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[1] In this paper, artificial neural networks (ANNs) are introduced to obtain improved
regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is
used to identify the functional relationship between low-flow quantiles and the
physiographic variables. Each ANN is trained using the Levenberg-Marquardt algorithm.
To improve the generalization ability of a single ANN, several ANNs trained for the same
task are used as an ensemble. The bootstrap aggregation (or bagging) approach is used to
generate individual networks in the ensemble. The stacked generalization (or stacking)
technique is adopted to combine the member networks of an ANN ensemble. The
proposed approaches are applied to selected catchments in the province of Quebec,
Canada, to obtain estimates for several representative low-flow quantiles of summer and
winter seasons. The jackknife validation procedure is used to evaluate the performance
of the proposed models. The ANN-based approaches are compared with the traditional
parametric regression models. The results indicate that both the single and ensemble
ANN models provide superior estimates than the traditional regression models. The
ANN ensemble approaches provide better generalization ability than the single ANN
models.
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1. Introduction and Review

[2] A large number of engineering activities require the
availability of reliable low-flow frequency estimates. Such
activities include fish habitat analysis, water quantity and
quality management, and environmental impact assessment.
For a site with a sufficient amount of historical streamflow
records, two traditional approaches can be used to obtain
low-flow quantile estimates. The first approach is based on
the standard procedure for hydrological frequency analysis,
which involves fitting a probabilistic distribution to the
observed low-flow data [see, e.g., Tasker, 1987]. In the
second approach, flow duration curves (FDC) depicting
the frequency at which a given flow is equaled or exceeded,
are constructed from the available flow record [see, e.g.,
Smakhtin et al., 1997].
[3] For ungauged sites, where no historical streamflow

record is available, low-flow statistics are frequently esti-
mated using regional regression techniques [Vogel and
Kroll, 1990, 1992; Dingman and Lawlor, 1995; Eng and
Milly, 2007]. The most used regional regression model has
the following generalized form [Thomas and Benson,
1970]:

Qd;T ¼ axq11 x
q2
2 � � � x

qi
i � � � xqnn ð1Þ

where Qd,T is the d-day, T-year low-flow quantile at the site
of interest (d, duration; T, return period); xi is the ith

physiographic or climatic characteristic used for quantile
estimation; qi is the ith model parameter; n is the total
number of site characteristics used in the model; and a is the
multiplicative error term. Solving equation (1) using linear
regression techniques generally requires linearizing the
power form model by a logarithmic transformation to the
form

log QTð Þ ¼ log að Þ þ q1 log x1ð Þ þ q2 log x2ð Þ þ q3 log x3ð Þ þ . . .

þ qn log xnð Þ ð2Þ

Parameters of equation (2) can be estimated using the
ordinary, weighed or generalized least squares techniques.
[4] Other approaches have been attempted for the pre-

diction of low-flow characteristics at ungauged basins.
Such approaches include the drainage area ratio method
based on the establishment of a linear drainage area
discharge relationship, spatial interpolation and regional
mapping techniques which assume the existence of a clear
relationship between the flow field and explanatory phys-
iographic variables, and the use of regional prediction
curves which can be established by standardizing flows
at gauged sites by a scale index and then combining the
information into a single regional curve. It is also possible
to synthetically generate a large number of streamflow
time series based on records available at gauging stations
and then proceed with the estimation of the regional
low-flow characteristics. For a comprehensive review of
methods of low-flow estimation at ungauged sites the
reader is referred to Smakhtin [2001] and Ouarda et al.
[2008].
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[5] Artificial neural networks (ANNs) are biologically
inspired computing and modeling tools. One of the major
benefits of ANNs is their capability to approximate arbitrary
functions given sufficient parameters and training samples.
ANNs have been successfully applied to solve a wide range
of hydrological and water resources problems. Examples of
such applications include rainfall-runoff modeling [Minns
and Hall, 1996; Gupta et al., 1997], flood routing modeling
[Peters et al., 2006], streamflow prediction [Moradkhani
et al., 2004], ice dynamics modeling [Seidou et al., 2006]
and precipitation estimation [Hsu et al., 1997; Kuligowski
and Barros, 1998]. The ASCE Task Committee on Artificial
Neural Networks in Hydrology [2000a, 2000b] andGovindaraju
and Rao [2000] provided a comprehensive review of the
ANN application in hydrology.
[6] Recently, the use of ANNs for hydrological regional-

ization has been attracting increasing attention. As an
alternative to regressive methods, single ANN and ANN
ensemble models were introduced by Shu and Burn [2004]
for regional flood estimation at ungauged sites. The appli-
cation to selected catchments in the United Kingdom (UK)
indicates that the nonlinearity introduced by the ANN
models allows them to outperform parametric regression
methods.
[7] The generalization ability of a single ANN can be

improved by using a properly designed ANN ensemble.
Dawson et al. [2006] applied ANNs to index flood and
flood quantile estimation for 870 catchments across the UK.
The results obtained from the ANNs are comparable in
accuracy with those obtained by the Flood Estimation
Handbook (FEH) [Reed and Robson, 1999] models. Shu
and Ouarda [2008] applied the adaptive neurofuzzy infer-
ence system (ANFIS) and ANN approaches for regional
flood frequency analysis, and the results indicated that both
approaches show a better generalization ability than the
parametric regression methods. Shu and Ouarda [2007] also
developed a canonical correlation analysis (CCA) based
single ANN and ANN ensemble models for improved
regional flood estimation at ungauged sites.
[8] Despite the increasing popularity of ANN-based

methodologies, they have never been applied to the regional
frequency prediction of low-flow characteristics. A relatively
limited number of publications dealt with drought forecast-
ing and drought risk assessment based on ANNs [Crespo
and Mora, 1993; Incerti et al., 2007; Mishra et al., 2007;
Morid et al., 2007; Ochoa-Rivera, 2008]. It is the intent of
this paper to apply ANN modeling techniques to regional
low-flow estimation at ungauged sites. Specifics regarding
the design and implementation of ANNs are discussed. Two
ensemble techniques, bagging and stacking, are introduced
to improve ANN generalization ability. The ANN models
are also compared with the traditional regression models for
low-flow estimation based on data from the province of
Quebec, Canada.
[9] The remainder of this paper is organized as follows.

In section 2, a general introduction to the single and
ensemble ANNs for regional low-flow analysis is provided.
In section 3, a description of the study area is provided. In
section 4, the details concerning the configuration of the
single and ensemble ANNs, the estimation models to be
compared, and the evaluation methodology are presented. In
section 5, the results obtained by applying the proposed

approaches are presented and discussed. Finally, in section 6,
the conclusions of this work and recommendations for
further research are presented.

2. General Background on the Use of Single and
Ensemble ANN Models for Regional Low-Flow
Analysis

2.1. Single ANN Model

[10] Among the various types of ANNs that have been
developed over the years, multilayer perceptrons (MLPs)
(also known as multilayer feed-forward networks) originally
proposed by Rumelhart and McClelland [1986] are the most
commonly used and well researched class of ANNs. A
typical MLP has an input layer, at least one hidden layer,
and an output layer. The layers are interconnected through
weighted links from lower layer to higher layer, without
lateral or feedback connections. The input layer receives
values of the input variables for a given problem. There
could be one or more hidden layers lying between the input
and output layer. The output layer provides the ANN
prediction and represents model output. Transfer functions
used in the neurons of the hidden and output layers, which
introduce nonlinearity to the network, play an important role
in determining the behavior of an ANN.
[11] For the problem of low-flow quantile estimation at

ungauged sites, an ANN model is used to approximate the
functional relationship between the physiographical varia-
bles and the hydrologic variables which act as the input and
output, respectively, of an ANN. Parameters in an ANN,
which are called weights in the ANN literature, are deter-
mined through supervised training. A Bias unit helps
convergence of the weights to an acceptable solution, and
it can be thought of as a unit which is connected to the
hidden and output layer and has an constant output of 1. An
extra degree of freedom in the weight space is introduced by
adding a bias unit. Once a network is trained and tested it
can be given new input information to predict the output.
During the training process, network parameters must be
optimized until the prediction error made by the network is
minimized and the network reaches the specified level of
accuracy. The error of a particular configuration of the
network can be computed by comparing the ANN generated
results with the desired outputs. The differences are com-
bined together by an error function to give the network
error. A MLP can be trained in either an incremental or
batch style. In incremental training, network parameters are
updated each time a training case is presented to the
network. In batch training, network parameters are not
updated until all the training cases are presented. Although
it is arguable which training style results into better gener-
alization ability, the sequential mode generally has a higher
speed of learning [Haykin, 1994].
[12] There are also other training algorithms collectively

known as second-order training algorithms that can signif-
icantly increase training speed. These methods include the
conjugate gradient algorithm, the quasi-Newton algorithm
and the Levenberg-Marquardt (LM) algorithm [Bishop,
1995]. Among these algorithms, the LM algorithm [Hagan
and Menhaj, 1994] is considered to be the most efficient for
training median sized artificial neural networks and works
extremely well in practice [Burney et al., 2004]. The LM
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algorithm is a variation of the Gauss-Newton algorithm, and
it is developed to approach second-order training speed
without having to compute the Hessian matrix. The new
configuration of weight w in step n using LM algorithm is
computed as

w nð Þ ¼ w n� 1ð Þ � JTJ þ mI
� ��1

JTe nð Þ ð3Þ

where the Jacobian matrix J contains the first derivatives of
the network errors with respect to weights and biases, I is
the identity matrix, and e is a vector of network errors which
is the difference between the actual and the desired value of
the network output. Learning parameter m is modified based
on the development of the error function E. More
specifically, m is multiplied by the decay rate b (0 < b < 1)
if E decreases in a new step, whereas m is divided by b if E
increases in a new step. The LM algorithm is selected in this
paper to train the ANNs, and the parameters of the
algorithm are discussed in section 4.2.

2.2. ANN Ensemble Model

[13] An ANN ensemble consists of a set of ANNs which
are trained for the same task. Theoretical work by Hansen
and Salamon [1990] suggested that the generalization
ability of a single ANN can be significantly improved using
an ensemble of ANNs with a plurality consensus scheme for
a classification problem in which the final classification
results are determined by the majority of the networks.
Krogh and Vedelsby [1995] proved that the generalization
ability of an ensemble is largely controlled by two factors:
the average generalization ability and the average ambiguity
of the ensemble members. There are also several practical
works, such as Drucker [1997], Sharkey [1999], Dietterich
[2000] and Carney and Cunningham [1999], which showed
that the performance of a single ANN can be improved
by using appropriately selected ensemble techniques. Gen-
erally two major steps are involved in creating an ANN
ensemble. The first step is to generate individual ensemble
members, and the second step is to combine the prediction
from the ensemble members to produce a unique output.
Opitz and Maclin [1999] provided a review of the popular
ensemble methods. Shu and Burn [2004] conducted a
comprehensive evaluation of six ANN ensemble techniques
for hydrological application. Shu and Ouarda [2007] applied
bagging and averaging ensemble techniques to improve
ANN performance for regional flood estimation at ungauged
sites.
[14] Two widely used methods for creating ensemble

members are bagging [Breiman, 1996a] and boosting [Freund
and Schapire, 1996; Schapire, 1990]. Both of these methods
rely on resampling algorithms to obtain different training
sets for the component predictors. Bagging [Breiman,
1996a] is an acronym for ‘‘bootstrap aggregation,’’ and it
is based on bootstrap statistical resampling technique [Efron
and Tibshirani, 1993]. In bagging, each ANN is trained
independently on a training set sampled with replacement
from the original data set. Suppose there are m instances in
the training set T. The training set of a member network, TB,
is generated by sampling with replacement m times from the
original training set T. Each instance of the original data set
has a probability of 1/m to be selected. There could be a
number of instances that are repeated several times in TB,

while others may be left out. The probability that an
instance from T will not be part of a bootstrap resampled
training set is (1 � 1/m)m, which is close to 0.37 for a large
sample.
[15] The boosting algorithm was originally proposed by

Schapire [1990]. The algorithm generates a series of ensem-
ble members which are trained with different distributions
of the original training data. The algorithm starts by training
the first predictor with the original training set. Then the
training set of a new predictor is sampled from the original
data set based on a performance adjusted distribution. The
distribution ensures that high probabilities of being sampled
are assigned to the training cases for which the predicted
values obtained from the previous predictor differ signifi-
cantly from their desired values. Thus training cases which
failed to be correctly predicted by the previous predictor
will have a greater chance of appearing in the new training
set than those correctly predicted. Thus, the sequentially
generated predictors by the boosting algorithm are special-
ized in different parts of the observation space.
[16] A number of authors, such as Carney and Cunningham

[1999] and Zhang [1999], have shown that bagging is an
effective approach to improve model generalization ability
for both regression and classification problems. Drucker
[1997, 1999] and Sharkey [1999] showed that boosting
could generate better results than bagging in many situa-
tions. However, boosting is very sensitive to the outliers
[Bauer and Kohavi, 1999]. Due to this major drawback of
the boosting algorithm, the bagging algorithm is used in the
present paper to generate the individual ensemble networks.
[17] Simple averaging is the most used method for

combining members of an ANN ensemble [Wolpert,
1992]. Stacked generalization is a more complicated
approach that has generated significant interest among
researchers during the recent years. Suppose that K member
networks are generated, and the ith training case has a
desired value yi and obtains a predicted value ŷi

k from the kth
network. Combining the networks using simple averaging is
defined as

ŷi ¼
1

K

XK
k¼1

ŷki ; i ¼ 1 . . .m ð4Þ

This method of combination has the benefits of easy
implementation and improved performance [Perrone and
Cooper, 1993; Bishop, 1995].
[18] Stacked generalization or stacking [Wolpert, 1992]

improves the generalization ability of a classification or
regression model by using a two-layer architecture. In
stacking, the way that the outputs from the predictors or
classifiers at level 0 are combined needs not to be linear but
through a level 1 generalizer which is also trained to
minimize an error function. Suppose there are K predictors
(in our case the ANNs) at level 0, and the data set used for
training the level 1 generalizer has a size of n. The purpose
of level 1 training is to find the coefficients ĉ1, ĉ2, . . ., ĉK to
minimize the following function suggested by Breiman
[1996b] for a regression problem:

W ¼
Xn
i¼1

yi �
XK
k¼1

ck ŷ
k
i

" #2
ck > 0 ð5Þ
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where pattern i has a desired output yi and the prediction
from the kth level 0 predictor is ŷi

k. After the coefficients ĉ1,
ĉ2, . . ., ĉK are identified, the ensemble prediction for the jth
pattern can be constructed by

ŷj ¼
XK
k¼1

ck ŷ
k
j ð6Þ

Equation (6) minimizes the squared absolute differences
between the observed and predicted values. However, this
process, when used to determine the coefficients, may be
dominated by those patterns with a large error. A better
option was suggested by Shu and Burn [2004] and consists
in minimizing the squared relative difference:

V ¼
Xm
i¼1

yi �
PK
k¼1

ck ŷ
k
i

yi

2
6664

3
7775
2

ck > 0 ð7Þ

This option was adopted in the present paper. Drucker
[1997], Hu and Tsoukalas [2003] and Shu and Burn [2004]
compared the two approaches for combining ensemble
members. The results of these two studies indicated that
stacked generalization provides better estimation than
averaging.

3. Study Area

[19] The ANN approaches proposed in this paper are
applied to the hydrometric station network of the southern
part of the province of Quebec, Canada. The same network

was used in a regional low-flow frequency study by Ouarda
et al. [2005]. The winter and summer mean temperatures of
the study area are in the ranges of [�21�C, �10�C] and
[12�C, 20�C], respectively. Due to the strong seasonal
variation in the flow regime of the region of study, it is
more appropriate to study winter and summer low flows
separately. In the present paper, low-flow quantiles QT,d

corresponding to return periods of T = 2, 5 and 10 years and
durations of d = 7 and 30 days are examined for the winter
and for the summer seasons. These quantiles are commonly
used in Canada for the purpose of water quality control and
fish habitat protection. To ensure the quality of the low-flow
study, catchments selected from the 190 hydrometric sta-
tions managed by the Ministry of the Environment of the
province of Quebec (MENV) should meet the following
criteria [Ouarda et al., 2005].
[20] 1. A historical flow record of at least 10 years is

required.
[21] 2. The gauged catchment should present a natural

flow regime.
[22] 3. The historical data at the gauging stations should

pass the Kendall test of stationarity [Kendall, 1975] and the
nonparametric independence test by Wald and Wolfowitz
[1943].
[23] As a result, 134 and 129 sites were selected for the

analysis of QT,30 and QT,7, respectively, during the summer
season. During the winter season, 135 and 133 sites were
selected for the analysis of Q T,30 and QT,7, respectively. The
selected catchments are located between 45�N and 55�N,
and between 55�Wand 80�W. The area of these catchments
ranges from 572 km2 to 96,600 km2 with a median value of
3077 km2. The locations of the selected hydrometric sta-
tions are shown in Figure 1.

Figure 1. Hydrometric stations across the province of Quebec, Canada.
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[24] A set of physiographical and meteorological varia-
bles that are most suitable to explain the low-flow processes
are used in this study. These variables are the basin area
(A), the percentage of the basin area occupied by lakes
(PLAKE), the percentage of the basin area covered by forest
(PFOR), mean annual degree days below 0�C (DJBZ),
average summer/autumn liquid precipitation (PLME),
average number of days for which the mean temperature
exceeds 27�C (NJH27) and a soil characteristic: the curve
number (CN). The value of 27�C represents a specific
regional hydrology and climatology threshold for Quebec
indicating the average of July maximum temperatures. The
summary statistics and a brief description for these variables
are presented in Table 1. Ouarda et al. [2005] provide more
details concerning the description of these variables and the
methodology used to build the physiographical and meteo-
rological database.
[25] At-site frequency analysis was carried out for low-

flow data at each station. Local low-flow quantiles QT,d

corresponding to the various return periods T and durations
d (days) are estimated. All following commonly used
statistical distributions were considered in the fitting process:
Gumbel (EV1), Weibull (W2), two-parameter lognormal
(LN2), three-parameter lognormal (LN3), generalized extreme
value distribution (GEV), Gamma (G), Pearson type III (P3),
log-Pearson type III (LP3) and generalized Pareto (GP). At
each station, the Bayesian information criterion is used to
identify the distribution that best fits the data. The appro-
priate distribution is then used for the local estimation of
low-flow quantiles. For summer low flows, the distributions
LN2, G, W2 and EV1 were selected 79, 40, 35 and 22 times,
respectively, as appropriate distributions and provided excel-
lent fit to the data. For winter low flows, the same distribu-
tions were selected 39, 45, 39 and 50 times, respectively, as
appropriate distributions. The other distributions accounted
for a very small number of stations. Correlations between the
various independent variables and local low-flow quantiles
are computed and presented in Table 2.

4. Study Methodology

[26] In the present work, the parametric multiple regres-
sion method used by Ouarda et al. [2005] is compared to
the ANN based approaches.

4.1. Multiple Regression Equations

[27] Multiple regression equations are developed for the
entire region of study for the estimation of summer and
winter low-flow quantiles. Five variables, A, PLAKE,
PLME, NJH27 and CN are considered as explanatory
physiometeorological variables for the estimation of sum-

mer low-flow quantiles, while four variables including A,
PLAKE, PFOR and DJBZ are considered for the estimation
of winter low-flow quantiles [Ouarda et al., 2005]. The
optimal variables were selected based on stepwise regres-
sion analysis. Appropriate transformation is required for a
number of hydrological, physiographical and meteorologi-
cal variables in the regression analysis in order to achieve
normality or linearity. For A, DJBZ and for low-flow
quantiles, a logarithmic transformation is used. For PLAKE,
a square root transformation is used. As a result, the
following regression equation is used for the estimation of
summer low-flow quantiles [Ouarda et al., 2005]:

log QT ;d

� �
¼ log b0ð Þ þ bA log Að Þ þ bNJH27NJH27

þ bPLAKE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLAKE
p

þ bCNCN þ bPLMEPLME þ e

ð8Þ

For the estimation of the winter low-flow quantiles, the
regression equation is given by

log QT ;d

� �
¼ log b0ð Þ þ bA log Að Þ þ bPLAKE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLAKE
p

þ bPFORPFORþ bDJBZ log DJBZð Þ þ e ð9Þ

In equations (8) and (9), parameters b are the regression
coefficients and e are the residuals. More detailed informa-
tion regarding the development of the two regression
equations is presented by Ouarda et al. [2005].

4.2. Single and Ensemble ANN Models Adopted
in This Study

[28] MLP is selected as the single ANN model (SANN)
and the base model of an ANN ensemble to establish the
relationship between low-flow quantiles and catchment
descriptors. The actual MLP adopted in this paper consists
of an input layer, one hidden layer, and an output layer.
Proper preprocessing is generally required for both inputs

Table 1. Descriptive Statistics of the Selected Physiographical and Meteorological Variables

Variable Units Notation Mean Maximum Minimum
Standard
Deviation

Basin area km2 A 5655.52 96600 0.70 11685.7
Percent of the basin occupied by lakes % PLAKE 6.33 32.00 0.00 6.57
Percent of the basin occupied by forest % PFOR 85.78 100.00 6.50 15.97
Annual mean degree days <0�C degree day DJBZ 1635.15 2963.10 920.60 529.29
Summer mean liquid precipitation mm PLME 464.51 664.00 306.00 77.40
Average number of days with temperature >27�C - NJH27 12.28 36.60 0.80 7.57
Curve number - CN 45.08 78.20 21.00 -

Table 2. Correlation Between Quantiles and Physiographic

Variables

Summer Winter

Q5,30 Q2,7 Q10,7 Q5,30 Q2,7 Q10,7

A 0.941 0.944 0.927 0.981 0.983 0.975
DJBZ 0.575 0.572 0.566 0.558 0.559 0.556
PLAKE 0.531 0.541 0.530 0.588 0.585 0.583
PFOR �0.029 �0.031 �0.031 �0.074 �0.066 �0.067
NJH27 �0.344 �0.341 �0.343 �0.308 �0.301 �0.298
PLME �0.432 �0.429 �0.426 �0.429 �0.428 �0.425
CN �0.203 �0.214 �0.212 �0.173 �0.183 �0.181
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and outputs of an ANN. As a result, inputs are normalized
so that they have means of zero and standard deviations of
one, while a logarithmic transformation is used for the
output layer. Shu and Burn [2004] and Shu and Ouarda
[2007] pointed out that if a linear transformation is used for
the output, an ANN may concentrate the effort on learning
patterns having large values. By taking logarithms, these
problems can be mitigated, since a difference between two
logarithmic transformed values measures the ratio of the
original values. The added benefit of using logarithmic
transformation for low-flow estimation is that quantiles
estimated by an ANN cannot fall into unrealistic negative
flow. The transfer functions for the hidden nodes and the
output nodes use the tan-sigmoid function and the linear
function, respectively. The same set of independent variables
used for regression analysis is used as the inputs for the ANN
models. Thus five input nodes are used in the ANNs for
summer low-flow estimation, and four input nodes are used
in the ANNs for winter low-flow estimation. Each ANN has
one output which is the low-flow quantile to be estimated.
[29] The ANN models developed in this paper are trained

using the LM algorithm. The parameters are updated in the
batch mode. The scalar parameter m in equation (3) is
adjusted during the network training according to the
system performance. The LM algorithm behaves as a
gradient descent method with a small step size when the
value of m is large. However, when the value of m is close to
zero, the algorithm approximates the Gauss-Newton method
[Demuth and Beale, 2003]. The initial value for m is given
as 0.005 in this paper. If a training epoch decreases the
performance of the network, the value of m is multiplied by
md = 0.1. If a training epoch increases the performance of
the network, the value of m is multiplied by mi = 10$. The
ANNs stop training when m reaches a preset parameter
mmax = 1 � 106.
[30] Using proper combination of nonlinear transfer func-

tions in the hidden layers enables an ANN to approximate
successfully any complex nonlinear relationships. However,
when too many hidden neurons are used in the ANN, the
ANN can be easily overtrained due to excessive model
degrees of freedom. To overcome the problem of over-
training in ANN modeling, the early stopping and weight
decay approaches can be used [Matignon, 2007]. The use of
early stopping requires dividing the training data into two
parts. One part is used for network training, and the other
part is used for network validation. The basic idea of early
stopping is to stop ANN training when the validation error
reaches a desirable minimum. In the weight decay regular-
ization algorithm, the error function, which is minimized
during the training phase, is augmented with additional
terms that penalize the complexity of the model. The new
error function msereg with penalty has the following form:

msereg ¼ g mseþ 1� gð Þ msw ð10Þ

where g is the performance ratio, mse is the typical
performance function (mean square error) used for ANN
training, and msw is the mean of the sum of squares of the
network weights. Using a simple early stopping strategy
such as randomly selecting the validation set is the widely
adopted approach for preventing overfitting. However, Shu
and Burn [2004] indicated that there are two major

problems with early stopping. First, a validation set needs
to be extracted from the training set, which may lead to
insufficient data being available to successfully train an
ANN. Second, how to optimally separate the validation set
still remains a major challenge. Thus, the weight decay
regularization method is adopted in this paper.
[31] The ANN ensemble (EANN) model is proposed in

this paper to improve the generalization ability of the single
ANN models. The member networks of the EANN are
generated using the bagging algorithm, while the stacked
generalization method is used to combine these individual
networks to generate a unique output. A total number of ten
ANNs are used in each ANN ensemble. Member networks
of the ensemble ANN model use the same configuration as
the single ANN model.

4.3. Evaluation Criteria

[32] A jackknife evaluation procedure [Miller, 1964;
Shao and Tu, 1995] is used in this paper to compute the
goodness of fit statistics and the evaluation criteria neces-
sary for the assessment of the performance of the various
regional low-flow frequency models. The advantage of the
jackknife procedure is that model accuracy obtained using
the procedure is independent of the calibration data
[McCuen, 2005]. In jackknifing, the flow record of one
catchment in the study area is held out from the database,
thus the catchment is considered as ‘‘ungauged.’’ Then the
coefficients in the regional regression models or weights in
the ANN models are calibrated or trained using the data
from the remaining sites to obtain the estimates of the
catchment that is held out. This process is continued until
regional estimates are obtained using the proposed models
for all the sites in the study area.
[33] A set of five indices is used to evaluate the regional

low-flow frequency analysis models proposed in this paper.
These indices are the Nash criterion (NASH), the root mean
squared error (RMSE), the relative root mean squared error
(RMSEr), the mean bias (BIAS), and the relative mean bias
(BIASr). They are computed using the following equations:

NASH ¼ 1�

Pn
i¼1

qi � q̂ið Þ2

Pn
i¼1

qi � qð Þ2
ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

qi � q̂ið Þ2
s

ð12Þ

RMSEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

qi � q̂i

qi

� �2

vuut ð13Þ

BIAS ¼ 1

n

Xn
i¼1

qi � q̂ið Þ ð14Þ

BIASr ¼ 1

n

Xn
i¼1

qi � q̂i

qi

� �
ð15Þ
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where n is the total number of stations being modeled, qi is
the at-site estimate for site i, q̂i is the estimate obtained from
the regional low-flow model for site i, and q is the mean of
at-site estimation of the n stations.

5. Results and Discussion

[34] ANN structures need to be optimally designed so
that the resulting ANN models can obtain desirable gener-
alization ability. One of the most challenging but important
issues when designing a MLP is the determination of the
number of neurons in the hidden layer. To illustrate this
issue, the performance of a single ANN model is evaluated
by sequentially increasing the number of hidden neurons
from one to a relatively large number, 20 (Figures 2 and 3).
The performance measure, RMSE, is obtained from a
tenfold cross-validation procedure for each ANN.
[35] From Figure 2, the ANNs achieve lowest RMSE

when the number of hidden neurons of the ANNs for
summer low-flow quantiles Q5,30, Q2,7 and Q10,7 estimation
is equal to 8, 9 and 9, respectively. If less than 6 neurons are
used in the hidden layer, the ANNs do not have sufficient
complexity to fully represent the functional relationship
between the system inputs and outputs. This results in the
problem of underfitting. However, if the number of hidden
neurons increases above 10 neurons, the ANN model may
suffer from the problem of overfitting. This is caused by the
large number of hidden neurons which leads to not having
enough training cases to adequately train all the neurons in
the ANN.
[36] From Figure 3, we can observe that the ANN models

for winter low-flow quantile estimation achieve lowest
RMSE when the numbers of hidden neurons for Q5,30,
Q2,7 and Q10,7 estimation increase to 11, 13, and 14,
respectively. The ANNs tend to underfit if less than 8 neurons
are used in the hidden layer. However, if the number of
hidden neurons increases over 15, the ANN models may
lead to the problem of overfitting. Overall, the performance
of the ANN models for both summer and winter low-flow
quantile estimation improves dramatically with the initial

increase of the number of hidden neurons. For winter low-
flow quantile estimation, ANNs show more resistance to
overfitting compared to summer low-flow quantile estimation.
[37] The SANN, EANN and the parametric regression

models are applied to the study area for summer and winter
low-flow quantile estimation. The results obtained using
the jackknife validation procedure are presented in Tables 3
and 4, respectively.
[38] The NASH criterion is a widely used goodness of fit

measure for hydrological models. The criterion indicates a
perfect fit if it is equal to 1. Normally the model fit can be
considered as good if the NASH criterion is above 0.8. All
the models evaluated in the present paper, for both summer
and winter low-flow quantile estimation, have a NASH
criterion higher than 0.89. This indicates that all these
approaches provide a very satisfactory fit. However, both
SANN and EANN methods show better performances in the
NASH criterion than the parametric regression method for
the estimation of all low-flow quantiles evaluated in this
paper.
[39] For the estimation of summer low-flow quantiles,

both SANN and EANN approaches show a better perfor-
mance in the RMSE and RMSEr indices than the regression
approach. This indicates that the ANN based approaches
provide better prediction accuracy in both absolute and
relative scale. For the winter low-flow quantile estimation,
both the SANN and EANN models show better perfor-
mance than the regression model in the RMSE criterion.
However, the regression model shows better performance
than the SANN model in the RMSEr criterion. This indi-
cates that the SANN model shows a better performance in
the absolute error and a lower performance in the relative
error than the regression model for winter low-flow quantile
estimation. The EANN approaches have the best perfor-
mance in both RMSE and RMSEr indices for winter low-
flow quantile estimation. This can be explained by the two
level structure of the EANN model. The level 0 training of
the EANN model uses mean square error with weight
penalty as the performance function which can essentially
improve the model performance in the RMSE criterion,

Figure 2. RMSE of summer low-flow estimation using
single ANN models with the number of hidden neurons
increased from 1 to 20.

Figure 3. RMSE of winter low-flow estimation using
single ANN models with the number of hidden neurons
increased from 1 to 20.
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while the level 1 training uses a relative performance
function which can help the model performance in the
RMSEr criterion.
[40] Based on the BIAS index, all the approaches tend to

overestimate low-flow quantiles, and the EANN and SANN
approaches represent the least biased models for summer
and winter low-flow estimation, respectively. However, the
analysis based on the BIASr index suggests that all models
underestimate low-flow quantiles, and the EANN approach
is the least biased model for both summer and winter low-
flow estimation. The contradictory signal sent by the BIAS
and BIASr indices is mainly caused by scale effects. Sites
with larger quantile values have more influence on the BIAS
index than the smaller sites, while the BIASr index treats
each site in the study area equally.
[41] The regional estimates of the summer low-flow

quantiles using the SANN, EANN, and regression approaches
are shown in Figures 4, 5, and 6, respectively. The single
and ensemble ANN models show a better overall perfor-
mance according to these figures compared to the regression
approach. For the sites with local estimates of the summer
low-flow quantiles Q5,30, Q2,7 and Q10,7 in the ranges of
(0, 500), (0, 500) and (0, 400), respectively, the EANN
model shows a significantly better performance than the
SANN model. The ANN based approaches also provide less
biased estimates at these sites compared to the regression
method. At the five sites with quantiles Q5,30, Q2,7 and Q10,7

in the ranges of (500, 1400), (600, 1600) and (400, 1100)
respectively, EANN and SANN models show a comparable
performance. There is one noticeable outlier (site 076601)
which is identified by the regression method. Compared to
other sites with a similar catchment area in the database, this
site has an unusual low mean number of days (only 1.1) for
which the temperature exceeds 27�C and a small curve
number (27.0). Unlike the regression method, both
single and ensemble ANN models lead to very good
estimates at site 076601. There is another noticeable outlier
(site 090601) which is identified by all the approaches.

Compared to other sites with a similar catchment area in the
database, this site has a very high percentage of the basin
that is covered by forest (94%), a very low percentage of the
basin area that is covered by lakes (5%) and a small value of
the curve number (26.7).
[42] The regional estimates of the winter low-flow quan-

tiles using the SANN, EANN, and regression approaches
are shown in Figures 7, 8, and 9, respectively. All the
approaches have good performances at catchments with
local estimates of the winter low-flow quantiles Q5,30, Q2,7

and Q10,7 in the ranges of (0, 120), (0, 130) and (0, 100),
respectively, although ANN based approaches show a better
performance at these catchments. For the catchments with
local estimates of the quantiles Q5,30, Q2,7 and Q10,7 in the
ranges of (120, 400), (130, 450) and (100, 350), respectively,
the regression approach shows a slightly better performance
than the ANN based approaches. There are two major
outliers: sites 081007 and 081002. Site 081007 has a very
large percentage of the area that is covered by lakes (22%),
and the mean annual degree days below 0�C at the site is
also very large (2351). Site 081002 shows also large values
of these two characteristics, with the percentage of the area
covered by lakes and the mean annual degree days below
0�C being 20% and 2320, respectively.
[43] The majority of the studies [e.g., Dingman and

Lawlor, 1995; Reed and Robson, 1999; Shu and Burn,
2004; Shu and Ouarda, 2008; Tasker, 1987; Vogel and
Kroll, 1990, 1992] for regional flood and low-flow estima-
tion have been carried out in the original flow domain.
However, there have been several studies, such as Chokmani
and Ouarda [2004], which used specific (or normalized)
flow quantiles. Specific quantiles for a given site are
computed by dividing the site’s quantiles with its drainage
area; regression equations are then developed to model the
relationship between the specific quantiles and the physio-
graphical variables. Specific quantiles can be used to
account for scale issues [Chokmani and Ouarda, 2004]
in flow estimation and the high correlation between the

Table 3. Jackknife Validation Results for Summer Low-Flow Quantile Estimationa

Single ANN Model Ensemble ANN Model Regression Model

Q5,30 Q2,7 Q10,7 Q5,30 Q2,7 Q10,7 Q5,30 Q2,7 Q10,7

NASH 0.97 0.96 0.95 0.97 0.97 0.96 0.93 0.94 0.92
RMSE 31.12 38.57 31.02 27.95 35.90 27.33 45.66 51.61 41.63
RMSEr(%) 39.77 40.11 42.69 31.02 31.41 36.17 54.37 52.15 68.10
BIAS 3.84 5.49 4.80 0.94 5.47 2.69 7.87 9.56 8.31
BIASr(%) �6.54 �4.66 �7.05 �3.08 �1.65 �3.17 �10.55 �9.90 �15.33

aBold denotes the best performing approach.

Table 4. Jackknife Validation Results for Winter Low-Flow Quantile Estimationa

Single ANN Model Ensemble ANN Model Regression Model

Q5,30 Q2,7 Q10,7 Q5,30 Q2,7 Q10,7 Q5,30 Q2,7 Q10,7

NASH 0.91 0.92 0.91 0.92 0.93 0.92 0.89 0.89 0.90
RMSE 16.51 18.11 15.04 15.84 16.59 13.91 18.18 20.30 16.38
RMSEr(%) 41.90 40.65 49.68 34.87 33.13 42.92 36.80 34.01 44.22
BIAS 1.27 1.32 0.92 1.61 1.66 1.10 2.13 2.32 1.75
BIASr(%) �7.38 �6.43 �8.09 �5.13 �4.55 �6.87 �5.58 �5.00 �7.66

aBold denotes the best performing approach.
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drainage area and flow quantiles. To investigate the impact
of using specific quantiles, single ANN models with spe-
cific quantiles as outputs and the same sets of input
variables as described in section 4.2 are evaluated. For
convenience, such ANN models are called specific ANNs.
The cross-validation procedure described at the beginning
of section 5 is used to determine the optimal numbers of
hidden neurons in a specific ANN, and as a result, seven
and ten hidden neurons are used in the specific ANNs for
summer and winter-specific low-flow quantile estimation,
respectively. The performance indices for the specific ANNs
for summer and winter low-flow estimation are shown in
Table 5. For summer low-flow quantile estimation, we can
observe that specific ANN performs better than the regres-
sion model for all indices except BIASr. The single ANN
performs better than the specific ANNs for all indices
except BIAS. For winter low-flow estimation, specific
ANNs shows a performance that is similar to the regression
model for most performance indices. Single ANNs outper-
form specific ANNs for the NASH, RMSE and BIASr,
while specific ANNs are superior in terms of RMSEr and
BIAS. The results indicate that the use of specific quantile

shows no advantage over the estimation of quantiles in the
original flow domain. Since ANN is used as a universal
approximator in the regional estimation, and the improve-
ment over the linear regression is in the nonlinear part of the
relationship, normalizing the flow quantile should not
materially change the essence of the modeling task. How-
ever, the assumption of a linear relationship between the
quantile and drainage area (as implied in the normalization)
certainly works against the ANN’s nonlinear approximation
capability.

6. Conclusions and Future Work

[44] A methodology for the use of ANN models for low-
flow estimation at ungauged sites is presented in this paper.
Two ensemble techniques, bagging and stacking, used for
creating and combining ensemble members, respectively,
are adapted in this paper to build the ANN ensemble
models. The application of the ANN-based models and
the traditional regression method in the study area for
low-flow estimation for both the summer and the winter
seasons shows that superior results can be achieved by

Figure 4. Jackknife estimation of the summer low-flow quantiles using the SANN approach.
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Figure 5. Jackknife estimation of the summer low-flow quantiles using the EANN approach.
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Figure 6. Jackknife estimation of the summer low-flow quantiles using the regression approach.
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Figure 7. Jackknife estimation of the winter low-flow quantiles using the SANN approach.
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Figure 8. Jackknife estimation of the winter low-flow quantiles using the EANN approach.
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using both single and ensemble ANN models. For summer
low-flow estimation, the ensemble ANN leads to better
estimation compared to single ANN for all the performance
indices, and the improvement in the relative measures
including RMSEr and BIASr is significant. For winter
low-flow estimation, the ensemble ANN leads to better
estimation compared to single ANN in four out of the five
performance indices, and the improvement in RMSEr is
significant.
[45] Due to the architecture of the staked generalization,

two different types of performance functions are used in
ANN ensemble models. The level 0 generalizer and the
level 1 generalizer in an ANN ensemble use performance
functions in absolute and relative scale, respectively. This
kind of setup in an ANN ensemble makes the training
process essentially a multiobjective search for the optimal
parameters (weights). The advantage of this ANN ensemble
structure is manifested in the application to the estimation of
winter low-flow quantiles in the study area. Compared to
the single ANN model which shows a good performance in
the RMSE performance measure and a bad performance in

the RMSEr measure, the ANN ensemble model simulta-
neously improves the performances in both RMSE and
RMSEr measures.
[46] The type of ANN selected in the present paper for

regional low-flow analysis is MLP. Further studies are
required to investigate the feasibility of other types of
ANNs such as radial basis network and generalized regres-
sion network. Indeed, these types of ANNs use very
different architectures and learning algorithms for network

Figure 9. Jackknife estimation of the winter low-flow quantiles using the regression approach.

Table 5. Jackknife Validation Results Using Specific ANN

Models

Summer Low Flow Winter Low Flow

Q5,30 Q2,7 Q10,7 Q5,30 Q2,7 Q10,7

NASH 0.95 0.95 0.94 0.89 0.89 0.90
RMSE 37.68 38.64 36.28 18.07 20.11 16.12
RMSEr(%) 51.17 49.15 60.99 37.73 34.49 44.58
BIAS �3.19 �5.05 �1.49 0.39 0.32 1.03
BIASr(%) �11.20 �10.85 �15.15 �8.57 �7.88 �8.34
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training and simulation. A multimodel ANN ensemble
based on these types of ANNs could also be employed for
regional low-flow estimation.

[47] Acknowledgments. The financial support provided by the
Natural Sciences and Engineering Research Council of Canada (NSERC)
is acknowledged. The paper benefited from helpful comments and sugges-
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