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[1] This paper describes Bayesian estimation of the parameters of the generalized
extreme value (GEV) model with covariates. For this model the parameters of the GEV
distribution are functions of covariates, allowing for dependent parameters and/or trends.
A Markov chain Monte Carlo (MCMC) algorithm is generally used to estimate the
posterior distributions of the parameters in a Bayesian framework. In this paper, the
birth-death MCMC (BDMCMC) procedure is developed in order to carry out both
parameter estimation and Bayesian model selection. The BDMCMC methods allow the
jump between models of different dimensions. The general algorithm consists of two
types of sampling steps. The first one involves dimension-changing moves, and the second
is conditional on a fixed model. Parameters are estimated in a fully Bayesian framework,
and the model is selected by the length of time that the MCMC chain remains in that
model. Real and simulated data sets illustrate the usefulness of the proposed methodology.
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1. Introduction and Review

[2] Extreme value analysis allows the interpretation of
past records and the inference about future probabilities of
occurrence of extreme events, such as floods, extreme
rainfalls, or high wind gusts. Extreme values are often
represented by the maximum value of the variable of
interest over a given time period, such as a year. Extreme
value theory indicates that these maxima can generally be
described by one of the three extreme value distributions
that can be represented by the generalized extreme value
(GEV) distribution [e.g., Jenkinson, 1955]. To estimate the
parameters of the GEV distribution, several approaches
were proposed in the literature to avoid the computational
problems related to the maximum likelihood approach
especially for small samples. Coles and Dixon [1999]
proposed the penalized maximum likelihood method, which
retains the modeling flexibility of the maximum likelihood
estimator and improves its small-sample properties. Martins
and Stedinger [2000] developed the generalized maximum
likelihood (GML) method for hydrometeorological series.
This approach was also investigated by Park [2005], who
studied the optimal selection of the hyperparameters. Re-
cently, Zhang [2007] proposed the likelihood moment
estimator, which is computationally simple and possesses
asymptotic efficiency.

[3] There are three fundamental assumptions for classical
frequency analysis to provide useful engineering design
values. The observations should be independent and the
data series should be stationary and homogeneous to ensure
that the statistical inference will be valid during the pro-
jected life span of the engineering structure. There is,
however, mounting evidence that such assumptions are
not always valid. Indeed, statistically significant trends have
been identified in observed historical extreme events of
different hydroclimatological series [Intergovernmental
Panel on Climate Change (IPCC), 2007] in different parts
of the world, and climate extremes will likely change in the
future [e.g., Kharin and Zwiers, 2005]. The reality of
nonstationary hydrometeorological extremes needs to be
properly addressed because the GEV model with constant
parameters may no longer be valid under nonstationary
conditions [Leadbetter et al., 1983]. In this case, a new
definition should be given to return period events for risk
assessment. Indeed, the common notion of ‘‘return period’’
is no longer appropriate in a nonstationary framework.
Recently, Stefanakos and Athanassoulis [2006] developed
a new definition of the return period notion, based on the
mean number of upcrossings (MENU) of a given level. The
MENU approach can be used to give an operational
computation of the return period event for nonstationary
hydrometeorological variables. When the covariate is not
time, risk assessment can be carried out by considering the
worst-case scenario, which may occur toward the end of the
lifetime of the structure.
[4] The use of the models with covariates makes it

possible to combine the effect of other variables to classical
frequency analysis models [Zhang et al., 2004; Clarke,
2002]. Two principal problems are related to the implemen-
tation of such models. The first one involves the complexity
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Morocco.

2Hydro-Quebec/Natural Sciences and Engineering Research Council of
Canada, University of Quebec, Quebec, Ontario, Canada.

Copyright 2009 by the American Geophysical Union.
0043-1397/09/2007WR006427$09.00

W06403

WATER RESOURCES RESEARCH, VOL. 45, W06403, doi:10.1029/2007WR006427, 2009
Click
Here

for

Full
Article

1 of 11

http://dx.doi.org/10.1029/2007WR006427


of parameter estimation techniques, and the second one
concerns model selection. Indeed, several competing mod-
els can be considered, and hence robust techniques for
model selection need to be developed.
[5] Coles [2001] provided a general description of the

covariate approach for the generalized extreme value distri-
bution (GEV) and presented the maximum likelihood (ML)
estimation method. El Adlouni et al. [2007] extended the
generalized maximum likelihood (GML) method, devel-
oped by Martins and Stedinger [2000] for the stationary
case, to the case with covariates. In the GML method, the
shape parameter has a beta distribution as prior defined on
the interval [�0.5, 0.5]. The use of such prior, for hydro-
meteorological series, makes it possible to avoid the insta-
bility and convergence problems recorded for the ML
method. The GML method can be generalized and the prior
for the shape parameter can be used in a fully Bayesian
framework. Indeed, the Bayesian approach gives a general
and elegant way to integrate any additional information.
[6] Until the mid-1990s, the use of the Bayesian ap-

proach, in practice, was restricted to some simple problems
with explicit solutions. However, computational difficulties
related to the estimation of the Bayesian posterior distribu-
tion were overcome by using Markov chain Monte Carlo
methods (MCMC). The use of the Bayesian framework
allows the integration of any additional information in the
inference process. Reis and Stedinger [2005] used a Bayes-
ian framework to integrate regional and historical informa-
tion. Coles and Tawn [1996] and Stephenson and Tawn
[2004] used elicitation techniques based on quantile differ-
ences for the GEV distribution.
[7] In the Bayesian framework, common methods for

model selection are based on posterior predictive distribu-
tions or Bayes factors. Because the Bayes factors are often
difficult to compute, a good alternative is to adopt an
approximation to the Bayesian information criterion (BIC)
or the deviance information criterion (DIC). The DIC was
first formulated for generalized linear models. Celeux et al.
[2006] discussed alternative representations of the DIC for
latent variables. Methods based on the posterior predictive
p-values and conditional p-values are also emerging as
popular measures of model fit [Bayarri and Berger, 2000;
Pérez and Berger, 2002;Aitkin et al., 2005]. Other techniques
are based on comparative parameter estimation including
distance measures such as entropy distance or Kullback-
Leibler divergence.
[8] Another class of methods is based on enlarging the

parameter space to include a maximum number of models
of interest [George and McCulloch, 1993]. A very popular
alternative is the reversible jump Markov chain Monte
Carlo (RJMCMC), also called transdimensional MCMC
[Green, 1995]. In the RJMCMC technique, the MCMC
algorithm is enlarged to allow jumps between models with
different parameter space dimensions. These methods are
largely used for mixtures of distributions with an unknown
number of components [Richardson and Green, 1997;
Robert et al., 2000; Dellaportas and Papageorgiou,
2006]. Richardson and Green [1997] suggest an additional
Metropolis-Hastings step that involves proposals for the
‘‘birth’’ of a new component or ‘‘death’’ of an existing
component. These moves require jumps between parameters
of models of different dimensions. For example, for the

GEV model with covariates, the MCMC algorithm should
offer the possibility to jump from a linear dependence on
covariates to a quadratic case or from a model with
covariates in the location parameter to models with both
location and scale parameters as functions of covariates.
Recently, Ribatet et al. [2007] used the RJMCMC approach
for regional flood frequency analysis. The proposed ap-
proach allows jumps from a general regional generalized
Pareto (GPD) to a GPD model with a fixed-shape parameter
derived from a homogenous region.
[9] In the present study, we develop a RJMCMC algo-

rithm for parameter estimation and model selection for the
GEV models with covariates. Parameters are estimated in a
fully Bayesian framework, and the model is selected by the
length of time that the MCMC chain remains in that model.
[10] The remainder of this paper is organized as follows.

In section 2, we introduce the GEV model with covariates.
Section 3 deals with Bayesian parameter estimation and
model selection. Section 4 describes the RJMCMC algo-
rithms corresponding to moves with fixed model and jumps
between models with different space dimensions. In section 5
we present two illustrative examples: The first one is on
simulated data to illustrate the method’s potential, and the
second one is on observed annual maximum precipitation
data at the Tehachapi station in California (United States).
Conclusions are given in section 6.

2. The GEV Model With Covariates

[11] The three types of extreme value distributions can be
combined to form a single parametric family that is the
generalized extreme value (GEV) distribution [Jenkinson,
1955]. The cumulative distribution function of the GEV
distribution is

FGEV xð Þ ¼ exp � 1� k
a

x� mð Þ
� �1=k� �

k 6¼ 0

¼ exp � exp � x� mð Þ
a

� �� �
k ¼ 0 ð1Þ

where m + a/k � x < +1 when k < 0 (corresponding to the
Fréchet distribution), �1 < x < +1 when k = 0 (Gumbel),
and �1 < x � m + a/k when k > 0 (Weibull). The m(2R),
a(>0), and k(2R) are the location, the scale, and the shape
parameters, respectively.
[12] In the case of the model with covariates, the param-

eters depend on other variables such as time: GEV(mt, at, kt)
[Coles, 2001]. To ensure a positive value for the scale
parameter, a transformation such that 8t = log(at) is used
when estimating the parameters. We assume that the loca-
tion parameter mt is a function of nm covariates U = (U1

U2. . .Unm
)0. Let b = (b1 b2. . .bnm

)0 be the vector of
corresponding parameters. In the case of linear dependence
we have

mt ¼ U 0 tð Þb ¼
Xnm
i¼1

bi Ui tð Þ: ð2Þ

For the scale parameter at, let V = (V1 V2. . .Vna
)0 be the

vector of covariates. We have

8t ¼ log atð Þ ¼ V 0 tð Þ:d ¼
Xna
i¼1

di Vi tð Þ; ð3Þ
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where d = (d1 d2. . .dna)
0 are the corresponding parameters.

The same applies to the shape parameter kt,

kt ¼ W 0 tð Þ:g ¼
Xnk
i¼1

gi Wi tð Þ; ð4Þ

where W = (W1 W2. . .Wnk
)0 are the covariates and g = (g1

g2. . .gnk)
0 are the corresponding parameters.

[13] For the GEV model with covariates, the likelihood
function for a given sample x0n = {x1,. . .,xn} is

Ln ¼
Yn
t¼1

f xtjmt;8t;ktð Þ; ð5Þ

where f is the probability density function (pdf) of the GEV
distribution.
[14] The shape parameter is taken to be constant (kt = k).

For the location and scale parameters, dependence is linear
and the number of covariates is restricted to 1 � nm �
nm(max) and 1 � na � na(max) in order to limit the number
of parameters to be estimated. However, several models can
still be considered given particular values of nm and na.
Here are some of these models:
[15] 1. GEV1,1(m, a, k) is the classic model with all

parameters being constant: mt = m, at = a et kt = k. In this
case, nm = na = 1.
[16] 2. GEV2,1(mt = b1 + b2Yt, a, k) is the homoscedastic

model, and the location parameter is a linear function of one
covariate Yt (nm = 2, U(t) = (U1(t) = 1 U2(t) = Yt), na = 1,
and V1 = 1).
[17] 3. In theGEV2,2(mt = b1 + b2Yt, at = exp(d1 + d2Yt), k)

model, the location and scale parameters are function of
the covariate Yt. This model is recommended when the
covariate is time Yt = t, because trends are usually
observed at the same time in the location and scale
parameters (nm = 2, U(t) = (U1(t) = 1 U2(t) = Yt), na = 2,
V(t) = (V1(t) = 1 V2(t) = Yt)).
[18] 4. In the GEV3,2(mt = b1 + b2Yt + b3Yt

2, at = exp(d1 +
d2Yt), k) model, the location is a quadratic function of the
covariate Yt and the scale parameter is a linear function of the
same covariate (nm = 3,U(t) = (U1(t) = 1U2(t) = Yt U3(t) = Yt

2),
na = 2, V(t) = (V1(t) = 1 V2(t) = Yt)).
[19] In the same manner, model GEV1,2 can be defined as

the model with a constant location parameter and a scale
parameter that is a linear function of the covariate. GEV3,1 is
the model with a location expressed as a quadratic function
of the covariate and a constant scale parameter. Other
models can be defined using a vector of covariates. These
models will be presented in general form in the rest of the
paper.

3. Parameter Estimation and Model Selection

[20] To estimate the parameters of the GEV model with
covariates, the maximum likelihood method is the most
commonly used approach [Coles, 2001]. More recently, the
generalized maximum likelihood (GML) method, devel-
oped originally for the classical model (GEV), was extended
to the case with covariates [El Adlouni et al., 2007]. The
GML method improves the ML method considerably and
avoids some computing problems related to the ML max-
imization. For the model choice problem, several models

are fitted to the data and then several tests and criteria can
be used for model comparison (such as the deviance
statistics). In this paper, we propose a joint Bayesian
parameter estimation and model selection approach using
the reversible jump Markov chain Monte Carlo (RJMCMC)
technique.
[21] Let S = {GEVnm ,na

; nm = 1,. . .,nm(max), na =
1,. . .,na(max)} be the set of all considered models to fit
the observed data set x0n = (x1,. . .,xn). For a given model,
GEVnm

,na, the parameter space dimension is (nm + na + 1).
Bayesian inference is based on the parameter posterior
distribution which is proportional to the product of the prior
distribution and the likelihood function. In some cases, the
posterior distribution cannot be given in an explicit form,
and the parameter estimators are obtained by simulation. In
this section, we outline the general approach to implement
the MCMC algorithm.
[22] For known nm and na, samples from the joint

posterior distribution of the parameters are generated using
the Metropolis-Hastings algorithm. For unknown nm and na,
the parameter spaces have different dimensions and thus the
reversible jump samplers [Green, 1995] are required.
Richardson and Green [1997] proposed the reversible jump
MCMC (RJMCMC) algorithm and used a birth-death move
to change the number of components of the mixtures. On
the basis of a continuous time birth-death process, Stephens
[2000] proposes a birth-death MCMC (BDMCMC) algo-
rithm. We resort to the BDMCMC algorithm to jump
between model spaces with different dimensions because
it is straightforward to implement in our context.
[23] The general algorithm is based on two types of

sampling steps. The first one involves dimension-changing
moves, while the other is conditional on a fixed model. The
algorithm generates samples from the posterior distribution
of the parameters for all considered models. This algorithm
will be presented in section 4.

3.1. Parameter Estimation

[24] In reality, for the GEV model with covariates, ‘‘the
number of things you don’t know is one of the things you
don’t know’’ [Green, 2003]. Thus for unknown nm and na,
the parameter vector to be estimated is < = (nm, na, bðnmÞ,
dðnaÞ, k). Note that the dimension of the parameter space
depends on the selectedmodel and is given by d = nm + na + 3.
3.1.1. Parameter Prior Distributions
3.1.1.1. Model Identifier nm and na
[25] In the Bayesian framework, parameter prior distri-

butions represent all the anterior knowledge on the model
independent of the collected data. Several sources of prior
information are used in practice. In hydrology, historical
and/or regional information constitute a good source for
prior knowledge [Reis and Stedinger, 2005]. In this study
we use a discrete uniform distribution (DU(1,n(max))) as
prior for the parameters nm and na. The prior probability
density function for the parameter nm is given by

p nm ¼ i
	 


¼
1

nm maxð Þ if i ¼ 1; . . . ; nm maxð Þ
0 otherwise

�
: ð6Þ

3.1.1.2. GEV With Covariates Model Parameters
[26] To specify the prior distributions of the rest of the

parameters, several techniques are proposed in the literature.
For the stationary GEV model, Coles and Tawn [1996]
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proposed a prior construction method based on the differ-
ences of given quantiles. Three quantiles should first be
elicited and three independent priors for the differences are
deduced. In this study, physical prior information for
hydrometeorological data is used for the shape parameter
of the GEV distribution. This prior is proposed by Martins
and Stedinger [2000] to develop the GML method which
was generalized for the GEV model with covariates by El
Adlouni et al. [2007] In the GML approach, the prior
distribution of the shape parameter is a beta distribution
(k � p(k) = Beta(p = 6, q = 9)) defined on the interval [a =
�0.5, b = 0.5]. The probability density function of this
distribution is given by

f xð Þ ¼ G pþ qð Þ
G pð ÞG qð Þ

x� að Þp�1
b� xð Þq�1

b� að Þpþq�1
; a < x < b;

and the mean and the variance of this prior distribution are
Ep[k] = �0.1 and Varp[k] = 0.12.
[27] An important but reasonable assumption is that the

parameters are independent, allowing us to define their
priors separately. For the shape parameter, the same prior
as the one used for the GML method is considered in a fully
Bayesian framework. For all other parameters (bðnmÞ and
dðnaÞ) the noninformative uniform prior is used. However, if
we had additional knowledge from other sources regarding
the scale and position parameters, we could include it,
directly or by elicitation [O’Hagan, 2006].
[28] The joint prior distribution considered in this study

for the vector of the parameters < = (nm, na, bðnmÞ, dðnaÞ, k) is
given by

p <ð Þ / p nm
	 


p nað Þ p kð Þ: ð7Þ

3.1.2. Posterior Distribution Assessment
[29] For a given GEVnm

,na model and using the Bayes
theorem, the posterior distribution is proportional to the

product of the likelihood function Ln(xnj<) (equation (5))
and the prior distribution (equation (7)),

p <jxnð Þ / Ln xnj<ð Þ p <ð Þ: ð8Þ

Bayesian inference is based on this posterior distribution.
However, marginal posterior distributions cannot be
deduced explicitly from equation (8), and computational
techniques should be used. To solve such Bayesian
problems, we use a Metropolis-Hastings algorithm. A major
advantage of all MCMC techniques is that the posterior
distributions of the parameters and quantiles (or any
function of the parameters) are easily evaluated with their
empirical distributions. Quantities of interest, for example,
in hydrological studies, concern point estimates of the
quantiles, their credibility intervals, and predictive distribu-
tions. A directed acyclic graph (DAG), which defines the
structure of the Bayes model, is presented in Figure 1. The
rest of the parameters used in the DAG are presented in
section 3.2.
[30] For model selection, we focus on the (marginal)

maximum a posteriori (MAP) estimators of nm and na, since
they are discrete random variables. The MAP estimator,
which minimizes the risk function r corresponding to the
0–1 cost function, is defined by

n̂q ¼ argmax
r

p rjxnð Þ ð9Þ

with q = m, a.
[31] For the rest of the parameters, which have continu-

ous supports, we consider the standard Bayesian estimator
which corresponds to the minimum mean square estimator
(MMSE). The MMSE estimator of the parameter q mini-
mizes the quadratic cost function and is defined by

q̂ ¼ E rjxn½ �; ð10Þ

where q = bðnmÞ, dðnaÞ, k.

Figure 1. Directed acyclic graph (DAG) for the nonstationary GEVnm ,na
model.
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3.2. Model Selection

[32] As mentioned above, the proposed approach uses
RJMCMC to transit between models with different pa-
rameter space dimensions. Allowed transitions and cor-
responding probabilities concern closed states and are given
by

Bm ¼ probability of jump from nm�! nm þ 1

Ba ¼ probability of jump from na�!na þ 1

Dm ¼ probability of jump from nm�!nm � 1

Da ¼ probability of jump from na�!na � 1

Cm ¼ probability of jump from nm�!nm
Ca ¼ probability of jump from na�!na

8>>>>>><
>>>>>>:

: ð11Þ

[33] For all components, the jump to a closed model is
uniform distributed. Figure 2 illustrates transition possi-
bilities for nm(max) = 3 and na(max) = 2. In this special
case the prior transitions are presented in Figure 2. For
all these cases, Ba = Da = Ca = 1/2, given that for the
scale parameter the birth and death are not possible
simultaneously.
[34] Note that jumps related to the location parameter

with different space dimensions are independent from those
of the scale parameter. In what follows, we present all
possible jumps and corresponding accept/reject posterior
probabilities.

4. Reversible Jump MCMC Algorithm

4.1. General MCMC Method

[35] The Markov chain Monte Carlo (MCMC) method is
a powerful tool for Bayesian estimation. MCMC sampling
was first introduced by Metropolis et al. [1953] to integrate
over high dimensional probability distributions to make
inference about model parameters. In Bayesian inference
we are interested in finding the joint posterior distribution of
the parameters. The difficulty is that the posterior distribution
is typically found by multidimensional integration, which is
only feasible for small-scale problems and hence many
problems become intractable. When the full-conditional

densities are of standard form, including their normalizing
constants, posterior sampling is usually done via the Gibbs
sampler. If however, one or more full-conditional densities
are not of standard form and have intractable normalizing
constants, as it is the case for the studied model, posterior
sampling is usually conducted via the Metropolis-Hastings
(MH) algorithm. The Metropolis-Hastings sampling
involves, for each component qi of the parameter vector
< drawn from a ‘‘proposal’’ distribution, deciding whether
to keep the current value or instead keep this proposed
value. Principal steps of the MH algorithm, to draw a
sample from a given distribution p, can be summarized as
follows: (1) Choose a proposal distributionQ. (2) Given the
current state x, generate x* from Q(.jx). (3) Accept x* with
probability

r x; x*ð Þ ¼ min 1;
p x*ð Þ
p xð Þ

Q xjx*ð Þ
Q x*jxð Þ

� �
:

Under some regularity conditions (the chain is irreducible
and aperiodic) the distribution of interest p is the stationary
distribution of the constructed chain (which corresponds to
the posterior distribution given in equation (8) in this case).
A detailed description of these algorithms is given by
Robert and Casella [2004].

4.2. RJMCMC Algorithm

[36] The MCMC approach, as given in general form,
presents some difficulties when the parameter space E is a
union of subspaces with different dimensions. Suppose for
simplicity that E = R

k1 [ R
k2 with k1 < k2. To define the

proposal distribution Q, we should define the jumping rule
from R

k1 to R
k2 , then from R

k2 to R
k1 , in order to build an

irreducible and aperiodic chain. Green [1995] proposed an
elegant solution to this problem. Given the current state x in
R

k1 , we generate k2 � k1 components to have a vector of
R

k2 . Then we define a bijective transformation in R
k2 which

gives the state x*. In the last step, a transformation function
g, usually deterministic, should be defined to move from x*
to x. These transformations allow the definition of the

Figure 2. Illustration of model transitions for nm(max) = 3 and na(max) = 2.
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proposal distribution Q, and the accept/reject probability is
given by

r x; x*ð Þ ¼ min 1;
p x*ð Þ
p xð Þ

Q xjx*ð Þ
Q x*jxð Þ J x; x*ð Þj j

� �
: ð12Þ

This probability is the same as presented for the general
MCMC algorithms with an additional factor J, which
corresponds to the Jacobian of the transformation function.
[37] In our case, the parameter space is given by

E ¼ [
nm¼1;...nm maxð Þ
na¼1;...na maxð Þ

Rnm � Rna � �0:5; 0:5½ �:

As presented in section 4.2, a jump in the location parameter
space corresponds to a birth or a death. The same
transformations are available for the scale parameter.

4.3. Birth-Death MCMC Algorithm

[38] Here we present a birth-death MCMC (BDMCMC)
algorithm to obtain a sample from the joint posterior
distribution of the vector of parameters < = (nm, na, bðnmÞ,
dðnaÞ, k). The BDMCMC approach was introduced by
Stephens [2000] for normal mixtures and is based on a
birth-death process where the mixture size changes. As
mentioned in section 3.2, transitions and corresponding
probabilities concern closed states. Thus the BDMCMC is
straightforwardly the most suitable in the present context.
Algorithms presented here concern the location parameter; the
same algorithms can be formulated for the scale parameter.
[39] Let nm be the current order of the GEV model with

covariates, bðnmÞ = (b1,. . .,bnm) the vector of the parameters
corresponding to the location parameter, and suppose that a
jump from nm to nm + 1 (birth) is selected using equation (11)
and algorithm 1 (given hereinafter). A random (nm + 1)
component is generated using proposal distribution g. Start-
ing values of additional components are taken to be close to
zero. We consider for g a triangular distribution on the
interval [a,b] with mode c2]a,b[:

g sð Þ ¼

2 s� að Þ
b� að Þ c� að Þ ; for a � s � c

2 b� sð Þ
b� að Þ b� cð Þ ; for c < s � b

8>><
>>: : ð13Þ

In this study we use a = �0.1, c = 0, and b = 0.1.
[40] The generated component will be added to the vector

bðnmÞ, and the proposed vector is

b nmþ1ð Þ ¼ b1; . . . ;bnm
; s

� �
: ð14Þ

The Jacobian of this transformation is equal to 1.
[41] In the case of a death transition, a jump from (nm + 1)

to nm is selected. In this case the last component bnm
+ 1 is

deleted and the first one is replaced by the mean on all
covariate observations. This approach was suggested by an
anonymous reviewer. The proposed vector is given by

bðnmÞ =

�
b1 + 1

n

Pn
i¼1

bnm+1
yi, b2,. . .,bnm

�
.

[42] For each transformation (birth or death) the accepta-
tion/rejection probability can be given for both jumps:

pB ¼ min 1; rBð Þ and pD ¼ min 1; r�1
B

	 

ð15Þ

with

rB ¼
p nm þ 1; na;b nmþ1ð Þ; d nað ÞjXn

� �
p nm; na;b nmð Þ; d nað ÞjXn

� �

�
Q nm;b nmð Þjnm þ 1; b nmþ1ð Þ
� �

Q nm þ 1; b nmþ1ð Þjnm;b nmð Þ
� � ð16Þ

Q nm;b nmð Þjnm þ 1; b nmþ1ð Þ
� �

¼ Dm

Q nm þ 1; b nmþ1ð Þjnm;b nmð Þ
� �

¼ Bm g b nmþ1ð Þ
� �

8<
: : ð17Þ

The posterior distribution p(.jXn) is given by equation (8).
Algorithms corresponding to birth and death transitions are
given by:
[43] Algorithm 1 (Birth)
[44] 1. Generate s � g (equation (13)).
[45] 2. Compute the probability of birth PB (equation (15)).
[46] 3. If u � U(0,1) � PB, then bðnmþ1Þ = (b1,. . .,bnm

, s),
else the vector of parameters is bðnmÞ.
[47] Algorithm 2 (Death)
[48] 1. Delete the last component bnm + 1 and set

b nmð Þ ¼ b1 þ
1

n

Xn
i¼1

bnmþ1yi;b2; . . . ;bnm

 !
:

[49] 2. Compute the probability of deathPD (equation (15)).
[50] 3. If u � U(0,1) � PD, then

b nmð Þ ¼ b1 þ
1

n

Xn
i¼1

bnmþ1yi; . . . ;bnm

 !
;

else the vector of parameters is bðnmþ1Þ.
[51] In the same manner, the probabilities of birth (P0

B)
and death (P0

D) for the scale parameter are equivalent to
equation (15) and are obtained by switching the roles of the
parameters b and d. Thus the birth and death algorithms
corresponding to the scale parameter are given by algo-
rithms 10 and 20:
[52] Algorithm 10 (Birth)
[53] 4. Generate s � g (equation (13)).
[54] 5. Compute the probability of birth P0

B.
[55] 6. If u � U(0,1) � P0

B, then d naþ1ð Þ = (d1,. . .,dna, s),
else the vector of parameters is d nað Þ.
[56] Algorithm 20 (Death)
[57] 4. Delete the last component dna + 1 of d naþ1ð Þ and set

d nað Þ ¼ d1 þ
1

n

Xn
i¼1

dnaþ1yi; d2; . . . ; dna

 !
:
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[58] 5. Compute the probability of death P0
D.

[59] 6. If u � U(0,1) � P0
D, then

d nað Þ ¼ d1 þ
1

n

Xn
i¼1

dnaþ1yi; d2; . . . ; dna

 !
;

else the vector of parameters is d naþ1ð Þ.

4.4. Update of the MCMC Iterations

[60] Suppose that no jump is chosen. Consequently, there
is no change in the dimension of the covariate parameters of
the location parameter (nm �! nm). The Metropolis-Hastings
(MH) algorithm [Metropolis et al., 1953; Hastings, 1970]
is used to update the Markov chain iterations. Simulated
realizations are generated from the posterior distribution
using a single-component random-walk Metropolis algo-
rithmwith a Gaussian proposal density centered at the current
states, b(i)ðnmÞ and d(i)ðnmÞ, of the chain [Gilks et al., 1996]. The
variance of the proposal distribution is relatively small with
respect to the parameter range allowing a displacement
toward closest states. Let b0

ðnmÞ and d0ðnmÞ be new candidates
generated from the proposal distribution. The probability of
acceptation/rejection is

pU ¼ min 1; rUð Þ; ð18Þ

where

rU ¼
p nm; na;b

nmð Þ
0 ; d nað Þ

0 jXn

� �

p nm; na;b
nmð Þ
ið Þ ; d nað Þ

ið Þ jXn

� � : ð19Þ

The algorithm corresponding to the update of the MCMC
iterations, for the location parameters, is given as follows:
[61] Algorithm 3 (Update for b)
[62] 1. Compute the probability of update PU (equation

(18)).
[63] 2. If u � U(0,1) � PU, then b(i+1)ðnmÞ = b0

ðnmÞ, else the
vector of the parameters is b(i+1)ðnmÞ = b(i)ðnmÞ.
[64] A similar algorithm corresponds to the vector of the

parameters d and is given as follows:
[65] Algorithm 30 (Update for d)
[66] 3. Compute the probability of Update PU (equation

(18)).
[67] 4. If u � U(0,1) � PU, then d(i+1) nað Þ = d0 nað Þ, else the

vector of the parameters is d(i+1) nað Þ = d(i) nað Þ.

4.5. Practical Implementation of the BDMCMC
Algorithm

[68] For the practical implementation of the BDMCMC
algorithm several issues need special attention. The first one
is the choice of starting values of all the parameters to be
estimated. In theory, all generated Markov chains are
irreducible by construction, meaning that all their states
communicate (i.e., the probability to transfer from one state
to another is non-null). Then the initial values should not
influence the convergence of the chain to its stationary
distribution. However, this choice influences the burn-in time
and thus the length of the Markov chain to be generated. For
all models considered in this study, the methodology adopted
to define the starting value is as follows:

[69] 1. For the location parameters we choose the ordi-
nary least squares estimators of the regression of the
variable of interest when the covariates are taken as inde-
pendent variables.
[70] 2. For the scale parameters, we consider the maxi-

mum likelihood estimator for the first scale parameter (d1)
of the classical model and very low values for the other
parameters.
[71] 3. For the shape parameter the maximum likelihood

estimator is taken as starting value.
[72] The following is the algorithm in a schematic form.

If the current state of the Markov chain is (nm, nd, GEVnm,nd
),

then the proposed BDMCMC algorithm is as follows:
[73] BDMCMC Algorithm
[74] Step 1. Propose a transition from GEVnm,nd

to
GEVnm,nd with

[75] nm = (nm + 1) in the case of birth (algorithm 1)
[76] nm = (nm � 1) in the case of death (algorithm 2)
[77] nm = nm, there is no model transition and the state of

the chain is updated using algorithm 3.
[78] Step 2. Propose a transition to the model GEVnm,nd

with
[79] nd = (nd + 1) in the case of birth (algorithm 10)
[80] nd = (nd � 1) in the case of death (algorithm 20)
[81] nd = nd, there is no model transition and the state of

the chain is updated using algorithm 30.
[82] Step 3. Set nm = nm, nd = nd and return to step 1.
[83] All unchanged dimension parameters are updated

using their instrumental distributions. For the shape param-
eter k, corresponding transitions are the same as described
by El Adlouni et al. [2007].

5. Illustrative Examples

[84] To illustrate the proposed approach, two examples
are presented here. The first example deals with simulated
data. In the second example we study the effect of the
Southern Oscillation Index (SOI) on the annual maximum
precipitation at the Tehachapi station in California. For both
illustrative examples, nm(max) = 3 and na(max) = 2.

5.1. Simulated Data

[85] A sample of size n = 50 is generated from the model
Xt � GEV2,1(mt = 100 + 5Yt, at = exp(0.5), k = �0.1), where
Yt is a normal distributed variable withmean 3 and variance 1.
Note that hydrometeorological extremes suggest positive
skewness, which can be represented by distributions with a
right heavy tail. The shape parameter considered for this
simulated data corresponds to the coefficient of skewness
Cs = 1.86. Figure 3 presents the generated data sample
(Figure 3a) and the scatterplot of Xt as a function of the
covariate Yt (Figure 3b). As mentioned in section 2, when
the covariate is taken to be different from time, the time
series may in fact be stationary.
[86] The sampler was implemented as described in sec-

tion 4 for the generated data series Xt and the covariate Yt.
The parameters and quantiles are estimated through their
empirical posterior distributions. The best model is selected
by the proportion of iterations that the MCMC chain
remains in that model. For all compared models, the starting
values for the BDMCMC are the maximum likelihood
estimators of the parameters and the proposal density is
Gaussian centered at the current states and has a relatively

W06403 EL ADLOUNI AND OUARDA: JOINT BAYESIAN MODEL SELECTION

7 of 11

W06403



small variance. The standard deviation of the proposal
density is fixed to 10�3jq0j, where q0 is the starting value
of any given parameter q in the BDMCMC algorithm.
[87] A graphical approach is adopted to deal with the

convergence of BDMCMC: We run the algorithms for an
overly long duration (much longer than is probably needed),
and examine the convergence graphs. Figure 4 illustrates the
BDMCMC algorithm results with a length of N = 15,000.
Figure 4a shows that the parameter nm is almost equal to 2
and the parameter na transits between 1 and 2 (Figure 4b).
The percentage of iterations that the chain remains in each
model are 6%, 5%, 51%, 29%, 3%, and 5% for GEV1,1,
GEV1,2, GEV2,1, GEV2,2, GEV3,1, and GEV3,2, respectively.
Thus the best model corresponds to the GEV2,1 model as
shown in Figure 4c. The selected model median and the
95% credibility interval are presented in Figure 4d.
[88] Results show that for the selected model the Markov

chains, corresponding to the GEV2,1 parameters, converge

after a small number of iterations (less than 1000). A
reasonable burn-in of N0 = 1000 seems sufficient to guar-
antee convergence. This is a standard graphical tool to
assess the convergence of the Markov chains to their
stationary distributions. More discussions on the conver-
gence behavior and the mixing property of the sampler are
presented in section 5.2.
[89] The proposal (P2) gives the same results and leads to

the same model selection.

5.2. Annual Maximum Precipitation Data

[90] The proposed approach based on the BDMCMC
algorithm is used to model the annual maximum precipita-
tion (X (mm)) observed at the Tehachapi station in Cal-
ifornia (station 048826; latitude, 35.13; longitude, �118.45;
period, 1952–2000; sample size n = 49). As this station is
located in southern California, its precipitations are strongly
affected by the Southern Oscillation Index (SOI). Precip-

Figure 4. Reversible jump Markov chain Monte Carlo (RJMCMC) algorithm results for the simulated
data: (a) MCMC iterations for nm, (b) MCMC iterations for na, (c) proportions of model selection, and
(d) estimated median given by the selected model.

Figure 3. Data series simulated from the GEV2,1 model and the normal distribution as covariate.
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itations at the Tehachapi station were studied by El Adlouni
and Ouarda [2008], and the deviance information criterion
(DIC) was used for model selection. The same problem is
considered here in order to illustrate the flexibility of the
proposed methodology for parameter estimation and model
selection.
[91] The DIC is a simple method to compare the validity

of a model M1 against another model M0. When M0 is a
special case of M1 (M0 � M1), the DIC statistic is given by
D = 2{l*n(M1) � l*n(M0)} [Coles, 2001], where l*n(M) is the
maximized log likelihood function of model M. Large
values of D indicate that model M1 is more adequate and
explains more of the data variation than model M0. The DIC
shows that the difference between theGEV1,1 and theGEV2,1

models is not significant, because D = 0.95 is smaller than

the 0.95 quantile of the c1
2 distribution (Pr(c1

2 � 0.95) =
0.6703). However, the DIC shows that the GEV3,1 is more
adequate than the GEV2,1 model. For a more general
comparison using DIC, all models should be fitted and
compared. This approach is not recommended for extreme
model selection [Coles and Pericchi, 2003].
[92] The proposed approach, based on the BDMCMC

algorithm, allows us to check the adequacy of a more
general set of models. Results are presented in Figure 5
and show that the GEV3,1 is the most adequate model to
represent the dependence between the precipitation at the
Tehachapi station and the SOI. The total length of the
generated Markov chains for this example is N = 10,000.
[93] Figures 5a and 5b show that the BDMCMC algo-

rithm is well mixing within the models and that the

Figure 5. RJMCMC results for the precipitation of the Tehachapi station: (a) MCMC iterations for nm,
(b) MCMC iterations for na, (c) proportions of model selection, and (d) estimated median given by the
selected model.

Figure 6. Empirical posterior distribution of the parameter of the GEV3,1 model for the Tehachapi
example.
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proportion of iterations that the MCMC chain remains in the
GEV3,1 model is the highest and corresponds to 49% of the
length of the generated Markov chains (Figure 5c). Figure 5d
presents the estimated annual maximum precipitation
medians, conditional to SOI values, with their 95% credi-
bility intervals. Note that the median is simply chosen to
illustrate the adequacy of the selected model. On the other
hand, all extreme quantiles can be estimated with their
credibility intervals.
[94] For convergence assessment, we first examine the

mixing over nm and na, and then the mixing over the GEV
with covariate model parameters. To allow the BDMCMC
iterations to explore spaces, the starting points should be
selected carefully. In a preliminary analysis, results
corresponding to starting points nm = 3 and na = 1 show
that the sampler is not mixing. The Markov chains remain in
the same space given that the likelihood of the GEV3,1

model is higher than all competitive models. By choosing, as
starting point, the fixed parameter model (nm = 1 and na = 1)
the sampler moves quickly from the low likelihood of the
starting model to higher likelihood (Figures 5a and 5b). For
the rest of the parameters, conditionally on the selected
model, the convergence assessment is carried out by graph-
ical tools by observing the variations on the empirical mean
and variance. Rigorous diagnosis of MCMC convergence is
elusive. Some methods to assess the convergence of MCMC
methods, such as Raftery and Lewis and subsampling
methods, make it possible to determine the length of the
chain and the burn-in time [Cowles and Carlin, 1996; El
Adlouni et al., 2006].
[95] A burn-in time for this case study is N0 = 1000, and

the last 3900 iterations are used to estimate the empirical
posterior distribution. Figure 6 shows the histograms of
these distributions for the GEV3,1 model parameters.
[96] Table 1 presents the annual maximum precipitation

median estimated by the selected model GEV3,1 and the
classical model GEV1,1 conditional on the minimum
(�3.16), the mean (�0.15), and the maximum (2.07)
observed values of the covariate SOI. Results show that
the difference between the GEV3,1 and the GEV1,1 models is
larger for negative values of SOI, which correspond to high
observed precipitation values. Indeed, the median estimated
by the GEV3,1 (Q50%(GEV3,1) = 87.77) can be 3 times larger
than that estimated by the classic model (Q50%(GEV1,1) =
27.12) for SOI =�3.16. Thus the use of the simplified model
could lead to a significant underestimation of the quantiles
for some cases of observed SOI values. These results meet
those obtained by El Adlouni and Ouarda [2008].

6. Conclusions

[97] We have developed a Bayesian approach for both
parameter estimation and model selection for the GEV

models with covariates based on the birth-death MCMC
algorithm. The BDMCMC algorithm was developed to
extend the applicability of the MCMC method to problems
in which the dimension of the parameter space can change
between iterations. The parameter space for such a Markov
chain includes the parameters along with an indicator for the
current GEV model with covariates.
[98] The proposed procedure can be applied to more

general models where parameters are expressed as nonlinear
functions of the covariates. Such an approach requires a
much longer computation time than the linear case. Also, to
obtain summary information on the covariate parameters,
large storage space is needed depending on the complexity
of the nonlinear functions. However, computational speed is
becoming a less determinant factor due to increasing com-
puter power, and the proposed approach can hence be
generalized.
[99] As illustrated by simulation results and the applied

case study, the Bayesian GEV model with covariates is a
valuable tool for parameter varying data analysis of
extremes. It has been shown in the present paper that the
proposed BDMCMC approach can reliably identify the best
models and has performed well with simulated and ob-
served data sets.
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