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[1] A classical way to model rainfall is to use a Poisson process. Authors generally
employed cluster of rectangular pulses to reproduce the hierarchical structure of
rainfall storms. Although independence between cell intensity and duration turned out to
be a nonrealistic assumption, only a few models link these variables. In this paper, a
Neyman-Scott cluster process considering dependence between cell depth and duration is
developed. We introduce this link with a cubic copula. Copulas are multivariate
distributions modeling the dependence structure between variables, preserving the
marginal distributions. Thanks to this flexibility, we are able to introduce a global concept
of dependence between cell depth and duration. We derive the aggregated moments
(first-, second-, and third-order moments) from the new model for several families of
polynomial copulas and perform an application on Belgium and American data.
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1. Introduction

[2] A stochastic model of the rainfall process at a point
describes the behavior of precipitation in time. In this
paper we focus on a specific type of model which uses
Poisson-cluster processes to represent rainfall, namely the
Neyman-Scott Rectangular Pulses Model (NSRPM). Many
applications have proved the effectiveness of such models
for the analysis of data collected on a short timescale, e.g.,
hourly [see Rodriguez-Iturbe et al., 1987b; Cowpertwait et
al., 1996; Onof et al., 2000]. Two well-known rectangular
pulses models have been extensively used: the Bartlett-
Lewis and the Neyman-Scott models. For a detailed review
of developments with this type of rainfall model, see Onof
et al. [2000]. In order to easily derive the theoretical
moments of the aggregated intensity of rainfall (mean,
variance, autocovariance), most models assume an inde-
pendent relation between rain cell intensity and duration.
[3] This hypothesis is questionable for many reasons. The

model would be more flexible without this condition and
more suitable to adequately represent the temporal structure
of rainfall. Furthermore, the link between storm duration
and intensity is often significantly negative [De Michele and
Salvadori, 2003]. Kim and Kavvas [2006] call the hypoth-
esis of independence into question and review some devel-
opments [see Cordova and Rodriguez-Iturbe, 1985; Singh
and Singh, 1991; Bacchi et al., 1994; Kurothe et al., 1997;
Goel et al., 2000] where correlated rain cells arrive accord-
ing to a simple Poisson process (i.e., without clustering).
The authors cite some bivariate exponential distributions
[Gumbel’s [1960] type I, Downton [1970]] which are used
to consider negative or positive correlation between rainfall
intensity and duration. However, these representations do

not consider clusters and appear to be limited. Without the
cluster approach, the Poisson-based model has difficulties to
represent more than one timescale [Rodriguez-Iturbe et al.,
1987a]. Kim and Kavvas [2006] develop a NSRPM which
considers positive and negative correlations with a Gum-
bel’s Type-II bivariate distribution. Kakou [1997] includes a
dependence in the conditional mean within the Neyman-
Scott model. First- and second-order moments are derived
and proportions of dry periods seem to be adequately
reproduced at all timescales [see Onof et al., 2000]. In our
case, a cubic copula links cell intensity and duration. This
global structure of dependence in our model includes as a
special case the Gumbel’s Type-II distribution. In fact, the
latter is composed of exponential margins and a dependence
structure consisting of the Farlie-Gumbel-Morgenstern cop-
ula family (or FGM) discussed by Morgenstern [1956],
Gumbel [1958], and Farlie [1960]. The use of cubic copulas
is innovative in itself if we consider the scarce applications
with this class of copulas. Thus we develop a more general
NSRPM and derive first-, second-, and third-order moments
which enable us to fit the model with the generalized method
of moments. The paper is divided into four more sections as
follows. In section 2 the basic theory concerning the copulas
and the class of cubic copulas is presented, while section 3
develops the Neyman-Scott model including dependence
between rain cell intensity and duration. Aggregated
moments are derived up to the third order. Two applications
are performed in section 4, and section 5 concludes.

2. Copula Theory

2.1. Copula Definition

[4] Copulas are extremely useful to solve problems that
involve modeling the dependence between several random
variables. In finance, they can be applied to derivative
pricing, portfolio management, the estimation of risk meas-
ures (e.g., Value at Risk), risk aggregation, credit modelling
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[see Embrechts et al., 2002; Cherubini et al., 2004]. We also
observe numerous applications in actuarial science [Frees
and Valdez, 1998]. Recently, copulas appeared in hydrology
[e.g., De Michele and Salvadori, 2003; Favre et al., 2004a;
Grimaldi and Serinaldi, 2006; Genest and Favre, 2007;
Renard and Lang, 2007]. The copula representation enables
us to separate the dependence structure from the marginal
behavior. For a detailed review of the theory of copulas, the
authors refer to the monograph by Joe [1997] and Nelsen
[2006].
[5] For the sake of simplicity, we concentrate on the

bivariate case. One representation theorem from Sklar
[1959] highlights the interest of copulas in dependence
modeling. Any joint cumulative distribution function
(c.d.f.) H(x, y) of any pair (X, Y) of random variables may
be written in the form

H x; yð Þ ¼ C F xð Þ;G yð Þf g; x; y 2 R ð1Þ

where the copula C describes the dependence between the
random variables X and Y. Hence Sklar’s theorem implies
that for multivariate distribution functions the univariate
margins and the dependence structure (represented by a
copula) can be separated. Furthermore, Sklar [1959] showed
that in the case of continuous distributions F and G, C is
uniquely determined.
[6] As is highlighted by Genest and Favre [2007], a

judicious choice to measure dependence is to use nonpara-
metric measures. Two coefficients, commonly used to this
end, are Spearman’s rho r and Kendall’s tau t. Here r and t
are expressible in terms of the copula and are given by

r ¼ 12

Z
0;1½ �2

C u; vð Þdvdu	 3;

t ¼ 4

Z
0;1½ �2

Cðu; vÞdC u; vð Þ 	 1:

We say that a copula C is ‘‘symmetric’’ if C(u, v) = C(v, u)
for all (u, v) in [0, 1]2.
[7] In our model, the copula C links cell depth and

lifetime. The use of a copula increases the complexity of
the NSRPM. Consequently, the problem of fitting has to be
taken into account to choose the form of the copula. There is
no consensus over the view of copulas as being the optimal
solution to model dependencies, as illustrated by the recent
and heated discussion initiated by Mikosch [2006] and
followed by numerous authors [see, e.g., Genest and
Rémillard, 2006; Joe, 2006; Embrechts, 2006]. In our case,
the idea of using cubic copulas is motivated by the need to
have algebraic expressions for the theoretical moments. The
choice of the bivariate distribution on cell intensity and
duration is very limited and nontrivial distributions are
necessaries to have both supple dependence structures and
algebraically tractable expressions.
[8] Because of the difficulty in obtaining a suitable like-

lihood function [see, e.g., Chandler and Onof, 2005, p. 11],
the generalized method of moments is the simplest way to
perform the fitting of the NSRPM.With this method, the first-
and second-order moments of the aggregated process must be
related to themodel parameters. The successive steps to reach
in order to derive the moments limit the choice of distribu-
tions to be used. Exponential families are usually employed
to characterize the different random variables (see section 3),

e.g., exponential distribution, gamma distribution. Others
type of distributions appear to increase the complexity. In
particular, we tried to derive the moments with numerous
bivariate distributions presented by Hutchinson and Lai
[1990]. The expressions to be resolved appear to be intrac-
table. Consequently, we study bivariate distributions on cell
intensity and duration composed of products of exponentials,
i.e., exponential margins with cubic copulas.

2.2. Cubic Copulas

[9] The following results are provided by Quesada
Molina and Rodrı́guez Lallena [1995] and Nelsen et al.
[1997]. The use of quadratic copulas with exponential
margins is a priori a judicious choice of bivariate distribu-
tions on cell intensity and duration. The aggregated
moments can be computed and afterwards the method of
moments can be applied. However, the only copula family
with quadratic sections in both u and v is the FGM copula
which leads to the Gumbel type-II distribution as introduced
in the NSRPM by Kim and Kavvas [2006]. With this copula
family, the degree of dependence is restricted to [	2/9;2/9]
for Kendall’s tau. That is why Nelsen et al. [1997] introduce
copulas with cubic sections and prove that these copulas
increase the dependence degrees compared to copulas with
quadratic sections. As far as we know, this class of copulas
has never been used in hydrology.
[10] FollowingNelsenet al. [1997], letSdenote theunionof

the points in the square [	1, 2]
 [	2, 1] and the points in and
on theellipse {(u,v)2 R

2,u2	uv+v2	3u+3v=0}.Copulas
with cubic sections in both u and v are defined by

C u; vð Þ ¼ uvþ uv 1	 uð Þ 1	 vð Þ A1v 1	 uð Þ½
þ A2 1	 vð Þ 1	 uð Þ þ B1uvþ B2u 1	 vð Þ� ð2Þ

where A1, A2, B1, B2 are real constants such that the points
(A2, A1), (B1, B2),(B1, A1), and (A2, B2) all lie in S. The main
theoremsrelated tocubiccopulasare reported inAppendixA1.
Several properties can be obtained from this representation
of a cubic copula. Nelsen et al. [1997] proved that if a
copula C is defined as in (2), we then have:

r ¼ A1 þ A2 þ B1 þ B2ð Þ=12

and

t ¼ A1 þ A2 þ B1 þ B2ð Þ=18þ A2B1 	 A1B2ð Þ=450: ð3Þ

If C has cubic sections in both u and v, then jrj 
ffiffiffi
3

p
/3.

Simple calculations lead us to find that we also have

jtj 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
494

ffiffiffiffiffi
19

p
	 2053

p
/25. The proof is given in

Appendix A2. Moreover, C is symmetric if and only if
A1 = B2. Numerous subfamilies may be built. When A1 =
A2 = B1 = B2 = q, we obtain the special case of the Farlie-
Gumbel-Morgenstern (FGM) copula defined by C(u, v) = u v
{1 + q(1	 u)(1	 v)}. We present several of these families
in Table 1 and in Appendix A1. The degrees of
dependence they are able to reproduce are reported in
Table 2. The graph of the parameter space covered in S for
each cubic copula is given in Figure 1.
[11] Families of cubic copulas with one parameter are

easy to obtain. The dependence between cell intensity and
duration being probably negative, we developed the follow-
ing copulas in order to attain minimum negative values for
the degree of dependence. The cubic copulas already
described by Nelsen et al. [1997] (i.e., the Sarmanov, Frank
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cubic, and Plackett cubic families) are introduced in
Appendix A1.
2.2.1. AMH Cubic
[12] We derive the second-order approximation to the

Ali-Mikhail-Haq (AMH) family of copulas [see Ali et al.,
1978] given by

C u; vð Þ ¼ uv

1	 q 1	 uð Þ 1	 vð Þ

for q 2 [	1, 1]. This family is symmetric and includes the
independence case for q = 0.
2.2.2. Sym1
[13] A copula with cubic sections must respect the con-

ditions defined in Theorem A.2 (Appendix A1). We can
define a one-parameter cubic family of copulas by takingA2 =
B1 = q 2 [	1, 2] and A1 = B2 = q2 	 3 in such a way that
(q, q2 	 3) lies in [	1, 2] 
 [	2, 1]. This family is
symmetric and covers a large interval of dependence but
does not include the independence as a special case.
2.2.3. Sym2
[14] Let A2 = B1 = q 2 [	1, 3] and let A1 =

B2 =
q	3	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ6q	3q2

p
2

. The points (A2, A1), (B1, B2), (B1, A1)

and (A2, B2) all lie in S and describe the elliptical contour of S
from the point [	1, 	2] to the point [3, 0]. This family is
symmetric and attains minimum values for both r and t.
2.2.4. Sym3
[15] The point in S attaining the minimum value for r is

[1 	
ffiffiffi
3

p
, 	1 	

ffiffiffi
3

p
]. If we consider a linear relation between

A2 = B1 and A1 = B2 passing through this point and the point
[0, 0], we obtain a family that is symmetric, having linear
relations in every parameter, containing independence and
attaining the minimum value for r.
2.2.5. Asym1-Asym3
[16] Asymmetric families are easily obtained as soon as

A1 6¼ B2. The family Asym1 maintains a quadratic relation
in q and attains a large interval of dependence.

3. Neyman-Scott Model

3.1. Model Structure

[17] The same notation as Rodriguez-Iturbe et al. [1987a]
is used, except for the number of cells which we denote by
D in order to avoid confusion with the copula C. Suppose
the arrival times of storm origins occur as a Poisson process
with rate l. A random number D of cells is associated with
each storm origin and follows a geometric distribution with
mean mD. The cell origins are independently separated from
the storm origin by distances which are exponentially

distributed with parameter b. Let a rectangular pulse be
associated with each cell origin, representing rainfall cell.
Cell intensity is denoted by X and cell duration is denoted
by L. The total intensity at time t, Y(t), is the summation of
the intensities of cells alive at time t. Let Xt	u(u) represent-
ing the rainfall intensity at time t due to a cell with starting
time t-u. Let us consider process Y(t) defined by

Y tð Þ ¼
Z 1

u¼0

Xt	u uð ÞdN t 	 uð Þ

where dN(t 	 u) = 1 if a cell has origin at time t	u and 0 if
not. We have [see Cox and Isham, 1980] E{dN(t 	 u)} =
Var{dN(t 	 u)} = lmDdu. Cell intensity and duration are
traditionally linked by the following definition of Xt	u(u)

Xt	u uð Þ ¼ X with probability F LðuÞ ¼ e	hu

0 with probability FLðuÞ ¼ 1	 e	hu

�
ð4Þ

where the cell duration is exponentially distributed with
parameter h. We want the cell intensity and duration to be
dependent. When a link exists between X and L, relation (4)
does not hold anymore. We wish to obtain the distribution
of cell intensity X with L > u that we denote FX,L. We use a
copula function C to express joint distribution of X and L.
We have

FX ;L x; uð Þ ¼ Pr X  x; L > uð Þ
¼ Pr X  xð Þ 	 Pr X  x; L  uð Þ
¼ FX xð Þ 	 C FX xð Þ; FL uð Þf g: ð5Þ

At this point, it is important to underline that relation (5)
does not limit the choice of the bivariate distribution on cell
intensity and duration. Any bivariate distribution can be
expressed with a bivariate copula and marginal distributions
according to Sklar’s theorem. However, it appears that
classical bivariate distributions make very complex and
even impossible the derivation of the aggregated moments.
The use of cubic copulas and exponential margins is an
elegant way to obtain a flexible class of bivariate
distributions and for which aggregated moments are easily
derivable.

3.2. First- and Second-Order Moments

[18] Let Yi
h be the aggregated rainfall depth in the ith time

interval of length h, so that

Yh
i ¼

Z ih

i	1ð Þh
Y tð Þdt:

Table 1. Families of One-Parameter Copulas With Cubic Sections

in u and v

Name A1 A2 B1 B2 q 2

Sarmanov q(3	5q) q(3 + 5q) q(3 + 5q) q(3	5q) [	
ffiffiffi
7

p
/5,

ffiffiffi
7

p
/5]

Frank cubic 3q(1	q) 3q(1 + q) 3q(1 + q) 3q(1-q) [	
ffiffiffi
3

p
/3,

ffiffiffi
3

p
/3]

Plackett cubic q(1-q) q q q(1-q) [	1,2]
AMH cubic q q(1+q) q q [	1,1]
Sym1 q2–3 q q q2–3 [	1,2]
Sym2 q	3	

ffiffiffiffiffiffiffiffiffiffiffiffi
9þ6q	3q2

p
2

q q q	3	
ffiffiffiffiffiffiffiffiffiffiffiffi
9þ6q	3q2

p
2

[	1,3]

Sym3 (2+
ffiffiffi
3

p
)q q q (2+

ffiffiffi
3

p
)q [1	

ffiffiffi
3

p
,2	

ffiffiffi
3

p
]

Asym1 q	2 q	1 q	1 q2/3	2 [0,3]
Asym2 q(1	q)	1 q q q [	0.8525,1]
Asym3 q(1	q)+1 q q q [	1,0]

Table 2. Degrees of Dependence for Families of One-Parameter

Copulas With Cubic Sections in u and v

Name r 2 t 2

Sarmanov [	0.5292,0.5292] [	0.3725,0.3725]
Frank cubic [	0.5774,0.5774] [	0.4003,0.4003]
Plackett cubic [	0.5,0.1667] [	0.34,0.1134]
AMH cubic [	0.25,0.4167] [	0.1688,0.28]
Sym1 [	0.5416,0.5] [	0.3778,0.34]
Sym2 [	0.5774,0.5] [	0.4006,0.3533]
Sym3 [	0.5774,0.2113] [	0.4003,0.1388]
Asym1 [	0.5,0.5] [	0.34,0.34]
Asym2 [	0.428,0.1667] [	0.2886,0.1155]
Asym3 [	0.3333,0.0834] [	0.2222,0.0556]
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The mth moment is expressed by

E Yh
i

� �m� �
¼

Z h

0

Z h

0

. . .

Z h

0

E Y t1ð ÞY t2ð Þ . . . Y tmð Þf gdt1dt2 . . . dtm

¼ m!

Z h

0

Z h

t1

. . .

Z h

tm	1

E Y t1ð ÞY t2ð Þ . . . Y tmð Þf g

� dt1dt2 . . . dtm: ð6Þ

Properties of point processes include the independence
between point process generation dN(tm	um) and cell
intensity distribution Xtm	um

(um). We then write:

E Y t1ð ÞY t2ð Þ . . . Y tmð Þf g

¼
Z 1

u1¼0

Z 1

u2¼0

. . .

Z 1

um¼0

E Xt1	u1 u1ð ÞXt2	u2 u2ð Þ . . .Xtm	um umð Þf g


 E dN t1 	 u1ð ÞdN t2 	 u2ð Þ . . . dN tm 	 umð Þf g: ð7Þ

Figure 1. Graph of (A2, A1),(B1, B2), (B1, A1), (A2, B2) in S (grey surface) for each cubic copula. The
points referring to the minimum values for the Kendall’s tau and the Spearman’s rho are represented by
an asterisk and a plus symbol, respectively. Shown are (a) Sarmanov (dotted line), Frank cubic (dashed
line), Plackett cubic (dash-dot line); (b) AMH cubic (dotted line), Sym1 (dashed line), Sym2 (dash-dot
line), Sym3 (plain line); and (c) Asym1 (dotted line), Asym2 (dashed line), Sym3 (dash-dot line).
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The mean of the depth process can be represented as the
product of the rate at which cell origins occur and the mean
rainfall quantity produced by a cell [Rodriguez-Iturbe et al.,
1987a, par. 3.2], that is

E Y tð Þf g ¼
Z 1

u¼0

E Xt	u uð Þf gE dN t 	 uð Þf g

¼ lmD

Z 1

0

E Xt	u uð Þf gdu

¼ lmD

Z 1

u¼0

mX ;L¼udu

where mXk,L = u denotes
R1
0

xk
@FX ;L x;uð Þ

@x dx. The covariance
with lag t of the rainfall intensity process is given by

cY tð Þ ¼ Cov Y tð Þ; Y t þ tð Þf g

¼
Z 1

0

Z 1

0

E Xt	u uð ÞXtþt	v vð Þf gCov dN t 	 uð Þ;f

dN t þ t 	 vð Þg; ð8Þ

where the covariance of the counting process can be
expressed from Cox and Isham [1980, p.78] as

Cov dN t 	 uð Þ; dN t þ t 	 vð Þf g

¼ lmD d t þ u	 vð Þ þ 1

2
m	1
D E D D	 1ð Þf g





 be	b tþu	vð Þ 1	 d t þ u	 vð Þf g
i
dudv ð9Þ

when t + u	 v > 0. d(.) is the Dirac delta function, i.e., d(0) =
1 and d(x) = 0 elsewhere. Combining this expression within
equation (8) yields (see Appendix B1)

cY tð Þ ¼ lmD

Z 1

t
mX 2;L¼uduþ

l
2
E D D	 1ð Þf gb

�
Z 1

0

Z uþt

0

mX ;L¼umX ;L¼ve
	b uþt	vð Þ



dvdu

þ
Z 1

0

Z 1

uþt
mX ;L¼umX ;L¼ve

	b v	u	tð Þdvdu
i
: ð10Þ

Let a and h denote the respective parameters of the
distributions on cell intensity and duration. When we
choose a cubic copula (with parameter q) and exponential
margins to model the bivariate distribution on cell intensity
and duration, an analytical expression is easily obtained.
With the FGM copula, we have

cY tð Þ ¼ lmD 	3qe	2ht þ 2 4þ 3qð Þe	ht� �
= 4a2h
� �

þ blE D D	 1ð Þf g 2be	ht b2 	 4h2
� �

2þ qð Þ 6þ qð Þ
�

	 be	2ht b 	 hð Þ b þ hð Þq 8þ qð Þ
þ 6e	bth 	2b þ h 4þ qð Þf g
� 2b þ h 4þ qð Þf g�= 48a2h b4 	 5b2h2 þ 4h4

� �� �
:

[19] Finally, the first- and second-order moments of the
aggregated process Yi

h can be derived [Rodriguez-Iturbe et
al., 1984] using the following expressions:

E Yh
i

� �
¼ h E Y tð Þf g; ð11Þ

Var Yh
i

� �
¼ 2

Z h

0

h	 uð ÞcY uð Þdu; ð12Þ

Cov Yh
i ; Y

h
iþk

� �
¼

Z h

	h

cY khþ vð Þ h	 jvjð Þdv ð13Þ

Figure 1. (continued)

W03433 EVIN AND FAVRE: A NEW NEYMAN-SCOTT MODEL USING CUBIC COPULAS

5 of 18

W03433



where k is an integer representing the lag of the
autocovariance function. For the FGM copula and expo-
nential margins, simple expressions can be found:

E Yh
i

� �
¼ hlmD 4þ qð Þ

4a h
;

Var Yh
i

� �
¼ lmD 	3qþ 8ehh 4þ 3qð Þ

�
þ e2hh 	32	 21qþ 2hh 16þ 9qð Þf g�= 8a2e2hhh3

� �
:

þ lE D D	 1ð Þf g 8b3 b2 	 4h2
� �

e	hh þ hh	 1
� ��

� 2þ qð Þ 6þ qð Þ 	 b3 b 	 hð Þ b þ hð Þ
� e	2hh þ 2hh	 1
� �

q 8þ qð Þ þ 24h3 e	bh þ bh	 1
� �

� h2 4þ qð Þ2	4b2
n oi

= 96a2h3 b5 	 5b3h2 þ 4bh4
� �� �

;

Cov Yh
i ; Y

h
iþk

� �
¼ lmD 	3 e2hh 	 1

� �2
qþ 8ehh 1þkð Þ ehh 	 1

� �2n
� 4þ 3qð Þg= 16a2e2hh 1þkð Þh3

� �
	 lE D D	 1ð Þf g 	8b3e bþhð Þh 1þkð Þ ehh 	 1

� �2h
� b2 	 4h2
� �

2þ qð Þ 6þ qð Þ

þ b3ebh 1þkð Þ e2hh 	 1
� �2

b 	 hð Þ b þ hð Þq 8þ qð Þ

þ 24e2hh 1þkð Þ ebh 	 1
� �2

h3

� 2bf 	 h 4þ qð Þg 2b þ h 4þ qð Þf g�

= 192a2e bþ2hð Þh 1þkð Þh3 b5 	 5b3h2 þ 4bh4
� �n o

:

3.3. Third-Order Moment

[20] Following Cowpertwait [1998], we derived expres-
sion of the third-order moment in the case of a dependence
between cell depth and lifetime. The third-order moment
gives information about the asymmetry of a distribution.
According to Cowpertwait [1998] and Onof [2003], the
reproduction of extremes is greatly improved when the
third-order moment is included in the fitting procedure.
To evaluate the third-order moment for the Neyman-Scott
process, consider expression (7) with m = 3. Let t1 < t2 < t3
denote the locations of three cell origins. The expectation of
the counting process is derived in [Cowpertwait 1998,
equation (2.7)]:

E dN t1ð ÞdN t2ð ÞdN t3ð Þf g

¼ l3m3
Ddt1dt2dt3 þ

1

2
l2bmDE D2 	 D

� �
� e	b t3	t1ð Þ þ e	b t3	t2ð Þ þ e	b t2	t1ð Þ
n o

dt1dt2dt3

þ 1

3
lb2E D2 	 D

� �
D	 2ð Þ

� �
e	b t3þt2	2t1ð Þdt1dt2dt3

þ � dt1dt2dt3ð Þ ð14Þ

where t1 < t2 < t3. Now, we need to express E{Xt1	u1
(u1)

Xt2	u2
(u2)Xt3	u3

(u3)}. We have to consider different cases
(for example, t1	 u1 = t2	 u2 in order to take into account the
case where Xt1	u1

and Xt2	u2
refer to the same cell). Hence

E Xt1	u1 u1ð ÞXt2	u2 u2ð ÞXt3	u3 u3ð Þf g

¼

mX 3;L¼u1þt3	t1
when t1 	 u1 ¼ t2 	 u2 ¼ t3 	 u3

mX ;L¼u1
mX 2 ;L¼u2þt3	t2

when u3 ¼ u2 þ t3 	 t2; u2 6¼ u1 þ t2 	 t1
mX ;L¼u2

mX 2;L¼u1þt3	t1
when u3 ¼ u1 þ t3 	 t1; u2 6¼ u1 þ t2 	 t1

mX ;L¼u3
mX 2;L¼u1þt2	t1

when u2 ¼ u1 þ t2 	 t1; u3 6¼ u1 þ t3 	 t1
mX ;L¼u1

mX ;L¼u2
mX ;L¼u3

when t1 	 u1 6¼ t2 	 u2 6¼ t3 	 u3

8>>>><
>>>>:

[21] Details of these computations are exposed in
Appendix B2. With the FGM copula and exponential
margins, the expression of the third (central) moment is

xh ¼ E Yh
i 	 E Yh

i

� �� �3
h i

¼ 3lmD 	21e	2hh 1þ hhð Þqþ 24e	hh�
� 2þ hhð Þ 8þ 7qð Þþ3 	128þ 64hh	 105qþ 49hhqð Þg
= 16a3h4
� �

þ blE D D	 1ð Þf gf h; b; q; hð Þf g

= 384a3e bþ4hð Þhh4 b5 	 5b3h2 þ 4bh4
� �2n o

þ lE D D	 1ð Þ D	 2ð Þf gg h;b; q; hð Þf g

= 1280a3be2 bþ2hð Þh b 	 2hð Þ2 b 	 hð Þ2h4 b þ hð Þ 2b þ hð Þ
n

� b þ 2hð Þ b þ 3hð Þ b þ 4hð Þg ð15Þ

where f (h, b, q, h) and g(h, b, q, h) are defined in
Appendix B3.
[22] When q = 0 for the FGM copula, we have C(u, v) = u

v which corresponds to the case of independence between
cell intensity and duration. For q = 0, equation (15) is
consistent with the one obtained by Cowpertwait [1998].
General formulas for the aggregated moments (except the
third moment whose expression is too cumbersome) using
cubic copulas can be found in Appendix B4.

3.4. Probability of Dry Period

[23] The expression for the probability of an interval
of given length h to be dry is useful in fitting models.
Cowpertwait [1991] derived this expression in the case
where the rain cells are distributed according to a Poisson
distribution. Favre [2001] gives this expression when the
number of cells D is distributed according to a geometric
distribution:

PD hð Þ ¼ exp 	lhð Þ exp 	bhð Þ 1	 mDð Þ þ mDf g
l

b 1	mDð Þ


 exp 	l
Z 1

0

pt hð Þdt
� �

; ð16Þ

where

pt hð Þ¼ mD exp 	b t þ hð Þf g b 	 hð Þ þ h exp 	btð Þ 	 b exp 	htð Þ½ �
mD	1ð Þ exp 	b tþhð Þf gðb	hÞþh exp 	btð Þ	b exp 	htð Þ½ �þh	b

:

[24] Since the sum involved in expression (16) cannot be
computed algebraically, it requires a numerical integration
of

R1
0
{1 	 pt (h)}dt.

4. Model Application

4.1. Data Description

[25] We state that the NSRPM is significantly improved
when dependence is included between cell intensity and
duration. In this section a large simulation analysis is
performed using two data sets. Another successful applica-
tion can be found in the work of Evin and Favre [2006].
The first one is provided by the rainfall station at Uccle,
Belgium. Rainfall data used was collected by the Royal
Meteorological Institute of Belgium. Hourly recorded rain-
fall depth are made available for a period of 28 years, from
1968 to 1995. The second series of hourly rainfall is an
extract of the CPC Hourly U. S. Precipitation data provided
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by the National Oceanic and Atmospheric Administration/
Office of Oceanic and Atmospheric Research/Earth System
Research Laboratory-Physical Sciences Division (NOAA/
OAR/ESRL PSD), Boulder, Colorado, USA (available from
their Web site at http://www.cdc.noaa.gov/cdc/data.
cpc\_hour.html, accessible on 25 September 2007). NOAA’s
Climate Prediction Center (CPC) provides hourly U. S.
precipitation. Stations were gridded into 2.0 
 2.5 boxes
that extended over the region, 140�W–60�W, 20�N–60�N
using a modified Cressman Scheme. In this paper, we
present the application of the NSRPM on the point with
coordinates 95�W–48�N, situated in the Lower Red Lake
(Minnesota). For this data set, 50 years of observations are
available from 1949 to 1998. In order to satisfy the temporal
homogeneity with respect to rainfall characteristics, the
Neyman-Scott model is usually applied on a monthly basis.
Therefore without loss of generality, only results on June
and February data are shown in this paper for the Belgian
and American data, respectively. June and February were
selected to be representative months for summer and winter,
respectively. The NSRPM is thus applied on two different
climates, Uccle having an oceanic climate whereas the
Lower Red Lake is typical of a humid continental climate.

4.2. Models Considered

[26] We apply the modified NSRPM on these data sets
using the copula families described in Table 1. To avoid
overloaded figures and tables, we report the results for only
four families, namely FGM, Sym1, Sym2, and Asym1. It

must be noticed that several families were giving very
similar results. Marginal distributions for cell duration and
intensity are exponential. Thus we obtain a three-parameter
bivariate distribution to characterize the behavior of cell
intensity and duration. We bring to mind that the FGM
copula with exponential margins corresponds to the Gum-
bel’s Type-II distribution. Thus this specific model will
allow a comparison of performance between the different
models considered and the one developed by Kim and
Kavvas [2006] who apply a Gumbel’s Type-II distribution.
[27] To allow a fair comparison of performance according

to the number of parameters between the classical model
and those including a dependence, we apply a gamma
distribution with two parameters on cell intensity in the
case of independence, so that the cell intensity X has
probability density function ag xg	1 e	ax/G(g), x � 0. We
also investigate the case of a Pareto distribution with
probability density function gag/(a + x)(g+1), x � 0 on
cell intensity, where a is the scale parameter and g is the
shape parameter. The classical case of a simple exponen-
tial distribution on cell intensity is also presented.
[28] The last type of models considered is the ‘‘Depen-

dent Depth-Duration Model’’ examined by Kakou [1997].
This model conserves the storm and cell arrival rates along
with cell duration. The cell intensity X has an exponential
form. The dependence structure between cell intensity and
duration is introduced through a mean cell intensity depend-
ing on L, that is E(XjL) = g(L). The exponential distribution

Table 3. Estimates of the NSRPM Parameters F̂ at Uccle, the Dependence Degree (Kendall’s tau t and Pearson’s rho r), and the Value of
the Objective Function O(F̂)

l h b mD a g t q f c r O(F̂)

Dist. on Cell Int.
Ind. Exponential 0.0191 2.41 0.100 4.63 0.34 0 1.56e-002
Ind. Gamma 0.0183 2.48 0.116 8.72 0.25 0.40 0 4.08e-003
Ind. Pareto 0.0191 2.34 0.117 6.86 8.59 5.45 0 1.33e-004

Copula Family
FGM 0.0192 2.26 0.099 4.47 0.32 	0.08 	0.35 1.47e-002
Sym1 0.0192 2.54 0.115 6.30 0.31 	0.32 0.25 4.80e-004
Sym2 0.0192 2.59 0.115 6.43 0.31 –0.31 0.33 4.08e-004
Asym1 0.0193 2.39 0.105 5.01 0.30 	0.19 0.82 6.58e-003

DD Model
DD1 0.0191 2.41 0.100 4.63 2.94 0.00 	0.00 1.56e-002
DD2 0.0173 6.00 0.151 22.75 4.93 0.03 0.58 1.51e-002

Table 4. Estimates of the NSRPM Parameters F̂ at the Lower Red Lake, the Dependence Degree (Kendall’s tau t and Pearson’s rho r),
and the Value of the Objective Function O(F̂)

l h b mD a g t q f c r O(F̂)

Dist. on Cell Int.
Ind. Exponential 0.0052 7.77 0.086 8.59 0.46 0 1.81e-003
Ind. Gamma 0.0053 8.01 0.088 10.25 0.40 0.74 0 8.96e-004
Ind. Pareto 0.0053 8.16 0.089 10.05 18.62 10.74 0 2.17e-004

Copula Family
FGM 0.0052 7.27 0.087 8.20 0.41 	0.12 	0.53 1.02e-003
Sym1 0.0053 9.19 0.090 11.27 0.48 	0.12 0.98 4.80e-004
Sym2 0.0053 9.41 0.090 11.97 0.49 	0.14 1.35 6.89e-004
Asym1 0.0053 8.48 0.089 9.75 0.42 	0.14 1.05 1.53e-004

DD Model
DD1 0.0052 7.78 0.086 8.60 2.16 0.00 	0.00 1.81e-003
DD2 0.0053 9.75 0.089 14.18 13.62 2.00 0.47 1.92e-003
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for the cell duration, L, with parameter h, say, is still
retained. Two versions of g(L) are considered: f e	cL and f
Le	cL, where f and c are nonnegative scalars. We shall refer
to these models as the DD1 and the DD2 model, respec-
tively. In the DD1 model the variables X and L are always
negatively correlated, with correlation function

	z
z þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z þ 1

2z2 þ 2z þ 1

s

where z = c/h [Kakou, 1997]. With the DD2 model, the
correlation function between rain cell intensity and duration

is

1	 z
z þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z þ 1ð Þ3

4 z þ 1ð Þ4	 2z þ 1ð Þ3

s

4.3. Parameter Estimation

[29] We apply the method of moments described by
Rodriguez-Iturbe et al. [1987a]. The functions are highly
nonlinear in the parameters so that an exact solution is not
available. Let F denotes the set of parameters. A closed
solution can be obtained by minimizing O:

Table 5. Observed and Estimated Properties at Ucclea

Mean Probability of No Rain Variance

Correlation

Lag-1 Lag-2 Lag-3

Level of Aggregation: 1 h
Observed 0.107 0.881 0.339 0.395 0.269 0.176
Ind. Exp. 0.108(0.105;0.111) 0.903(0.901;0.905) 0.37(0.36;0.39) 0.357 0.126 0.096
Ind. Gamma 0.104(0.101;0.107) 0.864(0.861;0.866) 0.35(0.34;0.37) 0.376 0.154 0.122
Ind. Pareto 0.108(0.105;0.111) 0.876(0.873;0.879) 0.34(0.32;0.35) 0.394 0.165 0.130
FGM 0.109(0.105;0.111) 0.904(0.902;0.906) 0.37(0.36;0.39) 0.359 0.129 0.098
Sym1 0.108(0.106;0.112) 0.884(0.881;0.886) 0.34(0.32;0.36) 0.391 0.160 0.125
Sym2 0.108(0.105;0.111) 0.883(0.880;0.885) 0.34(0.32;0.36) 0.391 0.159 0.125
Asym1 0.109(0.106;0.112) 0.897(0.895;0.899) 0.36(0.34;0.38) 0.369 0.139 0.107
DD1 0.108(0.105;0.111) 0.903(0.901;0.905) 0.37(0.36;0.39) 0.358 0.127 0.097
DD2 0.106(0.103;0.109) 0.825(0.822;0.829) 0.33(0.31;0.35) 0.377 0.211 0.180

Level of Aggregation: 6 h
Observed 0.643 0.719 4.888 0.262 0.064 0.029
Ind. Exp. 0.646(0.628;0.664) 0.731(0.726;0.736) 4.33(4.10;4.54) 0.249 0.122 0.067
Ind. Gamma 0.623(0.604;0.640) 0.690(0.685;0.695) 4.38(4.11;4.61) 0.280 0.128 0.064
Ind. Pareto 0.647(0.628;0.665) 0.702(0.697;0.708) 4.30(4.04;4.51) 0.287 0.131 0.065
FGM 0.651(0.632;0.669) 0.733(0.728;0.737) 4.36(4.12;4.57) 0.250 0.122 0.067
Sym1 0.651(0.633;0.669) 0.709(0.704;0.714) 4.29(4.02;4.56) 0.283 0.131 0.066
Sym2 0.650(0.631;0.669) 0.707(0.702;0.713) 4.31(4.04;4.57) 0.283 0.130 0.065
Asym1 0.654(0.635;0.672) 0.724(0.719;0.729) 4.35(4.09;4.59) 0.261 0.127 0.068
DD1 0.647(0.629;0.665) 0.731(0.726;0.735) 4.36(4.14;4.59) 0.249 0.123 0.067
DD2 0.636(0.617;0.655) 0.664(0.658;0.670) 4.46(4.17;4.73) 0.339 0.133 0.054

Level of Aggregation: 12 h
Observed 1.287 0.601 12.377 0.167 0.049 0.039
Ind. Exp. 1.293(1.255;1.328) 0.618(0.612;0.624) 10.81(10.22;11.38) 0.225 0.064 0.019
Ind. Gamma 1.245(1.208;1.280) 0.589(0.582;0.595) 11.19(10.48;11.77) 0.235 0.057 0.014
Ind. Pareto 1.294(1.256;1.330) 0.597(0.591;0.604) 11.06(10.41;11.65) 0.239 0.057 0.015
FGM 1.302(1.265;1.338) 0.620(0.614;0.626) 10.89(10.32;11.48) 0.224 0.065 0.020
Sym1 1.301(1.267;1.338) 0.602(0.596;0.608) 11.03(10.33;11.70) 0.237 0.058 0.015
Sym2 1.300(1.263;1.338) 0.600(0.594;0.607) 11.06(10.35;11.72) 0.238 0.057 0.015
Asym1 1.308(1.270;1.345) 0.613(0.606;0.619) 10.96(10.31;11.55) 0.231 0.064 0.018
DD1 1.295(1.258;1.330) 0.618(0.612;0.624) 10.91(10.31;11.50) 0.224 0.064 0.019
DD2 1.272(1.235;1.310) 0.578(0.571;0.585) 11.93(11.13;12.63) 0.246 0.040 0.006

Level of Aggregation: 24 h
Observed 2.574 0.460 27.611 0.146 0.072 0.089
Ind. Exp. 2.585(2.510;2.655) 0.474(0.467;0.482) 26.47(24.98;27.87) 0.152 0.014 0.002
Ind. Gamma 2.490(2.416;2.559) 0.459(0.451;0.467) 27.62(25.85;29.27) 0.148 0.008 	0.000
Ind. Pareto 2.588(2.512;2.659) 0.462(0.454;0.469) 27.40(25.82;28.82) 0.148 0.009 0.001
FGM 2.605(2.530;2.676) 0.475(0.468;0.483) 26.66(25.23;28.06) 0.153 0.014 0.002
Sym1 2.602(2.533;2.676) 0.464(0.457;0.472) 27.27(25.54;28.95) 0.149 0.010 0.001
Sym2 2.600(2.526;2.675) 0.463(0.455;0.471) 27.38(25.68;29.03) 0.149 0.009 0.000
Asym1 2.615(2.540;2.689) 0.470(0.463;0.479) 27.00(25.40;28.50) 0.152 0.012 0.001
DD1 2.590(2.516;2.661) 0.474(0.467;0.481) 26.70(25.14;28.13) 0.152 0.013 0.002
DD2 2.544(2.469;2.620) 0.462(0.454;0.470) 29.70(27.80;31.35) 0.134 0.003 	0.001

aThe properties used in the estimation procedure are indicated in bold font.
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O Fð Þ ¼
Xp
i¼1

1	Mi

M̂i

� �2

; ð17Þ

where Mi is a moment or autocovariance function of the
Neyman-Scott model given by equations (6) and (11)–(13).
It could also be the dry probability at a given scale with
theoretical expression given by (16). Here p is the number
of moments included in the procedure. The ratios Mi

M̂i
between theoretical expression and observed values have
to be close to 1. The use of these ratios ensures that large
numerical values do not dominate the fitting procedure.
[30] It is common to fit models using some combination

of means, variances, autocorrelations and proportions of dry
intervals, at timescales ranging from 1 to 24 h. For a six-

parameter model, six theoretical expressions are sufficient
to constrain the optimization problem. However, as sug-
gested by Cowpertwait et al. [1996], a larger set of
moments guarantees that the model at least fit these prop-
erties. We choose hourly mean, hourly variance, hourly
autocovariance at lag-1, daily variance, daily autocovar-
iance at lag-1, the third-order moment at an hourly scale,
and the probability of dry period at an hourly and a daily
scale (thus we obtain p = 8). Cowpertwait [1998] indicates a
good fit of extremes with the insertion of the third-order
moment in the estimation procedure. The minimization of O
is not an easy task and must be achieved numerically.
Numerous investigations show that the obtained estimates
are highly sensitive to the starting point of the search
[Calenda and Napolitano, 1999]. The optimization proce-

Table 6. Observed and Estimated Properties at the Lower Red Lakea

Mean Probability of No Rain Variance

Correlation

Lag-1 Lag-2 Lag-3

Level of Aggregation: 1 h
Observed 0.013 0.970 0.014 0.216 0.190 0.168
Ind. Exp. 0.012(0.012;0.013) 0.963(0.961;0.965) 0.01(0.01;0.02) 0.208 0.134 0.122
Ind. Gamma 0.012(0.012;0.013) 0.958(0.956;0.959) 0.01(0.01;0.02) 0.213 0.139 0.127
Ind. Pareto 0.013(0.012;0.013) 0.958(0.956;0.960) 0.01(0.01;0.01) 0.217 0.145 0.133
FGM 0.012(0.012;0.013) 0.964(0.962;0.965) 0.01(0.01;0.02) 0.210 0.137 0.125
Sym1 0.012(0.012;0.013) 0.955(0.953;0.957) 0.01(0.01;0.01) 0.216 0.146 0.133
Sym2 0.012(0.012;0.013) 0.953(0.951;0.955) 0.01(0.01;0.01) 0.216 0.144 0.133
Asym1 0.013(0.012;0.013) 0.959(0.957;0.960) 0.01(0.01;0.01) 0.216 0.144 0.132
DD1 0.012(0.012;0.013) 0.963(0.961;0.965) 0.01(0.01;0.02) 0.208 0.134 0.123
DD2 0.012(0.011;0.013) 0.948(0.946;0.951) 0.01(0.01;0.01) 0.214 0.143 0.131

Level of Aggregation: 6 h
Observed 0.075 0.909 0.157 0.331 0.115 0.107
Ind. Exp. 0.074(0.070;0.078) 0.890(0.886;0.895) 0.15(0.13;0.16) 0.336 0.196 0.117
Ind. Gamma 0.074(0.070;0.078) 0.881(0.877;0.885) 0.15(0.13;0.16) 0.342 0.198 0.117
Ind. Pareto 0.075(0.071;0.079) 0.881(0.877;0.886) 0.15(0.13;0.16) 0.349 0.202 0.117
FGM 0.075(0.071;0.079) 0.892(0.887;0.896) 0.15(0.14;0.16) 0.339 0.198 0.117
Sym1 0.075(0.070;0.079) 0.877(0.872;0.881) 0.15(0.13;0.16) 0.349 0.200 0.117
Sym2 0.075(0.070;0.079) 0.874(0.869;0.878) 0.15(0.13;0.16) 0.349 0.201 0.117
Asym1 0.076(0.071;0.079) 0.882(0.878;0.887) 0.15(0.14;0.16) 0.349 0.202 0.117
DD1 0.074(0.070;0.078) 0.890(0.886;0.894) 0.15(0.14;0.16) 0.335 0.196 0.117
DD2 0.073(0.069;0.077) 0.867(0.862;0.873) 0.15(0.13;0.16) 0.347 0.199 0.117

Level of Aggregation: 12 h
Observed 0.151 0.857 0.404 0.304 0.112 0.029
Ind. Exp. 0.148(0.140;0.157) 0.844(0.838;0.850) 0.40(0.36;0.44) 0.316 0.111 0.040
Ind. Gamma 0.148(0.140;0.157) 0.834(0.829;0.840) 0.40(0.36;0.44) 0.318 0.110 0.038
Ind. Pareto 0.151(0.143;0.158) 0.835(0.829;0.840) 0.40(0.36;0.44) 0.323 0.109 0.037
FGM 0.150(0.142;0.158) 0.846(0.840;0.852) 0.40(0.36;0.44) 0.318 0.110 0.038
Sym1 0.149(0.141;0.157) 0.830(0.824;0.836) 0.40(0.36;0.43) 0.321 0.108 0.037
Sym2 0.149(0.141;0.157) 0.827(0.821;0.833) 0.40(0.36;0.44) 0.322 0.109 0.037
Asym1 0.151(0.143;0.159) 0.836(0.830;0.842) 0.40(0.36;0.44) 0.322 0.109 0.037
DD1 0.148(0.140;0.156) 0.844(0.838;0.850) 0.40(0.36;0.43) 0.316 0.111 0.039
DD2 0.146(0.138;0.154) 0.821(0.814;0.828) 0.40(0.36;0.43) 0.320 0.109 0.038

Level of Aggregation: 24 h
Observed 0.302 0.776 1.058 0.220 0.069 	0.009
Ind. Exp. 0.297(0.279;0.314) 0.781(0.773;0.789) 1.05(0.94;1.15) 0.220 0.028 0.004
Ind. Gamma 0.297(0.280;0.313) 0.771(0.764;0.779) 1.06(0.95;1.15) 0.219 0.026 0.003
Ind. Pareto 0.301(0.285;0.316) 0.771(0.764;0.779) 1.06(0.96;1.16) 0.219 0.025 0.004
FGM 0.300(0.283;0.315) 0.783(0.775;0.790) 1.06(0.95;1.15) 0.219 0.025 0.002
Sym1 0.298(0.282;0.314) 0.767(0.759;0.776) 1.06(0.95;1.16) 0.218 0.025 0.003
Sym2 0.298(0.281;0.314) 0.764(0.756;0.772) 1.06(0.95;1.16) 0.219 0.025 0.004
Asym1 0.302(0.285;0.318) 0.772(0.765;0.781) 1.06(0.96;1.16) 0.219 0.025 0.003
DD1 0.297(0.280;0.313) 0.781(0.774;0.789) 1.05(0.95;1.15) 0.219 0.027 0.002
DD2 0.292(0.276;0.308) 0.759(0.750;0.768) 1.05(0.95;1.15) 0.217 0.026 0.002

aThe properties used in the estimation procedure are indicated in bold font.
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dure is derived from the algorithm developed by Chandler
and Onof [2005] and can be summarized as follows:
[31] 1. A solution in the five dimensional space is

provided by the generalized method of moments developed
by Favre et al. [2004b] in the case of the classical NSRPM
with five parameters. This method uses an algebraic com-
putation reducing the number of parameters estimated by
minimization. Two parameters are obtained by minimiza-
tion while the three others can be directly computed.
[32] 2. A starting value for the parameters l, b, h, mD, a

are obtained in the first step. The sixth parameter was fixed
such that it corresponds to the classical NSRPM. The
optimization procedure constrains the parameter space in
some realistic regions: 0.00001 < l < 0.1(h	1); 0.0001 < b <
0.99 (h	1); 0.01 < h < 200 (h	1); 1 < mD < 500; 0.01 < a <
1000. By restraining the parameters between these bounds,
we ensure that the estimates do not get into physically
unrealistic parameter spaces. A subjective choice is neces-
sary to set these bounds. Nevertheless, the bounds are wide
and experience shows that parameters always lie in a small
subspace of this feasible region [Cowpertwait, 1998]. A first
set of parameters are estimated by minimizing expression
(17) using a sequential quadratic programming (SQP)

method [Fletcher, 2001]. This specific set of parameters is
duplicated 100 times to provide a primary set of identical
solutions.
[33] 3. Repeat steps 4 to 7 several times (e.g., five times).
[34] 4. Perform 50 constrained optimizations. The starting

points are generated via random perturbations about the
parameter set identified above. The random perturbation is
taken from a beta distribution on the current bounds (the
bounds are defined in step 2 and evolute in step 6).
[35] 5. Discard any parameter sets for which the objective

function exceeds 10O50, where O50 is the 50th smallest of
the objective function values found in step 4.
[36] 6. Bounds evolute according to the best parameter sets

found so far (i.e., those minimizing the objective function). If
the best sets are close, bounds are narrowed. If they are close
to an existing boundary, bounds are loosened.
[37] 7. Keep only the 50 best parameter sets. The overall

best set is taken as a starting point for future optimizations.
[38] This algorithm has the first advantage to stride an

important subset of the parameter space with the adaptive
bounds and the random starting points. His second strength
is to avoid failure of minimization algorithm. This could
happen when poor starting values are given, the objective

Figure 2. Monthly 1-day maxima at Uccle. X-axis gives the return period in years represented on a
Gumbel scale. Solid line with plus symbol represents observed maxima. Dotted lines represent the mean
(with o) and a 0.95 confidence interval of simulated maxima obtained from 1000 simulations of 100 years.
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function becoming too flat. The obtained estimates are
presented in Tables 3 and 4.
[39] For both applications, the estimated parameters re-

lated to the point process, i.e., l̂ and b̂, are quite stable. The
parameter related to the number of cells mD has an important
variation according to the model. It points the identifiability
problem of the NSRPM [Chandler and Onof, 2005]. The
value of the shape parameter of the gamma distribution (ĝ =
0.4 at Uccle and ĝ = 0.74 at the Lower Red Lake) indicates
that the introduction of one extra parameter for the bivariate
distribution on cell intensity and duration allows a more
heavy-tailed distribution for cell intensity. With the FGM
copula, the dependence degree obtained is weak (t = 	0.08
at Uccle and t = 	0.12 at the Lower Red Lake). It is
important to bear in mind that when t = 0, this model is
equivalent to the classical model with independent expo-
nential margins. The DD1 model is equivalent to the
classical NSRPM for both applications (c = 0), while the
DD2 model exhibits a positive correlation between cell
intensity and duration. It is quite interesting to note that
Kendall’s tau between the rain cell duration and intensity is
negative for the copula-based models and does not attain the
lower bounds indicated in Table 2.

[40] We now consider more specifically the estimates at
Uccle (see Table 3). The independent Pareto, Sym1, and
Sym2 models achieve smaller objective values than the
other models. The objective function values give an overall
measure of model fit, it thus indicates that these models
outperform the other models on this application. On the
contrary, the DD1 and DD2 models seem to have difficul-
ties to fit the observations. The same holds for the estimates
at the Lower Red Lake, except that the Asym1 model
clearly minimizes the objective function. The dependence
degree (see Table 4) is almost the same for all the copula-
based models. Thus the value of the objective function is
minimized thanks to the dependence structure (and not by
the increase of the dependence degree).

4.4. Model Performances

[41] For each type of bivariate distribution on cell inten-
sity and duration, 1000 series of hourly rainfall are gener-
ated, each sequence containing 100 months of data.
Analysis of the variability of the series gives us an indica-
tion of uncertainty.
[42] Tables 5 and 6 give the fitting properties of the

different models at Uccle and at the Lower Red Lake,

Figure 3. Monthly 1-hour maxima at Uccle. X-axis gives the return period in years represented on a
Gumbel scale. Solid line with plus symbol represents observed maxima. Dotted lines represent the mean
(with o) and a 0.95 confidence interval of simulated maxima obtained from 1000 simulations of 100 years.
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respectively. For the mean, the probability of dry period and
the variance, we indicate a 0.95 empirical confidence
interval in brackets, obtained from the 1000 simulations.
The properties used in the estimation procedure are indi-
cated in bold font. The method of moments ensures that
these properties give good fitted values. As noticed in the
previous section, objective values (see Tables 3 and 4)
indicate the ability of each model to reproduce the observed
statistics. The objective values are directly linked to the
differences between the observed and simulated properties
of rainfall. At Uccle, the FGM model does not improve the
classical NSRPM in this sense, mainly because of the weak
dependence degree (t = 	0.08) while the Ind. Pareto,
Sym1, and Sym2 models clearly outperform the other
models. The Asym1 model is the best model at the Lower
Red Lake for this criterion. At Uccle, the variance at a
6 h and 12 h level of aggregation seems to be slightly
underestimated for all models, which is not true at the
Lower Red Lake. The probability of dry periods are
adequately reproduced at the same scales. At a daily scale
the lag two and lag three correlations are clearly too weak in
an absolute sense for both applications.

[43] It is important to notice that it is difficult to make any
comparison of observed and modeled dependence degrees.
The NSRPM is a conceptual model where cells are inob-
servable and an observed measure of dependence between
cell intensity and duration is impossible to obtain. Let tC be
the dependence degree between cell intensity and duration
and tS the dependence degree between the storm duration
and mean intensity. The relation between tC and tS is very
complex for several reasons. First, the parameters mD, h and
b jointly influence tS via a clustering effect, that is to say
when cells are superposed and aggregated. Furthermore, the
fact that we only observe rainfall intensity on discrete time
intervals attenuates tC. This point is illustrated in the work
of Rodriguez-Iturbe et al. [1987b] and is called the smooth-
ing effect. Finally, the need of a method to extract the
storms from the observed data is an additive noise. The
choice of a dry period to separate different storms [see, e.g.,
De Michele and Salvadori, 2003] is a source of subjectivity.
[44] As pointed out by Onof et al. [2000], one main

weakness of the classical NSRPM is the reproduction of
extremes. Nonetheless, the ability of the model to reproduce
extremes is a primary aspect in a risk approach. Synthetic

Figure 4. Monthly 1-day maxima at the Lower Red Lake. X-axis gives the return period in years
represented on a Gumbel scale. Solid line with plus symbol represents observed maxima. Dotted lines
represent the mean (with o) and a 0.95 confidence interval of simulated maxima obtained from 1000
simulations of 100 years.
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series provide monthly maxima at daily and hourly scales,
which are represented on Figures 2–5. The X-axis gives the
return period in years represented on a Gumbel scale. The
empirical quantiles of the maxima are obtained with
Hazen’s formula F[Y[k]] = (k 	 0.5)/n where Y[k] is the
monthly 1-d or 1-h maxima corresponding to rank k. A 0.95
empirical confidence interval of simulated maxima are
obtained from 1000 simulations of 100 months. We can
observe the importance of the type and the degree of
dependence by examining the empirical confidence interval.
A general tendency in the stochastic point rainfall modeling
literature is the underestimation of the extreme values at an
hourly scale [Entekhabi et al., 1989].
[45] Let examine the reproduction of the extreme values

at Uccle. At a daily scale, extremes are slightly under-
estimated for the independent exponential, FGM, Asym1,
and the DD1 models, as we can see on Figure 2. For these
models, a point of the observed maxima is clearly not
covered by the confidence interval. The same holds at an
hourly scale (see Figure 3). For the independent Pareto
model, it is interesting to notice the large uncertainty
indicated by the confidence intervals at both the hourly

and the daily scale. Figures 4 and 5 report the observed and
simulated extremes at the Lower Red Lake. For this
application the differences between the various models are
very thin and it is difficult to discriminate them on this
criterion.

5. Conclusion

[46] A new stochastic point rainfall model is developed
which considers correlated rain cell intensity and duration.
Various types of dependence structures are possible thanks
to cubic copulas. We explore the properties of this class of
copulas and suggest several families of this kind attaining a
large range of dependence. This more general model
includes independent exponential distributions and the
Gumbel type-II distribution on cell intensity and duration
as special cases. We derive first-, second-, and third-order
moments of this modified Neyman-Scott rectangular pulses
model. With the expression of the theoretical moments, we
can apply the method of moments to fit the model on data.
[47] Two applications on Belgium and American data of

hourly rainfall are performed. The model has thus been

Figure 5. Monthly 1-hour maxima at the Lower Red Lake. X-axis gives the return period in years
represented on a Gumbel scale. Solid line with plus symbol represents observed maxima. Dotted lines
represent the mean (with o) and a 0.95 confidence interval of simulated maxima obtained from 1000
simulations of 100 years.
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applied successfully on two rainfall series with different
climates. Long series of synthetic rainfall are generated and
compared to the observed rainfall data. With specific cubic
families and exponential margins, the fitting of the model
can be improved. The independent Pareto distribution on
cell intensity also appears to give interesting results.
Furthermore, both hourly and daily annual maxima are
adequately reproduced by most of the models. The under-
estimation of the hourly maxima is thus not visible on these
applications.
[48] Eventually, it would be interesting to thoroughly

analyze the reproduction of extremes. Further analysis on
extreme values might include the influence of the type of
dependence on their uncertainty and the comparison be-
tween simulated and observed data using ‘‘peak over thresh-
olds’’ methods [Cowpertwait, 1998].

Appendix A: Cubic Copulas

A1. Necessary Conditions

[49] Theorem A.1 provides necessary conditions for the
function C(u, v), defined by relation (1), to be a cubic
copula.
[50] Let a, b:[0,1] ! R be two functions satisfying

a(0) = a(1) = b(0) = b(1) = 0, and let C(u, v) be the
function defined by

C u; vð Þ ¼ uvþ u 1	 uð Þ a vð Þ 1	 uð Þ þ b vð Þu½ �; u; vð Þ 2 0; 1½ �2:

Then C is a copula if and only if: (1) a(v) and b(v) are
absolutely continuous, and (2) for almost every v 2 [0, 1],
the point {a0(v), b0(v)} lies in S. Moreover, C is absolutely
continuous.
[51] Now, we restrict our attention to copulas with cubic

sections in u and v, i.e., copulas expressed as a bivariate
polynomial with order 3. Theorem A.2 characterizes such
types of copulas.
[52] Suppose that C has cubic sections in u and in v; i.e.,

for all u, v 2 [0,1], let C be given by

C u; vð Þ ¼ uvþ u 1	 uð Þ a vð Þ 1	 uð Þ þ b vð Þu½ �

and

C u; vð Þ ¼ uvþ v 1	 vð Þ g uð Þ 1	 vð Þ þ d uð Þv½ �

where a, b, g and d are functions satisfying the hypotheses
of Theorem A.1. Then C(u, v) can be expressed as in
equation (2). The three following subfamilies belong to the
class of cubic copulas and are reported by Nelsen et al.
[1997].

A1.1. Sarmanov

[53] Case (i) in [Nelsen et al., 1997]. The Sarmanov
family [Sarmanov, 1974] is symmetric and includes inde-
pendence as special case.

A1.2. Frank Cubic

[54] Case (iv) in [Nelsen et al., 1997]. This family
includes the independence case for q = 0 and attains extreme
values for r. The name is justified by the fact that this
family is a second-order approximation to the Frank family
of copulas [see Frank, 1979] given by

C u; vð Þ ¼ 	 1

q
log 1þ

e	qu 	 1
� �

e	qv 	 1
� �

e	q 	 1


 �

for q 2 R .

A1.3. Plackett Cubic

[55] Case (v) in [Nelsen et al., 1997]. This family is
symmetric and includes the independence case for q = 0.
The name is justified by the fact that this family is a second-
order approximation to the Plackett family of copulas [see
Plackett, 1965] given by

C u; vð Þ ¼
1þ q uþ vð Þ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q uþ vð Þ½ �2	4 qþ 1ð Þquv

q
2q

for q 2 [	1, 2]. These cubic copulas have been developed
(except for the Sarmanov family) by Nelsen et al. [1997].

A2. Minimum of Kendall’s Tau for a Copula
With Both Cubic Sections in u and v

[56] The minimum value of t for copulas with cubic
sections in both u and v is the solution of the following
minimization problem: minimize equation (3) where A1, A2,
B1, B2 fulfill the constraints described in Theorem (A.2). We
notice directly that A1 and B2 are exchangeable. It also holds
for A2 and B1. Then, we have to find

min
a;bð Þ

aþ bð Þ 1=9þ a	 bð Þ=450f g

with (a, b) 2 S. We have (a + b){1/9 + (a 	 b)/450}
increasing in both a and b when (a, b) 2 S so that the
solution lies on the ellipse a2 	 ab + b2	3a + 3b = 0.
Setting b = {a 	 3 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	3a2 þ 6aþ 9

p
}/2, a is a root of

	1250	1400 Z + 600 Z2 + 22Z3 + Z4. Finally, the point in S

that minimizes t is {(	11 + 3
ffiffiffiffiffi
19

p
	 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	112þ 26

ffiffiffiffiffi
19

pp
)/2,

(11	3
ffiffiffiffiffi
19

p
	 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	112þ 26

ffiffiffiffiffi
19

pp
)/2} and we can write

jtj 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
494

ffiffiffiffiffi
19

p
	 2053

p
/25.

Appendix B: Moments With a Cubic Copula

B1. Autocovariance Function With Dependent
Cell Duration and Intensity

[57] The following demonstration derives the covariance
with lag t of the rainfall intensity process

cY tð Þ ¼ Cov Y tð Þ; Y t þ tð Þf g
¼ E Y tð ÞY t þ tð Þf g 	 E Y tð Þf gE Y t þ tð Þf g

¼
Z 1

0

Z 1

0

E Xt	u uð ÞXtþt	v vð Þf gE dN t 	 uð ÞdN t þ t 	 vð Þf g

	
Z 1

0

Z 1

0

mX ;L¼umX ;L¼vE dN t 	 uð Þf gE dN t þ t 	 vð Þf g

¼ I1 	 I2
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But,

I1 ¼
Z 1

t
E X 2

tþt	v vð Þ
� �

E dN t þ t 	 vð Þ2
n o

þ
Z 1

0

Z 1

0

E Xt	u uð ÞXtþt	v vð Þf gE dN t 	 uð ÞdN t þ t 	 vð Þf g

¼
Z 1

t
E X 2

tþt	v vð Þ
� �

E dN t þ t 	 vð Þf g

þ
Z 1

0

Z 1

0

mX ;L¼umX ;L¼vE dN t 	 uð ÞdN t þ t 	 vð Þf g

because of the independence between Xt	u(u) and Xt+t	v(v)
when t + u 	 v 6¼ 0, and dN2 = dN. Moreover,

I2 ¼
Z 1

0

Z 1

0

d t þ u	 vð ÞmX ;L¼umX ;L¼vl
2m2

Ddudv

þ
Z 1

0

Z 1

0

mX ;L¼umX ;L¼vE dN t 	 uð Þf gE dN t þ t 	 vð Þf g

and
R1
0

R1
0

d(t + u 	 v)mX, L = u mX, L = v l
2 mD

2 dudv = 0
because of the Lebesgue measure theory. Then

cY tð Þ ¼
Z 1

t
E X 2

tþt	v vð Þ
� �

E dN t þ t 	 vð Þ2
n o

þ
Z 1

0

Z 1

0

mX ;L¼umX ;L¼vCov dN t 	 uð Þ; dN t þ t 	 vð Þf g

¼ lmD

Z 1

t
mX 2 ;L¼uduþ

l
2
E D D	 1ð Þf g

� b
Z 1

0

Z uþt

0

mX ;L¼umX ;L¼ve
	b uþt	vð Þdvdu




þ
Z 1

0

Z 1

uþt
mX ;L¼umX ;L¼ve

	b v	u	tð Þdvdu

�

since Cov {dN(t 	 u), dN(t + t 	 v)} is expressed by (9)
when v < u + t. Otherwise, we have Cov {dN(t 	 u), dN(t +
t 	 v)} = Cov{dN(t + t 	 v), dN(t 	 u)} by symmetry of
the covariance. This leads to equation (10).

B2. Third-Order Moment Computation

[58] Because equation (14) is valid only when t1 < t2 < t3,
different cases have to be considered in order to compute
the third order moment. For example, when t1 = t2 and t3 6¼
t1, we have:

E dN t1ð ÞdN t2ð ÞdN t3ð Þf g ¼ E dN t1ð Þ2dN t3ð Þ
n o

¼ E dN t1ð ÞdN t3ð Þf g;

which corresponds to the case of two distinct cells. When t1,
t2 and t3 belong to the same cell, we have:

E dN t1ð ÞdN t2ð ÞdN t3ð Þf g ¼ E dN t1ð Þ3
n o

¼ E dN t1ð Þf g ¼ lmD:

Note that we consider expression (14) replacing ti by ti 	 ui
as in expression (7). We sum E{Y(t1)Y(t2)Y(t3)} according to
the order of t3 	 u3, t2 	 u2 and t1 	 u1, since equation (14)

is valid only when t1 < t2 < t3. Because t3 and t2 are
exchangeable in (14), we have for example:

t1 	 u1 < t2 	 u2
t1 	 u1 < t3 	 u3

�
when

u3 2 0; t3 	 t1 þ u1½ �
u2 2 0; t2 	 t1 þ u1½ �
u1 2 R

þ

8>>>><
>>>>:

t2 	 u2 < t1 	 u1
t2 	 u2 < t3 	 u3

�
when

u3 2 0; t3 	 t2 þ u2½ �
u2 2 t2 	 t1 þ u1;1½ �
u1 2 R

þ

8>>>><
>>>>:

t3 	 u3 < t1 	 u1
t3 	 u3 < t2 	 u2

�
when

u1 2 0; t1 	 t3 þ u3½ �
u2 2 0; t2 	 t3 þ u3½ �
u3 2 t3 	 t1;1½ �

8<
:

[59] This point is illustrated in Figure B1.

B3. Third-Order Moment With the FGM Copula

[60] In the third (central) order moment with the FGM
copula and exponential margins (see equation (15)), f(h, b,

Figure B1. Illustration of the three cases to be distin-
guished in order to derive the third-order moment of the
NSRPM. (a) t1	u1 < t2	u2 and t1	u1 < t3	u3, (b) t2	u2 <
t1	u1 and t2	u2 < t3	u3, and (c) t3	u3 < t1	u1 and t3	u3 <
t2	u2.
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q, h) and g(h, b, q, h) are given by:

f ðh;b;q;hÞ¼ 	1152e4hhðebh	1Þh9ð4þqÞð16þ9qÞþ288b6e2hhðebh	1Þðehh	1Þh3f	3qþehhð8þ3qÞg	144b4e2hhðebh	1Þh5f	3ðq	2Þq	2ehhÞ
ð16þqÞð4þ3qÞþe2hhð160þ66qþ9q2Þg
þ288be2hhh8ð4þqÞ½3q	3ebhq	8ehhð4þ3qÞþ8eðbþhÞhð4þ3qÞþe2hhð32þ21qÞþeðbþ2hÞhf	32	21qþ4hhð16þ9qÞg�þ144b2e2hhðebh	1Þh7½	3q2	8ehhð8þqÞð4þ3qÞþe2hh

�f512þqð344þ63qÞg�þb9ð	27ebhq2þ64eðbþhÞhqð5þ3qÞþ96eðbþ3hÞh
f96þhhð6þqÞð4þ3qÞþ2qð47þ9qÞgþeðbþ4hÞhf	8064þ72hhð4þqÞð16þ9qÞ	qð7136þ1245qÞg

	12eðbþ2hÞh½96þqf184þ54qþ3hhð8þqÞg�Þþ6b7h2ð27ebhq2	16eðbþhÞhqð26þ15qÞ	48eðbþ3hÞhf304þ3hhð6þqÞð4þ3qÞþqð298þ57qÞgþeðbþ4hÞhf12864	120hhð4þqÞð16þ9qÞ

þqð11504þ2013qÞgþ12eðbþ2hÞh½144þqf268þ78qþ3hhð8þqÞg�Þþ9b5h4ð	27ebhq2þ48e2hhqð6þqÞ	32e3hh
ð2þqÞð4þ3qÞþ32eðbþhÞhqð20þ11qÞþ16e4hhf16þqð2þ3qÞg

þ64eðbþ3hÞh
f452þ4hhð6þqÞð4þ3qÞþqð443þ84qÞgþeðbþ4hÞhf	25856þ264hhð4þqÞð16þ9qÞ	qð23520þ4093qÞg	12eðbþ2hÞh½256þqf456þ134qþ3hhð8þqÞg�Þ

	4b3h6ð	27ebhq2	144e3hhð4þ3qÞð8þ3qÞþ108e2hhqð14þ3qÞþ32eðbþhÞhqð28þ15qÞþ36e4hh
f128þ3qð34þ9qÞgþ48eðbþ3hÞhf1248þ8hhð6þqÞð4þ3qÞþ5qð244þ45qÞg

þeðbþ4hÞhf	55296þ720hhð4þqÞð16þ9qÞ	qð50552þ8661qÞg	12eðbþ2hÞh½384þqf742þ216qþ3hhð8þqÞg�Þ

and

gðh;b;q;hÞ¼ 	960e4hhð1	4ebhþ3e2bhÞh10ð4þqÞ3þ80be4hhh9f	13þ52ebhþ3e2bhð8hh	13Þgð4þqÞ3þ40b2e4hhh8ð4þqÞ
ð	9f	16þqð8þqÞg	144ebhf20þqð8þqÞgþe2bh½52hhð4þqÞ2

þ9f304þ17qð8þqÞg�Þ	2b4h6ð	64eð2bþhÞhqð2þqÞð10þqÞþ3e2bhq2ð12þqÞ	80e4hhð4þ27qÞþ5e2ðbþ2hÞhð4þqÞf	816þ340hhð4þqÞ2	295qð8þqÞgþ1152e2bhþ3hhð2þqÞ

�f20þqð10þqÞgþ960eðbþ3hÞhð2þqÞf40þqð10þqÞgþ120eðbþ2hÞhqf24þqð12þqÞgþ192e2ðbþhÞh½80þqf75þ2qð12þqÞg�	40eðbþ4hÞh½3040þ9q
f184þ3qð12þqÞg�Þ

þ20b7h3ð	96eðbþ2hÞhqþ192eðbþ3hÞhð2þqÞ	96eðbþ4hÞhð4þqÞ	18eð2bþhÞhqð2þqÞð10þqÞþe2bhq2
ð12þqÞ	3e2ðbþ2hÞhð4þqÞf	712þ32hhð4þqÞ2	53qð8þqÞg	34e2bhþ3hhð2þqÞ

�f160þ7qð10þqÞgþ8e2ðbþhÞh½292þ3qf139þ4qð12þqÞg�Þ	2b10e2bhð	8ehhqð2þqÞð10þqÞþq2ð12þqÞ	5e4hhð4þqÞf	96þ4hhð4þqÞ2	7qð8þqÞg	8e3hhð2þqÞf160þ7qð10þqÞg

þ4e2hh ½160þqf240þ7qð12þqÞg�Þ	9b9e2bhhð	8ehh
qð2þqÞð10þqÞþq2ð12þqÞ	5e4hhð4þqÞf	96þ4hhð4þqÞ2	7qð8þqÞg	8e3hhð2þqÞf160þ7qð10þqÞg

þ4e2hh ½160þqf240þ7qð12þqÞg�Þ	4b6h4ð160e4hhþ720
eðbþ2hÞhq	2880ð2þqÞ
eðbþ3hÞhþ24eð2bþhÞhqð2þqÞð10þqÞ	3e2bhq2ð12þqÞþ80eðbþ4hÞhð88þ27qÞ	15e2ðbþ2hÞhð4þqÞ

�f	456þ28hhð4þqÞ2	41q
ð8þqÞg	24e2bhþ3hhð2þqÞ
f680þ33qð10þqÞgþ12e2ðbþhÞh½320þqf430þ13qð12þqÞg�Þ	4b8e2bhh2ð12ehhqð2þqÞð10þqÞþq2ð12þqÞþ4e3hhð2þqÞ

�f1360þ61qð10þqÞgþ5e4hhð4þqÞ½20hhð4þqÞ2	3
f144þ11qð8þqÞg�	4e2hh½560þqf780þ23qð12þqÞg�Þ	40b3h7ð	192eðbþ3hÞhð2þqÞ
ð4þqÞð6þqÞþ192e2bhþ3hhð2þqÞð4þqÞ

�ð6þqÞ	6e2ðbþhÞhqð4þqÞð8þqÞþ6eðbþ2hÞhqð4þqÞð8þqÞþ3e2ðbþ2hÞhð4þqÞf	648þ54hhð4þqÞ2	41qð8þqÞgþe4hh½	800þqf	264þqð12þqÞg�þ2eðbþ4hÞh

�½4288þqf3072þ61qð12þqÞg�Þþb5h5ð480e4hhðq	8Þþ288eð2bþhÞhqð2þqÞð10þqÞ	11e2bhq2ð12þqÞþ15e2ðbþ2hÞhð4þqÞf	7872þ420hhð4þqÞ2	599qð8þqÞg	960eðbþ3hÞhð2þqÞ

�f48þqð10þqÞgþ32e2bhþ3hhð2þqÞf8800þ373qð10þqÞgþ480eðbþ2hÞhq
f38þqð12þqÞgþ480eðbþ4hÞh½176þqf82þqð12þqÞg�	4e2ðbþhÞh ½19840þ3qf9440þ269qð12þqÞg�Þ

B4. General Formulas of the Aggregated Moments
With a Cubic Copula

[61] The general formulas of the aggregated moments
with a cubic copula defined as in Theorem (A.2) are

E Yh
i

� �
¼ 36þ 2A1 þ A2 þ 4B1 þ 2B2ð Þ hlmD= 36ahð Þ;

cY ðtÞ ¼ lmDf2e	3htð5A1 	 5A2 þ 22B1 	 22B2Þ 	 3e	2ht

� ð10A1 	 5A2 þ 44B1 	 22B2Þ þ 6
 e	ht

� ð36þ 5A1 þ 22B1Þg=ð108a2hÞ þ blEfDðD	 1Þg
� ðe	3htðA1 	 A2 þ 2B1 	 2B2Þ 
 fA1 þ 2ð45þ A2 þ B1

þ 2B2Þgbðb4 	 5b2h2 þ 4h4Þ 	 e	2htð2A1 	 A2 þ 4B1

	 2B2Þ 
 ð120þ 2A1 þ 3A2 þ 4B1 þ 6B2Þbðb4 	 10b2h2

þ 9h4Þ þ 5e	htð6þ A1 þ 2B1ÞfA1 þ A2 þ 2ð18þ B1

þ B2Þgbðb4 	 13b2h2 þ 36h4Þ 	 30e	bth½36b4 	 f468
� 	24A1 þ A2

2 	 48B1 þ 96B2 þ 4B2
2 þ 4A2ð12þ B2Þg

� b2h2 þ ð36þ 2A1 þ A2 þ 4B1 þ 2B2Þ2h4�Þ
=f2160a2hðb6 	 14b4h2 þ 49b2h4 	 36h6Þg;

VarðYh
i Þ ¼ lmD½	7776	 850A1 	 95A2 	 3740B1 	 418B2

þ 8e	3 h h f5A1 	 5A2 þ 22 ðB1 	 B2Þg 	 27 e	2 h h

� ð10A1 	 5A2 þ 44B1 	 22B2Þ þ 216 e	h hð36þ 5A1

þ 22B1Þ þ 6 ð1296þ 110A1 þ 25A2 þ 484B1

þ 110B2Þ h h�=f1944a2 h3g þ lEfDðD	 1Þg
� ð1080 e	b hh3 ½36b4 	 f468	 24A1 þ A2

2 	 48B1

þ 96B2 þ 4B2
2 þ 4A2 ð12þ B2Þgb2 h2

þ ð36þ 2A1 þ A2 þ 4B1 þ 2B2Þ2 h4�
� feb hð1	 b hÞ 	 1g þ 180ð6þ A1 þ 2B1Þ
� fA1 þ A2 þ 2 ð18þ B1 þ B2Þgb2 ðb5 	 13 b3 h2

þ 36b h4Þ ðe	h h þ h h	 1Þ 	 9ð2A1 	 A2 þ 4B1

	 2B2Þð120þ 2A1 þ 3A2 þ 4B1 þ 6B2Þb2

� ðb5 	 10b3h2 þ 9b h4Þðe	2 h h 	 1þ 2 h hÞ
þ 4ðA1 	 A2 þ 2B1 	 2B2Þ ðA1 þ 2 ð45þ A2 þ B1

þ 2B2ÞÞb2 ðb5 	 5 b3h2 þ 4 b h4Þ ðe	3 h h 	 1þ 3 h hÞÞ
=f38880a2b h3 ðb6 	 14 b4 h2 þ 49b2 h4 	 36 h6Þg;
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and

CovðYh
i ; Y

h
iþkÞ ¼ lmDðehh 	 1Þ2½10A1ð4þ 8ehh þ 12e2hh þ 8e3hh

þ 4e4hh 	 27ehhð1þkÞ þ 108e2hhð1þkÞ 	 54ehhð2þkÞ

	 27ehhð3þkÞÞ 	 5A2f	27ehhð1þkÞð1þ ehhÞ2

þ 8ð1þ ehh þ e2hhÞ2g þ 2f3888e2hhð1þkÞ

þ 297B2e
hhð1þkÞð1þ ehhÞ2

	 88B2ð1þ ehh þ e2hhÞ2 þ 22B1ð4þ 8ehh

þ 12e2hh þ 8e3hh þ 4e4hh 	 27ehhð1þkÞ

þ 108e2hhð1þkÞ 	 54ehhð2þkÞ 	 27ehhð3þkÞÞg�
=f3888a2e3hhð1þkÞh3g þ lEfDðD	 1Þg
� ð2e	3hhð1þkÞðA1 	 A2 þ 2B1 	 2B2Þ

� fA1 þ 2ð45þ A2 þ B1 þ 2B2Þgb3ðe3hh 	 1Þ2

� ðb4 	 5b2h2 þ 4h4Þ 	 ð9=2Þe	2hhð1þkÞ

� ð2A1 	 A2 þ 4B1 	 2B2Þð120þ 2A1 þ 3A2

þ 4B1 þ 6B2Þb3ðe2hh 	 1Þ2ðb4 	 10b2h2 þ 9h4Þ
þ 90e	hhð1þkÞð6þ A1 þ 2B1ÞfA1 þ A2

þ 2ð18þ B1 þ B2Þgb3ðehh 	 1Þ2ðb4 	 13b2h2

þ 36h4Þ 	 540e	bhð1þkÞðebh 	 1Þ2h3

� ½36b4 	 f468	 24A1 þ A2
2 	 48B1 þ 96B2

þ 4B2
2 þ 4A2ð12þ B2Þgb2h2 þ ð36þ 2A1 þ A2

þ 4B1 þ 2B2Þ2h4�Þ=f38880a2bh3ðb6 	 14b4h2

þ 49b2h4 	 36h6Þg:

Notation

H Joint c.d.f. of (X, Y).
F Univariate c.d.f. of X.
G Univariate c.d.f. of Y.

d(.) Dirac delta function.
C copula distribution.

A1, A2, B1, B2 parameters of the cubic copulas.
D number of cells.
L duration of cells.
X intensity of cells.
l rate of the Poisson process of storm

origins.
mD mean number of cells.
a scale parameter related to the intensity of

cells.
g shape parameter related to the intensity of

cells.
b parameter of the exponential distribution

related to the position of cells.
h parameter of the exponential distribution

related to the duration of cells.
q parameter of the cubic copula.

f, c and z parameters related to the intensity/duration
of cells in the DD1 and DD2 models.

F vector of parameters of NSRPM.
h level of aggregation.
k lag of the autocovariance function.
m order of the moment.

Y(t) precipitation intensity at time t.
cY(t) covariance with lag t of the rainfall

intensity process.
Yi
h cumulative rainfall totals in disjoint time

intervals of length h.
xh third (central) moment of an interval of

length h.
PD(h) probability of no rain in an interval of

length h.
O objective function in the method of

moments.
p number of moments included in the

objective function.
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