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[1] This article presents a new approach to model yearly hydrographs with daily or
weekly streamflow measurements. The method considers yearly hydrographs as a sample
of functions to be modeled nonparametrically in a Bayesian setting. The functional data
analysis framework provides great flexibility to reproduce the features of yearly
hydrographs, while the Bayesian probabilistic model ensures statistical coherence between
the flood variables and the shapes of flood events. The proposed methodology is applied
to two samples of hydrographs from two watersheds in the province of Quebec.
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1. Introduction

[2] Statistical modeling of hydrographs is important for
many engineering purposes, in particular for energy plan-
ning and the design of power plants. Hydrographs are
studied in these decision-making contexts to ensure good
water management and human population safety. For ex-
ample, modeling of extreme hydrographs is necessary for
the construction of dams, which need to contain and
evacuate large quantities of water. In this context, synthetic
hydrographs, which preserve a realistic shape but simulta-
neously have extreme flood volumes and/or flood peaks, are
of interest for engineering planning. A good model to
simulate extreme hydrographs thus needs to reproduce
hydrographs with the aforementioned characteristics. In a
water management context, hydrograph modeling has to be
able to fulfill two main purposes. The first of these is to
obtain a reference hydrograph for a given river, while the
second consists in generating synthetic hydrographs that can
occur with a given probability. It is difficult to construct a
reference hydrograph since key features of different yearly
hydrographs for a given river will happen at different times
of the year and these features will often vary regarding their
shapes (see Figures 1 and 2). For the purpose of generating
hydrographs, a good model needs to be flexible enough to
encompass a large variety of shapes which can be encoun-
tered in practice, since water management decisions depend
heavily on these shapes. Several techniques have been set
forth to model and simulate hydrographs. Some of these
focus on flood events while others attempt to capture the
stochastic process, which governs water flow. The former
methods usually model flood variables statistically, con-
struct a design-flood hydrograph separately and combine
the two levels of modeling to simulate hydrographs. The
latter methods are based on a time series analysis and are

most often used to simulate a diversity of possible hydro-
graphs for a given time horizon.
[3] In the present paper, we propose a novel approach to

model yearly hydrographs. Our method considers yearly
hydrographs as a sample of functions to be modeled non-
parametrically in a Bayesian setting. As will be shown, this
functional data analysis framework offers the required
flexibility to reproduce the characteristics of yearly hydro-
graphs, but also provides a probabilistic model which
ensures coherence between the flood variables and the
shapes of flood events. Before exposing our new method-
ology, we will indicate the difficulties of conducting a
statistical analysis of hydrographs and present the solutions
that have been put forward in the literature.
[4] Figure 1 illustrates four yearly hydrographs with daily

measurements, while the same four yearly hydrographs with
weekly measurements are shown in Figure 2. All these
hydrographs come from the same basin in northern Quebec.
The first observation corresponds to the first measurement
taken at the beginning of January, while the last observation
corresponds to the last measurement at the end of Decem-
ber. The spring flood, mainly governed by snowmelting, is
present on each of the four hydrographs and starts roughly
around the 100th day of each year; autumn floods, governed
by heavy rainfall, are also present and occur roughly
between days 250 and 325. The four spring floods show a
wide variety of shapes, intensity and duration; the time at
which the flood peak happens, indicated by a vertical line,
also varies between the different years. These differences
are due to the climatic conditions and the amount of
accumulated snow which vary from one year to the next;
the presence of late spring liquid precipitations also affects
the spring flood events and might cause secondary peaks. It
is interesting to contrast the hydrographs of Figures 1 and 2
regarding some of their main characteristics. The hydro-
graphs of Figure 2, with weekly time increments, are
obviously smoother than the ones represented in Figure 1
(daily time increments), which causes the flood peaks to be
flatter in Figure 2, especially for the hydrograph illustrated
in Figure 2a. It is important to note that the main flood
structures in Figure 1 can also be seen in Figure 2, although
attenuated in certain cases. We thus see that complex
structures are present for hydrographs with both daily and
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weekly time increments. An adequate hydrograph model
therefore needs to capture these structures.
[5] Flood peak, flood volume and flood duration are

considered to be the main variables that summarize flood
events and they are usually studied statistically through
univariate or bivariate flood frequency analysis [Yue et al.,
1999; Javelle et al., 2002]. It is clear that studying the
statistical distributions of these three variables is of
major importance, but as pointed out by Yue et al. [2002],
it is not enough to fully describe flood events because of
the impact of their shapes in a water management situation.
The approach often adopted in practice is to do a flood
frequency analysis and proceed to calculate return periods
for the different flood variables. Separately, one of the
following construction methods is used to create a reference
flood hydrograph and it is then adjusted to have the
properties with the desired return periods.
[6] A comprehensive review of the different methods to

construct a design-flood hydrograph is given by Yue et al.
[2002] and the interested reader is referred to the article for
further details. Adopting the four categories listed by Yue
et al., the construction methods are the traditional unit
hydrograph (TUH) methods, the synthetic unit hydrograph
(SUH) methods, the typical hydrograph (TH) methods and
the statistical (S) methods. The TUH and SUH methods
are based on hydrological principles. The TUH methods
assume that the runoff response to rainfall is time invariant
and that this response is linear as a function of rainfall. The
SUH methods are based on empirical relationships that

appear to exist between the parameters of a unit hydrograph
and the physical characteristics of a drainage basin. A
substantial number of articles have been devoted to the
TUH methods [Sherman, 1932; Doodge, 1959; Chow,
1964; Chow et al., 1988; Pilgrim and Cordery, 1993; Yue
and Hashino, 2000] and will not be discussed further here;
the same applies to the SUH methods [Snyder, 1938; U.S.
Soil Conservation Service US-SCS, 1985]. In fact, these
approaches are not designed to produce realistic synthetic
hydrographs for basins in northern regions like Quebec
where major floods are not the result of rainfall but mainly
come from snowmelting at the onset of spring. It is
precisely for this reason that engineers in northern countries
have relied on the TH methods.
[7] The TH methods [Nezhikhovsky, 1971; Sokolov et al.,

1976] are widely used by practitioners. In this approach, a
typical flood hydrograph, usually the one with the highest
peak or the largest volume, is chosen from a river’s sample
of flood hydrographs. Each water flow value of the chosen
flood hydrograph is then multiplied by a constant in order to
get a flood peak and/or a flood volume corresponding to a
given return period. This method considers the flood of the
hydrograph as a function but it relies on a single historical
realization. Therefore it does not use all the information
available in the sample of historical flood hydrographs.
[8] The S methods, which include the approach put

forward by Yue et al. [2002], consist of modeling the shape
of each flood event by a probability density function,
usually a gamma or a beta distribution. Yue et al. pursue

Figure 1. Four yearly hydrographs with daily measurements. On each plot, the vertical line indicates
the day at which the annual peak occurred. (a) 1971 hydrograph; (b) 1982 hydrograph; (c) 1984
hydrograph; (d) 1986 hydrograph.
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this methodology further by studying shape variables of the
adjusted beta distributions to the flood hydrographs. The
shape variables, namely the shape mean and the shape
standard deviation, are then considered as independent
random variables and are each statistically modeled by a
lognormal distribution. This enables the authors to consider
return periods for the two shape variables. While incorpo-
rating a better probabilistic component to the problem by
modeling the shape of flood events by two variables which
are analyzed in a probabilistic framework, it seems to us that
it is necessary to go further by considering hydrographs and
their flood events as complex functions, and not restrict the
shape of a flood to a model containing only two parameters.
[9] Finally, modeling techniques based on time series are

mostly used to generate a wide range of hydrographs which
are considered to be statistically probable scenarios. Because
of the complexity of the underlying processes, the time
series models often need to include numerous parameters to
capture the observed statistical properties of hydrographs.
Periodic autoregressive moving average (PARMA) models
[Salas et al., 1980; Salas et al., 1982; Vecchia et al., 1983;
Rasmussen et al., 1996] or PARMAX models [Perreault
and Latraverse, 2001; Ouhib, 2005], which include explan-
atory variables, seem to be able to reproduce observed
properties of hydrographs. However, the period of these
models is usually taken to be the time increment of the
series, therefore leading to an excessively large number of
parameters for daily or weekly data. Furthermore, these
methods cannot simulate hydrographs with fixed flood

volumes and/or flood peaks because of their stochastic
nature.
[10] Statistical modeling of hydrographs is a complex

multivariate problem since the objective is to reproduce the
characteristics of a sample of functions. Yearly hydro-
graphs, and their flood events, constitute complex function-
al data and should therefore be analyzed statistically in a
functional data analysis framework [Ramsay and Silverman,
2005]. For instance, it should be clear that the flood events
illustrated in Figure 1 could not be reproduced by only one
beta or gamma distribution since these distributions are
unimodal functions. One could complexify the S methods
by using a mixture of probability distribution functions
[Titterington et al., 1985] but even this approach seems
unsatisfactory for the task at hand. Moreover, the S approach
lacks cohesion since the flood characteristics such as the
peak and volume are studied through flood frequency
analysis, while the flood event shapes are modeled sepa-
rately using a probability distribution function. The new
method proposed in this paper brings forward an integrated
approach in which hydrographs are modeled as functions in
a probabilistic framework. This ensures statistical coher-
ence between important characteristics of hydrographs, like
flood peaks and flood volumes, and the shapes of the
hydrographs.
[11] In the next section, the tools of functional data

analysis which we use in this study are put forward. We
first describe an approach based on landmark registration to
make the individual hydrographs of a given river similar on

Figure 2. Four yearly hydrographs with weekly measurements. On each plot, the vertical line indicates
the week at which the annual peak occurred. (a) 1971 hydrograph; (b) 1982 hydrograph; (c) 1984
hydrograph; (d) 1986 hydrograph.
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the time domain. We then set up a general nonparametric
regression framework based on regression spline functions;
this framework offers the modeling power and flexibility,
which are necessary to capture the different shapes of
hydrographs. The Bayesian probabilistic model is exposed
in section 3 and the methodology is applied to the data in
section 4.

2. Functional Data Analysis Context

[12] Functional data analysis is often concerned with
modeling longitudinal data, that is data formed by a
collection of repeated measurements of a response variable
on a certain experimental unit or individual. Longitudinal
data are frequently encountered in the life sciences where it
is often the case that a response variable is studied on
several individuals through time. Some examples are
growth curves, the effect of a treatment as a function of
time on patients, etc. In analogy with longitudinal data, we
consider each year as an experimental unit for which we
have repeated water flow measurements.
[13] We have, for each experimental unit i, the following

observations:

xi;1; yi;1
� �

; . . . ; xi; j; yi; j
� �

; . . . ; xi;ni ; yi;ni
� �

;

where xi, j can be an explanatory variable or the time at
which the response variable yi, j has been measured. We
assume that xi, j is a deterministic variable, while yi, j is the
random variable to be modeled. In our modeling context,
xi, j is the time at which the water flow yi,j is measured for
the year i; furthermore, we have xi, j = xj and ni = n for every
i since the measurements in our case are always taken at the
same time increments, either every day (n = 365) or every
week (n = 52). Our data for year i are therefore of the
following form:

x1; yi;1
� �

; . . . ; xj; yi;j
� �

; . . . ; xn; yi;n
� �

;

where i = 1,. . ., N and N represents the number of yearly
hydrographs in our sample.
[14] As will be seen in section 2.2, each observed yearly

hydrograph can be modeled with a nonparametric model.
This is not the course we pursue in the present paper
because we want to tackle another important issue, namely
to obtain a hydrograph which is representative of a sample
of hydrographs originating from a given river; in other
words, we seek to model the underlying average process of
a sample of hydrographs, which we refer to as a represen-
tative or reference hydrograph.

2.1. Landmark Registration

[15] The average of the four yearly hydrographs shown in
Figure 1 (daily flow) is given in Figure 3a, while Figure 3c
gives the average of the yearly hydrographs of Figure 2
(weekly flow). It is clear that the mean hydrographs do not
have flood events representative of those illustrated in
Figures 1 and 2. For most rivers in northern Quebec, the
average of observed hydrographs, whether for daily or
weekly measurements, cannot be used as a reference hydro-
graph. This average can be useful for volume analyses since
it is indicative of the mean water flow during a certain

period of the year, but it is not indicative of peak flows or of
flood events shapes.
[16] In order to model a reference hydrograph, we use

landmark registration which has been studied by Kneip and
Gasser [1988, 1992] in a statistical context. The key idea
behind registration is to transform the independent variable
x in the present context, in order to make the yearly
hydrographs similar on the domain of the transformed
variable. For our purposes, this comes down to performing
a time transformation such that the yearly hydrographs have
important features occurring at simultaneous times; for
example, it is possible to perform time registration which
makes all the flood peaks of the yearly hydrographs happen
at the same time of the year. Specifically, landmark regis-
tration consists in identifying salient features of a sample of
functions and using these landmarks to execute the regis-
tration. We want to go from the original time x to a
registered time t, and therefore from the observations (xj,
yi,j) to the registered observations (ti,j, yi,j), where ti,j = gi(xj)
and gi(�) is the registration function for year i. We note that
the registration function should, at least intuitively, contain
information on the climatic conditions of a given year i, a
possibility which we are currently studying.
[17] For the transformations to be one-to-one, the regis-

tration functions need to be monotonically increasing.
Furthermore, we constrain the functions to transform the
times at which important features happen to specified times.
We thus have a sequence of constraints of the following
form:

ti;n ¼ gi xnð Þ ¼ tn ; ð1Þ

where xv represents the time at which the landmark v
occurs for year i and tv is the specified time at which the
landmark v happens, for all years, in the transformed time
domain.
[18] The registration functions can be modeled by several

methods: a Taylor expansion approximation [Angers et al.,
2004], interpolating splines [Kneip and Gasser, 1992] or an
approach such as the one suggested by Ramsay and Li
[1998]. Here we consider each function to be made up of
linear parts Lp(x) and we then have

gi xð Þ ¼
XP
p¼1

Lp xð ÞIDp
xð Þ ¼

XP
p¼1

cp;0 þ cp;1x
� �

IDp
xð Þ; ð2Þ

where Dp is the domain for which the linear function Lp(x)
is nonzero, IDp

(x) = 1 for x 2 Dp and 0 otherwise, and P
represents the number of parts of the registration function.
This simple model possesses an exact solution when the
continuity of the registration function is imposed; it also
satisfies the monotonicity criterion as long as the landmarks
are events that occur in the same sequence every year.
Furthermore, this type of registration function generally
performs well for preserving flood event volumes [Merleau
et al., 2005].
[19] We will now illustrate the use of landmark registra-

tion to obtain a reference hydrograph for the hydrographs
shown in Figures 1 and 2. We choose the four following
events as landmarks: the first measurement of the year, the
peak of the spring flood, the peak of the fall flood and the
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last measurement of the year. We then have the following
constraints for the registration function of year i:

gi Lxð Þ ¼ Lx; gi xsð Þ ¼ ts; gi xfð Þ ¼ tf ; gi Uxð Þ ¼ Ux; ð3Þ

where Lx and Ux are, respectively, the lower and upper
bounds of the domain of x; xs and xf are the times, for year i,
at which the peak of the spring flood and the peak of the fall
flood, respectively, happened; and ts and tf are the
specified times at which the spring flood peak and the
fall flood peak are fixed to occur in the domain of the
synchronous time t. We fix ts and tf to be the median
values of the observed xs and xf. Figure 4a shows the
registration function for the yearly hydrograph given in
Figure 2b (weekly flow). Figure 4b illustrates the effect of
the registration function on the observed hydrograph. From
the constraints given in equation (3), the registration
function given in equation (2) is made up of three linear
parts. The slope of a given part, cp,1, determines if the
corresponding section of the hydrograph is stretched (cp,1 > 1)
or contracted (cp,1 < 1). In Figure 4, the middle section is
stretched, while the first and last sections are contracted.
[20] Figure 3b shows the average obtained after the

registration for the hydrographs of Figure 1 (daily flow),
and Figure 3d shows the average of the registered hydro-
graphs of Figure 2 (weekly flow). If we compare the
average registered hydrographs with their observed counter-
parts, it is clear that registration makes the average hydro-
graph more representative of a sample of hydrographs. The

spring floods in Figures 3b and 3d are much better defined
and closer to the observed ones than those illustrated in
Figures 3a and 3c. Furthermore, the peak value of the
average spring floods, after registration, is the real average
of the four observed hydrographs because of the way the
registration is performed. We also notice the presence of
secondary spring flood peaks in Figures 3b and 3d, which
can also be seen in Figures 1 and 2.

2.2. Nonparametric Regression With Spline Functions

[21] In our functional data analysis context, we assume
that

yi; j ¼ hi ti; j
� �

þ ei; j; ð4Þ

where hi(ti, j) is a continuous function evaluated at ti, j and
ei, j is an error term. We therefore go from the data points
(ti, j, yi, j) (j = 1,. . ., n) to a functional representation: (t, hi(t)),
for t 2 Dt = [Lt, Ut] where Lt and Ut represent, respectively,
the lower and upper bounds of the t domain. In the present
paper, we seek to model the average process which
underlies yearly hydrographs and we therefore assume that
hi(�) = h(�) for all i.
[22] Several methods exist to estimate the function h(�):

kernel methods [Hastie and Tibshirani, 1990], Fourier
series, spline based methods [Ramsay and Silverman,
2005], wavelet methods [Ogden, 1997], etc. We choose to
work with regression polynomial spline functions as a basis
to evaluate the functions of interest because this type of

Figure 3. Daily measurements: (a) average of four observed hydrographs, (b) average of the same four
hydrographs after registration. Weekly measurements: (c) average of four observed hydrographs, (d)
average of the same four hydrographs after registration.
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basis possesses good mathematical properties such as dif-
ferentiability and integrability, the latter property being
useful in the present context as will be seen shortly. It also
offers good flexibility and leads to parsimonious models
when free-knots are used.
[23] The function h(t) is estimated by

hw tð Þ ¼
XKw

k¼1

bk;wbk;w tð Þ; ð5Þ

where bk,w represents the coefficient of the basis element
bk,w(�). Once the order l of the spline polynomial functions
is fixed, the basis elements bk,w(�) are determined by the
number of interior knots, m, and the ordered location of
these knots, r(m) = (r1,. . .,rm); the number of elements in the
basis is given by Kw = l + m. We summarize this
information in the model parameter w = (m, r(m)). The
determination of w is a model selection problem, which is
discussed in section 3.2. We note that this model can be
understood as a linear model such as those encountered in
linear regression. The model given in equation (4) can now
be written as

yi ¼ Bwbw þ ei; ð6Þ

where yi = (yi,1, . . ., yi,n)
0 is an n� 1 vector;Bw = (bw(ti,1), . . .,

bw(ti,n))
0 is an n � Kw matrix, with bw(ti, j) = (b1,w(ti, j),

. . ., bKw,w(ti,j))
0 as a Kw � 1 vector of the basis elements

evaluated at ti,j; bw = (b1,w, . . ., bKw,w)
0 is a Kw � 1 vector of

parameters; and ei = (ei,1, . . ., ei,n) is an n � 1 vector of error
terms.
[24] Figure 5 shows M-spline and I-spline functions for

fixed order (l = 3) and fixed model parameter: w = (2, (0.4,
0.7)), which corresponds to two interior knots positioned at
0.4 and 0.7. In this case, there are five basis elements, i.e.,
Kw = 5; for clarity, only three of these elements are
illustrated in Figure 5. For the current knot configuration,
Figure 5a shows three M-spline functions, bk,w

M (t), and the
corresponding I-spline functions, bk,w

I (t), are given in
Figure 5b. Each M-spline function is made up of
polynomial parts of order l, or degree (l 	 1); in the
current example, the polynomial parts are quadratic. Each I-
spline function is an integrated M-spline function and
constitutes a monotonically increasing function; therefore I-
spline functions are well suited to model monotone
functions, as indicated by Ramsay [1988]. M-spline
functions are closely related to B-spline functions which
are widely used in statistics [He and Shi, 1998]. We note
that the M-spline functions integrate to 1 and are, in that
respect, equivalent to probability distribution functions used
in the S methods (see Introduction). To pursue the parallel
further, the S methods use only one basis element to model
a flood event, while our approach uses several basis
elements to give a representation of a yearly hydrograph.

Figure 4. (a) Registration function for 1982 hydrograph;
(b) effect of the registration function on the observed 1982
hydrograph. The vertical lines in Figure 4a represent Lx, xs,
xf and Ux (see equation (3)).

Figure 5. Three M-spline and three I-spline functions for
w = (2, (0.4, 0.7)). The vertical lines indicate the positions
of the interior knots. (a) M-spline functions; (b) I-spline
functions.
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[25] As mentioned previously, I-spline functions form a
good basis to model monotone functions. Since a yearly
hydrograph is a positive function, the function

H tð Þ ¼
Z t

Lt

h tð Þdt; ð7Þ

is a monotone increasing function and it represents the
integrated water flow from the beginning of the year to a
certain time t. This cumulative hydrograph is of particular
interest for conducting volume analyses. If a hydrograph
h(t) is modeled with M-spline functions, bk,w

M (t), in
equation (5), then a model for H(t) is obtained simulta-
neously and it is given by

Hw tð Þ ¼
XKw

k¼1

bk;wb
I
k;w tð Þ; ð8Þ

where each coefficient bk,w is the same for the two
functional representations hw(t) and Hw(t). This result
follows from the fact that each coefficient bk,w is
independent of t and each I-spline function is an integrated
M-spline.

3. Bayesian Statistical Model

[26] We adopt the Bayesian paradigm instead of the
frequentist approach for several reasons, some of which
we now put forward. It enables the statistician to take into
account, in a coherent probabilistic framework, the uncer-
tainty related to all the parameters of the model and thus
gives a more adequate representation of the uncertainty
concerning a model; frequentist approaches can often un-
derestimate this uncertainty. As will be seen in section 3.2, it
makes the model selection procedure formal in the sense
that the selection follows directly from the initial assump-
tions about the probabilistic model; therefore it does not rely
on some ad hoc procedure. If we would choose to do so, it is
easy in the Bayesian framework to include constraints on
the parameter space through the a priori statistical distribu-
tions, thus making the implementation of constraints
straightforward. Furthermore, the inclusion of expert opin-
ion can also be included through the prior statistical
distribution; for example, it would be possible to consult
hydrologists to obtain a given shape of a hydrograph and to
transform this shape into the coefficient space of the spline
functions. Although we have not done this in the paper, we
are currently thinking of incorporating this aspect in our
model.
[27] In order to treat a certain function h(t) as a random

functional event, we can regard the parameters (bk,w) of
equation (5) as random variables. In a Bayesian framework,
the parameters, q, of a given model are considered to be
random variables which are drawn from a certain
probability distribution. A Bayesian statistical model is
made up of the following two elements [e.g., Lee, 1989;
Bernardo and Smith, 1994]: a prior probability distribution
for the model parameters, p(q), and a probability distribu-
tion function, f(yjq), from which the observations arise. A
prior distribution is a probabilistic formulation of the
information available before observations are collected.
From these two probability distributions, the posterior

distribution associated with the model parameters can be
obtained by applying Bayes’ theorem:

p qjyð Þ ¼ f yjqð Þp qð ÞR
Q f yjqð Þp qð Þdq ¼ f yjqð Þp qð Þ

m yð Þ ; ð9Þ

where m(y) is the marginal distribution of y, i.e., the
statistical distribution of y after the model parameters have
been integrated, and Q is the parameter space. All statistical
inferences concerning the parameters are made from p(qjy),
which represents a probabilistic model for the parameters
that has been updated by the empirical information.

3.1. Distributional Hypotheses

[28] We assume that the distribution of each vector ei is a
multivariate normal distribution (see Appendix A for the
definitions of the probability distributions used in this
section):

ei � Nn 0;s2Se
� �

; ð10Þ

where s2 is a variance proportionality constant andSe is the
covariance matrix which captures the covariance, or
correlation, structure between the elements of ei. We note
that s2 and Se are taken to be the same for every year i. In
the Application section, we consider the elements of each ei
to be independent and identically distributed; more
formally, we have Cov(ei,j, ei,j0) = 0 for j 6¼ j0 and ei,j �
N1(0, s

2) for all j, where Cov represents the covariance
operator and N1 indicates a one-dimensional normal
distribution. This leads to the following prescription, A1:
Se = IIn, where IIn is an n-dimensional unit diagonal matrix
and A1 indicates the first application assumption. It should
be noted that under A1, the variance is taken to be the same
throughout the domain of the hydrograph, an assumption
which is discussed further in the conclusion.
[29] The probability distribution function of each vector

of observations, yi, is then a multivariate normal distribution
which we can write as:

yijbw;s
2 � Nn Bwbw;s

2Se
� �

: ð11Þ

In the notation given above, we have the vector of
observations y = (y01, . . ., y

0
N), and the vector of parameters

q = (b0
w, s

2)0 since we make the hypothesis that the design
matrix Bw is fixed and that the covariance matrix Se is
known. Since the yearly hydrographs are considered to be
independent, the joint probability distribution of the
observations is then given by: f(yjq) =

QN
i¼1f(yijq). Our

interest lies in the vector of regression parameters bw which
represents the reference hydrograph in functional space.
[30] We assume that the prior distribution can be written

as

p bw;s
2

� �
¼ p bwjs2

� �
p s2
� �

; ð12Þ

and choose a conjugate model for the parameters, i.e., a
probabilistic model with prior and posterior distributions
from the same family of distributions. For normally
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distributed observations, we have the following conjugate
prior distributions:

bwjs2 � NKw b0
w;s

2Sw
� �

; ð13Þ

s2 � IG
aw

2
;
gw
2

� �
; ð14Þ

where Kw denotes the dimension of the spline basis (see
equation (5)). Our a priori knowledge should be used to
determine the hyperparameters: bw

0 , the mean of the
multivariate normal distribution, Sw, the covariance
structure between the components of bw, and the shape
parameters of the inverse gamma distribution, aw and gw.
[31] Because of our lack of prior knowledge concerning

the hyperparameters and because the first N0 yearly
hydrographs are data of lesser quality, because they have
been reconstructed, than the rest of the data set for the
province of Quebec, we use these data to determine the
prior distributions; the N remaining historical hydrographs
are considered the effective sample. The hydrographs of the
first N0 years are of lesser quality but they nonetheless
contain information about hydrographs for a given site.
Although we do not want to treat these hydrographs as part
of the effective sample, it is reasonable to use this
information in our model but to weigh it properly. For the
prior distribution of bw, the N0 years are used to determine
the location vector bw

0 (see section 4.2 for details). This is
the second application assumption (A2). Concerning the
covariance matrix, we assume that for a certain model
defined by w, we have A3: Sw = 1

n0
(B0

wSe
	1Bw)

	1. This
type of covariance structure was suggested by Zellner
[1986] and can be justified in several ways [see Robert,
1994]. From a practical point of view, it makes the
implementation of the model fairly straightforward since
only one parameter, n0, needs to be specified, instead of a
covariance matrix of dimension Kw � Kw; furthermore, this
type of structure is well adapted to take into account
multicollinearity, which can be the case when spline
functions are used as a basis, since it allows for a large
prior variance on the components affected by multi-
collinearity. As with the location vector bw

0 , the determina-
tion of aw and gw is done with the first N0 hydrographs and
also depends on n0 (see section 4.2 for details). This is the
fourth application assumption (A4). The factor n0 can be
viewed as an indicator of our confidence in the prior
information, therefore we have n0 = zN0, where 0 
 z 
 1. If
one chooses z = 0, then it is assumed that the prior
information contains no information and the prior distribu-
tions are improper; while if z = 1 is chosen, each of the N0

yearly hydrographs contributes as much to the posterior
distributions as one of the hydrographs in the effective
sample. Since we know that the N0 hydrographs are of
lesser quality, z should lie somewhere between these two
extreme cases. We have conducted tests, on real data, by
varying the value of z and these tests have shown that its
value does not have a serious impact on results. In the
Application section, we use z = 1/N0 which leads to n0 = 1
(A5); the prior information then contributes the equivalent
of one hydrograph from the effective sample.

[32] Our choice in prior distributions leads to a posterior
distribution that can be written as

p bw; s
2jy

� �
¼ p bwjs2; y

� �
p s2jy
� �

; ð15Þ

and by using standard Bayesian calculations for linear
models [Robert, 1994], we have

bwjs2; y � NKw b*w;s2S*w
� �

; ð16Þ

s2jy � IG
a*w
2

;
g*w
2

	 

: ð17Þ

The explicit expressions for bw*, Sw*, aw* and gw* are given
in Appendix B1.
[33] By integrating out s2 in equation (16), the posterior

distribution of bw, independent of s2, is given by a
multivariate Student’s t distribution:

bwjy � TKw a*w;b*w;
g*w
a*w

S*w

	 

: ð18Þ

[34] Our main interest lies in the posterior probability
distributions given in equations (17) and (18), since any
statistical inference proceeds from these distributions. In the
present hydrological context, in which we want to simulate
hydrographs, we can generate vectors of parameters from
the posterior distribution (18). A simulated hydrograph will
then correspond to a simulated vector of parameters since a
hydrograph is fully determined by a vector bw. Another
statistical distribution that will prove useful in the following
section is the marginal distribution of the observations,
m(yjw), which has been defined in equation 9 and is given
explicitly in Appendix B2.

3.2. Model Selection: Determining the Best w
[35] In this section, a method is given to determine the

spline basis model parameter w = (m, r(m)), where m is the
number of interior knots and the vector of ordered positions
of these knots is r(m). As pointed out in section 2.1, once the
order of the spline polynomial functions is fixed, the
parameter w fully determines the spline basis; therefore the
determination of this parameter is crucial to obtain a good
fit to the data. Many methods have been suggested in the
literature to determine this parameter. Some simple methods
position interior knots at given quantiles of the independent
variable, while more sophisticated algorithms rely on
forward, backward and stepwise methods to determine the
best w [Friedman and Silverman, 1989; Stone et al., 1997].
The different models obtained from the various parameters
w are usually compared through a model fitting criterion
such as Akaike’s Information Criterion (AIC) [Akaike,
1973], the Schwarz criterion [Schwarz, 1978], cross-
validation [Hastie and Tibshirani, 1990], etc. These criteria
are all essentially structured in the same manner in that they
‘‘reward’’ goodness of fit and ‘‘penalize’’ model complexity
in order to obtain a model that fits the data well but is still
parsimonious.
[36] The method which we adopt to explore knot config-

urations, i.e., the support of w, is based on an insight of He
and Shi [1998] in their paper on modeling monotone
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functions with B-spline functions. Instead of positioning the
knots at the quantiles of the independent variable, they use
the quantiles of the monotone increasing function to
perform a projection on the independent variable axis.
The advantage of this simple method is that it positions
more interior knots in the regions where the monotone
function is rapidly changing; more basis elements need to be
present in these regions to give more modeling flexibility
where the function fluctuates the most. In the present
context, the cumulative hydrograph given in equation (7),
H(�), is used to perform this operation. An illustration of this
procedure is shown in Figure 6. The water flow axis is
subdivided into eight regular sections by seven markers;
these are projected on the time axis using the monotone
function. The interior knots are then taken to be the
resulting time coordinates.
[37] A drawback with this technique is the fact that the

vector r(m) is solely determined by the number of interior
knots m, which implies that a very limited number of knot
configurations are explored. Furthermore, a fully Bayesian
model would consider w to be a random quantity that
follows a certain probability distribution. We are currently
developing a fully Bayesian model similar to the approach
suggested by Denison et al. [1998]. Nonetheless, the simple
approach adopted here seems to work fairly well and it is
also very effective regarding computational time.
[38] Finally, a method needs to be adopted in order to

discriminate between the different knot configurations. In a
frequentist modeling context, one of the approaches men-
tioned previously would need to be chosen arbitrarily; with
the Bayesian approach, on the other hand, the model
selection procedure follows directly from the hypotheses
concerning the probabilistic model. The Bayesian model
selection criterion, called the Bayes factor [Kass and
Raftery, 1995], is given by the ratio of the marginal
distributions of two competing models and indicates which
of the models is more likely to be the best model. In the
present context, let us say we are comparing model 1, w1,
and model 2, w2, then the Bayes factor is given by

BFw1 ;w2
¼ m yjw1ð Þ

m yjw2ð Þ : ð19Þ

Model 1 is more likely to be the best model when BFw1
,w2

> 1,
while BFw1

,w2
< 1 indicates that model 2 has a higher

probability to be the best model. For the current modeling
context, an explicit expression for the Bayes factor is given in
Appendix B3.

3.3. Bayesian Estimator and Confidence Intervals

[39] It is a well known result of Bayesian decision theory
that the decision rule concerning a parameter under a
squared error loss function is given by the expected value
of this parameter [see Robert, 1994]. Under squared error
loss, the decision rule concerning bw is to choose its
expected value which is given by bw* . Once the best model
w has been determined by the method discussed in the
previous section, the Bayesian estimator of a representative
hydrograph will therefore be as follows:

h*w ¼ Bwb*w: ð20Þ

[40] Knowing that the posterior distribution of bw given
in equation (18) is a multivariate Student’s t distribution, it
is possible to construct confidence intervals for linear
combinations of the components of bw by using standard
multivariate results [see Johnson and Wichern, 1992]. The
reader can refer to Appendix B4 for the mathematical
expression.

4. Application

4.1. Data

[41] The streamflow data analyzed in this section are
weekly net basin supplies for two basins situated in Quebec
and managed by Hydro-Québec, a public company that
produces, transmits and distributes electricity throughout
the province of Quebec. Hydro-Québec currently operates
54 power plants supplied by 26 large reservoirs; the major
watersheds managed by Hydro-Québec are shown in
Figure 7. In this paper, we focus on the statistical modeling
of yearly hydrographs from two different basins: Churchill
Falls, which is located in northern Quebec and has a basin
area of 69,345 km2, and Gouin, which is located in southern
Quebec and has a basin area of 9376 km2. These two
watersheds serve as test basins to explore the potential use
of the approach proposed in the paper. For each watershed,
a sample of weekly streamflows (in m3/s) covering the
period extending from 1950 to 2002 is considered (hydro-
logic data post 2002 being confidential).
[42] Figure 8 shows five consecutive annual hydrographs

with weekly streamflow for each watershed. Figure 8a
shows the annual hydrographs observed at Churchill Falls
during the 1989–1993 period. The sequence of hydrographs
starts with the first week of January 1989 and ends with the
last week of December 1993. Figure 8b illustrates five
annual hydrographs at Gouin for the period extending from
1996 to 2000. In this case, the series starts with the first
week of January 1996 and ends with the last week of
December 2000. We notice that the two sequences possess
some similarities and differences. They are similar in that
the annual spring floods are more important than the autumn
floods; but they differ in their level of ‘‘smoothness’’. The
yearly hydrographs of Churchill Falls (Figure 8a) possess
very well defined spring and autumn floods which do not
show strong variations; the yearly hydrographs of Gouin

Figure 6. Illustration of He and Shi method for m = 7
interior knots.
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(Figure 8b) exhibit more waterflow fluctuations. On aver-
age, the spring flood accounts for about 50% of the annual
total volume and is composed of melted winter snowpack
and spring precipitation. Thus, with respect to dam safety,
hydropower generation, operation planning and design of
new power plants, a good model to simulate realistic
hydrographs, particularly for this period, is certainly valu-
able to water resources planners and managers.

4.2. Model Specifications

[43] The order l of the spline functions which form the
modeling basis needs to be specified in order to apply our
method (see section 2.1). We could treat this quantity as a
parameter to be estimated in the procedure, but we will
consider it to be fixed as is usually done in practice. We
choose to work with M-spline functions of order l = 3 which
means that the basis elements are quadratic by parts.
[44] The registration functions are modeled by linear

parts as indicated in equation (2) and the constraints on
these functions are taken to be the same as those given in
equation (3). The landmarks that determine these constraints
could be chosen differently, but we have found that this
choice gives good results.
[45] The hypotheses concerning the Bayesian probabilis-

tic model are given in section 3.1. They are as follows:
(A1) Se = IIn for each yearly hydrograph;
(A2) bw

0 determined by nonparametric least squares
regression applied to the reference hydrograph for the N0 =
11 historic yearly hydrographs covering the 1950 to 1960
period, leading to an effective sample formed by the N = 42
remaining hydrographs (1961–2002);

(A3) Sw = 1
n0
(B0

wSe
	1Bw)

	1;

Figure 7. Location of major watersheds in the province of Quebec.

Figure 8. Five consecutive yearly hydrographs for (a)
Churchill Falls (1989–1993) and (b) Gouin (1996–2000).
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(A4) aw = n0n and gw = n0Sw
0 , where Sw

0 is the average
of the squared residuals of the regression in A2; and

(A5) n0 = 1.

4.3. Results

4.3.1. Registration and Reference Hydrographs
[46] We first apply landmark registration to each data set

in order to be able to model the reference hydrographs of
the two watersheds. Figure 9 illustrates the effect of
registration on the two data sets. For Churchill Falls, Figure
9a shows the observed hydrographs as dotted lines and the
solid bold line represents their weekly average, i.e., the
average hydrograph, while Figure 9b shows the registered
hydrographs (dotted lines) and their average, i.e., the
reference hydrograph, is illustrated as the solid bold line.
In Figures 9c and 9d, the same exercise is performed for
Gouin. For Churchill Falls, the average hydrograph has a
flood event, which is bimodal with the two modes being
similar in magnitude (Figure 9a). This is very rarely
observed in practice and is a result of combining yearly
hydrographs, which are dissimilar regarding the moment at
which the flood event occurs. For its part, the reference
hydrograph for this site, shown in Figure 9b, possesses a
well-defined flood event. For Gouin, we notice that the
reference hydrograph (Figure 9d) has a higher peak flood
than the average hydrograph (Figure 9c); furthermore, the

flood event is sharper and less spread out for the reference
hydrograph than for the average hydrograph. The reference
hydrographs therefore better capture the characteristics of
the observed flood events since they possess a steep ascent,
which is usually observed in practice, and a well defined
peak. Furthermore, it needs to be noted that the peak flow of
the reference hydrograph is equal to the true average of the
observed peak flows by construction.
4.3.2. Model for Reference Hydrographs
[47] Now that we have registered the hydrographs of each

watershed, we can model the reference hydrographs with
the probabilistic model exposed in section 3.1. In order to
determine an adequate spline basis, the model selection
approach described in section 3.2 is used. Figures 10a and
10c show the logarithm of the Bayes factors calculated with
a reference model containing a single knot (the denominator
of equation (19)). By writing a model which contains m
interior knots as model wm, the Bayes factors shown in
Figure 10 are given by BFwm,w1

, for m = 1,. . ., 25. The
maximum of BFwm,w1

for Churchill Falls is obtained for nine
interior knots, i.e., a model basis containing 12 elements; for
Gouin, the best model according to the Bayes factors
contains 14 basis elements defined by 11 interior knots.
[48] The Bayesian estimates given by equation (20) are

illustrated in Figures 10b and 10d. The reference hydro-
graphs are shown as full lines, while dashed lines illustrate

Figure 9. Churchill Falls: (a) observed hydrographs (dotted lines) and their average (full bold line),
(b) registered hydrographs (dotted lines) and their average (full bold line). Gouin: (c) observed
hydrographs (dotted lines) and their average (full bold line), (d) registered hydrographs (dotted lines) and
their average (full bold line).
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the estimates. We see that these estimates fit the reference
hydrographs very accurately in the flood event region.
Small discrepancies occur around the area of the autumn
flood but globally the model performs very well. It should
be noted that the reference hydrographs, which are functions
of dimension 52, have had their dimensions reduced con-
siderably by their representation in functional space. The
reference hydrograph of Churchill Falls is modeled by a
parameter space of dimension 12, while the reference
hydrograph of Gouin is modeled by a parameter space of
dimension 14. As a comparative example, a PARMA(1,1)
model with a period equal to the time increment of the series
would lead to a parameter space of dimension 208 = (52� 4),
since for each time increment, there are four parameters to
evaluate: the mean and the standard deviation of the observed
hydrographs, as well as the two parameters of the ARMA
process.
4.3.3. Confidence Intervals for Samples of Registered
Yearly Hydrographs
[49] It is possible, using equation (B12) in Appendix B4,

to construct simultaneous confidence intervals for the data
points of a reference hydrograph and those of the cumulative
reference hydrograph. Here we consider 95% confidence
intervals for the flood events and for the cumulative hydro-
graphs. For the first confidence intervals, this is done by
setting a = bw

M(xj) for a given data point j (see equation (5)).
For the second confidence intervals, we set a = bw

I (xj) for a
given data point j (see equation (8)).

[50] The confidence intervals for the flood events of
Churchill Falls are illustrated in Figure 11a, along with
the registered flood events. Figure 11b shows the confi-
dence intervals for all the data points of the cumulative
hydrograph, along with the yearly registered cumulative
hydrographs. The same exercise is performed for Gouin and
the results are shown in Figures 11c and 11d.
[51] The effective sample has a size of N = 42 and there

should thus be at most two or three yearly hydrographs
outside a 95% confidence interval for a given data point.
Figures 11a and 11c indicate that this is the case for most
data points in the flood region. These confidence intervals
are therefore well calibrated, or unbiased, since they seem to
be able to capture the level of variability of the sample of
flood events. The only data points that seem to behave
differently are the ones located just before the flood peak for
Churchill Falls. It should also be noted that the confidence
intervals for the weeks preceding the beginning of the flood
events are quite large. These two aspects are due to the
constant variance assumption (A1), which causes the
variance to be an average of the variances at each week.
The level of variability is thus overestimated for the weeks
preceding the flood event and underestimated for the weeks
close to the flood peak.
[52] For Figures 11b and 11d, there are at most two or

three cumulative yearly hydrographs outside the confidence
intervals for the majority of data points. Although the
confidence intervals seem to reproduce the level of vari-

Figure 10. Churchill Falls: (a) logarithm of the Bayes factors (see equation (B10)): nine interior knots
give the best model; (b) the reference hydrograph (solid line) of Figure 9(b) and the Bayesian estimate
(dashed line). Gouin: (c) logarithm of the Bayes factors: eleven interior knots give the best model; (d) the
reference hydrograph (solid line) of Figure 9(d) and the Bayesian estimate (dashed line).
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ability fairly well for most of the year, they appear to be
unnecessarily wide in the first few weeks of the year; this is
also a result of the constant variance assumption.

5. Conclusion

[53] In this paper, we have put forward a new approach to
model the average properties of a sample of yearly hydro-
graphs. We elaborated a methodology to obtain reference
hydrographs representative of given samples and it was seen
that the reference hydrographs reproduce adequately the
flood events encountered in the samples. Furthermore, a
previous study [Merleau et al., 2005] has shown that the
constructed reference hydrographs also preserve the average
flood event volumes of hydrograph samples. We also
exposed a nonparametric regression method in a Bayesian
setting to model a reference hydrograph or any particular
hydrograph in the sample. The approach was applied to two
samples of yearly hydrographs with weekly streamflow in
order to obtain a statistical representation of two reference
hydrographs of different watersheds. Using the statistical
model, confidence intervals were produced for the flood
events and the cumulative streamflows of each watershed
hydrographs. Although we did not present an analysis of
yearly hydrographs with daily measurements, we have
found that the method performs just as well in this case.
[54] The methodology proposed in this paper can be

related to existing methods to model and simulate hydro-
graphs. Using our model on a single typical hydrograph,
our approach would be similar to the TH methods (see
section 1). One major difference though is the fact that our

model is statistically based and it can therefore be used to
construct confidence intervals for example. As pointed out
in section 2.1, the relation between the S methods and our
approach is quite clear although the latter considers the
hydrographs as random functions, while the former does
not. Furthermore, our model is more general since it relies
on a functional representation based on spline functions,
which can reproduce a wide variety of hydrograph shapes.
[55] Finally, as mentioned in section 1, the modeling

techniques based on time series are mainly used to simulate
hydrographs corresponding to probable scenarios. In the
Bayesian statistical context, the yearly hydrographs are
treated as random functional events and thus it is also
possible to simulate hydrographs in this setting. Vectors of
parameters can be generated from the posterior probability
distribution (equation (18)) and to each vector of parameters
corresponds a simulated hydrograph. If no constraints are
placed on the parameters, the generated hydrographs repre-
sent random events and in this respect, our approach
resembles the time series-based methods. In our statistical
framework though, it is also possible to simulate hydro-
graphs that have fixed flood characteristics, with a certain
probability of occurrence, if constraints are put on the
parameters.
[56] We have seen that the method proposed in this paper

performs very well globally. The aspects that still require
attention are the constant variance assumption and the explo-
ration of knot configurations. It was seen in section 4.3.3 that
the constant variance throughout the year leads to confidence
intervals which appear to be too wide in certain periods and
too narrow in other periods. We are currently working on a

Figure 11. Churchill Falls: (a) 95% confidence interval for sample of flood events; (b) 95% confidence
interval for sample of cumulative hydrographs. Gouin: (c) 95% confidence interval for sample of flood
events; (d) 95% confidence interval for sample of cumulative hydrographs.
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method which models the variance components at each time
increment; this will correct the width of the confidence
intervals. Although the knot determination method used in
this paper performs well, it would be preferable to use a
random knot selection procedure that explores a wide variety
of knot configurations; we are also working on a random knot
procedure at the present time.

Appendix A: Probability Distributions

A1. Multivariate Normal Distribution

[57] If X � Nq(q, S), then the variable X is distributed
according to a q dimensional multivariate normal distribu-
tion which is given by:

f xjq;Sð Þ ¼ 1

2pð Þ
q

2jSj
1
2

exp 	 1

2
x	 qð Þ0S	1 x	 qð Þ

� �
;

where q (q � 1) is the location vector of the distribution, S
(q � q) is the covariance matrix associated with the
components of X and j�| represents the determinant.

A2. Inverse Gamma Distribution

[58] If X � IG (a, g), then the variable X is distributed
according to an inverse gamma distribution which is given
by:

f x j a; gð Þ ¼ ga

G að Þ
1

xaþ1
exp 	 g

x

n o
:

A3. Student’s t Distribution

[59] If X � Tq(n, q, S), then the variable X is distributed
according to a q dimensional Student’s t distribution which
is given by:

f xjn; q;Sð Þ ¼
G nþq

2

� �
jSj

1
2 npð Þ

q

2G n
2

� � 1þ x	 qð Þ0S	1 x	 qð Þ
n

� �	nþq

2

;

where q (q � 1) is the location vector of the distribution, S
(q � q) is the covariance matrix associated with the
components of X, n is the number of degrees of freedom and
j�| represents the determinant.

Appendix B: Bayesian Results

B1. Parameters of the Posterior Statistical
Distributions

[60] The parameters of the posterior statistical distribu-
tions are as follows:

b*w ¼ WG
w þW 0

w

� �	1
WG

wb
G
w þW 0

wb
0
w

� �
¼ A N

N þ n0

	 

bL
w þ n0

N þ n0

	 

b0
w; ðB1Þ

S*w ¼ WG
w þW 0

w

� �	1¼ A 1

N þ n0

	 

B0
wBw

� �	1
; ðB2Þ

a*w ¼ Nnþ aw ¼ A N þ n0ð Þn; ðB3Þ

g*w ¼ NSw þ Tw þ gw ¼ A NSw þ Tw þ n0S
0
w; ðB4Þ

Sw ¼
P

i yi 	 BwbG
w

� �0
S	1

e yi 	 BwbG
w

� �
N

¼ A

P
i yi 	 BwbL

w

� �0
yi 	 BwbL

w

� �
N

; ðB5Þ

Tw ¼ bG
w 	 b0

w

� �0
NB0

wS
	1
e Bw

� �	1þSw

n o	1

bG
w 	 b0

w

� �
; ðB6Þ

¼ A n0N

N þ n0

	 

bL
w 	 b0

w

� �0
B0
wBw bL

w 	 b0
w

� �
; ðB7Þ

where = A indicates the given quantity evaluated under
assumptions A1, A3 and A4.
[61] The posterior mean of the parameters, bw*, is given by

a weighted average of the generalized least squares estimator
bw
G = (B0

wSe
	1Bw)

	1B0
wSe

	1�y and of the prior location
vector bw

0 . The weights are given by Ww
G = NB0

wSe
	1Bw and

Ww
0 = Sw

	1. Under the application assumptions, bw*
simplifies to a weighted average of the ordinary least
squares estimator bw

L = (B0
wBw)

	1B0
w�y and of the prior

location vector, where the weights are proportional to the
numberofobservationsusedtoevaluateeachofthesequantities.
[62] We also note that the posterior probability distribu-

tion of the variance parameter s2 depends on Sw, which is
proportional to the sum of squares of the residuals, and Tw
which captures the discrepancy between the two vectors of
parameters bw

G and bw
0 .

B2. Marginal Distribution

[63] For the model exposed in section 3, the marginal
distribution is given by

m yjwð Þ¼ jS*wj
jSejjSwj

	 
1=2 G a*w=2ð Þ
pNn=2G aw=2ð Þ

	 

gwð Þaw=2

g*wð Þa*w =2

 !
; ðB8Þ

¼ A n0

N þ n0

	 
Kw=2 G a*w=2ð Þ
pNn=2G aw=2ð Þ

	 

gwð Þaw=2

g*wð Þa*w =2

 !
; ðB9Þ

where j�| represents the determinant.

B3. Bayes Factor

[64] Using the marginal distribution given in equation (B8),
the Bayes factor for our model is as follows:

BFw1;w2
¼ jS*w1

j
jS*w2

j
jSw2

j
jSw1

j

	 
1=2 G a*w1
=2ð Þ

G a*w2
=2ð Þ

G aw2
=2ð Þ

G aw1
=2ð Þ

	 


�
gw1

� �aw1 =2

gw2

� �aw2 =2

g*w2
ð Þa*w2 =2

g*w1
ð Þa*w1 =2

 !
; ðB10Þ

¼ A n0
Nþn0

� � Kw1	Kw2ð Þ=2 G a*w1 =2ð Þ
G a*w2 =2ð Þ

G aw2 =2ð Þ
G aw1 =2ð Þ

	 


� gw1ð Þaw1 =2

gw2ð Þaw2 =2
g*w2ð Þa*w2 =2

g*w1ð Þa*w1 =2

 !
;

ðB11Þ

14 of 15

W10432 MERLEAU ET AL.: BAYESIAN MODELING OF HYDROGRAPHS W10432



where Kw1
and Kw2

are the number of parameters in models
w1 and w2, respectively, and the other quantities are defined
in Appendix B1.

B4. Bayesian Confidence Intervals (Credible Sets)

[65] Simultaneously for all vectors a, a 100(1 	 d)%
confidence interval is given by

a0b*w � Kw
g*w
a*w

	 

a0S*waFKw ;a*w dð Þ

� �1=2

; ðB12Þ

where FKw,aw* (d) represents the 100(1	d)th percentile of
Fisher’s F distribution with degrees of freedom Kw and aw* ,
and the other quantities are defined as before.
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