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[1] Regional flood frequency analysis is a convenient way to reduce estimation
uncertainty when few data are available at the gauging site. In this work, a model that
allows a non-null probability to a regional fixed shape parameter is presented. This
methodology is integrated within a Bayesian framework and uses reversible jump
techniques. The performance on stochastic data of this new estimator is compared to two
other models: a conventional Bayesian analysis and the index flood approach. Results
show that the proposed estimator is absolutely suited to regional estimation when only a
few data are available at the target site. Moreover, unlike the index flood estimator,
target site index flood error estimation seems to have less impact on Bayesian estimators.
Some suggestions about configurations of the pooling groups are also presented to
increase the performance of each estimator.
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1. Introduction

[2] Extreme value theory is now widely applied when
modeling block maxima or exceedences over a threshold are
of interest. In particular, the Generalized Pareto Distribution
(GPD) describes the limiting distribution of normalized
excesses of a threshold as the threshold approaches the
endpoint of the variable [Pickands, 1975]. The GPD has a
distribution function defined by:

G x;m;s; xð Þ ¼ 1� 1þ x x� mð Þ
s

� ��1=x
; x > m; 1þ x x� mð Þ

s
> 0

ð1Þ

where s > 0, x 2 R. m, s and x are respectively the location,
scale, and shape parameters.
[3] Thus, when extreme values must be estimated, this

approximation is frequently used. Most applications based
on this result are related to environmental sciences, as
extreme wind speed [Payer and Kuchenhoff, 2004], extreme
sea level [Bortot and Coles, 2000; Pandey et al., 2004], or
extreme river discharge [Northrop, 2004].
[4] However, one must often deal with small samples and

large uncertainties on estimation. Several publications point
out the problem of the shape parameter estimation. This
parameter is of great interest as it determines the tail
behaviour of the distribution. Therefore, many authors
analyzed the performance of particular estimators given a
specified range for the shape parameter: Rosbjerg et al.
[1992] for the method of moments; Coles and Dixon [1999]

for the maximum likelihood; Hosking and Wallis [1987] for
the probability weighted moments; Juarez and Schucany
[2004] for the minimum density power divergence estima-
tor; and Martins and Stedinger [2000] for a proposed
generalized maximum likelihood. However, these results
provide the most accurate estimator given the shape para-
meter, which is never the case in practice. Therefore, Park
[2005] introduced a systematic way of selecting hyper-
parameters for his proposed generalized maximum likeli-
hood estimator.
[5] All these approaches only deal with information from

the target site sample. However, it is frequent in hydrology to
perform a Regional Frequency Analysis (RFA). Traditional
RFA consists of two steps: (a) delineation of homogeneous
regions, i.e., a pooling group of stations with similar beha-
viour; (b) regional estimation, i.e., estimate target site
distribution from the regional information.
[6] More recently, Bayesian approaches have been

applied with success to incorporate regional information
in frequency analysis [Coles and Tawn, 1996; Northrop,
2004; Seidou et al., 2006; Ribatet et al., 2007]. Empirical
Bayesian estimators have also been proposed [Kuczera,
1982; Madsen and Rosbjerg, 1997]. One of the advantages
of these approaches is to distinguish the at-site information
from the other site data in the estimation procedure. This is
an important point as, no matter how high the homogeneity
level may be, the only data which represent perfectly the
target site are obviously the target site one. Thus the whole
information available is used more efficiently. In addition,
according to Ribatet et al. [2007], the Bayesian approaches
allow to relax the scale invariance property required by the
most applied RFA model, i.e., the index flood [Dalrymple,
1960].
[7] However, a preliminary study on simulated data

showed that the approach developed by Ribatet et al.
[2007] may lead to unreliable estimates for larger return
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periods (T > 20 years) when small samples are involved.
This poor performance is mainly due to the large variance
on the shape parameter estimation. Consequently, for such
cases, attention must be paid to the regional estimation
procedure for the shape parameter.
[8] The basis of our new development was formerly

proposed by Stephenson and Tawn [2004]. They use
reversible jump Markov Chain Monte Carlo (MCMC)
techniques [Green, 1995] to attribute a non-null probability
to the Gumbel case. Therefore, realizations are not supposed
to be Gumbel distributed but have a non-null probability to
be Gumbel distributed. An application to extreme rainfall
and sea level is given. In this work, this approach is
extended to take into account a regional shape parameter,
not only the Gumbel/Exponential case, within a RFA
framework. The reversible jump technique allows to focus
on a ‘‘likely’’ shape parameter value given by the hydro-
logical relevance of the homogeneous region. Thus this
approach may reduce the shape parameter variance estima-
tion while relaxing the scale invariance property.
[9] The main objectives of this article is first to

present new developments in the methodology proposed
by Stephenson and Tawn [2004] required for a RFA context;
second is to assess the quality of two Bayesian models
based on the index flood hypothesis: the regional Bayesian
model proposed by Ribatet et al. [2007] (BAY) and the new
proposed Bayesian approach applying reversible jumps
Markov chains (REV). They are compared to the classical
index flood approach of Dalrymple [1960] (IFL). The
assessment is developed through a stochastic generation
of regional data performed in order to obtain realistic
features of homogeneous regions. Detailing the index flood
concept is out of the scope of this article. Estimation
procedure can be found in the study of Hosking and Wallis
[1997].
[10] The paper is organized as follows. The next two

sections concentrate on methodological aspects. Section 2
describes the Bayesian framework including the specific
MCMC algorithm, required to extend the work by
Stephenson and Tawn [2004]. Section 3 presents the simple
and efficient algorithm to generate stochastically hydrolog-
ical homogeneous regions. A sensitivity analysis is per-
formed in section 4 to assess how quantile estimates and
related uncertainties are influenced by the values of two
parameters of the reversible jump Markov chains. Section 5
compares the performance of each estimator on six repre-
sentative case studies. The impact of the bias in the target
site index flood estimation is analyzed in section 6, while
suggestions for building efficient pooling groups are pre-
sented in section 7. Finally, some conclusions are drawn in
section 8.

2. Methodology

[11] In the Bayesian framework, the posterior distribution
of parameters must be known to derive quantile estimates.
The posterior distribution p(qjx) is given by the Bayes
Theorem [Bayes, 1763]:

p q xjð Þ ¼ p qð Þp x; qð ÞR
Q p qð Þp x; qð Þdq

/ p qð Þp x; qð Þ ð2Þ

where q is the vector of parameters of the distribution to be
fitted, Q is the parameter space. p(x; q) is the likelihood
function, x is the vector of observations, and p(q) is the
prior distribution.
[12] In this study, as excesses over a high threshold are of

interest, the likelihood function p(x; q) is related to the GPD
(see equation (1)).

2.1. Prior Distribution

[13] In this section, the methodology to elicit the prior
distribution is presented. In this study, regional information
is used to define the prior distribution. Furthermore, the
prior is specific as it must account for a fixed shape
parameter xFix with a non-null probability px. Let Q0 be
a sub-space of the parameter space Q of q. More precisely,
Q0 = {q 2 Q: x = xFix}. px is a hyper-parameter of the prior
distribution. The approach is to construct a suitable prior
distribution on Q; then, for px fixed, to modify this prior to
account for the probability of Q0.
[14] For clarity purposes, the prior distribution is defined

in two steps. First, an initial prior distribution pin(q) defined
on Q is introduced. Second, a revised prior distribution p(q)
is derived from pin(q) to attribute a non-null probability to
the Q0 sub-sample.
2.1.1. Initial Prior Distribution
[15] As the proposed model is fully parametric, the initial

prior distribution pin(q) is a multivariate distribution
entirely defined by its hyper-parameters. In our case study,
the initial prior distribution corresponds to the one
introduced by Ribatet et al. [2007]. Consequently, the
marginal prior distributions were supposed to be indepen-
dent lognormal for both location and scale parameters and
normal for the shape parameter. Thus,

pin qð Þ / J exp q 0 � gð ÞTS�1 q 0 � gð Þ
h i

ð3Þ

where g and S are hyper-parameters, q0 = (log m, log s, x),
and J is the Jacobian of the transformation from q0 to q,
namely J = 1/ms. g = (g1, g2, g3) is the mean vector, S is
the covariance matrix. As marginal priors are supposed to
be independent, S is a 3 
 3 diagonal matrix with diagonal
elements d1, d2, d3.
[16] Hyper-parameters are defined through the index

flood concept, that is, all distributions are identical up to
an at-site-dependent constant. Consider all sites of a region
except the target site, say the jth site. A set of pseudo target
site parameters can be computed:

~mi ¼ C jð Þm ið Þ
*

ð4Þ

~si ¼ C jð Þs ið Þ
*

ð5Þ

~xi ¼ x ið Þ
*

ð6Þ

for i 6¼ j, where C ( j) is the target site index flood, and m
*
(i),

s
*
(i), x

*
(i) are respectively the location, scale and shape at-site

parameter estimates from the rescaled sample, for example,
normalized by its respective index flood estimate. Under
the hypothesis of the index flood concept, pseudo-
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parameters are expected to be distributed as parameters of
the target site.
[17] Information from the target site sample cannot be used

to elicit the prior distribution. Thus C ( j) in equations (4) and
(5) must be estimated without use of the jth sample site.
[18] In this case study, C ( j) is estimated through a

Generalized Linear Model (GLM) defined by:

E logC jð Þ� �
¼ n; n ¼ Xb

Var logC jð Þ� �
¼ fV nð Þ

�
ð7Þ

where X are basin characteristics (possibly log transformed),
f is the dispersion parameter, V is the variance function, and
v is the linear predictor. McCullagh and Nelder [1989] give
a comprehensive introduction to GLM. Other alternatives
for modeling the target site index flood can be considered
such as Generalized Additive Models [Wood and Augustin,
2002], Neural Networks [Shu and Burn, 2004], or Kriging
[Merz and Blöschl, 2005]. However, the variance of C ( j)

should be estimated. Indeed, as C ( j) is estimated without
use of the target site data, uncertainties due to this
estimation must be incorporated in the prior distribution.
[19] From these pseudo parameters, hyper-parameters can

be computed:

g1 ¼
1

N � 1

X
i 6¼j

log ~m ið Þ; d1 ¼
1

N � 1

X
i 6¼j

Var log ~m ið Þ
h i

ð8Þ

g2 ¼
1

N � 1

X
i 6¼j

log ~s ið Þ; d2 ¼
1

N � 1

X
i 6¼j

Var log ~s ið Þ
h i

ð9Þ

g3 ¼
1

N � 1

X
i 6¼j

~x ið Þ; d3 ¼
1

N � 2

X
i 6¼j

~x ið Þ � g3

 �2

ð10Þ

Under the independence assumption between C ( j ) and m
*
(i),

s
*
(i), the following relations hold:

Var log ~m ið Þ
h i

¼ Var logC jð Þ
h i

þ Var logm ið Þ
*

h i
ð11Þ

Var log ~s ið Þ
h i

¼ Var logC jð Þ
h i

þ Var logs ið Þ
*

h i
ð12Þ

The independence assumption is not too restrictive as the
target site index flood is estimated independently from m

*
(i),

s
*
(i).
[20] Note that Var[log �

*
(i)] are estimated thanks to Fisher

information and the delta method. Estimation of Var[log
C ( j)] is a special case and depends on the method for
estimating the at-site index flood. Nevertheless, it is always
possible to carry out an estimation of this variance, at least
through standard errors.
2.1.2. Revised Prior Distribution
[21] The initial prior distribution pin(q) gives a null

probability to the sub-sample Q0. Thus, from this initial
prior pin(q), a revised prior p(q) is constructed to attribute a

non-null probability to the Q0 sub-sample. According to
Stephenson and Tawn [2004], p(q) is defined as:

p qð Þ ¼ 1� px
� 

pin qð Þ for q 2 QnQ0

pxpxFix qð Þ for q 2 Q0:

�
ð13Þ

where px 2 [0, 1] and with

pxFix qð Þ ¼ pin m;s; xFixð ÞR
m;s pin m;s; xFixð Þdmds ð14Þ

for q 2 Q0. The integral in equation (2) can be easily
evaluated by standard numerical integration methods.
[22] By construction, the new prior distribution p(q) gives

the required probability to the sub-space Q0. Stephenson
and Tawn [2004] have already applied formulations (13)
and (14) with success for sea level maxima and rainfall
threshold exceedences.

2.2. Posterior Estimation

[23] As it is often the case in Bayesian analysis, the
integral in equation (2) is insolvable analytically. MCMC
techniques are used to overcome this problem. Yet, due to
the duality of p(q) distribution, standard Metropolis-
Hastings [Hastings, 1970] within Gibbs [Geman and
Geman, 1984] methods are not sufficient. Reversible jump
techniques [Green, 1995] are used to allow moves from the
two-dimensional space Q0 to the three-dimensional space
Q\Q0 and vice versa.
[24] The classical Bayesian analysis, on Q\Q0, is

performed with Gibbs cycle over each component of q
using Metropolis-Hastings updates, with random walk
proposals [Coles and Tawn, 1996].
[25] Stephenson and Tawn [2004] extended this algorithm

to incorporate the mass on the Gumbel/Exponential case.
However, as our approach does not only focus on the
xFix = 0 case, a new algorithm must be implemented. To help
understand the algorithmic developments, some details
about the classical Metropolis-Hastings algorithm and the
reversible jump case are reported in Appendix A.
[26] The proposed algorithm must deal with two-

dimensional changes: a change to Q0 from Q\Q0 space
and vice versa. These two types of special moves must be
defined cautiously. As inspired by Stephenson and Tawn
[2004], quantiles associated to a non-exceedence probability
p are set to be equal at current state qt and proposal qprop, p
being fixed.
[27] For a proposal move to Q\Q0 from Q0, i.e., xt = xFix

and a proposal shape xprop 6¼ xFix, the candidate move is to
change qt = (mt, st, xt) to qprop = (mprop, sprop, xprop) where

mprop ¼ mt ð15aÞ

sprop ¼ st

xprop y�xt � 1
� 

xt y�xprop � 1
�  ð15bÞ

xprop � N ~x; s2x

 �

ð15cÞ

where y = 1 � p, p being fixed, ~x is taken to be the mode
of the marginal distribution for x when there is no mass on
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Q0 [Stephenson and Tawn, 2004], and sx is the standard
deviation selected to give good mixing properties to the
chain. As it is usually the case with Metropolis-Hastings
updates, this move is accepted with probability min(1, D)
with

D ¼
p mprop;sprop; xprop xj

 �
p mt ;st; xFix xjð Þ

px

1� px
f xprop; ~x; s

2
x


 �
JxFix xprop
� h i�1

ð16Þ

where f(�; m, s2) denotes the density function of the normal
distribution with mean m and variance s2, and JxFix is the
Jacobian of the parameter transformation for quantile
matching, that is:

JxFix xð Þ ¼ xFix
x

y�x � 1

y�xFix � 1
ð17Þ

If the move is accepted, then qt+1 = (mprop, sprop, xprop),
else qt+1 = qt.
[28] For a proposal move to Q0 from Q\Q0, i.e., xt 6¼ xFix

and a proposal shape xprop = xFix, the proposal is to change
qt = (mt, st, xt) to qprop = (mprop, sprop, xprop) where

mprop ¼ mt ð18aÞ

sprop ¼ st

xprop y�xt � 1
� 

xt y�xprop � 1
�  ð18bÞ

xprop ¼ xFix ð18cÞ

This move is accepted with probability min (1, D) where

D ¼
p mprop;sprop; xFixjx

 �

p mt;st ; xt xjð Þ
1� px

px
f xt; ~x; s

2
x


 �
JxFix xtð Þ ð19Þ

If the move is accepted, then qt+1 = (mprop,sprop, xprop) else
qt+1 = qt.
[29] Obviously, special moves introduced in this study are

not the only conceivable ones. Other reversible jumps can
be explored, see for example the study of Stephenson and
Tawn [2004]. However, for this application, the proposed
moves seem to be particularly well suited. Indeed, a
preliminary study shows that the location parameter was
well estimated by a regional Bayesian approach. Thus a
special move which only affects the shape and scale
parameters should be consistent.

3. Generation Procedure

[30] In this section, the procedure implemented to gen-
erate stochastic homogeneous regions is described. The idea
consists in generating sample points in a neighborhood of
the L-moment space (Mean, L-CV, L-Skewness). The gen-
eration procedure can be summarized as follows:
[31] (1) Set the center of the neighborhood (l1,R, tR, t3,R)

or equivalently parameters of the regional distribution (mR,
sR, xR);
[32] (2) Generate N points (l1,i, ti, t3,i) uniformly in the

sphere B((l1,R, tR, t3,R); e);

[33] (3) Generate N index floods C using the scaling
model parametrization:

C ¼ aAreab ð20Þ

Catchment areas are defined as realizations of a lognormal
random variable.
[34] (4) For each (l1,i, ti, t3,i), compute adimensional

parameters by:

x*i ¼
3t3;i � 1

1þ t3;i
ð21aÞ

s*i ¼ x*i � 1

 �

x*i � 2

 �

l1;iti ð21bÞ

m*i ¼ l1;i �
s*i

1� x*i
ð21cÞ

[35] (5) Then, compute at-site parameters from:

xi ¼ x*i ð22aÞ

si ¼ Cis*i ð22bÞ

mi ¼ Cim*i ð22cÞ

[36] (6) Simulate samples from a GPD with parameters
(mi, si, xi).
[37] As a GLM is used to elicit the prior distribution, the

scaling model (20) must be altered to avoid giving an
advantage to the Bayesian approaches over the index flood
model. For this purpose, a noise in relation (20) at step 3 is
introduced. Thus areas are altered by adding uniform
random variables varying in (�0.5 
 Area, 0.5 
 Area).
[38] This distortion is necessary to ensure that the regres-

sive model is not too competitive and is consistent with
observations. Indeed, large deviations to the area-index
flood relationship are often encountered in practice. In the
following applications, a = 0.12, b = 1.01 and Area �

Figure 1. Histogram of the coefficient of determination
for the regressive model (7). Application of section 5.
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LN(4.8, 1). These values arise from a previous study on a
French data set [Ribatet et al., 2007] and ensure realistic
magnitudes. For the application of section 5, the coefficients
of determination for the regressive model (7) vary from 0.20
to 0.99, with a mean value of 0.89. The histogram of these
coefficients of determination is presented in Figure 1. The
radius e in the generation algorithm is set to 0.04. This value
is chosen to reflect variability met in practice while
preserving a low dispersion around the regional distribution.
The e value primarily impacts the proportions of regions

satisfying H1 < 1. For specific applications, regions with a
heterogeneity statistic H1 such as H1 > 1 may be discarded.

4. Sensitivity Analysis

[39] In this section, a sensitivity analysis for the algorithm
introduced in section 2.2 is carried out. The primary goal is
to check if results are not too impacted by the choice of the
two user-selectable parameters px and xFix. For this purpose,
the effect of both px and xFix values on estimates and

Figure 2. Effect of px value on quantile estimation with non-exceedence probabilities 0.75, 0.95 and
0.995. Sample size 10. xFix = 0.26.

Figure 3. Effect of px value on 90% posterior credibility interval. Sample size 10.
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credibility intervals is examined. For this sensitivity
analysis, the parameter vector of the regional distribution
is set to (0.64, 0.48, 0.26). The regions have 20 sites with
a sample size of 70. For the whole sensitivity analysis,
10,000 regions were generated. The target site has a
sample size of 10. We concentrate on estimates at sites
with very few data, to exhibit the main differences in the
most restricting configuration. Other configurations were
found to demonstrate features similar to Figure 2 and
Figure 4.

4.1. Effect of Px

[40] The evolution of the normalized biases (expressed
in percent) for return levels with non-exceedence proba-
bilities 0.75, 0.95, and 0.995 associated to several px values
are depicted in Figure 2. Each boxplot is obtained from at-
site estimates computed on more than 365 stochastic
homogeneous regions. The case px = 0 corresponds to a
classical Bayesian approach free from any point mass. In
addition, to analyze only the effect of the parameter px, xFix
is temporarily fixed to the theoretical regional shape
parameter.
[41] From Figure 2, the quantile estimates distribution

seems to be stationary, provided that px > 0. Introducing a
point mass does not impact Q0.75 estimates, whereas

significant reduction in median biases and scatter of
estimates is noticeable for more extremal quantiles.
[42] Figure 3 shows the posterior distributions of return

levels and 90% posterior credibility intervals for several px
values.
[43] It is clear that credibility intervals are sensitive to the

px value. This result is consistent as more and more
proposals in the MCMC simulation belong to Q0 as px
increases. Thus, by construction, the Markov chain is less
variable. As denoted by Stephenson and Tawn [2004], the
special case px = 1 is particular as uncertainty in the shape
parameter is not considered. In that case, credibility
intervals could be falsely narrow.

4.2. Effect of xFix
[44] It is important to analyze the influence of the choice

of xFix on the simulated Markov chains and thus its impact
on estimations. Indeed, when specifying an unreasonable
xFix value, the estimations must not differ significantly from
the conventional Bayesian ones. For this purpose, Table 1
displays the posterior proportions of events {q 2 Q0} for
several xFix and px values. This table is obtained with a
target site sample size of 60. For each specified xFix value,
two features are computed to measure the relevance of the
xFix value: (a) RShape the ratio of xFix to the true shape
parameter and (b) DShape the ratio of the marginal posterior
density from a conventional Bayesian analysis evaluated in
xFix and ~x.
[45] RShape characterizes how much the point mass differs

from the true value. DShape quantifies the distance of xFix
from the estimator of the shape parameter proposed by
Ribatet et al. [2007]. Thus, from these two statistics,
consistency of the posterior proportions with deviations
from theoretical and empirical values can be analyzed.
[46] The results in Table 1 show that values of xFix that

are not consistent with the data imply low proportions of
state in Q0. Thus, for such values, the proposed model is
quite similar to a conventional Bayesian analysis. However,
for two different values of xFix (RShape equal to 0.83 and 1),
the posterior proportions are quite equivalent. This empha-

Table 1. Posterior Proportions (in Percent) of Events {q 2 Q0}

for Different Values of px and xFix
a

xFix Features px Values

RShape DShape 1/8 1/6 1/4 1/3 1/2 2/3

�0.50 2e�5 0.00 0.03 0.00 0.00 0.05 0.00
0.00 0.06 10.07 14.55 17.27 21.99 41.53 61.84
0.50 0.70 38.88 46.94 59.96 67.42 81.88 92.17
0.83 1.00 46.21 57.33 67.53 76.08 85.33 92.20
1.00 0.87 48.24 55.14 68.90 76.16 86.05 91.85
1.50 0.41 32.72 45.61 54.62 66.18 82.11 89.90
2.00 0.10 22.95 22.83 35.06 49.82 57.86 81.92
2.50 0.01 13.93 7.04 9.86 36.21 38.89 42.28

aTarget sample size 60.

Figure 4. Posterior marginal density for the shape parameter.
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sizes the large uncertainty on the shape parameter esti-
mation for small sample sizes. Uncertainty on the shape
parameter estimation is also corroborated by the posterior
marginal distribution of a conventional Bayesian analysis
(see Figure 4).
[47] As noticed above, these results are obtained with a

target site sample size of 60. This particular sample size was
selected as it is the most illustrative case. However, the
posterior proportions are quite similar when dealing with
other target site sample sizes, even for very small sample
sizes, this is less noticeable.

5. Simulation Study

[48] In this section, performance of three different esti-
mators is analyzed: a conventional Bayesian estimator
(BAY) introduced by Ribatet et al. [2007], the proposed
estimator based on reversible jumps (REV), and the index
flood estimator (IFL). In particular, the BAY estimator is
related to the initial prior distribution defined in section
2.1.1. Thus the BAY estimator is identical to the REV
approach with px = 0.
[49] For the proposed estimator, the point Mass probabil-

ity px was set to be a function of the H1 statistic of Hosking
and Wallis [1997]; that is:

px ¼
exp �H1ð Þ

1þ exp �H1ð Þ ð23Þ

[50] For this parametrization, necessary requirements are
satisfied; that is, px! 0 when H1! +1 and px! 1 when
H1 = �1. Moreover, for H1 = 0, px = 0.5 which corre-
sponds to the estimator introduced by Stephenson and Tawn
[2004]. Note that px in equation (23) is defined with the
negative inverse of the so-called so called logit function.
[51] Thus, for this choice, as underlined by the sensitivity

analysis, credibility intervals are related to the degree of
confidence of the point mass xFix to be the true shape
parameter and implicitly to the level of homogeneity of the
regions.
[52] In addition, the non-exceedence probability p used

for quantiles matching in our algorithm (see section 2.2) is
equal to 1 � 1/2n, where n is the target site sample size.
This last point guarantees that quantiles associated with
non-exceedence probability 1 � 1/2n for both proposal and
current state of the Markov chain are identical. Other
choices for p are arguable. Here we introduce a quantile
matching equation for a value closely related to the scale
parameter and for which uncertainties are not too large.
[53] The analysis was performed on six different case

studies summarized in Table 2. The configurations differ
by the way information is distributed in space; that is,

(a) ‘‘small regions’’ with well-instrumented but few sites
(Conf1 and Conf4); (b) ‘‘large regions’’ with less instru-
mented and numerous sites (Conf2 and Conf5); and
(c) ‘‘medium regions’’ with well-instrumented sites and
an intermediate number of gauging stations. Conf1 (resp.
Conf2, Conf3) correspond to Conf4 (resp. Conf5, Conf6)
apart from the (mR, sR, xR) values. The target site sample
size takes the values in 10, 25, and 40. 1000 Regions were
generated for each configuration. Markov chains with a

Table 2. Characteristics of the Sixth Case Studiesa

(mR, sR, xR) NSite (nSite, nSize) NEvents

Conf1 (0.64, 0.48, 0.26) 10 (9, 50) 450
Conf2 (0.64, 0.48, 0.26) 20 (9, 30) 
 (10, 18) 450
Conf3 (0.64, 0.48, 0.26) 15 (14, 50) 700
Conf4 (0.66, 0.48, 0.08) 10 (9, 50) 450
Conf5 (0.66, 0.48, 0.08) 20 (9, 30) 
 (10, 18) 450
Conf6 (0.66, 0.48, 0.08) 15 (14, 50) 700

aThe target site is omitted in the couple (nSite, nSize) and has a sample size
of 10, 25, and 40.

Table 3. Performance of BAY and IFL Estimators for Quantile

Q0.75, Q0.95, and Q0.995
a

Model

Q0.75 Q0.95 Q0.995

NBIAS SD NMSE NBIAS SD NMSE NBIAS SD NMSE

Conf1
BAY 0.015 0.123 0.015 0.001 0.187 0.035 �0.006 0.318 0.101
IFL 0.037 0.189 0.037 0.025 0.195 0.038 �0.004 0.230 0.053

Conf2
BAY 0.019 0.122 0.015 0.030 0.249 0.063 0.110 0.561 0.326
IFL 0.041 0.183 0.035 0.025 0.191 0.037 �0.022 0.221 0.049

Conf3
BAY 0.019 0.110 0.012 0.006 0.174 0.030 �0.003 0.292 0.085
IFL 0.035 0.188 0.037 0.025 0.195 0.039 �0.002 0.222 0.049

Conf4
BAY 0.009 0.104 0.011 �0.007 0.149 0.022 �0.021 0.233 0.054
IFL 0.023 0.157 0.025 0.022 0.163 0.027 0.022 0.192 0.037

Conf5
BAY 0.018 0.109 0.012 0.012 0.193 0.037 0.033 0.378 0.144
IFL 0.036 0.168 0.029 0.033 0.173 0.031 0.024 0.197 0.039

Conf6
BAY 0.024 0.103 0.011 0.001 0.151 0.023 �0.038 0.222 0.050
IFL 0.028 0.168 0.029 0.028 0.177 0.032 0.028 0.202 0.042

aTarget site sample size: 10.

Table 4. Performance of BAY and REV Estimators for Quantile

Q0.75, Q0.95, and Q0.995
a

Model

Q0.75 Q0.95 Q0.995

NBIAS SD NMSE NBIAS SD NMSE NBIAS SD NMSE

Conf1
BAY 0.015 0.123 0.015 0.001 0.187 0.035 �0.006 0.318 0.101
REV 0.011 0.119 0.014 �0.012 0.159 0.026 �0.046 0.213 0.047

Conf2
BAY 0.019 0.122 0.015 0.030 0.249 0.063 0.110 0.561 0.326
REV 0.005 0.105 0.011 �0.026 0.154 0.024 �0.066 0.269 0.077

Conf3
BAY 0.019 0.110 0.012 0.006 0.174 0.030 �0.003 0.292 0.085
REV 0.014 0.103 0.011 �0.008 0.139 0.019 �0.042 0.185 0.036

Conf4
BAY 0.009 0.104 0.011 �0.007 0.149 0.022 �0.021 0.233 0.054
REV 0.010 0.102 0.011 0.002 0.136 0.018 �0.001 0.182 0.033

Conf5
BAY 0.018 0.109 0.012 0.012 0.193 0.037 0.033 0.378 0.144
REV 0.013 0.097 0.010 0.000 0.126 0.016 �0.014 0.171 0.030

Conf6
BAY 0.024 0.103 0.011 0.001 0.151 0.023 �0.038 0.222 0.050
REV 0.031 0.099 0.011 0.033 0.133 0.019 0.034 0.174 0.032

aTarget site sample size: 10.
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length of 15,000 were generated. To ensure good mixing
properties for all simulated Markov chains, an automated
trial and error process was used to define proposal standard
deviations of the MCMC algorithm. Furthermore, the first
2000 iterations were discarded to ensure that the equili-
brium was reached.
[54] The performance of each estimator is assessed

through the three following statistics:

NBIAS ¼ 1

k

Xk
i¼1

Q̂i � Qi

Qi

ð24Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k � 1

Xk
i¼1

Q̂i � Qi

Qi

� NBIAS

 !2
vuut ð25Þ

NMSE ¼ 1

k

Xk
i¼1

Q̂i � Qi

Qi

 !2

ð26Þ

where Q̂i is the estimate of the theoretical value Qi, and k is
the total number of theoretical values.

5.1. BAY vs. IFL Approach

[55] Table 3 shows that, for a small target site sample size
and quantiles Q0.75 and Q0.95, the BAY approach is more

competitive than the IFL one. Indeed, the three BAY
statistics (NBIAS, SD, NMSE) are smaller than the ones
related to IFL. However, for Conf2 and Conf5, IFL Q0.95

estimates are more competitive. These two case studies
correspond to the same configuration, i.e., numerous sites
with short records. IFL estimates for Q0.995 are always more
accurate than BAY for all configurations.
[56] These results indicate that the relative performance

of BAY compared to IFL depends on the pooling group.
Thus, for the BAYapproach and quantiles Q0.75 and Q0.95, it
seems preferable to work with less gauging stations but
which have larger data series, independently of the target
site sample size. The sensitivity to the configuration of the
sites and the availability of long time series is a drawback
for the application of this Bayesian approach.
[57] These conclusions obtained on stochastic regions are

in line with a previous analysis on a French data set [Ribatet
et al., 2007]. The BAY approach is suited to work with
‘‘small’’ or ‘‘medium’’ regions and well-instrumented
gauging stations. In addition, this approach is accurate for
‘‘reasonable’’ quantile estimation (see the bad performance
of BAY for Q0.995 in Table 3).
[58] However, the white noise introduced in the genera-

tion procedure is independent of the target site sample size.
It only regards both Bayesian approaches. Thus the perfor-
mance of the BAY estimator for large sample sizes may be
too impacted. Indeed, while the IFL estimation procedure is

Figure 5. Evolution of the NMSE for quantile Q0.75 in function of the region configuration. Target site
sample size: (a) 10, (b) 25, and (c) 40.
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not altered, both Bayesian approaches must deal with
artificially generated biases.
[59] The main idea for the REV approach is to combine

the good performance of the BAY estimator for ‘‘reason-
able’’ quantiles and the efficiency of the IFL approach for
larger quantiles.

5.2. BAY vs. REV Approach

[60] The comparison of the two Bayesian estimators is
summarized in Table 4. REV leads to more accurate
estimated quantiles, in particular for Q0.95 and Q0.995. This
last point confirms the benefits of using a regional shape
parameter through a reversible jump approach.
[61] By construction of the algorithm described in

section 2.2, Markov chains generated from the REV app-
roach are less variable than the ones generated from the
BAY model. Thus REV is associated to smaller standard
deviation than BAY whatever the configuration is (Table 4).
Moreover, if the regional fixed shape parameter xFix is suited,
REV should have the same biases than BAY. Thereby, the
REV estimator always leads to a smaller NMSE.

5.3. Global Comparison

[62] Figures 5, 6 and 7 illustrate the results for different
target site sample sizes and regions. We concentrate on the
NMSE criteria since it measures variation of the estimator
around the true parameter value.
[63] From Figure 5, it is clear that Bayesian estimations,

i.e., BAY and REV, of Q0.75 are more accurate, specially for
a target site sample size of 10. For larger target site sample

sizes, Bayesian approaches are always more competitive
than the IFL estimator, even if this is less clear-cut on the
graphs. Furthermore, BAY and REV estimators often have
the same performance. This result is logical as the Q0.75

value is mostly impacted by the location parameter m. Thus
reversible jumps do not have a significant result on REV
Q0.75 estimation.
[64] The plots in Figure 6 and those displayed in Figure 5

are quite different. For a target site sample size of 10, both
Bayesian approaches are the most accurate (except for BAY
applied on Conf2 and Conf5), and the REV estimator leads
always to the smallest NMSE. Thus REV is the most
competitive model. For larger target site sample sizes,
REV is at least as accurate as IFL, except for Conf2.
[65] For Q0.995 and a target site sample size of 10, REV is

the most accurate model, except for Conf2. As the target site
sample size increases, the IFL approach becomes more
efficient. However, for these cases, NMSE for the REV
estimator are often close to the IFL ones. Although the BAY
approach performs poorly for Q0.995, its NMSE for Conf6 is
close to the REV and IFL ones.
[66] In conclusion, these results illustrate the good overall

performance of the REV model. Indeed, this approach
benefits from the efficiency of the BAY estimator for
quantiles with small non-exceedence probabilities while
being as competitive as the IFL approach for larger non-
exceedence probabilities.
[67] However, the Bayesian approaches outperform the

index flood model, but differences in accuracy seem to be

Figure 6. Evolution of the NMSE for quantile Q0.95 in function of the region configuration. Target site
sample size: (a) 10, (b) 25, and (c) 40.
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less and less significant as the sample site increases. This
may be related to the white noise introduced in the gener-
ation procedure. Indeed, this white noise is independent of
the target site sample size and may strongly penalize the
performances of the both Bayesian approaches. The next
section tries to outline the effect of the target site index
flood estimation error to the quantile estimates.

6. Effect of Bias on the Target Site Index Flood
Estimation

[68] According to the model being considered, two types
of biases are encountered for the target site index flood
estimation. Indeed, on one hand, the index flood for the IFL
model is derived from the target site sample. On the other
hand, for BAY and REV approaches, the index flood is
estimated from a scaling model. Thus biases on index flood
estimation are due to the relevance of this scaling model but
also to the index flood error estimation for the other sites
within the region.
[69] To illustrate these two types of biases, the normal-

ized bias on target site index flood estimation is computed
as follows:

Bias Cð Þ ¼ Ĉ � C

C
ð27Þ

where C is the target site index flood, and Ĉ is an estimate
of C. Figure 8 depicts changes in NBIAS for quantile Q0.95

in function of Bias(C). As normalized biases are considered,
statistics for the six configurations are plotted in the same
graphic. Solid lines correspond to local polynomial
regression fits to help underline trends.
[70] Scatterplots in Figure 8 show clearly these two types

of biases. Indeed, on one hand, the range of Bias(C) is not
the same for IFL than for BAY and REV, particularly for a
target site sample size of 25 and 40. On the other hand, for
the BAY and REV approaches, biases on index flood
estimation are independent of the target site sample size;
while this is not the case for IFL. This last point is also
illustrated as the bias ranges for the Bayesian approaches
remain the same for all target site sample size. Thus, for
large sample size, efficiency of the Bayesian estimators may
be too much impacted as the artificial bias introduced in the
generation procedure is too penalizing.
[71] The Bayesian approaches do not have the same

behaviour as the IFL model. In particular, BAY and REV
seem to be less sensitive to a large bias in target site index
flood estimation. NBIAS for the IFL model are clearly linear
with a response y = x. This last point is an expected result.
Indeed, apart from sampling variability, if a unique regional
distribution exists, quantile IFL estimate biases are only
induced by biases on target site index flood estimates. Thus
the relevance of the generation procedure is corroborated.

Figure 7. Evolution of the NMSE for quantile Q0.995 in function of the region configuration. Target site
sample size: (a) 10, (b) 25, and (c) 40.
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[72] The main difference between the BAY and REV
estimators is the dispersion around local smoothers. Indeed,
REV has a smaller range while preserving the same robust-
ness to the bias on target site index flood estimation.
[73] These results and conclusions are independent of

the target site index flood estimation procedure. However,
the performance of the two Bayesian estimators is related
to the bias and variance of the target site index flood
estimate. Thus, for similar variance, these results should
be identical if general autoregressive modelings General-
ized Additive Models (GAMs) or Kriging were used.

7. Suggestions for Region Configuration

[74] This section attempts to present some suggestions for
building suitable pooling groups according to the consid-
ered estimator. Hosking and Wallis [1997] already advice
not to build regions greater than 20 sites because of the
small gain affected with additional stations. However, they
only focus on the IFL methodology. We attempt to do the
same for the two Bayesian estimators considered in this
study. For this purpose, Tables 5, 6, and 7 include the
NMSE and the related standard errors for each configuration
and target site sample size.
[75] From Table 5, the IFL estimator seems to have the

same performance level independently of the configuration.
This result points out that the information is not used

optimally as regions with the most information (i.e., Conf3
and Conf6) do not always lead to better estimations. This
last point corroborates a previous comments of Ribatet et al.
[2007].
[76] Table 6 shows that the BAY estimator is more

accurate with ‘‘medium’’ regions, i.e., Conf3 and Conf6.
However, results for ‘‘small’’ regions, i.e., Conf1 and
Conf4, are often close to the best ones, especially for a
light tail. Thus it is preferable to work with well-instru-
mented sites, i.e., Conf1, Conf3, Conf4, and Conf6.
[77] Table 7 shows that the REV estimator more efficient

with ‘‘medium’’ regions, i.e., Conf3 and Conf6. In addition,
it seems to be more accurate with few but well-instrumented
gauging stations rather more but less instrumented ones.
Nevertheless, for a light tail, all configurations seems to lead
to similar performance levels.
[78] Tables 5, 6, and 7 show that the estimation of Q0.75 is

independent of the region configuration for all estimators.
Thus it seems that the regional information is not relevant
for quantiles with small non-exceedence probabilities.

8. Conclusions

[79] This article introduced a new Bayesian estimator
which uses regional information in an innovative way.
The proposed model accounts for a fixed regional shape
parameter with a non-null probability. Thus, as in the study

Figure 8. Evolution of NBIAS for Q0.95 in function of the normalized bias on target site index flood
estimation (Bias(C)). Target site sample size: (a) 10, (b) 25, and (c) 40. Solid green lines: local smoothers,
black dashed lines: y = x.
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of Ribatet et al. [2007], the regional information is still used
to elicit the prior distribution. However, the prior distribu-
tion is now a mixture of a GEV/GPD and a GEV/GPD with
only two parameters; the remaining one corresponds to the
fixed regional shape parameter.
[80] The estimation procedure is achieved using revers-

ible jump Markov chains [Green, 1995]; and theoretical
details for simulated suited Markov chains were presented.
A sensitivity analysis for the proposed algorithm was
performed. The results showed that the estimates are
consistent provided that the probability attributed to the
fixed regional shape parameter is positive. In addition, as
noticed by Stephenson and Tawn [2004], the credibility
intervals are sensitive to this probability value. Thus the
proposed estimator relates this probability value to the
homogeneity degree of the region, using the heterogeneity
statistic of Hosking and Wallis [1997]. Therefore, the
credibility intervals take into account the belief about the
fixed regional shape parameter to be the true value.
[81] A performance analysis was carried out on stochastic

data for three different estimators. For this purpose, another
algorithm which generates stochastic homogeneous regions
was implemented. The good overall performance of the
proposed estimator has been demonstrated. Indeed, on one

hand, this approach combines the accuracy of the regional
Bayesian approach of Ribatet et al. [2007] for quantiles
associated to small exceedence probabilities. On the other
hand, the duality of the prior distribution (and the fixed
regional shape parameter) allows the proposed estimator to
be at least as efficient as the index flood model. Thus this
new estimator seems very suited for regional estimation
when the target site is not well instrumented.
[82] Furthermore, the two Bayesian approaches consid-

ered here appear to be less sensitive to biases on target site
index flood estimation than the index flood estimator. Thus
the Bayesian approaches are more readily adaptable which
is a major advantage as errors on the index flood estimation
are often uncontrollable.
[83] As noticed by Ribatet et al. [2007], the index flood

model does not use information optimally. This point is
corroborated in this study as the model initiated by
Dalrymple [1960] is not inevitably more accurate as the
information within the pooling group increases. This is not
the case for the Bayesian approaches. In addition, they seem
to be more accurate when dealing with regions with well-
instrumented sites, particularly for large quantiles.
[84] All statistical analyses were carried out by the use of

the R Development Core Team [2006]. For this purpose, the

Table 5. Changes in NMSE for Q0.75, Q0.95, and Q0.995 in Function of the Region Configuration and the Target Site Sample Size for the

IFL Estimatora

Model

Heavy Tail Light Tail

Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

Target Site Sample Size 10
Q0.75 0.037 (3e � 3) 0.035 (3e � 3) 0.037 (3e � 3) 0.025 (2e � 3) 0.029 (2e � 3) 0.029 (3e � 3)
Q0.95 0.038 (3e � 3) 0.037 (3e � 3) 0.039 (3e � 3) 0.027 (4e � 3) 0.031 (2e � 3) 0.032 (3e � 3)
Q0.995 0.053 (4e � 3) 0.049 (3e � 3) 0.049 (4e � 3) 0.037 (2e � 3) 0.039 (3e � 3) 0.042 (4e � 3)

Target Site Sample Size 25
Q0.75 0.014 (8e � 4) 0.015 (1e � 3) 0.015 (1e � 3) 0.011 (7e � 4) 0.011 (7e � 4) 0.011 (7e � 4)
Q0.95 0.018 (1e � 3) 0.018 (1e � 3) 0.018 (1e � 3) 0.014 (9e � 4) 0.014 (9e � 4) 0.013 (9e � 4)
Q0.995 0.034 (2e � 3) 0.032 (2e � 3) 0.027 (2e � 3) 0.024 (2e � 3) 0.023 (2e � 3) 0.020 (1e � 3)

Target Site Sample Size 40
Q0.75 0.010 (6e � 4) 0.009 (6e � 4) 0.010 (6e � 4) 0.007 (4e � 4) 0.007 (4e � 4) 0.007 (5e � 4)
Q0.95 0.013 (8e � 4) 0.013 (8e � 4) 0.012 (8e � 4) 0.010 (6e � 4) 0.009 (5e � 4) 0.010 (6e � 4)
Q0.995 0.028 (2e � 3) 0.028 (2e � 3) 0.023 (2e � 3) 0.020 (1e � 3) 0.017 (1e � 3) 0.019 (1e � 3)

aRelated standard errors are displayed in brackets.

Table 6. Changes in NMSE for Q0.75, Q0.95, and Q0.995 in Function of the Region Configuration and the Target Site Sample Size for the

BAY Estimatora

Model

Heavy Tail Light Tail

Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

Target Site Sample Size 10
Q0.75 0.015 (1e � 3) 0.015 (1e � 3) 0.012 (8e � 4) 0.011 (6e � 4) 0.012 (9e � 4) 0.011 (9e � 4)
Q0.95 0.035 (2e � 3) 0.063 (4e � 3) 0.030 (2e � 4) 0.022 (1e � 3) 0.037 (3e � 3) 0.023 (2e � 3)
Q0.995 0.101 (1e � 2) 0.326 (3e � 2) 0.085 (6e � 3) 0.054 (5e � 3) 0.144 (1e � 2) 0.050 (3e � 3)

Target Site Sample Size 25
Q0.75 0.010 (6e � 4) 0.011 (7e � 4) 0.009 (5e � 4) 0.008 (5e � 4) 0.007 (4e � 4) 0.007 (5e � 4)
Q0.95 0.026 (2e � 3) 0.041 (3e � 3) 0.025 (1e � 3) 0.017 (1e � 3) 0.023 (1e � 3) 0.016 (9e � 4)
Q0.995 0.089 (8e � 3) 0.212 (2e � 2) 0.079 (4e � 3) 0.044 (3e � 3) 0.086 (6e � 3) 0.038 (2e � 3)

Target Site Sample Size 40
Q0.75 0.008 (5e � 4) 0.008 (5e � 4) 0.007 (4e � 4) 0.005 (3e � 4) 0.005 (3e � 4) 0.006 (4e � 4)
Q0.95 0.020 (1e � 3) 0.032 (2e � 3) 0.020 (1e � 3) 0.012 (8e � 4) 0.015 (9e � 4) 0.013 (8e � 4)
Q0.995 0.072 (5e � 3) 0.187 (2e � 2) 0.074 (5e � 3) 0.038 (3e � 3) 0.070 (6e � 3) 0.036 (2e � 3)

aRelated standard errors are displayed in brackets.
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algorithm presented in section 2.2 was incorporated in
the evdbayes packages [Stephenson and Ribatet, 2006]. The
algorithm for the generation procedure is available on
request from the author.

Appendix A: The Metropolis-Hastings Algorithm

[85] In this section, the Metropolis-Hastings algorithm is
presented. According to the results derived by Green
[1995], some details will be given to consider the reversible
jump case. The basic idea of the Metropolis-Hastings
algorithm is to obtain a Markov chain that converges to a
known stationary distribution. The strength of the Metro-
polis-Hasting approach is that the convergence is reached
whatever the initial state of the Markov chain is and that the
distributions could be known up to a constant.
[86] Let f denote the target distribution of interest. Most

often, in Bayesian inference, p will be the posterior
distribution for the parameters. Let q(� , x) be the proposal
distribution, that is, the proposal states will be sampled from
this proposal distribution given the current state xt. The
Metropolis-Hastings algorithm can be summarized as
follows:
[87] 1. Generate u from a uniform distribution on [0, 1]
[88] 2. Generate xprop from q(� , xt)
[89] 3. Dclass  

f xpropð Þ
f xtð Þ

q xt jxpropð Þ
q xpropjxtð Þ

[90] 4. if u < min(1, Dclass) then
[91] 5. xt+1  xprop
[92] 6. else
[93] 7. xt+1  xt
[94] 8. endif
[95] 9. Go to 1.
[96] The initial Metropolis-Hastings algorithm cannot

account for dimensional switch. For this purpose, the
‘‘jumps’’ between sub-spaces must be defined (see
equations (15a), (15b), and (15c) and (18a), (18b), and
(18c)), and the quantity Dclass must be redefined each time
a jump is considered. Here only a simple case of the
reversible jumps approach is considered (see section 3.3 of
Green, 1995). If only two moves m1(xt) and m2(xt) can occur
with probabilities p1 and p2, respectively, then the quantity

Dclass must be replaced by Drev. Consequently, for a
proposal move of type m1:

Drev ¼ Dclass

p1

p2
J1 ðA1Þ

where J1 is the Jacobian of the transformation xt 7! m1(xt).
If the proposal move is of type m2, then

Drev ¼ Dclass

p2

p1
J2 ðA2Þ

where J2 is the Jacobian of the transformation xt 7! m2(xt).
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Q0.995 0.047 (3e � 3) 0.077 (2e � 2) 0.036 (2e � 3) 0.033 (2e � 3) 0.030 (2e � 3) 0.032 (3e � 3)

Target Site Sample Size 25
Q0.75 0.009 (6e � 4) 0.009 (6e � 4) 0.008 (5e � 4) 0.008 (5e � 4) 0.006 (4e � 4) 0.007 (5e � 4)
Q0.95 0.019 (1e � 3) 0.020 (2e � 3) 0.016 (9e � 4) 0.014 (1e � 3) 0.014 (9e � 4) 0.014 (9e � 4)
Q0.995 0.040 (3e � 3) 0.061 (1e � 2) 0.031 (2e � 3) 0.026 (2e � 3) 0.032 (3e � 3) 0.024 (2e � 3)

Target Site Sample Size 40
Q0.75 0.008 (5e � 4) 0.007 (5e � 4) 0.006 (4e � 4) 0.005 (3e � 4) 0.005 (3e � 4) 0.006 (3e � 4)
Q0.95 0.015 (1e � 3) 0.016 (1e � 3) 0.012 (9e � 4) 0.010 (7e � 4) 0.010 (5e � 4) 0.011 (6e � 4)
Q0.995 0.034 (2e � 3) 0.055 (1e � 2) 0.027 (2e � 3) 0.022 (2e � 3) 0.023 (2e � 3) 0.021 (1e � 3)

aRelated standard errors are displayed in brackets.

W08403 RIBATET ET AL.: REVERSIBLE JUMP TECHNIQUES IN REGIONAL FLOOD FREQUENCY

13 of 14

W08403



Madsen, H., and D. Rosbjerg (1997), Generalized least squares and
empirical Bayes estimation in regional partial duration series index-
flood modeling, Water Resour. Res., 33(4), 771–781.

Martins, E., and J. Stedinger (2000), Generalized maximum-likelihood
generalized extreme-value quantile estimators for hydrologic data,
Water Resour. Res., 36(3), 737–744.

McCullagh, P., and J. A. Nelder (1989), Generalized Linear Models, CRC
Press, Boca Raton, FL.
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