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[1] This paper presents an intercomparison of eight statistical tests to detect
inhomogeneities in climatic data. The objective was to select those that are more suitable
for precipitation data in the southern and central regions of the province of Quebec,
Canada. The performances of these methods were evaluated by simulation on several
thousands of homogeneous and inhomogeneous synthetic series. These series were
generated to reproduce the statistical characteristics of typical precipitations observed in
the southern and central parts of the province of Quebec and nearby areas, Canada. It was
found that none of these methods was efficient for all types of inhomogeneities, but some
of them performed substantially better than others: the bivariate test, the Jaruskova’s
method, and the standard normal homogeneity test. Techniques such as the Student
sequential test and the two-phase regression led to the worst performances. The analysis of
the performances of each method in several situations allowed the design of an optimal
procedure that takes advantage of the strengths of the best performing techniques.
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1. Introduction

[2] Hydroclimatic data records often undergo artificial
disturbances that do not reflect the real climate variations.
These disturbances can be related for instance to station
relocation, instrument replacement, change in observation
procedures or modification in the immediate environment of
the site. Homogenization is the technique of detecting and
correcting these artificial disturbances. A climate series is
considered homogeneous when the measurement conditions
of the station had not varied with time. Different types of
homogenization techniques are presented in the literature:
statistical techniques or techniques based on expert judg-
ment, techniques based principally on metadata (archive of
a station), or techniques based on the concept of relative
homogeneity (it consists of a comparison of the series to
homogenize with a reference series to separate the artificial
change from the regional climate signal). The different
issues related to the homogenization process are discussed
by Peterson et al. [1998] and by Aguilar et al. [2003]. In
this paper, we focus on statistical techniques which use a
reference series.
[3] Different types of changes will introduce different

types of inhomogeneities in the series. For a variable such
as precipitation, a change of exposition or a relocation of the

gauge are the type of changes that are the most likely to
introduce an inhomogeneity in the series. For an exhaustive
review of the degree of influence of each type of change on
different variables, the reader is referred to Heino [1997].
[4] In various fields, the need for long and reliable

climatic data series is high. During the last decades, several
efforts were made to develop techniques to correct anthro-
pogenic changes in climate series. For example, climate
change studies require the creation of complete databases in
order to adequately analyze the climatic signal, and estimate
the future change with a minimal uncertainty. The need to
develop robust homogenization techniques and to identify
the most suitable method for each type of variable (e.g.,
temperature or precipitation) is thus obvious. A study of
appropriate techniques for temperature series was conducted
by Ducré-Robitaille et al. [2003].
[5] A comparative study of several homogenization

methods for precipitation is carried out in this paper. The
techniques are systematically applied to several thousands
of synthetic data sets having the same statistical character-
istics as the recorded series of total annual precipitation.
Stations located in the southern and central regions of
the province of Quebec (Canada) and nearby areas were
selected to estimate these statistical characteristics. First, the
homogenization techniques were selected using some
practical considerations such as speed and technical
characteristics. Then, several sets of homogeneous and
inhomogeneous synthetic series were generated using a
technique derived by Easterling and Peterson [1992]. Once
the series were generated, each selected homogenization
method was applied to each synthetic series, and the
resulting performance was used as the basis of the inter-
comparison. Finally, recommendations are formulated
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concerning the best combination of homogenization methods
for the application to total annual precipitation.

2. Data

[6] The data sets are synthetic series of precipitation with
the same statistical characteristics (average, standard devi-
ation, order 1 autocorrelation and spatial cross-correlation)
as typical series of annual total precipitation observed in
southern and central Quebec and nearby areas (Canada).
The parameters of the generation scheme were chosen to fit
the statistical characteristics of precipitation data series
recorded at some selected stations in the province or
immediate surroundings. These stations have high-quality
records (long observation series with little missing data). All
the observation series of the selected stations passed the
Shapiro-Wilk normality test, supporting our choice of a
normal distribution in the generation scheme.
[7] Homogeneous synthetic series (mean and variance are

constant) and inhomogeneous (one or multiple shifts, trend,
shift in standard deviation) were first generated. Correlated
neighbor series were also generated using a technique
that will be described further in the text [Easterling and
Peterson, 1992; Vincent, 1998; Ducré-Robitaille et al.,
2003].

2.1. Base Series

2.1.1. Homogeneous
[8] Homogeneous base series were generated to study the

sensitivity of the techniques on homogeneous series. Lag
one autoregressive variables, zi, were first generated using
the following model:

zi ¼ f1zi�1 þ ei ð1Þ

where f1 is the autocorrelation coefficient and ei is a
normally distributed residual with zero mean and variance
1 � f1

2. The mean and variance of the real total annual
precipitation were introduced in the zi series.

[9] The statistical characteristics to be reproduced are
(1) a mean total annual precipitation of 1089 mm, (2) a
standard deviation of 142 mm, and (3) a lag one autocor-
relation of 0.02. These values are the average characteristics
of the selected stations. Even though the autocorrelation was
not significant, the series were generated using an autore-
gressive model instead of a normal independent model to
represent the real data series as much as possible. A total
number of 10 000 homogeneous series (5000 60-year-long
and 5000 100-year-long) were generated this way.
2.1.2. Series With a Single Shift
[10] Series with a single shift in the mean were generated

to study the ability of the methods to detect the position and
to estimate the magnitude of a single shift. The procedure
for the selection of the magnitude and position of a shift is
described in the next paragraph. A series with a single shift
can be represented by:

yi ¼
yi*� dp1s; i ¼ 1; . . . ; p1 � 1

yi*; i ¼ p1; . . . ; n

�
ð2Þ

dp1 and p1 were randomly generated using the following
distributions:

dp1 ¼ sign u� 1=2ð Þ � 3 � b; u � U 0; 1ð Þ; b � BETA 2; 2ð Þ
ð3Þ

p1 ¼ 10þ ud; ud � DUNIF n� 20ð Þ ð4Þ

where yi represents the ith observation of an inhomogeneous
series of size n, y*i the ith observation of a homogeneous
series, s is the standard deviation of the last segment of the
series, dp1 the magnitude of the shift, u is a uniform variable,
b is a beta variable, p1 is the position of the shift and ud is a
discrete uniform variable. The magnitude varies randomly
between �3 and 3 standard deviations (equation (3)). The

Figure 1. Histogram of the magnitudes of the shifts introduced in 100-year-long series with a single shift.
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distribution of the magnitudes was chosen to have few cases
for which the magnitude is close to zero, to avoid a
repetition of assessing the methods when the series was
close to being homogeneous, and to save computing time.
Furthermore, since the distribution of the magnitudes of real
inhomogeneities is never known, the distribution was
chosen to represent all potential magnitudes. Figure 1
presents the distribution of the magnitudes of the shifts for
the 100-year-long series with a single shift. The position
was generated from a discrete uniform distribution that was
truncated to avoid the presence of shifts during the first 10
or the last 10 years of the series (equation (4)). A total
number of 50 000 series (25 000 60-year-long and 25 000
100-year-long series) were generated this way. Since the
techniques were developed to detect a single shift, a higher
number of synthetic series were generated for this case. The
number of series for each case was chosen to have enough
repetitions of the different scenarios and according to the
interest of each type of series. Figure 2a presents an
example of a series with a single shift.
2.1.3. Series With Multiple Shifts
[11] Series with multiple shifts (2 and 3) were also

generated. A series with two shifts can be represented by:

yi ¼
yi*� dp1s; i ¼ 1; . . . ; p1 � 1

yi*� dp2s; i ¼ p1; . . . ; p2 � 1

yi*; i ¼ p2; . . . ; n

8<
: ð5Þ

The positions and magnitudes of the shifts were generated
using the following distributions:

dp1 ; dp2 ¼ sign u� 1=2ð Þ � 3 � b; u � U 0; 1ð Þ; b � BETA 2; 2ð Þ
ð6Þ

p1 ¼ 10þ ud; ud � DUNIF n� 31ð Þ ð7Þ

p2 ¼ 10þ p1 þ ud; ud � DUNIF n� 20� p1ð Þ ð8Þ

where yi represents the ith observation of an inhomogeneous
series of size n, y*i the ith observation of a homogeneous
series, and s the standard deviation of the last segment of
the series. dp1, dp2, p1 and p2 respectively denote the
magnitudes and positions of the shifts. u, b and ud
respectively denote a uniform variable, a beta variable and
a discrete uniform variable. The magnitudes were generated
in the same way as for a single shift. Discrete uniform
distributions were used to generate the positions, but their
parameters were adapted to the number of shifts to generate.
The minimum interval between two consecutive shifts was
set to 10 years. Series with three shifts were generated using
a similar procedure. A total number of 15 000 series with
two shifts were generated and 15 000 series with three shifts
in the mean.

Figure 2. Example of generated synthetic candidate series (a) with a shift at position 56, (b) with a trend
starting at position 30 and ending at position 83, and (c) with a change in standard deviation at position 33.
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2.1.4. Series With a Trend
[12] When there is a trend in the data, the homogenization

methods may interpret it as one or several consecutive
shifts. Series with trends were generated to study the
behavior of the homogenization methods on such series.
In spite of the fact that most of the homogenization methods
are not developed to detect trends, we were interested in
their performance to identify a change inside the trend. A
series with a trend can be represented by:

yi ¼
yi*� dp1:p2s; i ¼ 1; . . . ; p1 � 1

yi*� dp1:p2s � mi; i ¼ p1; . . . ; p2 � 1

yi*; i ¼ p2; . . . ; n:

8<
: ð9Þ

The following distributions were used to generate the
trended series:

dp1:p2 ¼ sign u� 1=2ð Þ � 3 � b; u � U 0; 1ð Þ; b � BETA 4; 2ð Þ
ð10Þ

p1 ¼ 10þ ud; ud � DUNIF n� 31ð Þ ð11Þ

p2 ¼ 10þ p1 þ ud; ud � DUNIF n� 20� p1ð Þ ð12Þ

where yi represents the ith observation of an inhomogeneous
series of length n, y*i the ith observation of a homogeneous
series, s the standard deviation of the last part of the series,
dp1:p2 the magnitude of the trend, m and the slope. u, b and
ud respectively denote a uniform variable, a beta variable
and a discrete uniform variable. p1 and p2 represent the
beginning and the end of the trend. The magnitude was
chosen to lie between �3 and 3 standard deviations. The
positions of the beginning and the end of the trend were
generated with the same technique as that for series with
two shifts. A total number of 10 000 synthetic series with a
random trend were generated. Figure 2b presents an
example of series with this type of discontinuity.
2.1.5. Series With a Shift of Variance
[13] Series with a shift of variance were generated to

determine which methods are sensitive to this type of
discontinuity. The studied methods were not initially
designed to detect changes in the variance and most of
them are based on the hypothesis that the variance is
constant. It is thus interesting to check their robustness to
violations of the latter postulate. The position of the
variance shift was randomly selected from a discrete uni-
form distribution (equation (4)). The magnitudes are gener-
ated from a BETA(8, 2) distribution multiplied by a random
sign and divided by 2. The magnitudes of the generated
variance shifts lie between 0 and 50% of the standard
deviation. A total number of 10 000 series with a shift of
variance were generated. Figure 2c represents an example of
a synthetic series with a shift of variance.

2.2. Neighbor Series

[14] For every base series three correlated neighbor series
were generated in two steps. First, three homogeneous
series (independent of the base series) were generated:

wi ¼ f1wi�1 þ ei ð13Þ

where f1 is the lag one autocorrelation coefficient and ei is a
normally distributed residual with zero mean and variance
1 � f1

2. Then, a correlation structure was introduced
between the base series and the neighbor series:

wi ¼ yzi þ wi ð14Þ

where zi represents the standardized total precipitation at the
base station for year i, wi the standardized total precipitation
at a neighbor station for year i, and y is a correlation
coefficient between the neighbor series and the base series.
wi was then standardized to ensure it has zero mean and
standard deviation 1. The neighbor series possess the same
statistical characteristics as the base series. The correlation
coefficient (0.7) was determined by simulation to reproduce
a spatial cross-correlation of 0.55. This value was chosen
because the mean spatial cross-correlation in the set of
selected stations that are located at a distance less than
300 km is 0.55. This distance was chosen to test the
techniques in the worst conditions. Correlation between
stations varies enormously and is likely to affect the
performance of the homogenization methods, which are
expected to perform better when the base and neighbor
series are highly correlated. However, the station network
density in Quebec is relatively low given the large size of
the province (1 542 056 km2). Consequently, it can be
difficult in some regions to find several neighbors for the
same base series. To represent this reality as closely as
possible, the number of neighbor stations was set to 3.

3. Methods

[15] Homogenization techniques compared in this work
were selected according to the following set of criteria.
First, the methods should be objective. Since the techniques
were applied to thousands of series, subjective methods
could not be used. Second, they should be able to detect
multiple shifts (as these can be observed in practice) and
estimate them. Some methods developed for one shift were
nevertheless selected, but they were adapted for multiple
shifts using a segmentation approach. Third, the techniques
should allow the use of one or several neighbor series.
Finally, the algorithms must be available in the literature
and have a reasonable running time.
[16] An extensive literature review was performed

[Beaulieu et al., 2007] and eight methods were selected:
(1) s tandard normal homogenei ty tes t (SNHT)
[Alexandersson, 1986; Khaliq and Ouarda, 2007], (2) mul-
tiple regression (MREG) [Vincent, 1998], (3) two-phase
regression (REG2) [Easterling and Peterson, 1995; Lund
and Reeves, 2002], (4) bivariate test (BIVT) [Maronna and
Yohai, 1978; Potter, 1981], (5) sequential Wilcoxon test
(WILS) [Karl and Williams, 1987; Lanzante, 1996; Ducré-
Robitaille et al., 2003], (6) sequential t test (STUS) [Gullett et
al., 1990], (7) Jaruskova’s method (JARU) [Jaruskova,
1996], and (8) Bayesian approach (BAYE) [Rasmussen,
2001]. The hypothesis of normality has to be respected to
apply these tests except for the sequential Wilcoxon test
which is nonparametric. All methods were coded to ignore
the shifts detected among the first ten or last ten observations.
The authors consider that it is not reasonable to estimate the
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magnitude of an inhomogeneity with less than ten observa-
tions on each side of the inhomogeneity.

3.1. Standard Normal Homogeneity Test

[17] A series of ratios between the base and the neighbor
series is created:

qi ¼ yi=
Xk
j¼1

r2j xijy1:n=x1:n;j

 !
=
Xk
j¼1

r2j

" #
i ¼ 1; . . . ; n

j ¼ 1; . . . ; k
ð15Þ

where the value of the year i of the base series is
represented by yi, xij, is the ith observation of the neighbor
series j. There are k nearby sites with n observations each.
The correlation coefficient between the base series and the
neighbor series j is noted rj. The hypothesis that the
standardized ratios follow a normal distribution with zero
mean and a variance of 1 is tested against the hypothesis
that there is a shift in the mean of the series. To find
the position of the change, a weighted average series is
created:

Qi ¼ iv21:i þ n� ið Þv2iþ1:n; i ¼ 1; . . . ; n� 1 ð16Þ

where v1:i and vi+1:n are the average of the standardized
ratios for segments 1:i and i+1: n. The test statistic, Qp1

=
maxi=1,. . .,n�1{jQij}, is significant if it exceeds the asso-
ciated critical value [Khaliq and Ouarda, 2007] and the
shift is located at position p1. For this study, this test was
successively applied to all synthetic series with a critical
level of 5%.

3.2. Multiple Linear Regression

[18] This approach is based on the application of four
regression models representing different types of inhomo-
geneities [Vincent, 1998]. In this study only two models are
used. The first one represents a homogeneous base series.
When residuals are independent, the model provides a good
fit to the data and the series is considered homogeneous.
The homogeneity of the series is verified with an indepen-
dence test on the residuals (e.g., a confidence interval on the
lag one autocorrelation of the residuals). On the other hand,
if residuals are autocorrelated, it indicates that the model
does not fit the data well and that the base series could be
inhomogeneous. In this case, the model describing a shift in
the base series is applied:

yi ¼
t þ b1xi1 þ . . .þ bkxik þ ei i ¼ 1; . . . ; p1 � 1

t þ dp1 þ b1xi1 þ . . .þ bkxik þ ei i ¼ p1; . . . ; n

�
ð17Þ

where yi represents the base series, xij represents the
neighbor series j, and t and bj (j = 1, . . ., k) are the least
squares parameters. There are k neighbor series with n
observations each. The residuals, ei, follow a normal
distribution with zero mean and constant variance. The
position of the shift, p1, is determined by fitting the model
for all possible positions and by selecting the results with
the smallest residual sum of squares. Again, if residuals are
independent, then there is probably a shift at position p1. A
Fisher test comparing the fit of the homogeneous model
with the model representing a shift is applied. If the model
with a shift is better, the significance level of the shift is

evaluated with a Student statistic. The same process is
continued on each side of the shift until all segments are
considered homogeneous. This method was applied to all
synthetic series with a 5% critical level.

3.3. Two-Phase Regression

[19] Several versions of the REG2 can be found in the
literature [Solow, 1987; Easterling and Peterson, 1995;
Lund and Reeves, 2002; Wang, 2003]. For the purpose of
this work, the model proposed by Lund and Reeves [2002]
was used. Two regression models are fitted with time as the
explanatory variable. The first model represents a homoge-
neous series. The second model represents a discontinuous
series displaying a shift at time p1:

yi ¼
t1 þ l1iþ ei; i ¼ 1; . . . ; p1 � 1

t2 þ l2iþ ei; i ¼ p1; . . . ; n

�
ð18Þ

where yi represents the ith observation of the base series, t1,
t2, l1, and l2 are respectively the intercepts and slopes
before and after the change. The position of the shift is
chosen by fitting the model for all possible values of p1, by
computing the Fisher statistics, comparing all fitted models
to that of the homogeneous one, and then by choosing the
one which gives the maximum Fisher statistic (Fmax). The
Fisher test gives information regarding the contribution of a
new variable in a regression model. In this case, it means
that the significance of the introduction of a step at position
p1 is verified. The critical values of the Fmax statistic were
obtained by simulation and provided by Lund and Reeves
[2002]. The same process is repeated until all segments are
found homogeneous or have less than ten observations. The
method described in the above section was applied to the
difference series between the base series and the neighbor
series, with a critical level of 5%.

3.4. Bivariate Test

[20] This method was developed by Maronna and Yohai
[1978] and applied to homogenization problems by Potter
[1981]. The technique is based on the postulate that the base
series (yi, i = 1, . . ., n) and a reference series (xi1, i = 1, . . ., n)
belong to the same bivariate normal distribution. It is
hypothesized that there is a shift in the base series that does
not occur in the reference series. The method is based on the
following series of ratios:

qi ¼
i n� ið Þd2i Fi

SxSy � S2xy
; i ¼ 1; . . . ; n� 1 ð19Þ

where

di ¼
Sx y1:n �

Pi
j¼1

yj=i

 !
� Sxy x1:n;1 �

Pi
j¼1

xj1=i

 !" #
n

n� ið ÞFi

;

i ¼ 1; . . . ; n� 1 ð20Þ

Fi ¼ Sx � xi � xð Þ2ni= n� ið Þ ð21Þ

Sxy ¼
Xn

i¼1
xi1 � x1:n;1
� �

yi � y1:nð Þ ð22Þ
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Sx ¼
Xn

i¼1
xi1 � x1:n;1
� �2 ð23Þ

Sy ¼
Xn

i¼1
yi � y1:nð Þ2 ð24Þ

The statistic of the test is given by Qp1
= maxi=1,. . .,n�1{jqij}.

The critical values of Qp1
are obtained by simulation

[Maronna and Yohai, 1978]. When the test is positive, it is
assumed that a shift occurred at year p1. The approach was
iteratively applied on all sets of synthetic series, assuming a
critical level of 5%. Since the technique allows the use of a
single reference series, the average of the three synthetic
neighbor series was used as reference series.

3.5. Sequential Student Test

[21] The sequential Student test consists of using a
moving window and testing successively the equality of
the means of the first half and the second half of the
observations in the window [Gullett et al., 1990]. Following
the recommendations given by Ducré-Robitaille et al.
[2003], the size of the moving window was increased to
20 years to obtain a better performance. Then, we test the
equality of the means by using 10 years before and after
every potential position:

Qi ¼
qi�10:i�1 � qi:iþ9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2i�10:i�1=10þ s2i:iþ9=10
q ; i ¼ 11; ::; n� 9 ð25Þ

where qi�10:i�1 qi:i+9, si�10:i�1
2 and si:i+9

2 are the means and
variances of the ten observations located before and after
the position i in the ratios series. The maximum value of
the Student statistic corresponds to the position of the shift.
The Student statistic is significant if it exceeds the critical
value of the Student distribution with 18 degrees of
freedom. When the statistic is significant, the series is split
into two segments and the process is repeated until all shifts
are detected. This procedure was substituted for the original
one because, by extracting simultaneously all the significant
statistics, the same shift is identified several times since
successive Student statistics are highly correlated. Further-
more, since the test is applied to the same series several
times, the probability to meet a type 1 error (to reject the
null hypothesis while it is true) is increased. That is why the
critical levels used to get a global critical level of 5% were
computed by simulation. The critical levels used were
0.225% and 0.0875% for series of length 60 and 100 years,
respectively. Finally, the method was applied to the series of
ratios between the base series and the neighbor series, since
the ratios are usually used with precipitation.

3.6. Sequential Wilcoxon Test

[22] The Wilcoxon test has been extensively used for the
homogenization of climate data [Karl and Williams, 1987;
Lanzante, 1996; Ducré-Robitaille et al., 2003]. The most
recent version of the method was used in this work. It consists
of computing successively the Wilcoxon statistic and esti-
mating its significance level using a normal approximation:

Qi ¼
Ri � i nþ 1ð Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i n� ið Þ nþ 1ð Þ=12

p ; i ¼ 11; . . . ; n� 9 ð26Þ

where n represents the length of the tested series, Ri =
Pi
j¼1

ri

and ri are the ranks of the first part of the series. The
maximum of the series and its position are then extracted
(Qp1

= maxi=11,..,n�9{jQij}). If the statistic is significant, then
there is a change of mean at this position. The series is then
split into two segments, and the same procedure is applied
on each of the new series. The same operations are
performed on each obtained segment until all segments
are found homogeneous or have a length smaller than 10
observations. As in the case of the sequential Student test,
the critical levels were modified to have a critical level of
5%. The critical levels used were 0.44% and 0.289% for
series of length 60 and 100 years, respectively. In the work
of Ducré-Robitaille et al. [2003], this method was applied to
a series of differences between the base series and a
reference series because the variable of interest was the
temperature. For the purpose of this work, we used a series
of ratios between the base series and the neighbor series.

3.7. Jaruskova’s Method

[23] This method was proposed by Jaruskova [1996] to
detect a shift in a meteorological series. Several alternative
approaches were presented in the work of Jaruskova [1996],
but the model for which the date of change is unknown was
selected in this work. The method consists of building a
difference series between the base series and a reference
series, and then testing the hypothesis that there is a change in
the mean of the difference series. The following statistic is
computed for all possible positions for a shift in the series.

Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� ið Þi
n

r
q1:i � qiþ1:n

� �
si

i ¼ 1; . . . ; n� 1 ð27Þ

where

s2i ¼
1

n� 2

Xi
j¼1

qj � q1:i
� �2þ Xn

j¼iþ1

qj � qiþ1:n

� �2" #
ð28Þ

and qi represents the difference between the base station and a
reference station for the year i and n is the length of the series.
We assume that the difference series is normally distributed.
The maximum of the series, Qp1

= maxi=1,. . .,n�1{jQij}, is
extracted. The shift is significant if the statistic exceeds the
critical value of the distribution [Jaruskova, 1996]. This
methodwas applied to all sets of synthetic series at the critical
level of 5%, ignoring the inhomogeneities in the first ten or
last 10 years. The reference series is the mean of the three
synthetic neighbor series.

3.8. Bayesian Method

[24] Many Bayesian models have been proposed in the
literature [Asselin et al., 1999; Perreault et al., 1999;
Rasmussen, 2001; Ouarda et al., 2005]. In this study we
used the technique presented by Rasmussen [2001]. It
consists of inferring the parameters of a linear regression
model using an analytical Bayesian approach. Several
alternative models were considered by Rasmussen [2001],
but the one that was used in this study is:

yi ¼
t1 þ b1xi1 þ b2xi2 þ b3xi3 þ ei i ¼ 1; . . . ; p1 � 1

t2 þ b1xi1 þ b2xi2 þ b3xi3 þ ei i ¼ p1; . . . ; n

�
ð29Þ

6 of 20

W02425 BEAULIEU ET AL.: HOMOGENIZATION OF PRECIPITATION W02425



where yi represents the base series, xij represents the ith
observation of the jth neighbor series, t1, t2, and bj (j = 1,
3) respectively represent the intercept point before the
change, the intercept point after the change and the neighbor
series coefficients. The model assumes that the data are
independent and normally distributed. The prior probability
densities on the regression parameters and on the position of
change are noninformative (uniformly distributed with
bounds: (�1, 1)). The position of the change is chosen
to be the mode of the posterior distribution. For the purpose
of this work, the Bayesian inference is performed on the
position of the change (p1) as well as on the parameter
vector q = [t1, t2, b1, b2, b3]

T. Let us denote the base series
by the vector Y in this description. The posterior probability
density of the position of the change is given by:

pr p1jYð Þ

¼ GT
p1�1Gp1�1

��� ����1=2

YTY � YTGp1�1 GT
p1�1Gp1�1

� ��1

GT
p1�1Y

� �� �

*
Xn�1

i¼1

GT
i Gi

�� ���1=2
YTY � YTGi G

T
i Gi

� ��1
GT

i Y
h i� n�5ð Þ=2

( )�1

where

GT
p1�1 ¼

1 0 x1;1 x1;2 x1;3

..

. ..
. ..

. ..
. ..

.

1 0 xp1�1;1 xp1�1;2 xp1�1;3

0 1 xp1;1 xp1 ;2 xp1;3

..

. ..
. ..

. ..
. ..

.

0 1 nn;1 xn;2 xn;3

0
BBBBBBBB@

1
CCCCCCCCA

ð31Þ

The first two columns of the Gi matrix contain the indicative
variables. The other columns contain the observations of the
neighbor series. n is the length of the vector and xij the
observations of the neighbor series j. The posterior density
of the parameters of q is given by:

pr qjY ; p1ð Þ

¼
G uþ 5=2ð Þ GT

p1�1Gp1�1

��� ���1=2� �
= G 1=2ð Þð Þ5G u=2ð Þ c

ffiffiffi
u

p
ð Þ5

h i� �

1þ
q � q̂
� �T

GT
p1�1Gp1�1 q � q̂

� �
uc2

8><
>:

9>=
>;

uþ5ð Þ=2

ð32Þ

with

q̂ ¼ GTG
� ��1

GTY ð33Þ

c2 ¼
Xn
i¼1

yi � ŷið Þ2= n� 2ð Þ ð34Þ

and u is the number of degrees of freedom (n-5), G
represents the Gamma function and c2 is the unbiased
estimate of the noise variance. As there is no analytical
expression for the posterior distribution of the magnitude of
change, it was computed with Monte-Carlo simulations. A
Bayesian credibility interval was used to verify the

significance of the shift. This method was applied to all
sets of synthetic series.

4. Performance Evaluation

[25] The selected homogenization methods were devel-
oped to detect a single shift in a series. In the presence of
multiple shifts, the estimation of the magnitude may be
biased. To avoid this, the magnitudes can be obtained by
computing the difference of the means of the segments
before and after the shift. For all sets of synthetic series, the
homogenization methods were applied to find the position
of the shifts. The magnitudes were then estimated by
difference of means. Furthermore, the performance of each
technique was evaluated differently according to the type of
synthetic series (homogeneous, with a single step, with
multiple steps, with a change of standard deviation and
with a trend). In this section, the criteria used to evaluate the
performance of the homogenization techniques for each set
of synthetic series are presented. The reader must note that
since the performance of the different techniques is com-
pared inside each set of series, with the same number of
repetitions, there is no bias in the statistics that are presented
in the result section.

4.1. Homogeneous Series

[26] The homogenization methods were applied to two
sets of homogeneous series (60-year-long and 100-year-
long) and their performance was evaluated by the percent-
age of type 1 error (the number of cases for which the
homogeneity hypothesis is rejected while it is true).

4.2. Series With a Single Shift

[27] The selected methods were applied to two sets of
synthetic series containing a shift with random position and
magnitude. The numbers of correctly identified, well-iden-
tified, and well-positioned shifts were computed. We con-
sider that a shift is correctly identified when its position is
exact and the relative difference between the estimated
magnitude and the real magnitude is less than 20% of the
real magnitude. A shift is well identified when the estimated
position is less than 2 years from the real position and the
absolute error on the estimation of the magnitude is lower or
equal to 50% of the real magnitude. A well-positioned shift
is located between 0 and 2 years from the exact location of
the shift and there is no measure of the accuracy of the
magnitude of the shift. Furthermore, the differences be-
tween the real position and magnitude and the estimated
position and magnitude were computed independently. Four
types of error series were produced: the position error, the
magnitude error, the absolute position error and the absolute
magnitude error. When a technique did not detect a shift, the
position error and absolute position error are fixed to the
length of the series (either 60 or 100) while the magnitude
error and absolute magnitude error are fixed to 3 (the
highest possible magnitude).

4.3. Series With Multiple Shifts

[28] Most of the methods compared in this work are not
designed to detect multiple shifts. This issue is addressed in
practice using a segmentation approach. The performance of
the methods to identify multiple shifts on synthetic series
with two or three shifts was thus tested. A performance
criterion was designed to estimate the capacity of the

ð30Þ
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techniques to correctly position all the shifts, without
omission or false detection. This criterion measures a
distance between the positions of the real shifts and the
detected shifts. It can be expressed as follows:

C ¼

1

nd

Xnd
i¼1

pdi � pi
� �2

; nr ¼ nd

1

nr

Xnd
i¼1

pdi � pi
� �2þ nr � ndj j n� 1ð Þ2

" #
; nr > nd

1

nd

Xnr
j¼1

pdj � pj

� �2
þ nr � ndj j n� 1ð Þ2

" #
; nr < nd

8>>>>>>>>><
>>>>>>>>>:

ð35Þ

where pi
d, i = 1, . . ., nd and pj, j = 1, . . ., nr represent

respectively the positions of the detected and real shifts and
n is the length of the series. The pairs (pi

d, pj) are chosen to
minimize the criterion. When the number of detected and
real shifts is the same, the criterion is the sum of squares of
the differences between the pairs which minimize the
criterion. When the number of detected shifts is different
from the number of real shifts, the value (n � 1)2 is added
for every wrongly detected shift. This value corresponds to
the square of the maximum possible distance between two
shifts. C is equal to zero when all shifts are correctly
positioned. When C is close to zero, the detected shifts are
located near the real positions. A high value of C indicates
that some shifts in the series are not detected or are wrongly
detected. The performance criterion C was computed for the
sets of synthetic series with two and three shifts.

4.4. Series With a Shift of Variance

[29] The techniques presented in this paper make the
assumption that the variance is constant throughout the
series. Therefore a change of variance could affect
the results of a homogenization procedure. To investigate
the robustness of the methods regarding this postulate,
synthetic series (10 000) with a shift in standard deviation
were generated. As in the case of homogeneous series, the
percentage of falsely detected shifts was computed.

4.5. Series With a Trend

[30] An inhomogeneity can also take the form of a trend.
However, it is impossible to compare the methods selected
for this work to identify trends because only MREG and
REG2 are developed to detect this type of inhomogeneity.
The number of shifts that are positioned inside the trend

(two positions before the beginning and two after the end of
the trend) were rather computed. This aims to show that
gradual inhomogeneities can be interpreted as one or several
consecutive shifts by most techniques.

5. Results

5.1. Homogeneous Series

[31] The percentages of falsely detected shifts were
approximately between 1% (MREG, JARU) and 5%
(STUS) for the classical techniques while BAYE gave a
higher percentage (more than 20%) of false detections
(Tables 1 and 2). The high number of wrongly detected
shifts can be explained by the fact that the Bayesian model
of Rasmussen [2001] makes the implicit hypothesis that
there is necessarily a shift in the series. Indeed, the prior
probability of no change is automatically fixed to 1/n, which
is very negligible. Therefore this method practically
assumes that there is always a change in the series, and
forces to position it somewhere since the sum of probabil-
ities of all possible positions is constrained to be 1. In the
case of homogeneous series, the probabilities for a change
are concentrated toward the extremities of the series. These
probabilities would be near 100% if the extremities were not
ignored. However, in spite of the decision to ignore shifts
close to the two extremities, the percentage of false detec-
tions remained very high. Most of the percentages of falsely
detected shifts presented in Tables 1 and 2 are significantly
different from the type I error of 5% that was used to apply
the tests. If the false detection at the extremities were not
removed, then the percentage of falsely detected shifts
would be around 5%. For STUS, the extremities have less
impact on the detection rate since a moving window is used.
[32] Figure 3 presents the magnitudes and positions of

wrongly detected shifts on 100-year-long homogeneous
series. These magnitudes are presented according to the
position of the real shift. Figures corresponding to the
60-year-long series are not presented as the results were
very similar to those corresponding to the 100-year series. It
can be noticed that for all methods, the magnitudes of falsely
detected shifts rarely exceeded one standard deviation.
[33] In a similar study dealing with the homogenization

of temperature series [Ducré-Robitaille et al., 2003], REG2
and WILS displayed high false detection rates in opposition
to the results presented in this paper. For REG2, this can be
explained by the fact that the Fisher revised statistic [Lund
and Reeves, 2002] was used in the present work. This

Table 1. Falsely Detected Shifts by Each Technique When

Applied to 60-Year-Long Homogeneous Seriesa

Magnitude
(Standard
Deviation) SNHT MREG REG2 BIVT STUS WILS JARU BAYE

0–0.25 0.1 0.1 1.5 0.0 1.7 0.3 0.0 0.7
0.25–0.5 0.4 0.4 1.2 0.4 1.9 1.1 0.1 11.8
0.5–1 2.0 0.4 1.2 1.7 1.5 2.1 0.9 8.5
1–2 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.2
>2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 2.5b 0.9b 4.0b 2.2b 5.2 3.8b 1.0b 21.2b

aShifts are in percent.
bSignificantly different from the expected percentage of type I error (5%

critical level).

Table 2. Falsely Detected Shifts (%) by Each Technique When

Applied to 100-Year-Long Homogeneous Seriesa

Magnitude
(Standard
Deviation) SNHT MREG REG2 BIVT STUS WILS JARU BAYE

0–0.25 0.3 0.2 2.1 0.2 2.3 0.8 0.1 1.7
0.25–0.5 2.0 0.7 1.5 2.0 1.8 1.7 0.5 18.3
0.5–1 1.7 0.3 0.8 1.7 0.8 2.2 0.6 7.4
1–2 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1
>2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 4.0b 1.2b 4.4 3.9b 5.0 4.8 1.2b 27.5b

aShifts are in percent.
bSignificantly different from the expected percentage of type I error (5%

critical level).
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revised statistic has higher critical values than the original
one [Solow, 1987; Easterling and Peterson, 1995], which
was used in the study of Ducré-Robitaille et al. [2003], and
hence gives more conservative results and decreases the
percentage of false detection. For WILS, this result can be
explained by the fact that we reduced the critical level of the
Wilcoxon test to have a global critical level around 5% in
this study. The critical levels used for WILS and STUS were
obtained by simulation and depend on the length of the
series.

5.2. Series With a Single Shift

[34] Tables 3 and 4 present the total percentages of
correctly identified, well-identified, and well-positioned
shifts for all methods. It can be seen in Tables 3 and 4 that
most techniques were able to position the shift. Indeed, the
percentage of well-positioned shifts was of the order of 75%
for most methods except for REG2 and STUS. Thus the
homogenization methods were efficient to approximately
identify the position of a shift. However, the correct
estimation of magnitudes appeared to be more problematic.
Indeed, the difference of percentage between the correctly
identified and well-identified shifts varies between 13% and
39%. To investigate the magnitudes and\or problematic
positions, the percentages of correctly and well-identified

shifts were analyzed for various classes of magnitude and
position. Figures 4 and 5 present the results of this analysis
for the 100-year-long series. Results for the 60-year-long
series are very similar to those of the 100-year-long series
and are consequently not presented.
[35] All these techniques identified well the shifts with

magnitudes greater than two standard deviations. For shifts
with magnitudes less than a standard deviation, the percent-
age of well-identified shifts decreased very quickly. Fur-
thermore, the performance of STUS and REG2 dropped
down for shifts with a magnitude of 1.5 standard deviations
and less. This was probably due to the narrow moving
window, which degraded the performance of STUS. Similar
results were reported by Ducré-Robitaille et al. [2003] on
temperature series. On the other hand, there was no position
that seemed to affect the performance of the techniques. In
the work of Ducré-Robitaille et al. [2003], shifts located at
position 5 were less easily identified than shifts located in
the middle of the series. By introducing shifts starting at
position 10 instead of 5, the effect of the position on the
percentage of identified shifts was attenuated.
[36] The errors and absolute errors in the position and

magnitude were also analyzed separately. Tables 5 and 6
present the descriptive statistics of the absolute errors in
position and magnitude for each technique. The Kruskal-

Figure 3. Position and magnitude of falsely detected shifts by each technique when applied to 100-year-
long homogeneous series: (a) SNHT, (b) MREG, (c) REG2, (d) BIVT, (e) STUS, (f) WILS, (g) JARU,
and (h) BAYE.
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Wallis test [Lehman and D’Abrera, 1998] with a 5% critical
level was used to verify the significance of the differences in
absolute errors for the various techniques. Since the differ-
ences were significant, the Conover-Inman [Conover, 1999]
procedure was used to make multiple pairwise comparisons
between the absolute errors obtained from the various
techniques (Tables 7 and 8).
[37] The absolute errors in position and magnitude are

significantly different from one technique to another. Fur-
thermore, for 60-year-long series, the absolute errors in the
position and magnitude obtained with BAYE are signifi-
cantly the smallest (Tables 5 and 7). BAYE is followed by
the methods BIVT, JARU and SNHT which are not signif-
icantly different. The techniques WILS, REGM, REG2 and
STUS follow and lead to absolute errors in the position and
magnitude that are significantly different from all other
techniques.
[38] For 100-year-long series, the absolute errors in the

position and magnitude obtained with BAYE and BIVT are
the smallest and are not significantly different from each
other (Tables 6 and 8). They are followed by JARU, SNHT,
WILS, REGM, REG2 and STUS. Figure 6 presents the
magnitude and position errors on 100-year-long series with
one shift obtained from each technique. The errors rather
than absolute errors are presented as they are easier to
visualize. The shifts that were not detected are not presented
in Figure 6. For all techniques, the errors are concentrated
around the origin. For most techniques, the magnitude
errors lie between �1 and 1 standard deviation with few
cases outside this interval. The position errors interval
ranges as far as �80 and 80 for most techniques. The
technique REG2 has the errors that are the most scattered.

5.3. Series With Multiple Shifts

[39] Figures 7a and 7b present a histogram of the perfor-
mance criterion (equation (35)) obtained on both sets of
synthetic series. For every class of the criterion, eight bands
representing the various techniques are presented. The
criterion has some preferential values since the classes of
the criterion represent different cases and the peaks mean
that some cases occur more often. The most successful
methods are those with the lowest values of the performance
criterion. Tables 9 and 10 present the descriptive statistics of
C (equation (35)). Table 9 indicates that the criterion median
for five methods is very low. This means that in half of the
synthetic series with two shifts, these methods well posi-
tioned all the shifts without detecting nonexistent shifts or
omitting real ones. For the series with three shifts, the
median criterion was higher. Indeed, when the number of
real shifts increases, it becomes more difficult to identify all
of them. The maximum criterion was 9801 and corresponds
to the case that all the real shifts were not detected. An
analysis of variance of Kruskal-Wallis was realized with a

critical level of 5% to compare the criteria obtained with the
various methods. Since the criteria obtained with the dif-
ferent techniques are significantly different, the Conover-
Inman procedure was applied to make multiple pairwise
comparisons. Tables 11 and 12 present the results of the
multiple pairwise comparisons. For the series with two
shifts, the smaller criteria were obtained with BIVT
(Table 9) and for the series with three shifts, BAYE gave
the smaller criteria (Table 10).
[40] The performance of the various methods according

to the distance separating both shifts was then investigated.
For every method, the mean criterion was computed accord-
ing to various classes of distance between two shifts
(Figure 8). It was noticed that the distance between the
shifts seems to have an influence on the performance
criterion. It seems that close or far shifts were less easily
identified than two shifts of a mean distance. When the two
shifts are too close, the segment between the two shifts is
short. Then, it can be more difficult to detect a change with
few observations. When the two shifts are far away, it
means that they are located in the extremities of the series
and it is more problematic to detect a step in this case.
[41] Notably, for STUS, the distance did not have any

effect because of the moving window. The technique REG2
seemed to perform better when positioning two far shifts
than two close ones. We were also interested to verify if the
signs of the shifts have an effect on the performance of the
techniques: Is it easier to identify shifts of opposite signs (a
positive shift followed by a negative one) or shifts with the
same sign? The performance of the methods regarding
the signs of the shifts was analyzed. For every method,
the mean criterion was calculated according to all possible
combinations of signs (Figure 9). It was effectively noticed
that the combination of the signs seems to influence the
performance criterion. Indeed, in both cases of three shifts
of the same sign, the average criterion was higher than in
the other cases. When a shift was followed by another one
of an opposite sign, the performance seems better except for
BAYE. Finally, the cases where two shifts of the same sign
were followed or preceded by a shift of an opposite sign led
to a better performance than three shifts of the same sign.

Table 3. Correctly Identified, Well-Identified, and Well-Positioned Shifts by Each Technique When Applied to 60-Year-Long Series

With a Single Shifta

SNHT MREG REG2 BIVT STUS WILS JARU BAYE

Correctly identified 60.0 56.0 51.9 61.6 32.1 57.3 61.7 58.6
Well identified 81.1 71.8 64.7 81.7 70.8 80.5 81.0 81.9
Well positioned 81.6 72.0 64.8 82.2 71.2 80.9 81.4 83.3

aDefined in section 4.2. Shifts are in percent.

Table 4. Correctly Identified, Well-Identified, and Well-Posi-

tioned Shifts by Each Technique When Applied to 100-Year-Long

Series With a Single Shifta

SNHT MREG REG2 BIVT STUS WILS JARU BAYE

Correctly identified 61.5 59.3 57.4 62.7 30.3 57.9 63.0 57.8
Well identified 83.5 76.8 73.5 83.9 67.4 82.4 83.4 83.2
Well positioned 83.9 76.9 73.6 84.3 67.5 82.7 83.6 85.2

aDefined in section 4.2. Shifts are in percent.
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Figure 4. Percentage of correctly identified shifts, as defined in section 4.2, according to their position
and magnitude obtained by each technique when applied to 100-year-long series with a single shift:
(a) SNHT, (b) MREG, (c) REG2, (d) BIVT, (e) STUS, (f) WILS, (g) JARU, and (h) BAYE.
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Figure 5. Percentage of well-identified shifts, as defined in section 4.2, according to their position and
magnitude obtained by each technique when applied to 100-year-long series with a single shift: (a) SNHT,
(b) MREG, (c) REG2, (d) BIVT, (e) STUS, (f) WILS, (g) JARU, and (h) BAYE.
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Table 5. Descriptive Statistics of the Absolute Errors in Position and Magnitude for Each Technique When Applied to 60-Year-Long

Series With a Single Shifta

Statistic SNHT REGM REG2 BIVT STUS WILS JARU BAYE

Absolute Error in Position
Mean 6.9 14.8 17.7 6.8 14.8 6.4 7.7 5.0
Median 0 0 0 0 1 0 0 0
Standard Deviation 18.0 25.4 26.5 18.0 25.0 17.2 19.2 15.0
Mean Rankb 93840 103110 109340 92380 120780 95960 93180 91140

Absolute Error in Magnitude
Mean 0.3 0.7 0.9 0.3 0.8 0.3 0.4 0.2
Median 0 0 0 0 0.1 0 0 0
Standard Deviation 0.9 1.3 1.3 0.9 1.2 0.9 1.0 0.7
Mean Rankb 93120 102970 109280 91710 124890 95190 92600 90250

aDefined as in section 4.2.
bThe absolute errors in position and magnitude differ significantly according to the techniques used (Kruskal-Wallis test, 5% critical level).

Table 6. Descriptive Statistics of the Absolute Errors in Position and Magnitude for Each Technique When Applied to 100-Year-Long

Series With a Single Shifta

Statistic SNHT REGM REG2 BIVT STUS WILS JARU BAYE

Absolute Error in Position
Mean 7.7 18.3 18.7 7.5 28.9 7.5 9.2 5.2
Median 0 0 0 0 1 0 0 0
Standard Deviation 25.0 38.0 37.4 24.7 44.5 24.4 27.6 19.6
Mean Rankb 93750 100370 102900 92720 127630 97110 93340 92180

Absolute Error in Magnitude
Mean 0.2 0.6 0.6 0.2 0.9 0.2 0.3 0.1
Median 0 0 0 0 0.1 0 0 0
Standard Deviation 0.7 1.1 1.1 0.7 1.3 0.7 0.8 0.6
Mean Rankb 92890 100170 102860 91840 132130 96430 92720 90980

aDefined as in section 4.2.
bThe absolute errors in position and magnitude differ significantly according to the techniques used (Kruskal-Wallis test, 5% critical level).

Table 7. Pairwise Comparison of the Absolute Errors in Position and Magnitude for Each Technique When Applied to 60-Year-Long

Series With a Single Shifta

Technique SNHT REGM REG2 BIVT STUS WILS JARU BAYE

Absolute Error in Position
SNHT 0 1 1 1 1 1 0 1
REGM 0 1 1 1 1 1 1
REG2 0 1 1 1 1 1
BIVT 0 1 1 0 1
STUS 0 1 1 1
WILS 0 1 1
JARU 0 1
BAYE 0

Absolute Error in Magnitude
SNHT 0 1 1 1 1 1 0 1
REGM 0 1 1 1 1 1 1
REG2 0 1 1 1 1 1
BIVT 0 1 1 0 1
STUS 0 1 1 1
WILS 0 1 1
JARU 0 1
BAYE 0

aDefined as in section 4.2. Here 1, significantly different; 0, not significantly different (Conover-Inman test, 5% critical level).
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Table 8. Pairwise Comparison of the Absolute Errors in Position and Magnitude for Each Technique When Applied to 100-Year-Long

Series With a Single Shifta

Technique SNHT REGM REG2 BIVT STUS WILS JARU BAYE

Absolute Error in Position
SNHT 0 1 1 1 1 1 0 1
REGM 0 1 1 1 1 1 1
REG2 0 1 1 1 1 1
BIVT 0 1 1 0 0
STUS 0 1 1 1
WILS 0 1 1
JARU 0 1
BAYE 0

Absolute Error in Magnitude
SNHT 0 1 1 1 1 1 0 1
REGM 0 1 1 1 1 1 1
REG2 0 1 1 1 1 1
BIVT 0 1 1 0 0
STUS 0 1 1 1
WILS 0 1 1
JARU 0 1
BAYE 0

aDefined as in section 4.2. Here 1, significantly different; 0, not significantly different (Conover-Inman test, 5% critical level).

Figure 6. Magnitude and position errors, calculated as described in section 4.2, obtained by each
technique when applied to 100-year-long series with a single shift: (a) SNHT, (b) MREG, (c) REG2,
(d) BIVT, (e) STUS, (f) WILS, (g) JARU, and (h) BAYE. Shifts that were not detected by the techniques
are not represented in this figure.
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5.4. Series With a Shift of Variance

[42] Table 13 presents the wrongly detected shifts on the
synthetic series with a change in variance. It is considered
that a method that is robust to a change of variance should
give approximately the same rate of false detection in the
presence of a shift of standard deviation. The rates of false
detection were compared with those obtained from the
homogeneous series by a confidence interval on the differ-
ence between the two proportions:

p̂H � p̂I � Za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂H 1� p̂Hð Þ

nH
þ p̂I 1� p̂Ið Þ

nI

s
� pH � pI

� p̂H � p̂I þ Za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂H 1� p̂Hð Þ

nH
þ p̂I 1� p̂Ið Þ

nI

s

ð36Þ

where p̂H and p̂I are the rates of false detection in the
homogeneous series and in the series with a change in
variance, nH and nI are the number of homogeneous series
and inhomogeneous series respectively and Za/2 is the
standard normal value corresponding to a 5% critical level.
When the interval contains the value zero, there is no
significant difference between the two proportions. The
results are presented in Table 14. Most of the differences of
proportions were significant at a 5% critical level except for
STUS, WILS and BAYE. This was expected for WILS

because it is a nonparametric technique. On the other hand,
STUS is based on the assumption of the equality of variances,
and hence the results for this method were unexpected. Once
again, this can be a result of the moving window given that
the change of standard deviation has less impact on a small
part of the series. Finally, it seems that a change in variance in
the base series increases the probability of the type 1 error for
most of the methods, but this increase is relatively minor. In
summary, the shifts of variance seem to raise slightly the
percentage of false detection.

5.5. Series With a Trend

[43] Tables 15 and 16 present respectively the number of
cases for which one shift and two shifts or more were detected
inside the trend. It was noticed that in most cases, the trend
was interpreted as an abrupt shift of mean (Table 15).
This occurs less often when the trend has a weak magnitude
(0–0.5 standard deviation). It also happened that the trend
was interpreted as several consecutive shifts when the
magnitude is high (Table 16). To avoid this kind of mistake,
a graphical method combined with an objective method
could be used. Graphically, it is easier to identify the type of
change (abrupt or gradual).

6. Discussion

[44] When the metadata is incomplete, there is little
information about the presence, number, type, position and
magnitude of potential inhomogeneities in the base series.

Figure 7. Histogram of the positioning criterion C (equation (35), section 4.3) obtained by all
techniques when applied to series with multiple shifts: (a) two shifts and (b) three shifts.
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Table 9. Descriptive Statistics of the Positioning Criterion C for Each Technique When Applied to Series With Two Shiftsa

Statistic SNHT MREG REG2 BIVT STUS WILS JARU BAYE

Mean 1768 2757 3044 1730 3268 1812 1928 1813
Median 2 4901 4901 2 4901 3 2 18
Standard Deviation 2483 2864 2831 2489 3219 2503 2643 2264
Minimum 0 0 0 0 0 0 0 0
Maximum 9801 9801 9801 9801 9801 9801 9801 9801
Mean rank 54607 62960 66917 53537 74179 56446 54808 56550

aThe mean positioning criterion C differs significantly according to the techniques used (Kruskal-Wallis test, 5% critical level). See also equation (35),
section 4.3.

Table 11. Pairwise Comparison of the Positioning Criterion C for Each Technique When Applied to Series With Two Shiftsa

Technique SNHT REGM REG2 BIVT STUS WILS JARU BAYE

SNHT 0 1 1 1 1 1 0 1
REGM 0 1 1 1 1 1 1
REG2 0 1 1 1 1 1
BIVT 0 1 1 1 1
STUS 0 1 1 1
WILS 0 1 0
JARU 0 1
BAYE 0

aHere 1, significantly different; 0, not significantly different (Conover-Inman test, 5% critical level). See also equation (35), section 4.3.

Table 12. Pairwise Comparison of the Positioning Criterion C for Each Technique When Applied to Series With Three Shiftsa

Technique SNHT REGM REG2 BIVT STUS WILS JARU BAYE

SNHT 0 1 1 1 1 1 1 1
REGM 0 1 1 1 1 1 1
REG2 0 1 1 1 1 1
BIVT 0 1 1 1 1
STUS 0 1 1 1
WILS 0 1 1
JARU 0 1
BAYE 0

aHere 1, significantly different; 0, not significantly different (Conover-Inman test, 5% critical level). See also equation (35), section 4.3.

Table 10. Descriptive Statistics of the Positioning Criterion C for Each Technique When Applied to Series With Three Shiftsa

Statistic SNHT MREG REG2 BIVT STUS WILS JARU BAYE

Mean 2439 3291 3654 2378 3476 2565 2683 2216
Median 3267 3267 3267 3267 3267 3267 3267 2451
Standard Deviation 2443 2500 2451 2451 2723 2479 2633 2488
Minimum 0 0 0 0 0 0 0 0
Maximum 9801 9801 9801 9801 9801 9801 9801 9801
Mean rank 54941 64350 69104 53625 71305 57850 56548 52280

aThe mean positioning criterion C differs significantly according to the techniques used (Kruskal-Wallis test, 5% critical level). See also equation (35),
section 4.3.
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Therefore this work aimed to identify methods able to detect
homogeneous and inhomogeneous series. Several types of
synthetic series (homogeneous, one shift, multiple shifts, a
trend, a shift of variance) representing the typical annual total
precipitation of the southern and central regions of the prov-
ince of Quebec (Canada) and nearby areas were generated.
[45] The performance of the studied methods can be

summarized according to some criteria. First, it is very
important to have a small percentage of false detection (5%
and less), to avoid introducing inhomogeneities in a series
that is homogeneous in reality. Also, a homogenization
method should be able to identify a shift in a series. The

technique should also be able to position a shift in at least
75% of the cases. Shifts of high magnitudes (2 standard
deviations and more), are expected to be identified in nearly
100% of the cases. It is also expected to observe a
reasonable percentage of well-identified shifts of 1 standard
deviation and more. For multiple shifts, the method should
also be able to position several shifts without omission or
false detection. Finally, the methods that can be applied in
real conditions without additional modifications are
advantageous because they allow a gain of time.
[46] The application on series with a shift of variance

showed that most of the methods being compared in this

Figure 8. Mean positioning criterion C (equation (35), section 4.3) according to the distance between
two shifts obtained by all techniques.

Figure 9. Mean positioning criterion C (equation (35), section 4.3) according to the order of signs of the
three shifts obtained by all techniques.
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work are not very sensitive to this type of inhomogeneity.
The results of the application on synthetic series containing
a trend showed that a gradual change is often interpreted as
one or several consecutive shifts inside the trend. This is not
a weakness because the compared methods were not
designed for this purpose.
[47] Since our results indicate that none of the methods

performed well in all cases, the design of an optimal
procedure using the strengths of some of the techniques
was considered. This procedure consists of the sequential
application of some selected techniques. If we judge that it
is better to omit inhomogeneities in a series than to
introduce new artificial ones, JARU should be applied first
because of its good capacity to identify homogeneous series
(Tables 1 and 2). Although MREG gave an equivalent
performance, JARU is preferred because on series with a
single shift, JARU was less conservative than MREG (the
absolute errors in position and magnitude obtained with
JARU are significantly smaller than those obtained with
MREG, section 5.2). If the series is found inhomogeneous
with JARU, BIVT can be applied. In the case of series with a
single shift, BIVT had the second best performance for
the absolute errors in position and magnitude (Tables 5 and 6).
On series with two shifts, BIVT had the best performance
(Table 9) and for series with three shifts, BAYE was better
(Table 10). Given that BAYE also detected a high number of
nonexistent shifts in the homogeneous series, BIVT was
preferred. Indeed, it has a weak percentage of false detection
(Tables 1 and 2). With such a procedure, the probability of
identifying all existing shifts is increased, and the risk of
false detection is reduced. It is important to mention that
large shifts (greater than one standard deviation), have a
very low false detection rate with all methods. It is never-

theless recommended to confirm the results with the meta-
data. It should be stressed that this proposed procedure is
rather conservative and is based on the idea that it is better
to omit existing shifts than to correct a series for shifts that
are not real.
[48] This comparison included only objective techniques

because the application of subjective methods (involving
the judgment of an expert) on thousands of synthetic series
is an impracticable task. Nevertheless, the use of subjective
approaches should not be automatically rejected as these
approaches may sometimes be appropriate to analyze the
data and interpret the results. We also insist on the use of
metadata, when available, to validate and identify the cause
of the detected inhomogeneities.
[49] A limitation of the presented techniques is that they

require the presence of homogeneous neighboring stations,
while it may not be always the case in practice. The authors
believe that it is important to use neighbor series to avoid a
misinterpretation of a regional climate change. Neverthe-
less, in the cases where neighbor series are not available or
inhomogeneous, techniques developed to homogenize iso-
lated stations and to create homogeneous reference series
from neighbor series can be used. For a review of these
techniques, see Peterson et al. [1998].
[50] The compared techniques require data to be normally

distributed (exceptWILS). The synthetic serieswere generated
from a normal distribution. Nevertheless, the introduction of
inhomogeneities in the series could have affected the distribu-
tion and hence the performance of the techniques.
[51] The techniques selected for this work are based on

the analysis of either differences or ratios between the base
series and neighbor series. Since some tests use ratios and
others use differences, the performance could be affected
because of the choice of variable. The objective of this work
was to compare the techniques as they are presented in the
literature. The sensitivity of the techniques to the use of
ratios or differences was not studied in this work. Future
work can focus on the study of the sensitivity of the various
techniques to the choice of variables.
[52] Finally, the various homogenization methods were

applied under the specific conditions of the province of
Quebec, Canada, and the results of this study may only be
valid under these conditions. The same techniques could
lead to different performances on series with a different
distribution, a different autocorrelation structure and/or
different correlation with neighbor series.

7. Conclusions

[53] Homogeneous precipitation series are essential, par-
ticularly when data are used in climate models or to assess

Table 13. Falsely Detected Shifts by Each Technique When

Applied to Series With a Change in Variance

Technique Rejected, %

SNHT 5.4
MREG 2.9a

REG2 7.7a

BIVT 5.4
STUS 4.7
WILS 5.1
JARU 2.4a

BAYE 27.7a

aSignificantly different from the expected percentage of type I error (5%
critical level).

Table 14. Difference of Proportions Between Falsely Detected

Shifts in 100-Year-Long Homogeneous Series and Series With a

Change in Variance With the Associated 95% Confidence Intervala

Technique Lower Bound Difference Upper Bound

SNHTb 0.7 1.4 2.1
MREGb 1.2 1.7 2.1
REG2b 2.5 3.3 4.1
BIVTb 0.8 1.5 2.2
STUS �1 �0.3 0.4
WILS �0.5 0.3 0.9
JARUb 0.8 1.2 1.6
BAYE �1.3 0.2 1.7

aDifferences are in percent. See also equation (36), section 5.4.
bSignificant (5% critical level).

Table 15. Number of Cases for Which One Shift Is Detected

Inside the Trenda

Magnitude
(Standard
Deviation) SNHT MREG REG2 BIVT STUS WILS JARU BAYE

0–0.5 39.1 4.3 13.0 30.4 8.7 30.4 30.4 52.2
0.5–1 84.2 54.1 28.5 84.9 13.2 83.5 83.0 79.4
1–2 77.3 89.8 65.7 76.0 47.0 76.8 81.5 63.2
2–3 56.1 80.9 77.0 55.3 64.5 52.6 58.2 52.2

aCases are in percent.
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climate change and associated environmental and socio-
economics impacts. The performance of eight homogeniza-
tion techniques on synthetic precipitation series with similar
characteristics to typical series observed in southern and
central Quebec and surrounding areas in Canada were
compared in this work. The results of this study will be of
use for future activities dealing with the homogenization of
precipitation series in Canada. It was found that techniques
which gave a good performance on temperature series like
the multiple regression [Ducré-Robitaille et al., 2003], were
not necessarily appropriate for precipitation data.
[54] Three methods had similar performances with all sets

of synthetic series (BIVT, JARU and SNHT). Some techni-
ques cannot be applied efficiently to all types of series. For
instance, MREG performed well for the identification of a
homogeneous series and was good to identify a single shift.
However, in the presence of multiple shifts, the performance
of this method was poor. The technique BAYE performed
well for the identification of one or multiple shifts, but
detected too many nonexistent shifts. Finally, STUS and
REG2 were able to detect homogeneous series, but did not
perform well on series with single and multiple shifts. An
optimal procedure using the strengths of the various meth-
ods was proposed.
[55] The mathematics of the studied methods were first

developed to detect a single shift. A sequential application
of these techniques can disadvantage them because they are
not designed to detect multiple shifts. However, it is
common to have several inhomogeneities in hydroclimatic
series. The development of methods that are able to identify
one or multiple changes of several types (shift or trend) is
desirable.
[56] In this work, it was shown that the selected homog-

enization techniques are robust in presence of a change of
variance. Nevertheless, the homogenization methods are
based on other assumptions such as the normality and the
homogeneity of neighbor series. The violation of these
assumptions may also alter the performance of the techni-
ques. There is no existing work which addresses these
aspects. Future work in these directions is desirable.

Notation

bj coefficient of the jth neighbor series in the
regression model l.

G Gamma function.
dpi magnitude of the shift at position pi.
q vector of parameters.
�̂ vector of estimated parameters.
ll time coefficient in the regression model l.

rj correlation coefficient between the base series and
neighbor series j.

s standard deviation of the last segment of the base
series.

tl intercept of the regression model l.
u number of degrees of freedom.
f1 lag one autocorrelation coefficient.
y correlation constant between the base series and

the neighbor series.
b Beta variable.

BETA Beta distribution.
C position criterion.

DUNIF Discrete Uniform distribution.
ei residual at time i.
k number of neighbor series.
m slope of the trend.
n length of the base series.
nd number of shifts detected.
nr number of real shifts.
pi
d position of the ith detected shift.
pi position of the ith real shift.
qi difference/ratios series between the base series

and the neighbors at time i.
Qpi test statistic associated with the ith shift.
ri rank of the ith observation.
Ri sum of the ranks of observations 1 to i.
s2 variance in a series.
S sum of squares of the differences.

sign sign (positive or negative).
u Uniform variable.
U Uniform distribution.
ud Discrete Uniform variable.
wi standardized neighbor series at time i.

x1:i,j observations from 1 to i of the neighbor series j.
y1:i observations from 1 to i of the base series.
y1:i mean of the segment from 1 to i of variable y.
y*i homogeneous base series at time i.
zi standardized base series at time i.
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