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[1] Flood quantile estimation is of great importance for several types of engineering
studies and policy decisions. However, practitioners must often deal with the limited
availability of data and with short-length observation series. Thus, the information must be
used optimally. During the last decades, to make better use of available data, inferential
methodology has evolved from annual maxima modeling to peaks over a threshold. To
mitigate the lack of data, peaks over a threshold are sometimes combined with additional
information, mostly regional or historical information. However, the most important
information for the practitioner remains the data available at the target site. In this study, a
model that allows inference on the whole time series is introduced. In particular, the
proposed model takes into account the dependence between successive extreme
observations using an appropriate extremal dependence structure. Results show that this
model leads to more accurate flood peak quantile estimates than conventional estimators.
In addition, as the time dependence is taken into account, inferences on other flood
characteristics can be performed. An illustration is given with flood duration data. Our
analysis shows that the accuracy of the proposed models to estimate flood duration is
related to specific catchment characteristics. Some suggestions to increase the flood
duration predictions are presented.
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1. Introduction

[2] Estimation of extreme flood events is important for
several engineering design and risk management activities.
This is a considerable task as the amount of data available is
often limited. Thus, to increase the precision and the quality of
the estimates, several authors resorted to the use of other
sources of information. For example, Chebana and Ouarda
[2008], Ribatet et al. [2007a], Kjeldsen and Jones [2006,
2007], and Cunderlik and Ouarda [2006] used information
from other homogeneous gauging stations. Werritty et al.
[2006] and Reis and Stedinger [2005] used historical informa-
tion to improve inferences. Incorporation of additional infor-
mation in the estimation procedure is attractive but it should
not bemore prominent than the original target site data [Ribatet
et al., 2007b]. Before looking for other sources of information,
it seems reasonable to use efficiently the data available at the
target site. Most often, practitioners possess initially the whole
time series rather than only the extreme observations. In
particular, the reduction of a time series to a sample of annual
maxima (AM) represents a loss of information.

[3] In this perspective, the peaks over threshold (POT)
[Ashkar and Rousselle, 1987; Madsen and Rosbjerg, 1997]
approach is less wasteful as more than one event per year
can be inferred. However, the declustering method used to
identify independent events is quite subjective. Further-
more, even though a ‘‘quasi automatic’’ procedure was
recently introduced by Ferro and Segers [2003], there is
still a waste of information as only cluster maxima are used.
[4] Coles et al. [1994] and Smith et al. [1997] proposed

an approach based on Markov chain models that uses all
exceedances and accounts for temporal dependence be-
tween successive observations. Finally, the entire informa-
tion available within the time series is taken into account.
More recently, Fawcett and Walshaw [2006] gave an
illustrative application of the Markov chain model to
extreme wind speed modeling.
[5] In the present study, extreme flood events are of

interest. The performance of the Markov chain model is
compared to the conventional POT approach. The data
analyzed consist of a collection of 50 French gauging
stations. These stations constituted a subset of the data set
formed by Renard et al. [2008] to examine stationarity of
hydrological extremes in France. The area under study
ranges from 2�W to 7�E and from 45�N to 51�N. The
drainage areas vary from 72 to 38300 km2 with a median
value of 792 km2. Daily observations were recorded from
39 to 105 years, with a mean value of 60 years. For the
remainder of this article, the quantile benchmark values are
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derived from the maximum likelihood estimates on the
whole times series using a conventional POT analysis.
[6] The paper is organized as follows: section 2 introduces

the theoretical aspects for the Markov chain model, while
section 3 checks the relevance of the Markovian model
hypothesis. Sections 4 and 5 analyze the performance of the
Markovian model to estimate the flood peaks and durations
respectively. Finally, some conclusions and perspectives are
presented in section 6.

2. Markov Chain Model for Cluster Exceedances

[7] In this section, the extremal Markov chain model is
presented. In the remainder of this article, it is assumed that
the flow Yt at time t depends on the value Yt�1 at time t � 1.
In this flexible formulation, Yt represents the streamflow at
any time scale t. In hydrology, the daily time scale is often
used. In this case Yt represents the daily streamflow for day
t. However, the model remains valid for any time scale, e.g.,
hourly scale. The dependence between two consecutive
observations is modeled by a first-order Markov chain.
Before introducing the theoretical aspects of the model, it
is worth justifying and describing the main advantages of
the proposed approach.
[8] It is now well known that the univariate extreme value

theory (EVT) is relevant when modeling either AM or POT
data series. Nevertheless, its extension to the multivariate
case is surprisingly rarely applied in practice. Recently the
use of the multivariate framework to treat hydrological
extreme events has been receiving additional attention.
Several applications made use of bivariate distributions
and copulas to jointly model the various components of
extreme hydrological events, for instance flood peak, vol-
ume and duration [Yue et al., 2001; Zhang and Singh,
2006], drought magnitude, volume and duration [Ashkar
et al., 1998; Ouarda et al., 2008], and storm intensity and
duration [Salvadori and De Michele, 2004]. The adoption of
the multivariate framework to treat extreme hydrological
events was motivated by the fact that single-variable hy-
drological analysis provides limited understanding and
assessment of the true behavior of hydrological phenomena
which are often characterized by a set of correlated random
variables. Recent research is starting to focus on the
development of regional multivariate modeling tools
[Chebana and Ouarda, 2007]. A common element in all
research dealing with the use of multivariate tools for the
analysis of extreme hydrological events is the attempt to
maximize the use of all available hydrological information
to improve inference concerning rare events.
[9] The present work aims to motivate the use of the

multivariate EVT (MEVT). In our application, the multi-
variate results are used to model the dependence between a
set of lagged values in a times series. Consequently,
compared to the AM or the POT approaches, the amount
of observations used in the inference procedure is clearly
larger. For instance, while only cluster maxima are used in a
POT analysis, all exceedances are inferred using a Markov-
ian model. In this sense, the proposed approach lies between
POT analysis and conventional time series analysis. Indeed,
time series analysis is interested in the dependence structure
for the whole time series including low streamflow values,
while the proposed approach focuses on the dependence

structure between successive extreme observations. POT
modeling, on the other hand, leads to the loss of a
significant part of extreme values as only (independent)
flood peaks are considered.

2.1. Likelihood Function

[10] Let Y1, . . ., Yn be a stationary first-order Markov chain
with a joint distribution function of two consecutive obser-
vations F(y1, y2), and F(y) its marginal distribution. Thus,
the likelihood function L evaluated at the n first daily
streamflow values (y1, . . ., yn) is

L y1; . . . ; ynð Þ ¼ f y1ð Þ
Yn
i¼2

f yijyi�1ð Þ ¼
Qn

i¼2 f yi; yi�1ð ÞQn�1
i¼2 f yið Þ

ð1Þ

where f(yi) is the marginal density, f(yijyi�1) is the
conditional density, and f(yi, yi�1) is the joint density of
the i � 1 and i daily observations.
[11] To model all exceedances above a sufficiently large

threshold u, the joint and marginal densities must be known.
Standard univariate EVT arguments [Coles, 2001] justify
the use of a generalized Pareto distribution (GPD) for f(yi),
e.g., a term of the denominator in equation (1). As a
consequence, the marginal distribution is defined by

F yð Þ ¼ 1� l 1þ x
y� u

s

� ��1=x
; y � u ð2Þ

where 1 + x(y � u)/s > 0, l = Pr[Y � u], s and x are
respectively the scale and shape parameters. Similarly,
MEVT arguments [Resnick, 1987] justify the use of a
bivariate extreme value distribution for f(yi, yi�1), e.g., a
term of the numerator in equation (1). Thus, the joint
distribution is defined by

F y1; y2ð Þ ¼ exp �V z1; z2ð Þ½ 	; y1 � u; y2 � u ð3Þ

where V is a homogeneous function of order �1, e.g., V(nz1,
nz2) = n�1V(z1, z2), satisfying V(z1,1) = z1

�1 and V(1, z2) =
z2
�1, and zi = �1/log F(yi), i = 1, 2.
[12] Unlike the univariate case, there is no finite param-

etrization for the V functions. Thus, it is common to use
specific parametric families for V such as the logistic
[Gumbel, 1960], the asymmetric logistic [Tawn, 1988], the
negative logistic [Galambos, 1975], or the asymmetric
negative logistic [Joe, 1990] models. Some details for these
parametrizations are reported in Appendix A. These models,
as all models of the form (3) are asymptotically dependent,
that is [Coles et al., 1999],

c ¼ lim
w!1

c wð Þ ¼ limw!1 Pr F Y2ð Þ > wjF Y1ð Þ > w½ 	 > 0 ð4Þ

c ¼ lim
w!1

c wð Þ ¼ limw!1

2 log 1� wð Þ
log Pr F Y1ð Þ > w;F Y2ð Þ > w½ 	 � 1 ¼ 1

ð5Þ

[13] Other parametric families exist to consider simulta-
neously asymptotically dependent and independent cases
[Bortot and Tawn, 1998]. However, apart from a few
particular cases (see section 3), the data analyzed here
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seems to belong to the asymptotically dependent class.
Consequently, in this work, only asymptotically dependent
models are considered, i.e., of the form (1)–(3).

2.2. Inference

[14] The Markov chain model is fitted using maximum
censored likelihood estimation [Ledford and Tawn, 1996].
The contribution Ln(y1, y2) of a two consecutive daily
streamflow values y1, y2 to the numerator of equation (1)
is given by

Ln y1; y2ð Þ ¼

exp �V z1; z2ð Þ½ 	 V1 z1; z2ð ÞV2 z1; z2ð Þ � V12 z1; z2ð Þ½ 	K1K2; if y1 > u; y2 > u

exp �V z1; z2ð Þ½ 	V1 z1; z2ð ÞK1; if y1 > u; y2 � u

exp �V z1; z2ð Þ½ 	V2 z1; z2ð ÞK2; if y1 � u; y2 > u

exp �V z1; z2ð Þ½ 	; if y1 � u; y2 � u

8>>>>>>>>>>><
>>>>>>>>>>>:

where Kj = �ljs
�1tj

1+xzj
2 exp(1/zj), tj = [1 + x(yj � u)/s]+

�1/x

and Vj, V12 are respectively the partial derivative with
respect to the component j and the mixed partial derivative.
The contribution Ld(yj) of a daily streamflow yj to the
denominator of equation (1) is given by

Ld yj
	 


¼
s�1l 1þ x yj � u

	 

=s

� ��1=x�1

þ ; if yj > u;

1� l; otherwise

8<
: ð7Þ

Finally, the log likelihood is given by

log L y1; . . . ; ynð Þ ¼
Xn
i¼2

logLn yi�1; yið Þ �
Xn�1

i¼2

logLd yið Þ ð8Þ

2.3. Return Levels

[15] Most often, the main objective of an extreme value
analysis is quantile estimation. As for the POT approach,
return level estimates can be computed. However, as all
exceedances are inferred, this is done in a different way as
the dependence between successive observations must be
taken into account. For a stationary sequence Y1, Y2, . . ., Yn

with a marginal distribution function F, Lindgren and
Rootzen [1987] have shown that

Pr max Y1; Y2; . . . ; Ynf g � y½ 	 � F yð Þnq ð9Þ

where q 2 [0, 1] is the extremal index and can be interpreted
as the reciprocal of the mean cluster size [Leadbetter, 1983];
that is, q = 0.5 means that extreme (enough) events are
expected to occur by pair. q = 1 (q ! 0) corresponds to the
independent (perfect dependent) case.
[16] As a consequence, the quantile QT corresponding to

the T-year return period is obtained by equating equation (9)

to 1 � 1/T and solving for T. By definition, QT is the
observation that is expected to be exceeded once every T
years, i.e.,

QT ¼ u� sx�1 1� l�1 1� 1� 1=Tð Þ1= nqð Þ
h in o�x

� �
ð10Þ

It is worth emphasizing equation (9) as it has a large impact
on both theoretical and practical aspects. Indeed, for the AM

approach, equation (9) is replaced by

Pr max Y1; Y2; . . . ; Ynf g � y½ 	 � G yð Þ ð11Þ

where G is the distribution function of the random variable
Mn = max{Y1, Y2, . . ., Yn}, that is a generalized extreme
value distribution. In particular, equations (9) and (11)
differ as the first one is fitted to the whole set of
observations Yi, while the latter is fitted to the AM ones.
By definition, the number nY of the Yi observations is much
larger than the size nM of the AM data set. Especially, for
daily data, nY = 365 nM.
[17] From equation (10), the extremal index q must be

known to obtain quantile estimates. The methodology
applied in this study is similar to the one suggested by
Fawcett and Walshaw [2006]. Once the Markovian model is
fitted, 100 Markov chains of length 2000 were generated.
For each chain, the extremal index is estimated using the
estimator proposed by Ferro and Segers [2003] to avoid
issues related to the choice of declustering parameter. In
particular, the extremal index q is estimated using the
following equations:

q̂ uð Þ ¼

max 1;
2
PN�1

i¼1 Ti � 1ð Þ
h i2
N � 1ð Þ

PN�1
i¼1 T 2

i

0
B@

1
CA; if max Ti : 1 � i � N � 1f g � 2

max 1;
2
PN�1

i¼1 Ti

� �2
N � 1ð Þ

PN�1
i¼1 Ti � 1ð Þ Ti � 2ð Þ

0
B@

1
CA; otherwise

8>>>>>>>>><
>>>>>>>>>:

where N is the number of observations exceeding the
threshold u, Ti is the interexceedance time, e.g., Ti = Si+1 �
Si and Si is the ith exceedance time.
[18] Lastly, the extremal index related to a fitted Markov

chain model is estimated using the sample mean of the 100
extremal index estimations. Figure 1 represents the histo-
gram of these 100 extremal index estimations. In this study,
as a large number of time series is involved, the number and
length of the simulated Markov chains may be too small to
lead to the most accurate extremal index estimations; but

ð6Þ

ð12Þ
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avoid intractable CPU times. If less sites are considered, it is
preferable to increase these two values.
[19] A preliminary study (not presented here) has shown

that, for quantile estimation, this procedure was more
accurate than estimating q using the estimator of Leadbetter
[1983]. This confirms the conclusions drawn by Fawcett
[2005] for extreme wind speed data.

3. Extreme Value Dependence Structure
Assessment

[20] Prior to performing any estimations, it is necessary to
test whether: (1) the first-order Markov chain assumption

and (2) the extreme value dependence structure (equation (3))
are appropriate to model successive observations above the
threshold u. Figures 2 and 3 illustrate the autocorrelation
functions and the scatterplots between two consecutive
observations for two different gauging stations. As the partial
autocorrelation coefficient at lag 1 is large, Figures 2 and 3
(left plots) corroborate the first hypothesis. However, some
partial autocorrelation coefficients are significant beyond
lag 1. This may suggest that a higher-order model may be
more appropriate but does not necessarily mean that a first-
order assumption is completely flawed. Simplex plots
[Coles and Tawn, 1991] can be used to assess the suitability
of a second-order assumption over a first-order one. For
instance, if the points of the simplex plot are grouped in a
cluster of points on the interior, this suggests that a second-
order Markov chain might be more appropriate, though this
doesn’t necessarily imply that the first-order assumption
will completely fail. On the other hand, if the points tend to
lie toward the edge of the plot, pairwise dependence is
implied. For our application, it seems that a first-order
model seems to be valid, except for the three slowest
dynamic catchments. Figure 4 consists of simplex plots
for the stations K0523010, K4470010 and E6470910. These
three simplex plots lead to three different conclusions:
(1) the left plot advocates the use of the first-order assump-
tion, (2) the middle plot suggests that a second-order
Markov chain might be more appropriate and (3) the right
plot clearly promotes the use of a second-order assumption.
The middle plot corresponds to the three slowest dynamic
catchments as stated above while the right plot is specific as
station E6470910 has a major runoff contribution coming
from groundwater flow.
[21] Though it is an important stage because of its

consequences on quantile estimates [Ledford and Tawn,
1996; Bortot and Coles, 2000], verifying the second hy-
pothesis is a considerable task. An overwhelming depen-
dence between consecutive observations at finite levels is
not sufficient as it does not give any information about the
dependence relationship at asymptotic levels. For instance,
the overwhelming dependence at lag 1 (Figures 2 and 3,

Figure 1. Histogram of the extremal index estimations
from the 100 simulated Markov chains of length 2000.

Figure 2. (left) Autocorrelation plot and (right) scatterplot of the time series at lag 1 for station
E6470910.
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right plots) does certainly not justify the use of an asymp-
totic dependent model.
[22] Figures 5 and 6 present the evolution of the c(w) and

c(w) statistics as w increases for two different sites. For
Figures 5 and 6, the confidence intervals are derived by
bootstrapping contiguous blocks to take into account the
successive observations dependence [Ledford and Tawn,
2003]. The c(w) and c(w) statistics seem to depict two
different asymptotic extremal dependence structures. From
Figure 5, it seems that lim c(w) � 0 and lim c(w) = 1 for
w! 1. On the contrary, Figure 6 advocates that lim c(w) = 0
and lim c(w) < 1 for w ! 1. Consequently, Figure 5 seems
to conclude for an asymptotically dependent case while
Figure 6 for an asymptotically independent case.
[23] In theory, asymptotic (in)dependence should not be

assessed using scatterplots. However, these two different
features can be deduced from Figures 2 and 3. For Figure 2,
the scatterplot (Yt�1, Yt) is increasingly less spread as the
observations become larger; while increasingly more spread
for Figure 3. In other words, for the first case, the depen-
dence seems to become stronger at larger levels while it is
the opposite for the second case.

[24] Two specific cases for different asymptotic depen-
dence structures were illustrated. Table 1 shows the evolu-
tion of the c(w) statistics as w increases for all the sites
under study. Most of the stations have significantly positive
c(w) values. In addition, only 13 sites have a 95% confi-
dence interval that contains the 0 value. For 9 of these
stations, the 95% confidence intervals correspond to the
theoretical lower and upper bounds; so that uncertainties are
too large to determine the extremal dependence class. For
the c statistic, results are less clear cut. Figure 7 represents
the histograms for c(w) for successive w values. Despite
only a few observations being close to 1, most of the
stations have a c(w) value greater than 0.75. These values
can be considered as significantly high as �1 < c(w) � 1,
for all w. Consequently, models of the form (1)–(3) may be
suited to model the extremal dependence between succes-
sive observations.
[25] Other methods exist to test the extremal dependence

but were unconvincing for our application [Ledford and
Tawn, 2003; Falk and Michel, 2006]. Indeed, the approach
of Falk and Michel [2006] does not take into account the
dependence between Yt�1 and Yt; while the test of Ledford

Figure 3. (left) Autocorrelation plot and (right) scatterplot of the time series at lag 1 for station
A4200630.

Figure 4. Simplex plots for stations (left) K0523010, (middle) K4470010, and (right) E6470910.
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and Tawn [2003] appears to be poorly discriminatory for
our case study.

4. Performance of the Markovian Models on
Quantile Estimation

4.1. Comparison Between Markovian Estimators

[26] In this section, the performance of six different
extremal dependence structures is analyzed on the 50
gauging stations introduced in section 1. These models
are: log for the logistic, nlog for the negative logistic, mix
for the mixed models and their relative asymmetric counter-
parts, e.g., alog, anlog and amix. To assess the impact of
the dependence structure on flood peak estimation, the
efficiency of each model to estimate quantiles with return
periods 2, 10, 20, 50 and 100 years is evaluated.
[27] As practitioners often have to deal with small record

lengths in practice, the performance of the Markovian
models is analyzed on all sub time series of length 5, 10,
15 and 20 years. Finally, to assess the efficiency for all the
gauging stations considered in this study, the normalized

bias (nbias), the variance (var) and the normalized mean
squared error (nmse) are computed:

nbias ¼ 1

N

XN
i¼1

Q̂i;T � QT

QT

ð13Þ

var ¼ 1

N � 1

XN
i¼1

Q̂i;T � QT

QT

� nbias

 !2

ð14Þ

nmse ¼ 1

N

XN
i¼1

Q̂i;T � QT

QT

 !2

ð15Þ

where QT is the benchmark T-year return level and Q̂i,T is
the ith estimate of QT.
[28] Figure 8 depicts the nbias densities for Q20 with a

record length of 5 years. It is overwhelming that the
extremal dependence structure has a great impact on the
estimation of Q20. By comparing the two plots, it can be

Figure 5. Plot of the c and c statistics and the related 95% confidence intervals for station E6470910.
The solid blue lines are the theoretical bounds.

Figure 6. Plot of the c and c statistics and the related 95% intervals for station A4200630. The solid
blue lines are the theoretical bounds.
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Table 1. The c(w) Statistics for All Stationsa

Stations

w = 0.98 w = 0.985 w = 0.99

c(w) 95% CI c(w) 95% CI c(w) 95% CI

A3472010 0.67 (�0.02, 1.00) 0.60 (�0.02, 1.00) 0.57 (�0.01, 1.00)
A4200630 0.53 (0.21, 0.81) 0.45 (0.07, 0.77) 0.38 (�0.01, 0.76)
A4250640 0.55 (0.27, 0.82) 0.49 (0.18, 0.76) 0.41 (0.02, 0.71)
A5431010 0.44 (�0.02, 1.00) 0.44 (�0.02, 1.00) 0.41 (�0.01, 1.00)
A5730610 0.59 (0.25, 0.94) 0.56 (0.20, 0.90) 0.50 (0.07, 0.97)
A6941010 0.62 (0.22, 0.99) 0.60 (0.16, 1.00) 0.56 (0.06, 1.00)
A6941015 0.63 (0.29, 0.95) 0.60 (0.20, 0.96) 0.58 (0.17, 0.98)
D0137010 0.39 (0.04, 0.69) 0.33 (�0.02, 0.67) 0.28 (�0.01, 0.69)
D0156510 0.59 (0.25, 0.88) 0.55 (0.20, 0.86) 0.53 (0.14, 0.92)
E1727510 0.62 (0.18, 0.91) 0.59 (0.16, 0.93) 0.47 (�0.01, 0.89)
E1766010 0.63 (0.23, 0.98) 0.59 (0.17, 0.96) 0.54 (0.09, 0.96)
E3511220 0.59 (0.10, 1.00) 0.53 (�0.02, 1.00) 0.50 (�0.01, 0.99)
E4035710 0.77 (0.02, 1.00) 0.68 (�0.02, 1.00) 0.60 (�0.01, 1.00)
E5400310 0.88 (0.30, 1.00) 0.89 (0.29, 1.00) 0.83 (0.13, 1.00)
E5505720 0.91 (0.24, 1.00) 0.87 (0.09, 1.00) 0.86 (0.02, 1.00)
E6470910 0.96 (0.40, 1.00) 0.94 (0.25, 1.00) 0.98 (0.00, 1.00)
H0400010 0.84 (0.12, 1.00) 0.83 (0.02, 1.00) 0.78 (�0.01, 1.00)
H1501010 0.82 (0.36, 1.00) 0.90 (0.39, 1.00) 0.84 (0.26, 1.00)
H2342010 0.68 (0.31, 1.00) 0.67 (0.25, 1.00) 0.60 (0.11, 1.00)
H5071010 0.75 (0.30, 1.00) 0.76 (0.22, 1.00) 0.75 (0.15, 1.00)
H5172010 0.80 (0.47, 1.00) 0.77 (0.42, 1.00) 0.73 (0.30, 1.00)
H6201010 0.69 (0.29, 1.00) 0.69 (0.14, 1.00) 0.69 (0.08, 1.00)
H7401010 0.85 (0.46, 1.00) 0.85 (0.38, 1.00) 0.81 (0.27, 1.00)
I9221010 0.67 (0.23, 1.00) 0.66 (0.19, 1.00) 0.59 (0.04, 1.00)
J0621610 0.61 (0.25, 0.92) 0.58 (0.20, 0.94) 0.51 (0.08, 0.91)
K0433010 0.59 (0.22, 0.91) 0.54 (0.15, 0.89) 0.45 (0.00, 0.85)
K0454010 0.71 (0.37, 1.00) 0.67 (0.24, 1.00) 0.65 (0.14, 1.00)
K0523010 0.62 (�0.02, 1.00) 0.58 (�0.02, 1.00) 0.53 (�0.01, 1.00)
K0550010 0.61 (0.22, 0.94) 0.57 (0.15, 0.94) 0.54 (0.07, 1.00)
K0673310 0.67 (0.24, 1.00) 0.65 (0.18, 1.00) 0.66 (0.07, 1.00)
K0910010 0.65 (�0.02, 1.00) 0.61 (�0.02, 1.00) 0.58 (�0.01, 1.00)
K1391810 0.68 (0.27, 1.00) 0.64 (0.16, 0.98) 0.60 (0.06, 0.96)
K1503010 0.69 (0.38, 0.98) 0.67 (0.30, 0.98) 0.64 (0.23, 1.00)
K2330810 0.68 (0.29, 1.00) 0.66 (0.22, 1.00) 0.62 (0.09, 1.00)
K2363010 0.65 (0.26, 0.98) 0.66 (0.16, 1.00) 0.61 (0.01, 1.00)
K2514010 0.61 (0.24, 1.00) 0.61 (0.21, 1.00) 0.58 (0.12, 1.00)
K2523010 0.53 (�0.02, 1.00) 0.53 (�0.02, 1.00) 0.51 (�0.01, 1.00)
K2654010 0.68 (0.37, 1.00) 0.68 (0.31, 1.00) 0.60 (0.10, 1.00)
K2674010 0.60 (0.25, 0.89) 0.58 (0.22, 0.94) 0.54 (0.08, 0.95)
K2871910 0.62 (0.26, 0.95) 0.57 (0.15, 0.94) 0.56 (0.10, 0.97)
K2884010 0.62 (0.25, 1.00) 0.57 (0.17, 0.97) 0.59 (0.16, 1.00)
K3222010 0.56 (0.21, 0.90) 0.53 (0.18, 0.93) 0.46 (0.11, 0.89)
K3292020 0.59 (0.27, 0.91) 0.57 (0.17, 0.91) 0.48 (0.07, 0.90)
K4470010 0.76 (0.39, 1.00) 0.77 (0.40, 1.00) 0.73 (0.27, 1.00)
K5090910 0.64 (0.27, 0.93) 0.64 (0.26, 0.96) 0.58 (0.12, 0.98)
K5183010 0.57 (0.14, 0.91) 0.56 (0.15, 0.96) 0.53 (0.06, 0.97)
K5200910 0.63 (0.24, 0.93) 0.62 (0.20, 0.95) 0.56 (0.11, 0.97)
L0140610 0.73 (0.23, 1.00) 0.66 (0.15, 1.00) 0.58 (�0.01, 1.00)
L0231510 0.59 (0.16, 0.91) 0.55 (0.11, 0.92) 0.53 (�0.01, 0.92)
L0400610 0.74 (�0.02, 1.00) 0.65 (�0.02, 1.00) 0.61 (�0.01, 1.00)

aHere w = 0.98, 0.985, 0.99. CI is confidence interval.
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seen that the symmetric dependence structures give spreader
densities; that is, more variable estimates. Independently of
the symmetry, Figure 8 shows that the mixed dependence
family is more accurate.
[29] Table 2 shows the nbias, var and nmse statistics for

all the Markovian estimators as the record length increases
for quantile Q50. Table 2 confirms results derived from
Figure 8. Indeed, the asymmetric dependence structures
lead to less variable and biased estimates, as their nbias
and var statistics are smaller. In addition, for all record
length values, the Markovian models perform with the same
hierarchy; that is the mix and amix models are by far the
most accurate estimators, i.e., with the smallest nmse values.
Similar results (not shown) have been obtained for other
quantiles.
[30] From a hydrological point of view, these two results

are not surprising. The symmetric models suppose that the
variables Yt and Yt+1 are exchangeable. In our context,
exchangeability means that the time series is reversible,

e.g., the time vector direction has no importance. When
dealing with AM or POT and stationary time series, this can
be a reasonable hypothesis. For example, the MLE remains
the same with any permutations of the AM/POT sample.
However, when modeling all exceedances, the time direc-
tion cannot be considered as reversible as flood hydrographs
are clearly nonsymmetric.
[31] The Pickands dependence function A(w) [Pickands,

1981] is another representation for the extremal dependence
structure for any extreme value distribution. A(w) is related
to the V function in equation (3) as follows:

A wð Þ ¼ V z1; z2ð Þ
z�1
1 þ z�1

2

; w ¼ z1

z1 þ z2
ð16Þ

Figure 9 represents the Pickands dependence function for all
the gauging stations and the three asymmetric Markovian
models. One major specificity of the mixed models is that
these models cannot account for perfect dependence cases.

Figure 7. Histograms of the c(w) statistics for different w values: (left) w = 0.98, (middle) w = 0.985,
and (right) w = 0.99.

Figure 8. Densities of the normalized biases of Q20 estimates for (left) the symmetric Markovian
models and (right) the asymmetric models. Target site record length is 5 years.

8 of 15

W03407 RIBATET ET AL.: MODELING ALL EXCEEDANCES ABOVE A THRESHOLD W03407



In particular, the Pickands dependence functions for the
mixed models satisfy A(0.5) � 0.75 while A(0.5) 2 [0.5, 1]
for the logistic and negative logistic models. From Figure 9,
it can be seen that only few stations have a dependence
function that could not be modeled by the amix model.
Therefore, the dependence range limitation of the amix
model does not seem to be too restrictive.
[32] In this section, the effect of the extremal dependence

structure was assessed. It was established that the symmetric
models are hydrologically inconsistent as they could not
reproduce the flood event asymmetry. In addition, for all the
quantiles analyzed, the asymmetric mixed model is the most
accurate for flood peak estimations. Therefore, in the
remainder of this section, only the amix model will be
compared to conventional POT estimators.

4.2. Comparison Between amix and Conventional
POT Estimators

[33] In this section, the performance of the amix estimator
is compared to the estimators usually used in flood frequency
analysis. For this purpose, the quantile estimates derived
from the maximum likelihood estimator (MLE), the unbi-
ased and biased probability weighted moments estimators
[Hosking and Wallis, 1987] (PWU and PWB, respectively)
are considered.
[34] Figure 10 depicts the nbias densities for the amix,

MLE, PWU and PWB estimators related to the Q5, Q10 and
Q20 estimations with a record length of 5 years. It can be
seen that amix is the most accurate model for all quantiles.
Indeed, the amix nbias densities are the sharpest with a
mode close to 0. Focusing only on ‘‘classical’’ estimators
(e.g., MLE, PWU and PWB), there is no estimator that
performs systematically better than the other ones. These
two results advocate the use of the amix model.
[35] Table 3 shows the performance of each estimator for

the estimation of Q50 as the record length increases. It can
be seen that the amix model performs better than the
conventional estimators for the whole range of record
lengths analyzed. First, amix has the same bias than the
conventional estimators. Thus, the amix dependence struc-
ture seems to be suited to estimate flood quantiles. Second,
because of its smaller variance, amix is more accurate than
MLE, PWU and PWB estimators. This smaller variance is

mainly a result of all of the exceedances (not only cluster
maxima) being used in the inference procedure. Conse-
quently, the amix model has a smaller nmse, around half
of the conventional models.
[36] Figure 11 shows the evolution of the nmse as the

return period increases for the amix, MLE, PWU and PWB
models. This figure corroborates the conclusions drawn
from Figure 10 and Table 3. It can be seen that the amix
model has the smallest nmse, independently of the return
period and the record length. In addition, the amix becomes
increasingly more efficient as the return period increases,
mostly for return periods greater than 20 years. While the
conventional estimators present an erratic nmse behavior as
the return period increases, the amix model is the only one
that has a smooth evolution. To conclude, these results
confirm that the amix model clearly improves flood peak
quantile estimates, especially for large return periods.

5. Inference on Other Flood Characteristics

[37] As all exceedances are modeled using a first-order
Markov chain, it is possible to infer other quantities than
flood peaks, e.g., volume or duration. In this section, the
ability of these Markovian models to reproduce flood
duration is analyzed. For this purpose, the most severe
flood hydrographs within each year are considered and
normalized by their peak values. Consequently, from this
observed normalized hydrograph set, two flood character-
istics derived from a data set of hydrographs [Robson and
Reed, 1999; Sauquet et al., 2008] are considered: (1) the
duration dmean above 0.5 of the normalized hydrograph set
mean and (2) the median dmed of the durations above 0.5 of
each normalized hydrograph.
[38] Figure 12 illustrates the flood duration dmean and

dmed biases derived from the three asymmetric Markovian
models as a function of their empirical estimates. It can be
seen that no model leads to accurate flood duration estima-
tions. In addition, the extremal dependence structure has a
clear impact on these estimations. In particular, the anlog
and amix models seem to underestimate flood durations,
while the alogmodel leads to overestimations. Consequently,
two different conclusions can be drawn. First, as large
durations are poorly estimated, higher-order Markov chains

Table 2. Several Characteristics of the Markovian Estimators on Q50 Estimation as a Function of the Record Lengtha

Model

5 years 10 years 15 years 20 years

nbias var nmse nbias var nmse nbias var nmse nbias var nmse

log �0.35
(16e-3)

0.54
(22e-3)

0.66
(18e-3)

�0.32
(12e-3)

0.32
(12e-3)

0.42
(14e-3)

�0.30
(11e-3)

0.23
(9e-3)

0.32
(12e-3)

�0.28
(9e-3)

0.17
(7e-3)

0.25
(11e-3)

nlog �0.21
(10e-3)

0.20
(7e-3)

0.24
(11e-3)

�0.20
(7e-3)

0.11
(4e-3)

0.15
(9e-3)

�0.18
(6e-3)

0.08
(3e-3)

0.12
(8e-3)

�0.18
(5e-3)

0.06
(2e-3)

0.09
(7e-3)

mix �0.08
(8e-3)

0.14
(5e-3)

0.14
(8e-3)

�0.07
(6e-3)

0.08
(2e-3)

0.08
(6e-3)

�0.06
(5e-3)

0.05
(2e-3)

0.06
(5e-3)

�0.05
(4e-3)

0.04
(1e-3)

0.04
(5e-3)

alog �0.15
(14e-3)

0.39
(15e-3)

0.41
(14e-3)

�0.13
(10e-3)

0.22
(9e-3)

0.24
(11e-3)

�0.11
(9e-3)

0.16
(6e-3)

0.17
(9e-3)

�0.10
(8e-3)

0.12
(4e-3)

0.13
(8e-3)

anlog �0.10
(10e-3)

0.20
(7e-3)

0.21
(10e-3)

�0.09
(7e-3)

0.11
(4e-3)

0.12
(8e-3)

�0.08
(6e-3)

0.08
(2e-3)

0.09
(6e-3)

�0.08
(5e-3)

0.06
(2e-3)

0.06
(6e-3)

amix �0.06
(7e-3)

0.11
(4e-3)

0.12
(7e-3)

�0.05
(6e-3)

0.06
(2e-3)

0.06
(6e-3)

�0.04
(5e-3)

0.04
(1e-3)

0.05
(5e-3)

�0.03
(4e-3)

0.03
(1e-3)

0.03
(4e-3)

aStandard errors are reported in parentheses.
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may be of interest. However, this is a considerable task as
higher-dimensional multivariate extreme value distributions
often lead to numerical problems. Instead of considering
higher-order Markov chains, another alternative may be to
change daily observations for d-day observations, where d is
larger than 1. Second, it is overwhelming that the extremal
dependence structure affects flood duration estimations. As
noticed in section 2.1, there is no finite parametrization for
the extremal dependence structure V (see equation (3)).
Consequently, it seems reasonable to suppose that one
suited for flood hydrograph estimation may exist.
[39] Figure 13 depicts the observed normalized mean

hydrographs and the ones predicted by the three asymmetric
Markovian models. For the J0621610 station (left plot), the
normalized hydrograph is well estimated by the three
models; whereas for the L0400610 station (right plot), the
normalized hydrograph is poorly predicted. This result
confirms the inability of the three Markovian models to
reproduce long flood events with daily data and a first-order
Markov chain.
[40] Figure 14 represents the biases related to each value

of the normalized mean hydrograph. The nmse is also

reported on the right side to allow for a rational comparison
of the estimators. It can be seen that the alog model
dramatically overestimates the hydrograph rising limb while
giving reasonable estimations for the recession phase. The
anlog model slightly overestimates the rising part while
strongly underestimates the recession one. The amix model
always leads to underestimations; this is more pronounced
for the falling limb. However, despite these different behav-
iors, these three estimators seems to have a similar perfor-
mance in terms of nmse.
[41] Figure 15 represents the spatial distribution of the

nmse on the normalized mean hydrograph estimation for
each Markovian model. Results seem to indicate that there
is a specific spatial distribution. In particular, the worst
cases are located in the middle part of France. In addition,
for different extremal dependence structures, the best nmse
values correspond to different spatial locations. The alog
model is more accurate for the extreme northern part of
France; the anlog model is more efficient for the eastern;
while the amix model performs best in the middle. Conse-
quently, since at a global scale no model is accurate to
estimate the normalized mean hydrograph, it is worth trying

Figure 10. Densities of the normalized biases for the amix model and the MLE, PWU, and PWB
estimators for quantiles (left) Q5, (middle) Q10, and (right) Q20. Record length is 5 years.

Figure 9. Representation of the Pickands dependence functions for the 50 gauging stations: (left) alog,
(middle) anlog, and (right) amix. Pluses represent the theoretical dependence bound for the amix model.
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to identify which catchment types are related to the best
estimations.
[42] For the data set of the present case study, this is a

considerable task. No standard statistical technique leads to
reasonable results. In particular, the principal component
analysis, hierarchical classification, sliced inverse regres-
sion lead to no conclusion concerning which catchment
types are more suitable for our models. Only a regression
approach gives some first guidelines. For this purpose, a
regression between the nbias on the dmean estimation for
each asymmetric model and some geomorphologic and
hydrologic indices are performed. The effect of the drainage
area, an index of catchment slope derived from the hypso-

metric curve [Roche, 1963], the base flow index (BFI)
[Tallaksen and Van Lanen, 2004, section 5.3.3] and an
index characterizing the rainfall persistence [Vaskova and
Francès, 1998] are considered:

nbias dmean; anlogð Þ ¼ 0:89� 2:19BFI ; R2 ¼ 0:40 ð17Þ

nbias dmean; amixð Þ ¼ 0:49� 1:74BFI ; R2 ¼ 0:43 ð18Þ

[43] From equations (17) and (18), it can be seen that the
BFI variable explains around 40% of the variance. Despite

Figure 11. Evolution of the nmse as a function of the return period for the amix, MLE, PWU, and PWB
estimators. Record length: (a) 5 years, (b) 10 years, (c) 15 years, and (d) 20 years.

Table 3. Several Characteristics of the amix, MLE, PWU, and PWB Estimators for Q50 Estimation as a Function of the Record Lengtha

Model

5 years 10 years 15 years 20 years

nbias var nmse nbias var nmse nbias var nmse nbias var nmse

amix �0.06
(8e-3)

0.11
(4e-3)

0.12
(8e-3)

�0.05
(6e-3)

0.06
(2e-3)

0.07
(6e-3)

�0.04
(5e-3)

0.04
(1e-3)

0.05
(5e-3)

�0.04
(4e-3)

0.03
(1e-3)

0.03
(4e-3)

MLE �0.13
(12e-3)

0.25
(15e-3)

0.27
(12e-3)

�0.14
(8e-3)

0.13
(6e-3)

0.14
(9e-3)

�0.13
(7e-3)

0.08
(3e-3)

0.10
(7e-3)

�0.11
(5e-3)

0.05
(2e-3)

0.07
(6e-3)

PWU 0.08
(13e-3)

0.30
(13e-3)

0.31
(13e-3)

�0.01
(9e-3)

0.15
(6e-3)

0.15
(9e-3)

�0.03
(7e-3)

0.10
(3e-3)

0.10
(7e-3)

�0.03
(6e-3)

0.06
(2e-3)

0.06
(6e-3)

PWB �0.07
(10e-3)

0.20
(8e-3)

0.21
(11e-3)

�0.10
(7e-3)

0.11
(4e-3)

0.12
(8e-3)

�0.11
(6e-3)

0.08
(2e-3)

0.09
(7e-3)

�0.10
(5e-3)

0.05
(1e-3)

0.06
(6e-3)

aStandard errors are reported in parentheses.
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the fact that a large variance proportion is not taken into
account, the BFI is clearly related to the dmean estimation
performance. These equations indicate that the anlog (amix)
model is more accurate to reproduce the dmean variable for
gauging stations with a BFI around 0.4 (0.28). These BFI
values correspond to catchments with moderate up to flash
flow regimes respectively. These results corroborate the
ones derived from Figure 14: the first-order Markovian
models with a 1-day lag conditioning are not appropriate
for long flood duration estimations. Consequently, while no

physiographic characteristic is related to the alog perfor-
mance, it is suggested, for such 1-day lag conditioning, to
use the anlog and amix models for quick basins.

6. Conclusions and Perspectives

[44] Despite the fact that univariate EVT is widely
applied in environmental sciences, its multivariate extension
is rarely considered. This work tries to promote the use of
the MEVT in hydrology. In this work, the bivariate case was

Figure 12. The dmean and dmed normalized biases as a function of the theoretical values for the three
asymmetric Markovian models.

Figure 13. Observed and simulated normalized mean hydrographs for the (left) J0621610 and (right)
L0400610 stations.
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considered as the dependence between two successive
observations was modeled using a first-order Markov chain.
This approach has two main advantages for practitioners as
(1) the amount of data to be inferred increases considerably
and (2) other features can be estimated: flood duration,
volume.
[45] In this study, a comparison between six different

extremal dependence structures (including both symmetric
and asymmetric forms) was carried out. Results show that
an asymmetric dependence structure is more relevant. From
a hydrological point of view, this asymmetry is rational as
flood hydrographs are asymmetric. In particular, for our
data, the asymmetric mixed model gives the most accurate
flood peak estimations and clearly improves flood peak
estimations in comparison to conventional estimators, inde-
pendently of the return period considered.
[46] The ability of these Markovian models to estimate

flood duration was also studied. It was shown that, at first
sight, no dependence structure is able to reproduce the flood
hydrograph accurately. However, it seems that the anlog

and amix models may be more appropriate when dealing
with moderate up to flash flow regimes. These results
depend strongly on the conditioning term (i.e., Pr[Yt �
ytjYt�d = yt�d]) of the first-order Markov chain and on the
autocorrelation within the time series. In our application, d =
1 and a daily time step was considered.
[47] More general conclusions can be drawn. The weak-

ness of the proposed models to derive consistent flood
hydrographs may not be related to the daily time step but
to the inadequacy between the conditioning term and the
flood dynamics. To ensure better results, higher-order
Markov chains may be of interest [Fawcett and Walshaw,
2006]. However, as numerical problems may arise, another
alternative may be to still consider a first-order chain but to
change the ‘‘conditioning lag value’’ d. In particular, for
some basins, it may be more relevant to condition the
Markov chain with a larger but more appropriate lag value.
[48] Another option to improve the proposed models for

flood hydrograph estimation is to use a more suitable
dependence function V. As there is no finite parametrization

Figure 14. Evolution of the biases for the normalized mean hydrograph estimations as a function of the
distance from the flood peak time.

Figure 15. The nmse spatial distribution according to the three Markovian models: (left) alog, (middle)
anlog, and (right) amix. The radius is proportional to the nmse value.
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for the extremal dependence structure, it seems reasonable
that one more appropriate for flood hydrographs may exist.
In this work, results show that the anlog model is more able
to reproduce the hydrograph rising part, while the alog is
better for the recession phase. One alternative is to define

V z1; z2ð Þ ¼ aV1 z1; z2ð Þ þ bV2 z1; z2ð Þ

where V1 (V2) is the extremal dependence function for the
alog (anlog) model and a and b are real constants such that
a + b = 1. By definition, V is a new extremal dependence
function. In particular, V may combine the accuracy of the
alog and anlog models for both the rising and recession part
of the flood hydrograph. Another alternative may be to look
at the nonparametric Pickands dependence function estima-
tors [Capéraà et al., 1997] but this will require techniques
to simulate Markov chains from these nonparametric
estimations.
[49] Finally, the models proposed in this article were

asymptotically dependent. Recently, Heffernan and Tawn
[2004] proposed a semiparametric approach allowing for
asymptotic independence and which can be applied to

problems of any dimension. This semiparametric approach
might be appropriate when asymptotic dependence seems
too restrictive and/or k-order Markov chain models, k > 1,
should be considered.
[50] All statistical analysis were performed within the R

Development Core Team [2007] framework. In particular,
the POT package [Ribatet, 2007] integrates the tools that
were developed to carry out the modeling effort presented in
this paper. This package is available, free of charge, at the
Web site http://www.r-project.org, section CRAN, Packages
or at its own Web page http://pot.r-forge.r-project.org/.

Appendix A: Parametrization for the Extremal
Dependence

[51] This appendix presents some useful results for the
six extremal dependence models that have been considered
in this work. As first-order Markov chains were used, only
the bivariate results are described. The expressions of the
partial and mixed partial derivatives, the Pickands depen-
dence function and the limiting dependence cases are
reported in Tables A1 and A2.

Table A1. Partial and Mixed Partial Derivatives, Definition Domain, and Total Independent and Perfect Dependent

Cases for Each Extremal Symmetric Dependence Function V

Model

Symmetric Models

log nlog mix

V(x, y) (x�1/a + y�1/a)a 1
x
þ 1

y
� (xa + ya)�1/a 1

x
þ 1

y
� �

xþy

V1(x, y) �x�
1
��1V(x, y)

��1
� � 1

x2
+ xa�1(xa + ya)�

1
��1 � 1

x2
þ �

xþyð Þ2

V2(x, y) �y�
1
��1V(x, y)

��1
� � 1

y2
+ ya�1(xa + ya)�

1
��1 � 1

y2
þ �

xþyð Þ2

V12(x, y) �(xy)�
1
��1 1��

� V(x, y)
��2
� �(a + 1)(xy)a�1(xa + ya)�

1
��2 � 2�

xþyð Þ3

A(w) [(1 � w)
1
� + w

1
�]a 1 � [(1 � w)�a + w�a]�

1
� 1 � w(1 �w)a

Independence a = 1 a ! 0 a = 0
Total dependence a ! 0 a ! +1 Never reached
Constraint 0 < a � 1 a > 0 0 � a � 1

Table A2. Partial and Mixed Partial Derivatives, Definition Domain, and Total Independent and Perfect Dependent Cases for Each

Extremal Asymmetric Dependence Function V

Model

Asymmetric Models

alog anlog amix

V(x, y) 1��1
x

þ 1��2
y

þ x
�1

� ��1=�
þ y

�2

� ��1=�
� ��

1
x
þ 1

y
� x

�1

� ��
þ y

�2

� ��h i�1=�
1
x
þ 1

y
� 2�þ�ð Þxþ �þ�ð Þy

xþyð Þ2

V1(x, y) � 1��1
x2

� �
1
�

1x
�1

��1 x
�1

� ��1=�
þ y

�2

� ��1=�
� ���1

� 1
x2
þ ���

1 x��1 x
�1

� ��
þ y

�2

� ��h i�1=��1

� 1
x2
� 2�þ�

xþyð Þ2 þ 2
2�þ�ð Þxþ �þ�ð Þy

xþyð Þ3

V2(x, y) � 1��2
y2

� �
1
�

2y
�1

��1 x
�1

� ��1=�
þ y

�2

� ��1=�
� ���1

� 1
y2
þ ���

2 y��1 x
�1

� ��
þ y

�2

� ��h i�1=��1

� 1
y2
� �þ�

xþyð Þ2 þ 2
2�þ�ð Þxþ �þ�ð Þy

xþyð Þ3

V12(x, y)
��1
� �1�2ð Þ

1
� xyð Þ�

1
��1 x

�1

� ��1=�
þ y

�2

� ��1=�
� ���2

� �þ 1ð Þ �1�2ð Þ��
xyð Þ��1 x

�1

� ��
þ y

�2

� ��h i�1=��2
6�þ4�
xþyð Þ3 � 6

2�þ�ð Þxþ �þ�ð Þy
xþyð Þ4

A(w) (1 � �1) (1 � w) + (1 � �2)w + [(1 � w)
1
��1

1
� + w

1
��2

1
�]a 1� 1�w

�1

� ���
þ w

�2

� ���h i�1
�

qw3+ aw2 � (a + �)w + 1

Independence a = 1 or �1 = 0 or �2 = 0 a ! 1 or �1 ! 0 or �2 != 0 a = � = 0

Total
dependence

a ! 0 a ! +1 Never reached

Constraint 0 < a � 1, 0 � �1, �2 � 1 a > 0, 0 < �1, �2 � 1 a � 0, a + 2� � 1, a + 3� � 0
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