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[1] A sequential data assimilation procedure based on the ensemble Kalman filter (EnKF)
is introduced and tested for a process-based numerical model of coupled surface and
subsurface flow. The model is based on the three-dimensional Richards equation for
variably saturated porous media and a diffusion wave approximation for overland and
channel flow. A one-dimensional soil column experiment and a three-dimensional tilted
v-catchment test case are presented. A preliminary analysis of the assimilation scheme is
undertaken for the one-dimensional test case in order to validate the implementation by
comparison with published results and to assess the influence of various factors on the
filter’s performance. The numerical results suggest robustness with respect to the
ensemble size and provide useful information for the more complex tilted v-catchment test
case. The assimilation frequency and the effects induced by data assimilation on the
surface and/or subsurface system states are then evaluated for the v-catchment experiment
using synthetic observations of pressure head and streamflow. The results suggest that
streamflow prediction can be improved by assimilation of pressure head and streamflow,
either individually or in tandem, whereas assimilation of streamflow data alone does
not improve the subsurface system state. In terms of the global system state, i.e., surface
and subsurface variables, frequent updates are especially beneficial when assimilating both
pressure head and streamflow. Furthermore, it is shown that better evaluation of the
subsurface volume resulting from assimilation of head data is crucial for improving
subsequent surface response.
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1. Introduction

[2] Catchment dynamics is strongly influenced by sub-
surface processes. Recent experimental evidence [e.g.,
Kosugi et al., 2008] shows that groundwater flow is
responsible for most of the observed streamflow in a
headwater catchment, while Wörman et al. [2007] and
Kollet and Maxwell [2008a, 2008b] show the important
contribution of subsurface processes to the formation of
streamflow in large scale catchments. Thus the use of a
model capable of simulating surface-subsurface water inter-
actions is of paramount importance in fully capturing the
dynamics of catchment hydrology. This has led to the
development of several recent models for the distributed,
process-based simulation of coupled surface and subsurface
flow [e.g., VanderKwaak and Sudicky, 1999;Morita and Yen,
2002; Panday and Huyakorn, 2004; Kollet and Maxwell,
2006; Camporese et al., 2009]. Models such as these allow a
more accurate description of critical hydrological processes

such as rainfall-runoff-infiltration partitioning, soil moisture
redistribution, groundwater recharge, and stream-aquifer
interactions. Nevertheless, uncertainties and inaccuracies
in model structure, parameter estimates (including boundary
conditions), and observation data induce errors in the
model predictions. Data assimilation (DA), which allows
the merging of information from spatially and temporally
distributed observations and model simulations, is an effec-
tive technique to improve prediction accuracies and quantify
uncertainties [McLaughlin, 2002].
[3] Although not as common as DA applications in

climate and land surface modeling, several data assimilation
schemes have been used in conjuction with process-based
subsurface models. The classic Kalman filter (KF [Kalman,
1960]) yields the best unbiased estimate of the measurement
update if the system dynamics is linear and the system noise
is a multidimensional Gaussian process. As such, it is
suitable for saturated groundwater flow problems and has
been used for example to reduce uncertainty in parameter
estimation [Hantush and Mariño, 1997]. For nonlinear
dynamics, the extended Kalman filter (EKF) has been
developed by linearizing the system equations along a
reference state trajectory based on the previous state esti-
mate. Entekhabi et al. [1994] demonstrated the potential of
EKF to retrieve soil moisture and temperature profiles in a
soil column for a one-dimensional model of coupled heat
and moisture diffusion in porous media. In an application
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based on the one-dimensional Richards equation, Hoeben
and Troch [2000] found that EKF provides accurate retrieval
of the moisture profile from sporadic measurements at the
surface. Both KF and EKF require the covariance matrices
expressing system noise statistics to be explicitly set, and
their evaluation must be based on physical considerations.
For groundwater modeling applications this important issue
has been addressed for instance by Van Geer et al. [1991] and
Drécourt et al. [2006].
[4] Due to computational and stability limitations [e.g.,

Miller et al., 1994; Reichle et al., 2002b], the Kalman and
extended Kalman filters are impractical for detailed numer-
ical models of surface-subsurface interactions, where a
three-dimensional discretization is used for the subsurface
and where flow across the land surface-atmosphere interface
and within the soil (unsaturated) zone can be strongly
nonlinear. DA studies based on such models have thus been
limited to simpler schemes such as nudging [Paniconi et al.,
2003]. A more sophisticated scheme applicable to large
scale nonlinear problems is the ensemble Kalman filter
(EnKF), which uses an ensemble of model trajectories from
which the necessary error covariances are estimated at the
time of an update [Evensen, 1994]. Many studies have
recently focused on various aspects of data assimilation
for land surface modeling: the sensitivity of EnKF to
ensemble size [Reichle et al., 2002b]; an intercomparison
between the EnKF and EKF [Reichle et al., 2002a] and
between one-dimensional and two-dimensional applications
of the EnKF [Reichle and Koster, 2003]; the impact of
observation frequency [Walker and Houser, 2001] and
model bias [De Lannoy et al., 2007]; and the potential
benefit of assimilating streamflow [Pauwels and De Lannoy,
2006] and both soil moisture and streamflow [Crow and Van
Loon, 2006]. To a more limited extent, EnKF has been used
in simple subsurface models such as the one-dimensional
Richards equation [Das and Mohanty, 2006], three-
dimensional saturated groundwater flow [Chen and Zhang,
2006], and conceptual rainfall-runoff modeling [Aubert et
al., 2003; Clark et al., 2008].
[5] Land surface models [e.g., Chen et al., 1996; Liang et

al., 1996; Koster and Suarez, 1996; Dai et al., 2003]
typically include a thin surface soil layer coupled to one
or several thicker root zone layers. They use simplified
representations of lateral subsurface flow and neglect deeper
groundwater flow. To improve the simulation of catchment
dynamics, there is a need for robust assimilation of mea-
surement information, both from remote sensing and
local observations, into more complex, coupled surface-
subsurface models [Maxwell and Kollet, 2008].
[6] In this study the ensemble Kalman filter is applied to

a process-based catchment scale model of surface and
subsurface flow. Following a brief presentation of the
hydrological model, the EnKF implementation is described
for a configuration in which both surface (e.g., ponding
head, streamflow) and subsurface (e.g., pressure head, soil
moisture) observations can be assimilated. The behavior and
performance of the filter are then analyzed with reference to
two synthetic test cases: (1) a one-dimensional soil column
retrieval experiment, where comparisons are made with the
EKF results of Walker et al. [2001] and where the numerical
sensitivity with respect to various factors (e.g., ensemble
size, noise statistics) is assessed; and (2) a three-dimensional

v-shaped catchment rainfall-drainage experiment, where, for
different assimilation frequencies and different scenarios of
state variable observations (streamflow only, pressure head
only, both), the model is evaluated in terms of its ability to
retrieve the correct watershed response.

2. Methods

2.1. Model Description

[7] The CATHY (CATchment HYdrology) model simu-
lates subsurface, overland, and channel flow by integrating
the three-dimensional Richards equation for variably satu-
rated porous media with a one-dimensional diffusion wave
approximation of the de Saint Venant equation for surface
water dynamics [Bixio et al., 2000; Camporese et al., 2009]:

SwSs
@y
@t
þ f

@Sw
@t
¼ r � KsKrðSwÞ ryþ hzð Þ½ � þ qsðhÞ; ð1Þ

@Q

@t
þ ck

@Q

@s
¼ Dh

@2Q

@s2
þ ckqLðh;yÞ; ð2Þ

where Sw = q/f is water saturation, q is the volumetric soil
moisture content [/], f is the porosity or saturated moisture
content, Ss is the aquifer specific storage coefficient [L

�1], y
is pressure head [L], t is time [T], r is the gradient operator,
Ks is the saturated hydraulic conductivity tensor [L/T], Kr is
the relative hydraulic conductivity function [/], hz = (0, 0, 1)T,
z is the vertical coordinate directed upward [L], and qs
represents distributed source (positive) or sink (negative)
terms [L3/L3T]. The surface water is routed using equation
(2) along each single hillslope or channel link using a one-
dimensional coordinate system s [L] defined on the drainage
network. In this equation, Q is the discharge along the
channel link [L3/T], ck is the kinematic wave celerity [L/T],
Dh is the hydraulic diffusivity [L2/T], and qL is the inflow
(positive) or outflow (negative) rate from the subsurface to
the surface [L3/LT]. The fluxes qs and qL are both functions
of ponding head h [L], which is obtained from the discharge
Q via a mass balance calculation. The soil hydraulic
properties are specified by Ks and by families of
characteristic (constitutive) relationships Sw(y) and Kr(y)
[e.g., van Genuchten, 1980]. Some features of the model
relevant to the EnKF implementation and simulation
examples are briefly described here.
[8] The strong nonlinearities in the model arise from the

unsaturated soil hydraulic functions and from the depen-
dence of qs and qL on ponding head. Spatial discretization
proceeds from a digital elevation model (DEM) representing
the catchment surface. These DEM cells are triangulated
and replicated vertically to form a three-dimensional tetra-
hedral grid for the underlying soil and aquifer. Precipitation
fluxes during storm events and potential evaporation during
interstorm periods are the main driving forces of the model.
The catchment partitions this atmospheric forcing into
surface runoff, infiltration, actual evaporation, and changes
in storage via a surface boundary condition switching
algorithm [Putti and Paniconi, 2004]. Surface saturation
or ponding can occur via the infiltration excess or saturation
excess mechanisms, and both of these are automatically
accounted for by the same switching algorithm. Overland
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flow is assumed to concentrate in rills or rivulets confined to
‘‘hillslope’’ cells (upstream drainage area A [L2] below
some prescribed threshold A*), while channel flow occurs
on ‘‘stream’’ cells (A � A*) [Montgomery and Foufoula-
Georgiou, 1993]. Retardation and storage effects due to
lakes or topographic depressions are implemented via a lake
boundary-following procedure [Mackay and Band, 1998].
The subsurface equation (1) is solved by the finite element
method [Paniconi and Putti, 1994], whereas an explicit time
discretization based on the Muskingum-Cunge scheme is
used for the overland flow equation (2) [Orlandini and
Rosso, 1996].

2.2. Implementation of EnKF for the Coupled Model

[9] The ensemble Kalman filter uses a Monte Carlo
technique to approximate the probabilistic information con-
veyed by the conditional probability density functions
(PDFs) of the system state given the measurements. This
is done by generating an ensemble of model predictions
from which the error/covariance information, used in the
Kalman filter to update model predictions with observa-
tions, is estimated [Evensen, 1994]. This avoids the need to
explicitly propagate the covariance matrix, an advantage
over other KF-based methods such as the extended Kalman
filter. For our three-dimensional nonlinear numerical model,
the Jacobian calculations needed to explicitly derive the
covariance matrix at each step of a simulation would be
computationally prohibitive. In EnKF by contrast, the size
of the ensemble may be quite small relative to the size of the
variable space, especially for large problems. Other attrac-
tive characteristics of EnKF for our application are that its
implementation does not require the linearization of the
model, its sequential structure is convenient for processing
periodic measurements (e.g., soil moisture from satellite
sensors, groundwater levels from well loggers) in real time,
it provides information on the accuracy of its estimates, and
it is able to account for a wide range of possible model
errors [Reichle et al., 2002b]. On the other hand, EnKF
requires a large amount of memory to construct, store, and
manipulate large covariance matrices, and, though not as
costly as EKF, it is still quite computationally demanding
for large numerical grids.
[10] In our implementation the system state is expressed

in terms of pressure head y for each node of the three-
dimensional subsurface grid and in terms of streamflow
(both inflow Qin and outflow Qout) for each cell of the
surface DEM discretization. The formulation includes both
inflow and outflow discharges because in the Muskingum-
Cunge scheme the outflow discharge for each cell is
computed by the following expression:

Qkþ1
iþ1 ¼ C1Q

kþ1
i þ C2Q

k
i þ C3Q

k
iþ1 þ C4q

k
siþ1
;

where Qi+1
k+1 is outflow discharge at network point (i + 1)Ds

and time (k + 1)Dt, which depends not only on the
discharge at the same network point and previous time Qi+1

k ,
but also on the outflow discharge at the upstream network
point (i.e., inflow at the current network point) at the present
(Qi

k+1) and previous (Qi
k) times. The cell inflow and outflow

fluxes are allocated in different vectors and their difference
is used in a mass balance calculation that evaluates the
exchange flux qs with the subsurface [Camporese et al.,

2009]. Thus at the time of an update we reinitialize both
inflow and outflow fluxes.
[11] We consider a number NMC of state vectors con-

sisting of the pressure heads and inflow and outflow fluxes:

y jðtÞ ¼ y1 . . .yN ;Q
in
1 . . .Qin

NCEL
;Qout

1 . . .Qout
NCEL

n oj

;

j ¼ 1; . . . ;NMC; ð3Þ

where NMC is the ensemble size (number of realizations)
and the state vector yj has dimension Ny = N + NCEL + NCEL,
with N the number of nodes of the three-dimensional grid
and NCEL the number of surface cells. The basic goal of the
data assimilation procedure is to estimate these uncertain
states by combining information from a physical model and
from available hydrological measurements. The observation
data considered in this study are a mix of soil moisture,
pressure head, and streamflow measurements. In theory any
combination of surface and subsurface observations can be
accommodated in the implementation presented here.
[12] Each uncertain state vector is propagated in time by

the CATHY model with uncertain inputs. The model, based
on the mass and momentum conservation principles
expressed in equations (1) and (2), can be written concisely
as a vector-valued discrete-time state equation:

y jðtÞ ¼ A y jðtÞ;b j; u j ðtÞ; t; t
� �

; t0 � t < t; y jðt0Þ ¼ y
j
0 ; ð4Þ

with j = 1,. . ., NMC. The vectors bj represent the time-
invariant sets of soil parameters (saturated hydraulic
conductivity, specific storage, porosity, retention curve
parameters, etc.) while the vectors uj(t) represent the time-
dependent atmospheric forcing variables (precipitation or
evaporation). The initial condition at time t = t0 is given by
y0
j and the nonlinear operator A describes how the state at a
previous time t is related to the state at time t. Inputs (soil
parameters and atmospheric forcings) and states are all
treated as random variables in order to account for
uncertainties in their values. The statistical properties of
the random inputs are discussed in the following section.
[13] In order to estimate the system states from hydro-

logical measurements, it is necessary to define a transfer
model M that describes how observed variables are related
to the system states. As for the state equation, this model
can be concisely expressed as a vector-valued discrete-time
measurement equation:

z
j
i ¼ M y j;w j

i ; ti
� �

; ð5Þ

where zi
j is the j th of NMC vectors containing pressure head

and/or soil moisture and/or streamflow data obtained at time ti
and wi

j is a random noise term that accounts for measure-
ment errors. The statistical properties of the random noise
term are assumed known, as discussed in the next section.
[14] At time t0, the state vector yj(t) associated with

replicate j is initialized with a randomly perturbed realiza-
tion of the known initial condition y0. Analogously, each
time-invariant vector bj is generated by randomly perturb-
ing the known set of soil parameters b. For each replicate,
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the state vector is propagated forward in time to the first
measurement time t1, according to equation (4). Randomly
perturbed values uj(t) of the known atmospheric inputs u(t)
are inserted into equation (4) at each simulation time step.
At t1 each replicate is updated (or conditioned) to reflect the
effect of the measurement z1. The updated states become the
initial conditions for the next time period (t1, t2]. This
process continues sequentially: first a propagation step over
each interval between measurement times ti and ti+1 and
then an update step at each measurement time ti +1. This
two-step structure is characteristic of Kalman filter methods.
[15] The update step is expressed as [Margulis et al., 2002]:

y jðtiþ1jZiþ1Þ ¼ y j tiþ1jZið Þ þ Kiþ1 z
j
iþ1 �M y j tiþ1jZið Þ

� �� �
; ð6Þ

where the Kalman gain Ki+1 is a measure of the relative
level of confidence given to the model and to the
measurements. The updated states are written yj(ti+1jZi+1)
to indicate their dependence on all measurements collected
through ti+1. The Kalman gain is dependent on the system
state covariance matrix Cyy and the measurement error
covariance matrix Cww, both determined by sampling the
ensemble statistics, even though Cyy is never explicitly
computed. Denoting by Y(ti+1jZi) the matrix whose columns
are the NMC state vectors yj(ti+1jZi), we can define the
matrix Y0(ti+1jZi) as the deviation from the ensemble
average:

Y 0 tiþ1jZið Þ ¼ Y tiþ1jZið Þ � Y tiþ1jZið Þ:

The Kalman gain can thus be expressed as:

Kiþ1 ¼ Y 0 tiþ1jZið ÞY 0T tiþ1jZið ÞHT

� HY 0 tiþ1jZið ÞY 0T tiþ1jZið ÞHT þ Cww
� ��1

; ð7Þ

where the matrix H represents the linearization of the
measurement operator M.
[16] The transfer model M is linear when pressure head

and streamflow data are assimilated, and in this case H = M
is simply a matrix of 1s and 0s. In the case of soil moisture
assimilation (or other observation variables that are non-
linearly related to the state variables), different methods are
available for linearizing the operator M. For instance, the
matrix H can be computed numerically as the first deriva-
tive of the soil moisture with respect to the pressure head
[Reichle et al., 2002b].
[17] Alternatively, an approximate treatment of M known

as the state augmentation technique [Evensen, 2003] can be
used, resulting in a modified M̂ that is again a matrix of 1s
and 0s. This is achieved by adding to the model state vector
a diagnostic variable comprised of the model prediction of
the measurement:

ŷjðtÞ ¼ y1 . . .yN ;Q
in
1 . . .Qin

NCEL
;Qout

1 . . .Qout
NCEL

; q̂1 . . . q̂Nq

n oj

;

j ¼ 1; . . . ;NMC; ð8Þ

where Nq is the number of measurement equivalents added
to the original model state and q̂ is the soil moisture
computed by the model at the nodes of observation.
Defining as Ŷ (ti+1jZi) the matrix whose columns are the
NMC augmented state vectors ŷ j(ti+1jZi) and as Ŷ 0(ti+1jZi)
the respective deviation from the ensemble average,
equation (6) becomes:

y j tiþ1jZiþ1ð Þ ¼ y j tiþ1jZið Þ þ K̂iþ1 z
j
iþ1 � M̂ ŷ j tiþ1jZið Þ

� �
; ð9Þ

where the new Kalman gain is expressed as:

K̂iþ1 ¼ Y 0 tiþ1jZið ÞŶ 0T tiþ1jZið ÞM̂T

� M̂ Ŷ 0 tiþ1jZið ÞŶ 0T tiþ1jZið ÞM̂T þ Cww
� ��1

: ð10Þ

The products Y0(ti+1jZi) Ŷ 0T(ti+1jZi)M̂T and M̂Ŷ 0(ti+1jZi)Ŷ 0T
(ti+1jZi)M̂T represent, respectively, the cross-covariance
between the observations and all prognostic model
variables and the model-predicted error covariance of
the observation equivalents [Evensen, 2003]. Our EnKF
implementation includes both options for the treatment of
nonlinear M, although the first method, which involves the
computation of derivatives, is not recommended due to
numerical difficulties that can arise when the nonlinearity of
the retention curves is strong.
[18] The computation of the covariance matrices and of

the Kalman gain implemented in the CATHY model follows
the square root algorithm described by Evensen [2004]. This
algorithm allows for the use of a computationally efficient
low-rank representation of the measurement error covari-
ance matrix, thereby solving the full problem at a low cost.
[19] Finally, it should be noted that the appropriateness of

the Kalman update for non-Gaussian density functions is an
open issue and a potential source of suboptimality [Reichle
et al., 2002b].

2.3. Model Input Uncertainties and Measurement
Errors

[20] In EnKF individual replicates are generated from
random values of model inputs and measurement errors. It
is necessary therefore to specify the probability distributions
of all random variables (inputs and observations) included
in our applications. The uncertain inputs selected for the test
cases are saturated hydraulic conductivity Ks, porosity f,
residual water content qr, van Genuchten [1980] curve
fitting parameters a and n, the initial pressure head at each
node of the discretization grid (yi(0), i = 1,. . ., N), and, for
each simulation time step, the atmospheric forcing u(t)
(positive in case of rainfall, negative in case of evaporation).
In order to represent uncertainty, nominal average values
were set for all inputs and then perturbed by means of
random fluctuations generated from a chosen PDF. In this
way each realization of all the above inputs is generated
and the corresponding hydrologic states are propagated
over the time intervals between measurements. The result-
ing ensemble reflects the uncertainty introduced by input
randomization.
[21] Additive normally or multiplicative lognormally dis-

tributed fluctuations were used, depending on whether the
related quantity can physically assume negative values or
not. Thus the ensemble of replicates for Ks, f, qr, a, and n
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were obtained by multiplying the nominal mean values (x)
by a random fluctuation:

xj ¼ x � x0j; j ¼ 1; . . . ;NMC; ð11Þ

where xj represents the jth realization of the generic random
input and x0j is extracted from a lognormal distribution with
unit mean and standard deviation sx0 chosen according to
the assumed degree of uncertainty. Analogously, the
perturbed initial pressure head at each node was generated
by adding to the nominal mean (h) a random fluctuation:

h j ¼ hþ h0j; j ¼ 1; . . . ;NMC; ð12Þ

where h0j is extracted from a normal distribution with zero
mean and standard deviation sh0 again chosen according to
the assumed degree of uncertainty.
[22] Randomization of atmospheric forcing was carried

out at each simulation time step, using equation (11) in
order to preserve the positive or negative sign of the
nominal values and thus avoid mistakenly switching from
rainfall to evaporation or vice versa. Measurement errors
were generated using equation (12) for pressure head
observations and equation (11) for soil moisture and stream-
flow observations.
[23] In this work all random fluctuations are assumed to

be spatially uncorrelated (also temporally for atmospheric
forcing and observations errors). Spatial and temporal
correlation structures can however be readily added, for
instance to include information about soil heterogeneity.

3. Test Cases

[24] Two series of synthetic experiments were conducted.
In the first the soil column experiment of Entekhabi et al.
[1994] and Walker et al. [2001] was repeated to validate our
data assimilation implementation by comparison with pub-

lished results. Moreover, this simple test case allows the
assessment of possible differences in the behavior of the
filter with respect to the observation variable being assim-
ilated (pressure head or soil moisture) within the context of
a Richards equation-based simulator. In the second series a
fully three-dimensional tilted v-catchment with a surface
area of 1.62 km2 is used to assess the ability of the filter to
retrieve the true watershed state in terms of both subsurface
and surface variables. The filter behavior is analyzed for
different scenarios of assimilation data (streamflow and/or
pressure head) and frequency. For both the soil column and
v-catchment test cases, the open loop simulations (model
runs without assimilation) and the EnKF simulations are
characterized by either initial conditions or atmospheric
forcing inputs that are biased with respect to the true
solution.

3.1. Soil Column Experiments

[25] For these tests, forty days of synthetic soil moisture
profiles (in terms of both pressure head and volumetric
water content) were generated and assumed to be the true
state. The soil properties, initial conditions, and boundary
conditions are those of Walker et al. [2001] and are
summarized in Table 1. van Genuchten [1980] moisture
retention and hydraulic conductivity relationships were
used. The scenarios alluded to in Table 1 refer to the 15
different configurations (Table 2) that were run in order to
assess the performance of EnKF with regards to input error
statistics (e.g., scenario A versus scenario B), assimilation
variable (B versus C), ensemble size (e.g., D5 versus D50
versus D500), measurement error statistics (D versus E, F
versus G), and simulation bias (D and E versus F and G).
The filter performance is given by the root mean square
error (RMSE), expressed as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

yai � yti
yti

� �2

vuut ; ð13Þ

where N is the number of grid nodes, yi
t is the true state at

the ith node, and yi
a is the state estimate (i.e., the ensemble

mean) at the ith node.
3.1.1. Comparison With Previous Work
[26] Scenario A represents the same configuration as the

experiment of Walker et al. [2001] (here denoted as exper-
iment W) characterized by daily updates and surface pres-
sure head observations. Thus we can compare EnKF
performance against the results obtained using an EKF
retrieval algorithm in this earlier study. In this experiment
the pressure head profile is initialized to a much drier
condition than the true simulation (�300 cm versus
�50 cm). Experiment W employs an initial state covari-
ance matrix that in the present study corresponds to setting
the coefficient of variation (CV) of the pressure head initial
condition perturbations to 333% (see Table 2). For all other
input errors, a CVof 5% was set, which is small enough to
ensure that the filter behavior is dominated by the initial
condition uncertainty, as in the work ofWalker et al. [2001].
The CV for the measurement error was set at 1.4%, which
corresponds to the 2% variance used in experiment W. All
the error terms are assumed spatially uncorrelated, in order
to obtain covariance matrices with large values on the

Table 1. Model Discretization and Parameter Values for the Soil

Column Test Case

Soil depth 100 cm
Vertical discretization
(number of layers)

25

Soil layer thickness
(uniform)

4 cm

Saturated hydraulic
conductivity Ks

25 cm/day

Aquifer specific storage Ss 5 � 10�6 cm�1

Porosity f 0.54
Residual moisture content qr 0.20 (0.06 for scenarios

D, E, F, G)
van Genuchten curve
fitting parameters

a = 0.008 cm�1, n = 1.8
(a = 0.005 cm�1, n = 1.7
for scenarios D, E, F, G)

Simulation period 40 days
True initial conditions
(uniform pressure head)

�50 cm

Biased initial conditions
(scenarios A, B, C, D, E)

�300 cm

True atmospheric boundary
conditions

�0.5 cm/day (evaporation)

Biased atmospheric boundary
conditions (scenarios F, G)

�1.0 cm/day (evaporation)
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diagonal and near-zero extradiagonal elements, similar to
the full diagonal matrices of experiment W. The results of
the simulation are shown in Figure 1, from which it can be
deduced that the time needed for retrieval of the true soil
moisture profile by the ensemble average (3 days, i.e.,

3 updates) is the same as the one reported for the EKF
scheme used byWalker et al. [2001]. This is also confirmed
by Figure 2, which shows the behavior of RMSE versus
time. After only three updates the root mean square error
falls below 10%.

Figure 1. Pressure head profiles for the ensemble Kalman filter runs, the open loop runs, and the true
solution at times (a) 0, (b) 1, (c) 2, and (d) 3 days for scenario A of the soil column test case. In Figure 1a
only the average profile from the 100 starting realizations is shown. The 100 initial realizations of the
open loop run are the same as those of the EnKF run.

Table 2. Configurations for the Soil Column Scenarios

Scenario
Assimilated

Variable (y or q)
Simulation

Bias (IC or BC)
Ensemble

Size (NMC)

Coefficient of Variation (%) for the Model
Parameters, Initial Conditions (y0),

Atmospheric Inputs, and Measurements

Ks

Ss, f,
qr, a, n y0 u(t)

Measured
y or q

A y IC 100 5 5 333 5 1.4
B y IC 100 100 5 40 50 1.4
C q IC 100 100 5 40 50 1.4

D5 y IC 5 100 5 20 50 1.4
D50 y IC 50 100 5 20 50 1.4
D500 y IC 500 100 5 20 50 1.4
E5 y IC 5 100 5 20 50 84
E50 y IC 50 100 5 20 50 84
E500 y IC 500 100 5 20 50 84
F5 y BC 5 100 5 20 50 1.4
F50 y BC 50 100 5 20 50 1.4
F500 y BC 500 100 5 20 50 1.4
G5 y BC 5 100 5 20 50 84
G50 y BC 50 100 5 20 50 84
G500 y BC 500 100 5 20 50 84
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3.1.2. Influence of Uncertainties and Measurement
Operator
[27] In scenario B (as in scenario A) surface pressure

head (y) was assimilated, whereas in scenario C the
observation data represents daily surface soil moisture (q).
Assimilation of q implies that the measurement operator M
in equation (5) is nonlinear. We handled this nonlinearity
using both the state augmentation technique (subscenario
C-a) and the derivatives method (subscenario C-b), as was
described in section 2.2.
[28] In the following experiments, the large initial condi-

tion error used in scenario A was reduced by employing a
coefficient of variation equal to 40% for all other scenarios,
and more importance was given to the uncertainties in
saturated hydraulic conductivity and atmospheric forcing,
increasing the corresponding standard deviations to 100%
and 50% of the nominal mean values, respectively (see
Table 2).
[29] The performance of EnKF for scenarios A, B, and C

is shown in Figure 2. For the two subscenarios of C we note
that there is no significant difference between the two
methods used to linearize the operator M. The better
performance for scenario A (faster retrieval and overall
lower RMSE) is due to two effects. At first, its much larger
initial condition errors relative to measurement errors cause
the filter to give more weight to the measurements. As the
simulation proceeds and the influence of the initial con-
ditions wanes, the larger uncertainty on the model parameter
(Ks) and error on the boundary conditions for scenarios B
and C allow scenario A to maintain its better performance.
The RMSE behavior for scenarios B and C is quite similar,
suggesting that in this case assimilation of pressure head is
as effective as assimilation of soil moisture in retrieving the
true system state. It should be remarked, however, that
assimilation of q sometimes produced numerical artifacts
and overshooting effects, probably linked to factors such as
the treatment of nonlinear measurement operators in the
state augmentation and derivatives techniques as affected
by, for example, the degree of nonlinearity of the retention
curves.

3.1.3. Sensitivity to Ensemble Size and Other Factors
[30] The 12 tests represented by scenarios D, E, F, and G

feature (see Table 2) three ensemble sizes (5, 50, and 500),
two measurement accuracies (coefficients of variation 1.4%
and 84%), and two simulation biases (initial conditions
and atmospheric boundary conditions; see also Table 1).
Figure 3 shows that after a few days of simulation, wherein
the effects of the initial conditions are dissipated, the RMSE
values tend to decrease marginally, reaching an almost
asymptotic behavior for scenarios D. It is also seen that
the measurement error has a dominant impact on EnKF
performance, with lower RMSEs attained when the obser-
vations are more reliable. On the other hand, the assimila-
tion scheme appears to be insensitive to the ensemble size
for NMC � 50, except for a progressive smoothing of the
RMSE curves as NMC increases, because of a more
accurate ensemble mean evaluation.
[31] This lack of sensitivity to ensemble size may be a

consequence of the one-dimensionality of the experiments
and the low grid resolution. By comparison, Evensen [2004]
found a moderate improvement in EnKF performance when
increasing the ensemble size from 100 to 250 for a one-
dimensional linear advection (nondissipative) model. An
optimal ensemble size that balances accuracy and compu-
tational effort will depend on many factors; for the soil
column experiments an ensemble size greater than 50 did
not add accuracy to the data assimilation scheme.
[32] Figure 4 is analogous to Figure 3 (ensemble size and

measurement error effects are represented), but here it is the
surface boundary condition that is biased with respect to the
true solution, rather than the initial condition. In this case
lower measurement error again yields a more accurate
assimilation, and higher NMC again produces smoother
RMSE curves, although these effects are not as pronounced
as for the biased initial condition simulations of Figure 3. In
contrast to scenarios D and E, which benefit from the
dissipative nature of Richards equation, the RMSEs for
scenarios F and G do not progressively decrease over time.
This is to be expected since the bias for these scenarios
persists throughout the simulation.

3.2. V-Catchment Experiments

[33] The tilted v-catchment is made up of 50 � 81 grid
cells of 20 � 20 m (Figure 5) and is characterized by an

Figure 2. Time evolution of the root mean square error
(RMSE) for scenarios A, B, and C of the soil column test
case. C-a denotes the case in which linearization of the
operator M is obtained by the state augmentation technique,
while C-b denotes the case in which the numerical
computation of retention curve derivatives is used.

Figure 3. Time evolution of the root mean square error
(RMSE) for scenarios D and E of the soil column test case.
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isotropic and homogeneous aquifer of depth 3 m. Table 3
summarizes the model discretization and parameter values
used for the numerical experiments. A numerical simulation
was run to generate the true integration, with atmospheric
boundary conditions consisting of a constant rainfall rate of
3.0 � 10�6 m/s (10.8 mm/h) from time zero to time 5400 s
(1.5 h), followed by a constant evaporation rate of 3.0 �
10�7 m/s (1.08 mm/h) until the end of the simulation, at
14400 s (4 h). The initial conditions consist of a partially
saturated vertical pressure head profile in hydrostatic equi-
librium for the whole watershed, with a water table at 0.5 m
below the surface. From the true integration, pressure head
measurements at the surface and at the bottom of the
catchment were extracted at 108 points evenly distributed
over the catchment surface and base (so 216 pressure head
observation points in total). These points are shown in
Figure 5. Streamflow measurements were extracted at the
catchment outlet.
[34] Twelve scenarios were run in which the following

factors were varied: simulation bias (atmospheric forcing
boundary conditions for scenarios 1–6; initial conditions
for scenarios 7–12); assimilation variable (surface and
bottom pressure head for 1, 2, 7, 8; outlet streamflow for
5, 6, 11, 12; both pressure head and streamflow for 3, 4, 9,

10); assimilation frequency (15-minute updates for 1, 3, 5,
7, 9, 11; hourly updates for 2, 4, 6, 8, 10, 12). These
configurations, together with the input and measurement
error statistics, are described in Table 4. For the boundary
condition bias scenarios, the rainfall rate is halved with
respect to the true integration and the evaporation rate is
doubled. For the initial condition bias scenarios, the water
table is at 1 m depth rather than 0.5 m (see Table 3). Based on
the sensitivity tests conducted for the soil column experiment
and on some trials carried out for the v-catchment, an
ensemble size of 100 was used for all 12 scenarios. This
value was found to balance accuracy and computer memory
storage requirements. Open loop simulations were carried
out for each scenario for comparison with the EnKF sim-
ulations. For scenarios 3, 4, 9, and 10, where both pressure
head and streamflow observations were assimilated, the
heads and the streamflows were normalized with the max-
imum values (3.0 m and 4.86 m3/s, respectively) in order
to ensure properly scaled covariance matrices [Evensen,
2003].
[35] The average computational time required for a single

realization of all of the twelve scenarios of the v-catchment
experiment is 10 minutes, indicating that the EnKF scheme is
feasible for long-term (e.g., multiyear) simulations with this
type of model, within the constraints of applicability of such
models (generally small catchments). In terms of operational
feasibility, it should also be noted that the Monte Carlo
procedure that drives the EnKF algorithm is parallelizable,
that the time spent by the EnKF algorithm itself is negligible
compared to the CPU required for resolving the surface and
subsurface schemes for each Monte Carlo realization, and
that the dynamic time stepping implemented in the Richards
equation solver changes (sometimes drastically) the compu-
tational time of each single realization.

Table 3. Model Discretization and Parameter Values for the

V-Catchment Test Case

Soil depth 3 m
Vertical discretization

(number of layers)
6

Soil layer thicknesses
(top to bottom)

0.27, 0.36, 0.39, 0.66, 0.66, 0.66 m

Number of nodes in the
three-dimensional grid

4182 � 7 = 29274

Number of tetrahedral
elements in the grid

145800

Saturated hydraulic
conductivity Ks

1.16 � 10�5 m/s

Aquifer specific storage Ss 5 � 10�4 m�1

Porosity f 0.40
Residual moisture

content qr
0.06

van Genuchten curve
fitting parameters

a = 0.47 m�1, n = 1.70

Simulation period 14,400 s (4.0 h)
True initial conditions

(pressure head)
hydrostatic profile with
water table at 0.5 m depth

Biased initial conditions
(scenarios 7–12)

hydrostatic profile with
water table at 1.0 m depth

True atmospheric boundary
conditions

10.8 mm/h (rain) from t = 0 to t = 1.5 h,
�1.08 mm/h (evaporation) from
t = 1.5 h to t = 4.0 h

Biased atmospheric boundary
conditions (scenarios 1–6)

5.4 mm/h (rain) from t = 0 to t = 1.5 h,
�2.16 mm/h (evaporation) from
t = 1.5 h to t = 4.0 h

Ensemble size NMC 100

Figure 4. Time evolution of the root mean square error
(RMSE) for scenarios F and G of the soil column test case.

Figure 5. Digital elevation model (20 � 20 m) of the tilted
v-catchment. Elevations are expressed in meters. Black
crosses indicate the location of pressure head observations,
and the white circle represents the location of the outlet cell,
at which streamflow measurements are available.
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3.2.1. Scenarios With Biased Atmospheric Forcing
Boundary Conditions
[36] In Figure 6 the spatial surface pressure head results

between the open loop integration and the assimilation
integration BC-y-L (scenario 2; see Table 4) are compared.
Application of EnKF produces a notable reduction in model
prediction error over the entire watershed surface. The
improvement compared to the open loop simulation turns
out to be greatest in the most unsaturated parts of the
catchment, since this is where the difference between the
system state and the measurements is greatest. Note that
the results shown in Figure 6 are not symmetrical due to
asymmetry of the subsurface grid caused by the way DEM
cells are subdivided into triangles in the CATHY model
[Camporese et al., 2009].
[37] In Figure 7 EnKF performance is assessed in terms

of its ability to improve both subsurface and surface state
prediction (‘‘a’’ and ‘‘b’’, respectively, in the figure), under
conditions where only the pressure head observations are
assimilated, both head and outlet streamflow measurements
are assimilated, and only streamflow is assimilated (‘‘1’’,
‘‘2’’, and ‘‘3’’, respectively, in the figure). In each of these
3 cases, both high frequency (15-minute, which corresponds
to 1/6 of the time to peak of the streamflow hydrograph) and
low frequency (hourly) EnKF results are shown, as well as
the open loop and true solutions. From the results shown in
Figure 7 it can be concluded that assimilation of pressure
head alone at low frequency is not sufficient to retrieve the
catchment response in terms of streamflow, whereas a slight
improvement with respect to the open loop run is achieved
with high frequency assimilation. The results improve with
the integrated assimilation of all the measurements, but the
best response in terms of outlet streamflow, for both update
intervals, is produced by assimilation of streamflow only.
Although it appears, from ‘‘2b’’ and ‘‘3b’’ in Figure 7, that
low frequency assimilation performs better than the runs
with frequent updates in terms of outlet streamflow, on
closer inspection it can be seen that, for scenario BC-Q-L,
only the hydrograph peak is better matched, whereas the
high frequency run (BC-Q-H) matches the time to peak and
total streamflow volume better (14861 m3 for BC-Q-L and
15714 m3 for BC-Q-H, versus 19684 m3 for the true
simulation). On the other hand, the comparison between

scenarios BC-yQ-L and BC-yQ-H results indeed in a better
outlet streamflow retrieval for the low frequency run.
Nonetheless, the true subsurface state is better captured by
the high frequency run.
[38] The improvement in the retrieval of the outlet hydro-

graph when assimilating streamflow measurements comes
at the expense of a poorer retrieval of the catchment
response in terms of subsurface state. Comparison of
‘‘1a’’, ‘‘2a’’, and ‘‘3a’’ in Figure 7 shows that satisfactory
retrieval of the subsurface storage volumes is attained only
when pressure head is assimilated. Assimilation of stream-
flow alone causes an instantaneous increase in the surface
discharge, followed by a reduction in the water content in
the catchment. This seems to provide the water needed to
sustain surface runoff. Indeed, at the end of the BC-Q-H and
BC-Q-L integrations, subsurface water storage is even less
than for the open loop simulations, with a difference
between these runs that is of the same order of magnitude
as the difference between the surface hydrographs. Note that
these compensatory differences are on the order of 103 m3,
compared to a total subsurface storage volume of order
106 m3. Thus it may be argued that low frequency assimila-
tion of pressure head and/or volumetric water content should
be carried out during moderate flow regimes, while high
frequency assimilation of discharge is useful during short-
term flood events to accurately reproduce the hydrograph.
After the flood event, the model is in a state analogous to that
of a biased initial condition scenario, so the assimilation can
switch back to low frequency subsurface updates to retrieve
the true aquifer water content and, consequently, to reduce
prediction errors for subsequent flood events.
[39] Overall, for these scenarios with biased surface

boundary conditions, it is found, as expected, that the
dynamics is controlled by the atmospheric forcing. In fact,
after each update the system will tend to the same state as
the open loop simulation, since the ensemble Kalman filter,
as implemented in this application, does not have the
capability to maintain an update over a protracted time
period.
3.2.2. Scenarios With Biased Initial Conditions
[40] Figure 8 is analogous to Figure 7 but presents the

results of the scenarios with biased initial conditions (sce-
narios 7–12 of Table 4). These results are broadly consis-

Table 4. Configurations for the V-Catchment Scenarios

Scenario

Assimilated
Variable
(y or Q)a

Simulation
Bias (IC or BC)

Update
Interval (min)

Coefficient of Variation (%) for the Model
Parameters, Initial Conditions (y0),

Atmospheric Inputs, and Measurements

Ks

Ss, f
qr, a, n y0 u(t)

Measured
y or Q

1. BC-y-H y BC 15 100 5 20 100 1
2. BC-y-L y BC 60 100 5 20 100 1
3. BC-yQ-H y, Q BC 15 100 5 20 100 1
4. BC-yQ-L y, Q BC 60 100 5 20 100 1
5. BC-Q-H Q BC 15 100 5 20 100 1
6. BC-Q-L Q BC 60 100 5 20 100 1
7. IC-y-H y IC 15 100 5 40 50 1
8. IC-y-L y IC 60 100 5 40 50 1
9. IC-yQ-H y, Q IC 15 100 5 40 50 1
10. IC-yQ-L y, Q IC 60 100 5 40 50 1
11. IC-Q-H Q IC 15 100 5 40 50 1
12. IC-Q-L Q IC 60 100 5 40 50 1

aPressure head y is measured at the soil surface and catchment base; streamflow Q is measured at the catchment outlet.
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tent with those reported in Figure 7 for the biased boundary
condition scenarios, with a few notable differences. In these
scenarios assimilation of pressure head alone improves
significantly the streamflow prediction, even though it is
not sufficient for a complete retrieval. The best outlet
streamflow retrieval, together with the subsurface volume
retrieval, is obtained for scenario 9, when all observation
data is assimilated at high frequency. High frequency
assimilation of streamflow data alone (scenario 11) is not

only unable to retrieve the true hydrograph, but it also
produces numerical artifacts in surface pressure heads, with
some nodes yielding unrealistic (and nonphysical) values.
This behavior with respect to the subsurface state is likely
due to the loss of information introduced by the projection
of the covariance matrix onto the measurement space, which
in this case has the dimension of a scalar, i.e., rank one. The
resulting covariance matrix between the streamflow at the
outlet and the pressure head system state is in fact a vector

Figure 6. Differences (m) at the surface (left) between the true pressure head and the open loop
ensemble mean pressure head and (right) between the true pressure head and the scenario 2 (BC-y-L)
ensemble mean pressure head at times 1, 2, 3, and 4 h (from top to bottom). Black crosses show the
location of the hourly observations.
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with values that show a quasirandom behavior, as we will
see below. This reflects the aggregated nature of streamflow
observed at the outlet of a catchment: it is an integral
measure of overland flow occurring on the entire watershed,
and as such it is not able to drive the DA algorithm toward
a satisfactory description of the distributed nature of run-
off generation and, by extension, of the subsurface state
responsible for this generation. This results in extreme
underestimation of subsurface water storage. On examina-
tion of Figure 8, what appears to occur for scenario 11
(IC-Q-H) is that after each update there is a mass exchange
from the surface toward the subsurface, corresponding to a
decrease in streamflow and a related increase in the
groundwater volume. Intuitively, during streamflow assim-
ilation, the DA algorithm tends to add water mainly to the
surface because this is the domain being assimilated and
because of the lower variability inherent in the saturated
zone. The dynamics of the system subsequently redistrib-
utes this mass into the subsurface because the soil is not
completely saturated. Since in this case it is the saturated
groundwater flow dynamics that acts as streamflow gener-
ation mechanism (Dunne runoff), in the absence of com-
pensatory information about the internal state of the
catchment/aquifer (e.g., pressure head measurements), and
in response to successive streamflow-based updates, the

subsurface solution progressively and dramatically diverges
from the true solution.
[41] The above considerations do not explain the large

variations of the subsurface volume observed in correspon-
dence of the updates (Figure 8, 3a). To further investigate
the behavior of the EnKF algorithm when assimilating
streamflow only, we carried out another series of simula-
tions for scenarios 11 and 12 to test for ill-conditioning of
the Kalman gain, in particular with regards to the covariance
matrix between outlet streamflow and distributed pressure
heads. For scenario 11 we changed the seed used to
initialize the random generator. For scenario 12, in addition,
we increased the ensemble size. Figure 9 shows the impact
of the choice of initial seed (1 and 2) and the ensemble size
(3). The true and the open loop runs are the same as in
Figure 8 and are not shown here. The results confirm our
hypothesis. While for the first value of initial seed the
results in 1a and 1b are consistent with those reported in
Figure 8 (3), the second value of initial seed produces a very
different behavior both for the subsurface volume and the
streamflow (Figure 9, 2a and 2b). The first update in
particular shows an akward behavior: in the deeper soil
layers the algorithm removes water, while it increases the
pressure head only at the surface. The outcome is that the
subsurface storage is globally reduced and the surface has

Figure 7. Subsurface water storage and outlet hydrograph
for the true solution, the ensemble mean of the open loop
integrations, and the ensemble mean of the assimilation
integrations for the v-catchment test case. The assimilation
runs correspond to scenarios 1–6 of Table 4 (biased
atmospheric boundary conditions), with the same bias
applied to the open loop run.

Figure 8. Subsurface water storage and outlet hydrograph
for the true solution, the ensemble mean of the open loop
integrations, and the ensemble mean of the assimilation
integrations for the v-catchment test case. The assimilation
runs correspond to scenarios 7–12 of Table 4 (biased initial
conditions), with the same bias applied to the open loop run.
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an excess of water to be routed to the outlet, as demon-
strated by the overestimated peak right after the update.
Later updates have little impact on the subsurface due to the
fact that the watershed becomes almost completely saturated,
and, as such, uncorrelated with the streamflow at the outlet.
As a consequence, the streamflow recovers the true pattern.
Similar conclusions can be drawn for the low frequency
scenario 12 (Figure 9, 3). Here the subsurface volume is not
dramatically underestimated, as the first update is performed
at t = 3600 s, i.e., when the watershed is almost saturated.
Note that increasing the ensemble size does not produce any
benefit for the assimilation, confirming that the covariance
matrix between streamflow and pressure head is responsible
for this odd behavior.

4. Conclusions

[42] The ensemble Kalman filter has been implemented
and evaluated for a coupled catchment scale hydrological
model of surface and subsurface flow. The advantages of
the EnKF data assimilation scheme for this distributed
process-based model include: ease of implementation; con-
sideration of model nonlinearities without costly Jacobian
calculations; ability to account for different sources of

uncertainty (soil parameters, atmospheric forcing, initial
conditions); and the possibility to assimilate concurrent
observation data sets, both gridded and scattered, from
different measurement sources. The disadvantages relate
to the need to construct, store, and manipulate large covari-
ance matrices and the computational effort required when a
large ensemble size is combined with a large model grid. An
important aspect that needs to be carefully studied concerns
the appropriateness of the Kalman update for non-Gaussian
density functions.
[43] The numerical experiments conducted show that

EnKF is successful in decreasing the error between simulated
and observed values for both one- and three-dimensional test
cases. A sensitivity analysis carried out to assess the impact
of ensemble size on the filter performance showed that,
at least for the one-dimensional test case presented here, the
scheme is robust and that a relatively limited number
of realizations (�50) is sufficient for a satisfactory level
of accuracy in state variable retrieval. For the soil column
experiments, EnKF was effective independently of the
variable being assimilated, even though assimilation of
moisture content in a pressure head-based subsurface
solver raises some numerical issues linked to the handling
of nonlinear measurement operators and to the degree of
nonlinearity of the retention curves. Reliable observations
improved the filter’s performance significantly, but this
result depended also on the relative level of confidence
given to the model inputs.
[44] For the v-catchment experiments the situation is

more complicated because the system state is composed
of both subsurface and surface variables. In this case it was
important to measure the state variable of interest. For
instance while assimilation of pressure head alone generally
improved the system state in terms of both subsurface and
surface variables, assimilation of streamflow data alone did
not improve the subsurface state, and indeed even worsened
it with respect to the open loop integrations, due to the ill-
conditioned covariance matrix between streamflow at the
outlet and node-based distributed pressure heads. This
implies that assimilation of streamflow alone during one
storm may lead to incorrect simulations for the next storm if
the initial groundwater volume is misestimated. The best
retrieval of the overall catchment state (surface and subsur-
face systems) was achieved by joint assimilation of pressure
head and streamflow. A higher assimilation frequency
(relative to the time to peak of the streamflow) improved
the retrieval of the system state globally only in the case of
joint assimilation. When streamflow (pressure head) was
assimilated alone, the benefits of more frequent updates
were limited to the surface (subsurface) system state.
[45] In the case of streamflow assimilation it is possible to

improve performance by implementing a smoother, or retro-
spective filtering approach [e.g., Pauwels and De Lannoy,
2006], i.e., updating the state of the catchment not only at
the current time step but also at a number of previous time
steps. This option is worthy of further investigation and raises
some interesting issues for a detailed coupled model, for
instance determining the optimal size of the backward assim-
ilation window, and dealing with the computational chal-
lenges arising from such backward assimilation.
[46] Other possible topics for future work on data assim-

ilation for physically based catchment models include:

Figure 9. Subsurface water storage and outlet hydrograph
for the assimilation integrations of the v-catchment test case.
The assimilation runs correspond to scenarios 11 and 12 of
Table 4 (biased initial conditions) and show the effect of
changing the seed used to initialize the random generator
(1 and 2) and the ensemble size (3). In 1 and 2 the light gray
lines represent the ensemble of realizations, while the thick
black lines correspond to the ensemble means.
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comparing EnKF to the more efficient (in CPU and mem-
ory) but less optimal nudging scheme, previously imple-
mented in the CATHY model; improving EnKF’s
propagation of updates in time, for better performance in
particular when atmospheric forcing is biased; and imple-
menting more advanced randomization of soil properties to
take into account spatial correlation structures (e.g., spatial
variability of hydraulic conductivity).
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Loredan 20, I-35131 Padova, Italy. (camporese@idra.unipd.it; sala@idra.
unipd.it)

C. Paniconi, Institut National de la Recherche Scientifique, Centre Eau,
Terre et Environnement, Université du Québec, 490 de la Couronne,
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