

� ¼ exp
2

3
1� 1=

ffiffiffiffiffiffiffi
4V ′

p� �
log N � � þ 1ð Þ

	 

ð14Þ

3.3. Modeling Overall Trend and Residuals

[48] A regression method (such as linear, polynomial, or
exponential) might be employed for modeling the trend
component. Here, polynomial regression is applied to the
change rate of the trend component when the IMF test
indicates that the trend component is significant. Notice that
the p‐order polynomial regression (PR(p)) of the change
rate (Dc(t)) is equivalent to the p+1 order of the original
component (c(t)). It is easy to adopt the current state on the
extension of the future evolution as c(t) = c(t − 1) +Dc(t) by
utilizing the change rate in trend modeling.
[49] The residuals of the data excluded from the trend and

the significant oscillatory components are treated as either
random noise or autocorrelated noise according to the time
dependency structure. One can fit a proper stochastic time
series model for the residuals, such as KNNR [Lall and
Sharma, 1996], ARMA [Salas et al., 1980], etc.
[50] The separately generated data sets with three different

approaches (NSOR‐oscillatory component, PR(p)‐trend
component, and KNNR or ARMA residuals) add up to the
generated data in an original domain.

4. Model Validation With Rössler Attractor

4.1. Rössler Attractor

[51] To test the performance of the suggested model, we
select an example of a nonlinear dynamic system, Rössler
attractor [Rössler, 1976], which is one of the most famous

Figure 4. Experiment of Rössler attractor with a = 1/5, b = 1/5, d = 7/2. (a) Three‐dimensional repre-
sentation of the attractor without random component. (b) Time series of the Rössler attractor with random
component. The extension of the attractor is also involved (t = 451–500) with truncation of the corre-
sponding records (thin solid line, observed records; thick solid line, the sum of the selected components
(t = 1–450) and the mean of the 200 realized extensions (t = 451–500); thin gray dotted lines, the 200
realized extensions of only the selected components (4th + 5th)). (c) The partial presentation of
Figure 4b (t = 400–500) except that the dotted lines represent 200 realized extensions of the selected com-
ponents plus the simulated residuals.
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and chaotic attractors. The attractor is the solution to a
system of three nonlinear ordinary differential equations as

dx

dt
¼ �y� z

dy

dt
¼ xþ �y

dz

dt
¼ � þ zx� �z

where (x, y, z) 2 R3 are dynamical variables defining the
phase space with time t, and (a, b, d) 2 R3 are parameters.
This attractor was intended to behave similarly to the Lorenz
attractor [Lorenz, 1963]. However, unlike Lorenz, a quali-
tative understanding of the chaotic flow is easier to obtain
[Rössler, 1976]. Huang et al. [1998] and Kijewski‐Correa
and Kareem [2007] illustrated that the nonlinear Rössler
system is well represented with EMD and Hilbert transform.
We selected this attractor because it oscillates within a fixed
range but the oscillations are chaotic.

4.2. Results

[52] For the application, the system was realized with the
same parameter set, [a, b, d] = [1/5, 1/5, 7/2], as Huang et al.
[1998] and Kijewski‐Correa and Kareem [2007] and with
the initial state [x0, y0, z0] = [−3, 3, 1]. A three‐dimensional

view of the realized series is in Figure 4a presenting the single
spiral, unlike the two spirals of the Lorenz attractor.
[53] Among the three variables of the Rössler attractor,

we applied the suggested approach only to the x variable.
The time series of the x variable contains only smooth and
deterministic components. Therefore, we added a random
component to perturb the system as x + " where " is
normally distributed with zero mean and the same variance:
x, i.e., " ∼ F(0, sx

2). Here F(m, s2) represents the normal
distribution with mean m and variance s2. The time series
of the realized 500 observations is shown in Figure 4b with
a thin solid line. The time period 400–500 is magnified
in Figure 4c.
[54] To test the prediction capability of the proposed

model, we truncated the last 50 years of record. Then, 200
stochastic series of the truncated part are generated from the
proposed model and compared to the realized observations
from the system.
[55] The extracted IMFs of the realized Rössler system are

illustrated in Figure 5. Results show that among all IMFs,
the first three IMFs of the composite signal (c1, c2, and c3)
capture the high‐frequency random process. The long‐term
oscillation from a nonlinear deterministic chaotic process is
sifted in the 4th and 5th IMFs. This result is supported
by the IMF significance test shown in Figure 6. The 4th
and 5th components are highly significant compared to

Figure 5. (top) Time series of the original sequence, which is simulated from the Rössler attractor plus
random noise, and (remaining panels) the extracted components with EMD (c1 − c8). Note that (1) the
critical long‐term oscillation signals are sifted in c4 and c5 and (2) each y axis has a different scale in order
to present the variability of each component appropriately.
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the other components. The 6th and 7th components show
very low energy, which implies that these components most
likely represent a random noise process. Even though the
significance test indicates that the long‐term trend component
(c8) might not be induced by a random process, the variability
of this 8th IMF is negligible compared to the original time
series (see Figure 5). Therefore, we only model the combi-
nation of the 4th and 5th components with NSOR and treat
the others as the residuals (i.e., c1+ c2+c3+ c6+ c7+ c8).
[56] In Figures 4b and 4c, the dotted lines during the

period 451–500 show the extended series of only the
selected components (b) and of all the components including
the residuals (c). The thick solid line of this period in
Figures 4b and 4c presents the mean of the 200 extended
series. Even though the results indicate a slight overesti-
mation in the first decade and a slight underestimation in the
following decade compared to the original sequence (thin
solid line, they globally illustrate that the proposed model
predicts well the future evolution of the Rössler attractor.
The generated 200 series including the residuals shown in
Figure 4c cover the variability of the original series.
[57] For further testing, another Rössler system with its

most commonly employed parameter set as [a, b, d] = [0.1,
0.1, 14] (shown in Figure 7a) [Rössler, 1995] was real-
ized with a smaller variability of the random component " ∼
F(0, 1/4sx

2) than the previous Rössler system (sx
2). The

extension of the truncated last 300 values (Figure 7b) indi-
cates that the future evolution of the nonlinear chaotic sys-
tem is well reproduced by covering the variability of the
system as shown in Figure 7c. One could apply the random
component with higher variability (e.g., " ∼ F(0, 2sx

2)).
However, this might overwhelm the signal of the Rössler
system and hence the NSO process is vague. In this case, the
significance test of Wu and Huang [2004] might indicate
that no significant signal is observed as shown in section 3.
Further discussion of this point is presented in section 6.

5. Application to Global Surface
Temperature Anomalies

5.1. Data Description

[58] Annual‐scale GSTA (1856–2003) data, with the devi-
ation from the 1961–1990 yearly mean, are employed to test
the ability of the suggested model as shown in Figure 8 with a
thin solid line. The data was downloaded from the University
of East Anglia’s Climate Research Unit, http://www.cru.uea.
ac.uk/cru/data/temperature, referred to as TaveGLv2 in the
Web site [Jones et al., 2001]. This data was already analyzed
with a number of decomposition procedures, such as singular
spectrum analysis [Elsner and Tsonis, 1994; Schlesinger and
Ramankutty, 1994a; Elsner and Tsonis, 1996] and EMD [Wu
et al., 2007; Zhen‐Shan and Xian, 2007]. Note that unlike

Figure 6. Significance test of the Rössler attractor with 95% (solid line) and 99% (dotted line) confi-
dence limits. Each point (asterisk) below the lines indicates that the hypothesis that the corresponding
IMF of the observed series is not distinguishable from the corresponding IMF of a random noise series
cannot be rejected with the confidence levels (95% and 99%, respectively). Notice that c4, c5, and c8 are
significant while c4 has the highest mean normal energy, and the first component c1 is generally consid-
ered as random component in EMD analysis and neglected in the test [Wu and Huang, 2004].
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previous studies, the main objective here is to suggest a time
series model that captures the NSOs and provides the future
evolution of GSTA.
[59] For an overview of the extension and prediction

ability, the observations of the last 30 years and 38 years are
truncated, and are compared to the data generated from the
proposed model. Finally, the next 50 years of data are gen-
erated to predict the evolution of GSTA data in the future.

5.2. Results

[60] The overall GSTA time series is shown in Figure 8 (thin
solid line for observations). An overall increase of global
temperature is evident. Furthermore, a long‐term NSO is
observed in Figure 8. After performing EMD, the extracted
IMF components are shown in Figure 9. By adopting the
ensemble algorithm for EMD analysis in the current study
[Wu and Huang, 2009], the number of components from
EMD, (n+1), is equal to seven instead of six, unlike the
previous studies on the same data [Wu et al., 2007; Zhen‐
Shan and Xian, 2007].
[61] The variance of each IMF of the GSTA data is pre-

sented in Table 1. It reveals that the last overall trend
component contains most of the variability. The sum of the
component variances is about 95% of the variance of the
original signal. This implies that 5% of the variance is
carried through the cross‐correlations between the IMF
components as in equation (5). The cross‐correlation matrix
for the oscillatory components is presented in Table 2. It is
shown that the fifth component is significantly correlated
with the fourth and sixth. Modeling those components
separately might lead to an underestimation of the total
variance. These signals should be modeled as a combined
one component if significant.
[62] The significance test of the IMFs employing the

random noise simulation and energy spectra in the fre-
quency domain (see equation (7)) is shown in Figure 10.
It reveals that the fourth, fifth, and seventh components are
significant components rather than random noise processes.

The seventh component represents the overall trend, the fifth
component represents the 60–75 year oscillation, and the
fourth component has some irregular changes with a long‐
term variation as presented in Figure 9. The 60–75 year
oscillation in this data set was suggested by Schlesinger and
Ramankutty [1994a]. Through SSA and by removing the
overall trend with the prediction of the GCM model,
Schlesinger and Ramankutty [1994a] showed that the long‐
term oscillation might exist. Elsner and Tsonis [1994;
1996], however, suggested that these signals might come from
the autocorrelated red noise process with 0.9 lag‐1 autocor-
relation function (ACF). However, autocorrelation is easily
overestimated if a long‐term trend exists, which is the case for
this GSTA series [Schlesinger and Ramankutty, 1994b].

Figure 8. Time series of the GSTA data and its selected
IMF components as well as its linear fitting (thin solid line,
observations; thin dash‐dotted line, overall trend; thin dotted
line, linear fitting; thick solid line, the combination of the
selected IMF components).

Figure 7. The same as Figure 4 except with a different parameter set (a = 0.1, b = 0.1, d = 14) and
different time period, as t = 1–1700 for the observations, and t = 1701–2000 for the extension part.
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[63] To provide a simple explanation, a random simula-
tion was performed as x(t) = 0.01t + "(t), where "(t) is a
random noise which follows the standard normal distribu-
tion. The sequence represents a perfectly random noise
except for the strong increasing trend, but it still has a very
high lagged correlation (data not shown).
[64] Likewise, the higher lag‐1 ACF is induced from the

strong increasing trend in the GSTA data (around 0.9)
shown in Figure 11a. The detrended data (i.e., x − c7),
however, has a much lower ACF of about 0.5, as shown
in Figure 11b. Furthermore, the ACFs of the detrended
data (Figure 11b) show a strong oscillation with around a
65 year period. The same autocorrelation structure can be
found in the ACFs of the residual of the linear regression
(Figure 11c). This is further evidence of the existence of the
60–75 year oscillation. After subtracting the significant
components from the test shown in Figure 10, the ACFs of
the residual (i.e., x − c4 − c5 − c7) present no significant
serial correlation except the first one (0.2) as shown in
Figure 11d with confidence bounds ± 0.16. Therefore, we
chose c4 and c5 as the oscillatory components, c7 as the trend
component, and the others as the autocorrelated residuals.
[65] At first, the significant trend component (c7) was

modeled with a PR(1) model on the change rate whose order
was selected by Akaike information criterion [Akaike, 1974;

Bozdogan, 1987]. The PR(1) model on the change rate is
equivalent to a PR(2) model on the original signal. Then, the
summation of the selected 65–70 year components (c4 + c5)
was modeled with the NSOR algorithm. Finally, the com-
bination of the residual components (c1 + c2 + c3 + c6) was
modeled with KNNR since a slight autocorrelation still
exists (as much as 0.2 above the confidence bounds ± 0.16).
The AR(1) model was also tested for modeling the residuals,
resulting in no significant difference from KNNR (data not
shown). In summary, the modeling scheme of this GSTA
data was carried out in three parts: (1) the change rate of the
overall trend component (c7) was modeled using an order‐1
polynomial regression (linear regression); (2) the combi-
nation of the fourth and fifth components (c4 + c5) was
modeled with the NSOR algorithm; and (3) the residuals
(c1 + c2 + c3 + c6) were modeled with KNNR.
[66] In Figure 8, the time series of the summation of the

selected components (thick solid line) is overlaid with the
observed data (thin solid line). The long‐term trend and
oscillatory pattern of the observations are well represented
by the selected components. The linear regression fitting
is also included with the dotted line in Figure 8 in order to

Table 1. Variance of all IMF Components, the Sum, and Original
Signal (x) for the GSTA Data

c1 c2 c3 c4 c5 c6 c7 Sum x

sci
2 0.372 0.175 0.104 0.217 0.068 0.002 1.479 2.416 2.555

sci
2/sx2(%) 14.55 6.85 4.07 8.48 2.65 0.06 57.89 94.55 100

Table 2. Cross‐Correlation of the Oscillatory IMF
Components for the GSTA Data

c1 c2 c3 c4 c5 c6

c1 1.00
c2 0.17 1.00
c3 −0.01 0.22 1.00
c4 −0.04 −0.02 0.13 1.00
c5 −0.01 0.01 −0.01 0.59 1.00
c6 0.02 0.01 −0.02 0.00 0.42 1.00

Figure 9. IMFs of the GSTA data. Note that the y coordinates of each panel are differently scaled;
otherwise, the shape of some signals might not be distinguishable.
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magnify the ability of the selected components to capture
the variability of the observed data.
[67] To verify the model performance, the last 30 years of

the historical data were truncated and the remaining
observed data (1856–1973) were fitted with the same model
as before. A total of 200 sets of 30 year extensions were
generated from this model. The simulation results are pre-
sented in Figure 12 with only the selected significant com-
ponents (Figure 12a) and all the components (Figure 12b).

Figure 12 reveals that the generated data capture well the
overall trend and the long‐term oscillation within the given
uncertainty from the random noise and the NSOR process.
Even if the 30 year data are excluded in the estimation, the
overall trend and the oscillation are well predicted by the
suggested model. The data point in the year 1973 seems to
be already on the increasing regime which leads to a rela-
tively easy condition to predict. To test the model in a more
realistic condition, the observed data were truncated up to
the year 1965. In this case, the last years represent a 38 year
period that has a locally decreasing regime. This provides a
good case to test whether the proposed model properly
conveys the oscillation and trend to predict the future va-
lues. The overall trend and oscillation process are fairly well
extended within the uncertainty range carried out by the
random component (data not shown because of the simi-
larity with Figure 12). Conclusively, the results above show
that the proposed model preserves well the historical pat-
terns of trend and NSO. Therefore, this model can reliably
extend the future sequence of the GSTA data.
[68] A simple AR model was tested in order to check

whether such a traditional model is also able to predict the
future evolution of GSTA data. Since the serial correlation
of the observed data has long‐term persistence as shown in
Figure 11a, high‐order AR models were applied. The partial
autocorrelation of this data indicates that the possible AR
model order could be of 4 or 5. In Figure 13, the 200
generated sequences from AR(5) and AR(10) models are
illustrated (observed period: 1856–1973, past 30 years are
truncated). The generated sequences from AR(5) show a
decreasing trend and the ones from AR(10) present no trend
while the observed data presents an increasing trend. We
also tested much higher order AR models (e.g., AR(20) and
AR(30)). The results were not much different from AR(5)
and AR(10) (data not shown). The next 50 years of the

Figure 10. The same as Figure 6 except that the IMFs of
the GSTA data are employed here. Notice that significant
components are c4, c5, and c7, and the trend component c7 is
the most significant one.

Figure 11. Autocorrelation function (ACF) of (a) observed signal, (b) detrended data (x − c7), (c) resi-
duals of the linear regression fitted data, and (d) residuals of the selected components (x − c4 − c5 − c7).
The thick lines represent ACFs with a function of lag. The two horizontal lines above and below the zero
line at each panel represent the confidence bounds, ±2/

ffiffiffiffi
N

p
, approximately 95% confidence interval.
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GSTA data records were generated to show how the global
temperature might vary. The extension of the trend for the
next 50 years is presented in Figure 14a which includes
only the generated fourth, fifth, and seventh components.

Figure 14b provides a plot of the generated data including
all the generated components.
[69] Due to the global warming signal and the noise term,

the long‐term oscillation might not be easy to observe clearly.

Figure 12. Generated sequences for GSTA data for which the last 30 years are truncated (i.e., the
observed period of 1856–1973). (1) Thin solid line represents the observations; (2) thick solid line shows
the selected IMF components for 1856–1973 and the mean of the generated 200 realizations for 1974–
2003; and (3) dotted gray lines represent the 200 realizations of (a) only the selected components and
(b) all components.

Figure 13. Generated sequences from the simple AR model for GSTA data for which the last 30 years
are truncated. (1) Solid line represents the observations; (2) gray lines represent the 200 realizations from
(top) AR(5) and (bottom) AR(10); and (3) thick dotted line represents the mean of the 200 realizations.
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Nevertheless, the prediction results (Figure 14) indicate that,
during the next few decades, the increase in the global tem-
perature might be moderated by the decreasing tendency of
the long‐term oscillation, after which a stronger temperature
increase is expected. Finally, the results seem to indicate that
even given the moderation of the temperature change derived
from the natural driving force (60–75 year oscillation) over
the next few decades, the anthropogenic effects on global
warming should not be underestimated. A higher increase is
expected a few decades later.

6. Conclusions and Remarks

[70] The present study dealt with the modeling of the NSO
processes in climatic regimes. Realistic long‐term NSOs
embedded in observed data can be extracted by expressing
the oscillation structures as IMFs through the EMD tech-
nique. The extracted components are modeled in three ways.
If significant, the overall trend is modeled with a polynomial
regression, and the oscillatory components are modeled with
the proposed NSOR algorithm. The residuals are treated as
an autocorrelated red noise or white noise, modeled with the
general time series model (KNNR or AR(1)) or a normal
random process, respectively. In conclusion, the proposed
NSOR model is capable to provide a useful prediction of a
future sequence by employing the long‐term oscillation
pattern of the observed data. The validation study over a
nonlinear chaos system, the Rössler attractor, concluded that

the proposed model can be suitable to extend the future
evolution of the nonlinear system. Furthermore, through the
successful modeling of the NSO process, we were able to
achieve a reasonable prediction of the future global tem-
perature change.
[71] A few remarks need to be mentioned concerning the

proposed model. First, this is a stochastic model, implying
that no physical factors are included. For example, the
prediction of the GSTA basically assumes that the physical
forces are similar to the historical ones. The extension might
deviate if the overall trend is changed through different
anthropogenic driving forces. The trend might be different
even if these forcings are unchanged, due to the precedent
anthropogenic forcings, until a new equilibrium of climate
system is reached. This would take millennia. The fact that
the current NSOR model is able to extend the last 30 years
of GSTA data well, might suggest that the physics of the
NSOs has not changed much yet. Second, the proposed
model is useful for the data sets embedding NSO or qua-
siperiodic processes. However, the observed data structure,
such as the ACF, should be checked thoroughly before
applying this model. If no oscillation structure can be found,
a Box‐Jenkins type of model (e.g., SML or ARMA) may
represent a better alternative. Finally, the reliable prediction
range depends highly on the persistence features governed
by the climatic system and the length of the observed data
series. Based on the performance of the synthetic application
and case study, it is suggested that a horizon of more than
half the cycle of the oscillation process is not appropriate,
especially with the small number of cycles commonly
observed in geophysical data such as in the GSTA data set.
Furthermore, the target IMF for the NOSR modeling should
have at least three zero crossings (or one total cycle). Even
with these limitations, the results of the present work illus-
trate the potential of the proposed model to provide future
long‐term predictions.
[72] The proposed model can eventually be applied to the

extended climate indices in order to predict the future evo-
lution of hydroclimatic variables such as precipitations or
streamflows. This work has been performed and presented
in a separate paper [Lee and Ouarda, 2010].

Appendix A: Second‐Order Autoregressive Model

[73] For the time series of x(t) with zero mean, the second‐
order autoregressive (AR(2)) model is expressed as

x tð Þ ¼ �1x t � 1ð Þ þ �2x t � 2ð Þ þ z tð Þ; ðA1Þ

where z(t) ∼ F(0,sz
2). Also, �1 and �2 are the parameters

related to the first and second lag ACFs (r1 and r2) as

�1 ¼ �1
1� �2
1� �21

and �2 ¼ �2 � �21
1� �21

: ðA2Þ

The ACFs of this model satisfy the second‐order differ-
ence equation:

�k ¼ �1�k�1 þ �2�k�2 for k > 2 ðA3Þ

The parameters of the AR(2) model (�1 and �2) in
equation (A1) are obtained from equation (A2) with the

Figure 14. Extension of 50 years with (a) the selected
components only and (b) including all the components for
the GSTA data (thin solid line, observations; dash‐dot line,
overall trend; thick solid line, selected IMF components;
gray lines, 200 realizations).
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historical estimates of the ACFs (i.e., r1 and r2). The other
N − 3 ACFs, rj, for equation (13), are estimated sequentially
from equation (A3).
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