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[1] A large number of models in hydrology and climate sciences rely on multiple linear
regression to explain the link between key variables. The relationship in the physical
world may experiment sudden changes because of climatic, environmental, or
anthropogenic perturbations. To deal with this issue, a Bayesian method of multiple
changepoint detection in multiple linear regression is proposed in this paper. It is an
adaptation of the recursion-based multiple changepoint method of Fearnhead (2005, 2006)
to the classical multiple linear model. A new class of priors for the parameters of
the multiple linear model is introduced, and useful formulas are derived that permit
straightforward computation of the posterior distribution of the changepoints. The
proposed method is numerically efficient and does not involve time consuming
Monte-Carlo Markov Chain simulation as opposed to other Bayesian changepoint
methods. It allows fast and straightforward simulation of the probability of each possible
number of changepoints as well as the posterior probability distribution of each
changepoint conditional on the number of changes. The approach is validated on
simulated data sets and then compared to the methodology of Seidou et al. (2006) on two
practical problems, as follows: (1) the changepoint detection in the multiple linear
relationship between mean basin scale precipitation at different periods of the year and the
summer-autumn flood peaks of the Broadback River located in Northern Quebec,
Canada; and (b) the detection of trend variations in the streamflows of the Ogoki River
located in the province of Ontario, Canada.
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1. Introduction

[2] An increasing number of papers point out shifts or
trends in hydrologic time series [e.g., Burn and Hag Elnur,
2002; Woo and Thorne, 2003; Salinger, 2005]. A change of
mentality is taking place in the whole scientific community,
and it is probable that hydrologic time series models which
do not hold account of a possible change in the statistical
distribution of the data will no longer be regarded as
credible. Detection of eventual changes in collected data
sets is thus obviously an important step before performing
any descriptive or predictive analysis.
[3] Changepoint analysis is addressed both in Classical

and Bayesian statistics. Methods in classical statistics usu-
ally consist of performing several kinds of tests to confirm
or reject the hypothesis of change. Most of them address
slope or intercept change in linear regression models
[Solow, 1987; Easterling and Peterson, 1992; Vincent,
1998; Lund and Reeves, 2002; Wang, 2003].
[4] In Bayesian statistics, one is interested in obtaining a

statistical distribution for the dates of change and eventually

a distribution for the other model parameters. Bayesian
changepoint analysis models are the subject of a large
number of papers [e.g., Booth and Smith, 1982; Bruneau
and Rassam, 1983; Gelfand et al., 1990; Barry and
Hartigan, 1992, 1993; Stephens, 1994; Perreault et al.,
2000a, 2000b, 2000c; Rasmussen, 2001]. Bayesian change-
point approaches were also applied to curve fitting by
modeling the signal as a sequence of piecewise constant
linear regression models [Punskaya et al., 2002] or piecewise
polynomial models [Denison et al., 1998]. The inference
on parameters was performed using Monte-Carlo Markov
Chain algorithms (MCMC). More recently, Seidou et al.
[2006] developed an approach to changepoint detection in
multiple linear relationships, and Fearnhead [2005, 2006]
proposed a recursion-based inference procedure on the
basis of the theory of product-partition models [Barry and
Hartigan, 1992, 1993] for multiple changepoint problems.
In both papers, he provided solutions to perform direct
simulation from the posterior distribution of a class of
multiple changepoint models where the number of change-
points is unknown. He also provided efficient non-MCMC
solutions for multiple changepoint detection in a single
series in which the observations follow a normal or a Poisson
distribution. As the models presented in the works of
Fearnhead [2005, 2006] are similar, only the latter reference
will be used in the remainder of the text. In the latter paper, a
set of recursive relations are used to infer the posterior
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probabilities of different numbers of changepoints. A par-
ticularity of this approach is that it focuses only on the
number and positions of changes.
[5] The aim of this paper is to adapt the methodology of

Fearnhead [2006] to multiple changepoint detection in
multiple linear relations. In particular, a special class of
priors for the parameters of the multiple linear model is
introduced, and useful formulas are derived that permit
straightforward computation of the posterior distribution
of the changepoints. The proposed methodology is validated
on simulated data sets to prove its ability to infer the number
and location of changepoints. It is then applied to two case
studies. In the first case study, the summer-autumn flood
peaks of the Broadback River located in the province of
Quebec, Canada, are investigated for the eventual changes
due to forest fires. The second case study deals with the
detection of eventual trend variations in the streamflow data
of the Ogoki River located in the province of Ontario,
Canada.
[6] As the first case study has already been investigated

with a changepoint detection approach using Gibbs sam-
pling [Seidou et al., 2006], the results obtained with the two
methodologies will be compared and discussed in this
paper. The approach of Seidou et al. [2006] will also be
applied to the second case study in order to highlight the
importance of having a methodology designed to handle
several changepoints.
[7] The outline of the paper is as follows: section 2 is a

quick survey of changepoint detection methodologies with
an emphasis on Bayesian methodologies with application to
hydrological problems. The two approaches that will be
compared with the one proposed in this paper are described
in sections 3 and 4. Recursion based changepoint inference
models are introduced in section 5, and the model of
Fearnhead [2006] is adapted to multiple linear regression.
The simulation of changepoints given the conditional pos-
terior probabilities of the dates of change is presented in
section 6. The simulation-based validation methodology is
presented in section 7. Section 8 presents the results of the
simulation studies, and the applications on real data are
carried out in section 9. A conclusion and some recom-
mendations are finally presented in Section 10.

2. Changepoint Models

[8] Changepoint detection has received a great deal of
attention in statistical literature because modification of
model structure and/or parameters is commonly encoun-
tered in applied statistics (e.g., in finance, pharmacology,
econometrics, hydrology, etc.). The change detection can be
off-line (or retrospective) or online (or sequential) when it is
important that the change be detected as soon as it occurs.
Examples of online changepoint detection methods can be
found in the works of Lai [1995], Beibel [1997], Daumer
and Falk [1998], Gut and Steinebach [2002], and Moreno
et al. [2005].
[9] Most applications in hydrology are used for retro-

spective changepoint detection, except a few ones [e.g.,
Moreno et al., 2005]. Retrospective changepoint detection
methods often use classical statistical methods to detect
changes in slopes or intercepts of linear regression models
[Solow, 1987; Easterling and Peterson, 1992; Vincent,
1998; Rasmussen, 2001; Lund and Reeves, 2002; Wang,

2003]. Other curve fitting methods are used in some rare
cases [e.g., Sagarin and Micheli, 2001; Bowman et al.,
2004].
[10] A growing number of methodologies use Bayesian

statistics. Gelfand et al. [1990] discussed Bayesian analysis
of a variety of normal data models, including regression and
analysis of variance type structures, where they allowed for
unequal variances. Barry and Hartigan [1992, 1993] used
product-partition models to develop a Bayesian analysis for
a multiple changepoint problem that can be exactly solved
using a finite number of operations. The multiple change-
point component was introduced by a normal random
variable that can be added anytime to the mean of the
series, but only with a certain probability. Stephens [1994]
implemented Bayesian analysis of a multiple changepoint
problem where the number of changepoints is assumed
known, but the times of occurrence of the changepoints
remain unknown. Other authors emphasized on the single
changepoint problem. We cite for example Carlin et al.
[1992] who applied a three-stage hierarchical Bayesian
analysis to a simple linear changepoint model for normal
data, Yt � N[a1 + b1 xt, d1

2], t = 1,. . .,t, Yt � N[a2 + b2 xt, d2
2],

t = t + 1,. . .,n. Perreault et al. [2000a, 2000b] gave
Bayesian analyses of several changepoint models of uni-
variate normal data. All of these authors implemented their
analyses using Gibbs sampling. Rasmussen [2001] consid-
ered a single changepoint in a simple linear regression
model with noninformative priors and derived the exact
analytical posterior distribution of the regression parame-
ters. His model assumes that the changepoint occurred with
certainty and does not allow a clear diagnosis of the
existence of the change. Perreault et al. [2000c] developed
an exact analytical Bayesian analysis of a changepoint in the
mean of a series of multivariate normal random variables.
[11] More recently, Seidou et al. [2006] developed a

practical and general approach to the single changepoint
inference problem relying on Bayesian multivariate regres-
sion analysis. Their model can handle multivariate data and/
or missing values and can be used with both informative
and noninformative priors on the regression parameters. It
was shown to be more performing than other approaches
recently published in the hydrological literature [Seidou et
al., 2005]. However, the approach presented in the work of
Seidou et al. [2006] considers only one possible change-
point and involves relatively long MCMC simulations. The
method presented in this paper is expected to handle theses
two issues.

3. The Changepoint Model of Seidou et al. [2006]

[12] The model developed in the work of Seidou et al.
[2006] is designed to infer the position of a change in the
parameters of a multivariate regression equation. They
assume that the (r � 1) response vector Yt is related to the (r
� d*) matrix Xt by

Yt ¼ Xtq
tcð Þ
t þ ���t ð1aÞ

where

q tcð Þ
t ¼ b1*; 1 � t < tc;

b2*; tc � t � n;:

�
ð1bÞ
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under the constraints

b1* ¼ b1;b0ð ÞT and b2* ¼ b2;b0ð ÞT: ð1cÞ

[13] In these equations, as well as in the remainder of the
paper, bold letters indicate vectors and matrices while the
superscript ‘‘T’’ indicates the transpose. Note that in equa-
tion (1b), tc is the first point of the segment after the
changepoint, and tc = (n + 1) means that there is no change
in the data series. The notation is different from the one in
the work of Seidou et al. [2006] where t was defined as the
last point before the change (that is, tc = t + 1). It has been
assumed that only part of the regression parameters change
at tc. b0 is the vector of regression parameters that do not
change, while b1 and b2 contain the values of the remaining
parameters before and after the changepoint. b1* and b2*
are the vectors of regression parameters before and after the
change [cf. equation (1c)]. The dimensions of the vectors

qt(tc), b1*, b2*, b0, b1, b2 are (d* � 1), (d* � 1), (d* � 1),
(d0* � 1), (d1* � 1), and (d1* � 1), respectively. Equation
(1c) implies that d* = d0* + d1*. It is also assumed that error
terms {ut} are independent and identically distributed
following N[0, Sy].
[14] The model assumes a changepoint in the (d* � 1)

vector qt(tc) from the (d1* � 1) subvector b1 to the (d1* � 1)
subvector b2. The (d0* � 1) subvector b0 is assumed to
remain part of qt(tc) throughout the observation series.
[15] In the work of Seidou et al. [2006], some algebraic

transformations allowed to apply some known results on
Bayesian piecewise linear regression to equation (1a) and to
infer its parameters. The MCMC algorithm was also
designed to account for missing data in the observations
record and/or in the explanatory variables. Finally, they
considered a general prior specification for regression
parameters as well as for the variance structure and used
Gibbs sampling to obtain empirical posterior distributions
for each parameter. For extensive details on prior specifica-
tion and MCMC inference for equation (1a), we refer the
reader to the original paper.
[16] Although the method is designed to detect only one

changepoint, it can be readily applied to detect multiple
changepoints using a segmentation approach. This approach
consists in a recursive application of the changepoint
detection methods to segments obtained by splitting the
series at detected changepoints. The procedure is stopped all
segments are found homogeneous or too short to be
searched for changepoints.

4. The Changepoint Model of Vincent [1998]

[17] Vincent [1998] proposed a technique based on the
Durbin-Watson test and the classical F test to detect a single
changepoint in a multiple regression model. The original
method uses a significance level p and is applied as follows:
[18] 1. For each year i in the observation period [a, b]

[19] a. Fit two linear regression models to segments [a,
i � 1] and [i, b] and compute the series of residuals.
[20] b. Test the autocorrelation of the residuals using the

Durbin-Watson test at p% significance level.
[21] c. If the test is positive, use the classical F test at p%

significance level to compare the model with a changepoint
at year i with the model without changepoint (see the work
of Vincent [1998] for details on how to compute the test
statistics and the associated critical values).
[22] 2. In case the two tests are positive for several years,

consider the year with the higher F-test statistics as the date
of change.
[23] To detect multiple changepoints, the segmentation

method described in section 3 can be used.

5. Recursion-Based Changepoint Inference

[24] Although recursions have been used to make infer-
ence on the number of changepoints [Yao, 1984; Barry and
Hartigan, 1992, 1993], this kind of approach has been less
widely used than MCMC based inference. Yao [1984] was
the first to show that Bayesian inference for a single shift in
a normally distributed sample can be performed in a finite
number of recursive operations. As the number of
operations grows quickly when the length of the data series
increases, he also proposed an approximate inference for
which the number of operations is reduced to the order of
sample size. Barry and Hartigan [1992, 1993] showed that
the changepoint problem can be elegantly handled using
product-partition models and generalized the results of Yao
[1984] to multiple changepoints and more general prior
assumptions. Product partition models assume that observa-
tions in a random partition of the data are independent and
allow the data to weight the partitions that hold. The
methodologies presented in these papers under this
approach allow for an efficient computation of the posterior
probability of different number of changepoints using
recursive relations. Fearnhead [2006] used this kind of
recursive relations to develop a general inference procedure
for the number and positions of the changepoints.

5.1. General Inference Procedure for the Number and
Positions of the Changepoints

[25] Fearnhead [2006] considered a class of multiple
changepoint models for which the number of changes is
unknown. Let {y1, y2,. . .,yn} be the sample, n the sample
size, m the number of changepoints, t0 = 0,t1,. . .,tm+1 = n
the changepoints and Yi:j the observations from time i to
time j. We also denote g(.) the probability distribution of the
time interval between consecutive changepoints and g0(.)
the probability distribution of the first changepoint. The jth
segment is then Y(t{j�1}+1):tj with parameter Fj.
[26] Assuming that the observations are independents

conditional on the changepoints and parameter values,
Fearnhead [2006] derived the posterior probability of the
changepoints:

Pr t1jY1:nð Þ ¼ P 1; t1ð ÞQ t1 þ 1ð Þg0 t1ð Þ=Q 1ð Þ
Pr tjjtj�1;Y1:n

� �
¼ P tj�1 þ 1; t1

� �
Q tj þ 1
� �

g tj � tj�1

� �
=Q tj�1 þ 1
� ��

ð2Þ
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where P(t, s), s 
 t is the probability that t and s be in the
same segment:

P t; sð Þ ¼ Pr Yt:s; t; s in the same segmentð Þ

¼
Z Ys

i¼t

f yijFð Þp Fð ÞdF ð3Þ

and Q(t) is the likelihood of the segment Yt:n given a
changepoint at t � 1. Q(t) t = 1,..,n and P(t, s), s 
 t are
linked by these recursive equations:

Q 1ð Þ ¼
Xn�1

s¼1

P 1; sð ÞQ sþ 1ð Þg0 sð Þ þ P 1; nð Þ 1� G0 n� 1ð Þð Þ

Q tð Þ ¼
Xn�1

s¼t

P t; sð ÞQ sþ 1ð Þg0 sþ 1� tð Þ þ P t; nð Þ 1� G n� tð Þð Þ:

8>>>><
>>>>:

ð4Þ

where G(t) =
Pt
i¼1

g(i) and G0(t) =
Pt
i¼1

g0(i).

5.2. Adaptation of the Changepoint Inference
Procedure to Multiple Linear Regression

[27] In this section, we are going to provide analytical
formulation for P(t, s). Consider the np + 1 series of data yj,
j = 1,. . .n and xij, i = 1,. . .,d*; j = 1,. . .n where xij is the jth
value of the ith series of explanatory variables. The multiple
linear relationship can be represented by

yj ¼
Xd*
k¼1

qkxkj þ ei ¼ 1; . . . ; n: ð5Þ

or

y ¼ Xq þ e ð6Þ

The parameter vector F is thus given by F = [q1
q2. . .qd*;s] and we have:

f yijFð Þ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp �0:5

yi �
Pd*
j¼1

qjxijs

0
BBBBBB@

1
CCCCCCA

2
0
BBBBBBB@

1
CCCCCCCA

ð7Þ

Following Rasmussen [2001], we have:

Pr yt:sjFð Þ ¼
Ys
i¼1

f yijFð Þ

¼ 2ps 2
� ��n=2

exp � Yt:s�Xt:sqð ÞT Yt:s�Xt:sqð Þ
2s2

" #
ð8Þ

[28] The next step in the process is the prior definition for
the parameters. Since there is no knowledge about the range
of the regression and variance parameters, usual improper
noninformative priors such as the one used in the work of
Rasmussen [2001] seem to be appropriate. However, direct
use of classical improper prior in model selection problems,
especially those using Bayes Factors, is problematic
because of the well known difficulty that when the models
or hypothesis have parameters of differing dimensions, one
cannot directly use improper noninformative priors for
computing Bayes factors; improper priors are unaffected by
multiplication by an arbitrary positive constant, but such
arbitrary constant directly affect Bayes factors [Berger and
Pericchi, 1998]. Possible solutions include the use of
intrinsic Bayes factors (IBF), fractional Bayes Factors
(FBF), or asymptotic methods. The principle of IBF is to
use part of the data (the training sample) to turn the
improper prior into a new prior applicable to the remaining
part of the data. In this paper, an approach similar to the use
of IBF was used. Assume that we have an eventually
improper prior p1(F) and two l1- and l2-long training
samples {X(1�l1

):0;Y(1�l1
):0} and {X(n+1):(n+l2

);Y(n+1):(n+l2
)}

such as L({(1 � l1):0}) =
R
F

Q0
i¼1�l1

f (yijF)p1(F)dF and

L({(n + 1):(n + l2)} =
R
F

Qnþl2

i¼nþ1

f (yijF)p1(F)dF are finite.Then

prior distribution p (F) =

Q0
i¼1�l1

f yijFð Þp1 Fð Þ

2L 1�l1ð Þ:0f gð Þ þ

Qnþl2

i¼nþ1

f yijFð Þp1 Fð Þ

2L nþ1ð Þ: nþl2ð Þf gð Þ is

proper since
R
F

p(F)dF = 1. It can thus be used for selecting
the model for the remaining of the data. We have:

P t; sð Þ ¼
Z
F

Yn
i¼1

f yijFð Þp Fð ÞdF

P t; sð Þ ¼

R
F

Y0
i¼1�l1

f yijFð Þ
 ! Ys

i¼t

f yijFð Þ
 !

p1 Fð ÞdF

2L 1� l1ð Þ : 0f gð Þ

þ

R
F

Ys
i¼t

f yijFð Þ
 ! Ynþl2

i¼nþ1

f yijFð Þ
 !

p1 Fð ÞdF

2L nþ 1ð Þ : nþ l2ð Þf gð Þ

P t; sð Þ ¼ P1 1� l1ð Þ : 0f g [ t : sf gð Þ
2P1 1� l1ð Þ : 0f gð Þ

þ P1 t : sf g [ nþ 1ð Þ : nþ l2ð Þf gð Þ
2P1 nþ 1ð Þ : nþ l2ð Þf gð Þ ð9Þ

With P1 ({i1, i2,. . .,iv}) =

Z
F

Y
i2 i1;i2;...;ivf g

f (yijF)p1(F)dF

Let’s assume first that the prior depends only on s and has
this particular form:

p1 Fð Þ ¼ p1 sð Þ ¼ p sja;Cð Þ ¼
s�a exp � c

2s2

� �
2
a�3
2 c�

a�1
2 G

a� 1

2

� � ; a > 1; c > 0

ð10Þ
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In equation (10), the denominator 2
a�3
2 c�

a�1
2 G (a�1

2
) is only a

normalizing constant that ensures that
Rþ1

0

p1(s)ds = 1. Note

that when s is very large, p(s) tends toward a multiple ofsa.
Jeffrey’s noninformative prior for linear regression is p(q, s)
/ s�d*

2 (P. Minka, Bayesian linear regression, unpublished
paper, 2001, online https://research.microsoft.com/�minka/
papers/minka-linear.ps.gz), and it is sometimes assumed in
Bayesian linear regression that p(s)/ s�1 [e.g., Rasmussen,
2001]. Unfortunately, these kinds of priors are improper
contrarily to the one proposed in equation (10). Basic
properties of p(sja, c) are derived in Appendix A.
[29] Using the above definition of the prior p1, it is shown

in Appendix B that

P1 i1; i2; . . . ; in1f gð Þ ¼ 2pð Þ
d*
2

�
p eT

i1;i2 ;...;in1f ge i1 ;i2;...;in1f g þ C

� �� �� n1þa�1ð Þ
2

Cpð Þ�
a�1
2 XT

i1;i2;...;in1f gX i1 ;i2;:::;in1f g

����
����1=2

�
G

n1 þ a� d*

2

� �
G

a� 1

2

� � ð11Þ

In equation (11), d* is the number of explanatory variables
(including the intercept if any), e{i1,i2,. . .,in1} is the vector of
residuals of the linear relationship between X{i1,i2,. . .,in1} and
Y{i1,i2,. . .,in1}.

6. Simulation of Changepoints Given the
Conditional Posterior Probabilities of the
Changepoints

[30] The relations presented in section 4 give only the
posterior probability mass of the first changepoint and the
conditional probability mass of subsequent changepoints. To
make inference on the positions of changepoints, we simu-
late a set E = {Sk, k = 1:M}of M possible scatter schemes of
the changepoints on the segment using the posterior
probability mass of the first changepoint and the conditional
probability mass of subsequent changepoints. Indeed, M
should be large enough to obtain a reliable distribution for
the positions of the changepoints. The kth element of E is a
set of mk changepoints Sk = {~t1

k, ~t2
k,. . .,~t ~mk

k}. An efficient
simulation algorithm for E is given by Fearnhead [2006]:
[31] 1. For a sample of size M, initiate M samples with a

changepoint at t = 0.
[32] 2. For t = 0,. . .,n � 2, repeat the following steps:
[33] a. Compute the number nt of samples for which the

last changepoint was at time t;
[34] b. If nt > 0, compute Pr (tjtj�1 = t, y1:n);
[35] c. Sample nt times from Pr(tjtj�1 = t, y1:n) and use

the values to update the nt samples of changepoints which
have a changepoint at time t;
[36] What is done at each iteration in this algorithm is

basically the recursive generation of new changepoints
using the posterior conditional distribution Pr(tjtj�1 =
t,y1:n). At the end of the process, a set of M samples

representative of the joint posterior probability of the
number and positions of the changepoints is obtained. For
more details on this algorithm, the reader is referred to the
work of Fearnhead [2006]. This algorithm is very efficient
since Pr(tjtj�1 = t, y1:n) has to be computed only one time
regardless of the number of samples required from it.
Inference on the number and positions of the changepoints
is readily carried out using the M samples. For instance, the
probability of having i changepoints is approximated by:

Pr m ¼ ið Þ � card kjcard Skð Þ ¼ if gð Þ=M ð12Þ

[37] The posterior probability of having the kth change-
point at position t given m changepoints can be approxi-
mated by:

Pr ti ¼ tjmð Þ �
card kj card Skð Þ ¼ mð Þ& ~tki ¼ t

� �� �� �
card kjcard Sð Þ ¼ mf gð Þ ð13Þ

where card(S) stands for the number of elements of the set
S. The estimators of the number and positions of
changepoints are the modes of their posterior distributions,
i.e.:

m̂ ¼ Maxt card kjcardk Sð Þ ¼ tf gð Þ=Mg ð14Þ

_ti ¼ Max
t

card kj card Skð Þ ¼ m̂ð Þ& ~tki ¼ t
� �� �� �

card kjcard Sð Þ ¼ m̂f gð Þ

�  
ð15Þ

Other estimators can be defined using the posterior
distributions. However, in Bayesian analysis, the mode of
the posterior is generally preferred to its mean when an
estimator is needed.

7. Validation Methodology

[38] The validation of the proposed method requires large
data sets in which all the characteristics of the changepoints
are known. These data sets were obtained by simulation
using a procedure that mimics the ranges of shifts and trends
that are usually observed in streamflow data. The ability of
the proposed method to correctly detect the number and
position of changes was assessed using four performance
measures that are described further in the text.

7.1. Simulated Data Sets

[39] Artificial shifts and trends with random magnitudes
and positions were inserted in three sets of simulated normal
series. The number of changes is constrained to be less than
mmax. The first set contains series which only display shifts
in the mean. The series in the second set contain abrupt
changes of trend, while the changepoints in the third set can
be either shifts or changes in trend.
[40] The series in the first data set were simulated in the

following manner:
[41] 1. Set the number of series to generate (N) the

minimum number of points between changepoints (lmin) and
the maximum magnitude of the shift dmax;
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[42] 2. Set u to 1;
[43] 3. Simulate a set Yu = {yi, i = 1,. . .,n} of n random

numbers from the normal distribution with mean 0 and
standard deviation 1;
[44] 4. Simulate the number of changes by uniformly

drawing a number m in {0, 1,. . .,mmax};
[45] 5. For each i in {1,. . .,m}, if n � lmin � ti�1 > 0,

uniformly draw a changepoint position ti in {ti�1 +
lmin,. . .,n}. Repeat this step until tm is sampled;
[46] 6. For each i in {1,. . .,m}, if n � lmin � ti�1 > 0,

uniformly draw a shift magnitude di in [�dmax, dmax];
[47] 7. For each i in {1,. . .,m}, set yk = yk + di, k = ti +

1,. . .,n;
[48] 8. If u < N, increment u and return to step 3,

otherwise end the simulation procedure.
[49] The second data set is generated in the same manner

except that trend changes rather than shifts are introduced in
the series. In that case, if we denote tri the trend in the (i + 1)th
first segment, all the above listed steps hold, except the
seventh step that should be replaced by this one:
[50] 7a. For each i in {0,. . .,m}, set, yv = yv + tri (xk �

xti+1),v = ti + 1,. . .,n.
[51] In the third data set, the changes can either be a shift

in the mean or a change of trend. The type of change is
randomly selected using a binomial distribution with pa-
rameter 0.5.

7.2. Performance Measures

[52] Let’s denote mu the number of changepoints in the
uth generated sample {Y}u and {ti

k, i = 1:mu} their positions.
Let _mu be the estimate of mu, and {̂ti

k, i = 1:m̂u} the estimates
of the positions of the _mu detected changepoints. Two
simple measures of the ability of the proposed approach to
detect the number of changepoints are the Percentage of
Correct Detections of the Number of changepoints (PCDN)
and the Root Mean Square Error (RMSE) of the estimations
of the number of changepoints defined as follow:

PCDN ¼ 1

M

XM
u¼1

1 ~mu¼muf g ð16Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
u¼1

_mu � muð Þ2
vuut ð17Þ

Another measure of the capability of the method to correctly
estimate the number of changepoints is the Ranked
Probability Score (RPS), if Fu denotes the empirical
cumulative probability distribution of mu obtained with
the application of the changepoint detection method, the
RPS can be defined as follows:

RPS ¼ 1

M

XM
u¼1

Xn
i¼1

Fu ið Þ � 1i
mu
ð Þ2

where 1i
mu
¼ 1 if i 
 mu

0 if i < mu

� ð18Þ

[53] The RPS is usually used to rate ensemble forecasts
[e.g Buizza and Palmer, 1998; Hamil, 2001]. The RPS

values are within [0, n � 1], and a value of zero is obtained
for perfect forecasts.
[54] Unfortunately, the RPS is designed to rate the

prediction for a single variable and cannot be easily applied
to the estimators of the positions of changepoints, as the
number of detected changepoints may be different from the
real number of changepoints. A new performance measure
was thus developed as follows: let {Y}u be a series
generated as described in section 6 with mu changepoints
{tj

u, j = 1:mu}. The application of the changepoint detection
approach to {Y}u will give a set E = {Sk, k = 1:M} of
M possible scatter schemes where Sk = ~t1

k, ~t2
k,. . .,~tmk

k } has

~mk elements. ~mk may be different from the real number
of changes mu in {Y}u. Given k and u, consider {ai,
i = 1,. . .,min (~mk, mu)} and bi, i = 1,. . .,min (~mk, mu)} such

that i 6¼ j! ai 6¼ aj, i 6¼ j! bi 6¼ bj and
Pmin ~mk ;muð Þ

i¼1

tau
i
�~tbk

i

� �
2 is

minimal. The performance of the changepoint detection
method when applied to the generated series {Y}u can be
measured with the Multiple Change Detection Performance
Index (MCDPI) defined as

MCDPIk ¼

1

~mk

X~mk

i¼1

tuai �~tkb
i

� �2
; ~mk ¼ mu

1

~mk

Xmu

i¼1

tuai�~t
k
bi

� �
2þ

X
j 6¼bi;i¼1;...;mu

~tkj n�~tkj

� � !
; ~mk >mu

1

mu

X~mk

i¼1

tuai �~tkbi

� �
2þ

X
j 6¼ai;i¼1;:::;~mk

tuj n� tkj

� � !
; ~mkmu

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

The introduction of ai and bi is motivated by the need to
associate as much as possible each element of the set of
real changepoints to an element of the set of detected
changepoints. Note that {ai, i = 1,. . .,min (~mk, mu)} and {bi,
i = 1,. . .,min (~mk, mu)} are different for each pair (u, k).
This association is performed using a minimum square
distance criterion. The penalty term for the false detection
of a change ~tj

k is ~tj
k (n � ~tj

k); the penalty for the nondetection
of the change tj

u is tj
u(n � tj

u). These penalty terms have the
interesting property of not over-penalizing false detections
at the beginning and at the end of the series. They are
consistent with the practice of discarding detected changes
that are close to the end or the beginning of the series
[Beaulieu et al., 2005].The overall performance is the mean
of the criterion over the set of generated series

MCDPI ¼ 1

N

XN
k¼1

MCDPIk ð20Þ

8. Settings and Results of the Simulation Studies

[55] The prior for s and the parameters for the data
generation algorithms were first chosen to have a
noninformative prior. Three data sets were generated
according to the procedure described in section 6, and
changepoints are identified with the proposed procedure. A
two-column vector of explanatory variables was considered,
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the first one containing only ones and the second containing
the date of the observation.

8.1. Prior Specification for s
[56] It can easily be shown that the prior variance of s

(equation A5 of Appendix A) is infinite when a < 3. Any
value lower than 3 is thus a relatively noninformative prior.
We chose a = 2 to be consistent with the classical p(s) /
s�2 usually used in Bayesian linear regression. As in
equation (11), c has the dimension of a variance; it was set
to the variance obtained by least squares estimates of the
linear regression equations between the response variable
and the explanatory variables in the stacked training
samples, i.e.:

c ¼ eT 1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf ge 1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf g

¼ YT
1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf gY 1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf g

� X 1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf g

� X T
1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf gX 1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf g

� ��1

� YT
1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf gY 1�l1ð Þ:0f g[ nþ1ð Þ: nþl2ð Þf g: ð21Þ

8.2. Parameters of the Simulations

[57] The number of series in each of the three simulated
data sets was set to 1000. The length of the series was fixed
to 75. The number of changepoints varies from zero to three
with at least 10 epochs between changepoints, and the shifts
were assumed to have a magnitude ranging between zero
and five times the standard deviation of the data series. The
magnitudes of the trends are assumed inferior to 3 standard
deviations per 10 epochs. These values are consistent with
the authors experience with changes observed in stream-
flows data series.

8.3. Performance of the Proposed Method on
Simulated Data Sets

[58] The changepoint detection method along with the
method of Vincent [1998] using significance values p = 5%
and p = 1% were applied to each simulated data set with a
two-column vector of explanatory variables. The first
column of this vector contains only ones while the second
column contains the dates of the observations. Including the
dates of observations in the vector of explanatory variables
allows the detection of changes in trend in the data series.
The length of the training samples were set to l1 = l2 = 2

Figure 1. Performance of the changepoint detection procedure as function of the number of real
changepoints and the minimum magnitude of the shift for the first simulated set, proposed method with
training samples of length (black), method of Vincent [1998] with p = 5% (white bars), and method of
Vincent [1998] with p = 1% (grey bars).
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whish are the minimal values to have L({(1 � l1):0}) and
L({(n + 1):(n + l2)}) well defined. The performances of the
changepoint detection methods on the first two simulated
data sets were compiled as a function of the number of real
changepoints and the minimum magnitude of the change in
a given series. Similar results were compiled for the third
simulated data set but only using the number of change-
points since the series contained two kinds of changes with
different definitions of the magnitude. These results are
plotted in Figure 1 and Figure 2 for the first and second
simulated data set, respectively. The same results are
presented in Figure 3 for the third simulated data set.
Analysis of these results allows drawing the following
conclusions:
[59] 1. For the two first data sets, the rate of false

detection (Figures 1a–1d; Figures 2a–2d) is lower for the
proposed method as compared with the method of Vincent
[1998]. Overall, the proposed method is the best for all data
sets when 0 � mu � 3 (Figures 1e–1h; Figures 2e–2h). As
expected, the PCDN increases when the minimum magni-
tude of the change increases. The same conclusions can be
drawn from all the other performance measures considering
that a good forecast means small RMSE, RPS, and MCDPI
values.

[60] 2. The performance indices (except the MCDPI)
decrease with the number of changepoints (cf. Figures 1i–1l;
Figures 2i–2l; Figures 3a–3d);
[61] 3. It seems easier for the method to detect shifts than

changes in trend (Figure 1 versus Figure 2), although the
relative performance depends on the range of change of
magnitude in each set. This conclusion holds only if we
consider that the range of magnitudes that were generated is
representative of the real world.
[62] The reasons for which the changepoint method may

miss a changepoint are multiple and cannot be illustrated
with a single figure. They include the magnitude, nature,
relative position, and sign of the changepoints. A thorough
study of the influence of these factors can be found in the
work of Beaulieu et al. [2005], and the results are too
extensive to be presented in this paper. For instance, it is
easier for the method to detect changepoints that are far
apart than changepoints that are grouped. Also, low
magnitude shifts are often ignored. Low magnitude
changepoints are even less likely to be detected when they
are close to higher magnitude changepoints.Results suggest
that in this particular case (series of 75 years), the method
can be trusted if the shifts in the data set have the order of
magnitude of the standard deviation and if the number of

Figure 2. Performance of the changepoint detection procedure as function of the number of real
changepoints and the minimum magnitude of the shift for the second simulated set, proposed method
with training samples of length (black), method of Vincent [1998] with p = 5% (white bars), and method
of Vincent [1998] with p = 1% (grey bars).
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Figure 3. Performance of the changepoint detection procedure as function of number of real
changepoints and the minimum magnitude of the shift for the third simulated set, proposed method with
training samples of length (black), method of Vincent [1998] with p = 5% (white bars) and Vincent [1998]
with p = 1% (grey bars).

Figure 4. Location map of station 080801 (Broadback River).
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changes is known to be inferior to three. Indeed, the
performance should not be the same for other data sets with
different lengths and different statistical characteristics.
However, since the data sets were generated to cover the
range of magnitudes generally encountered in streamflow
records, the method proposed in this paper will be useful for
detecting changes in river discharges. It can also be used in
several other problems involving multiple linear regression,
such as data homogenization or signal processing.

9. Application to Cases Studies

[63] The methodology is applied herein to two case
studies to illustrate its behavior on real data and to compare
it to the approaches of Seidou et al. [2006] and Vincent
[1998]. The first case study deals with change detection in
the linear regression describing the relationship between
summer-autumn flood peaks and precipitations on the
Broadback River basin. Seidou et al. [2006] studied this
data set using the Bayesian single changepoint detection and

found that the relation has significantly changed after 1972
(t = 1972 () tc = 1973). The expected value of tc with
the approach proposed in this paper should thus be 1973.
[64] The second case study is an example drawn from the

Canadian Reference Hydrometric Basin Network (RBHN)
database [Brimley et al., 1999]. The case was selected
because it displayed a relatively large number of changes.

9.1. Changepoint Detection in the Linear Regression
Describing the Relationship Between Summer-Autumn
Flood Peaks and Precipitations on the Broadback
River Basin

9.1.1. Data
[65] The Broadback River has a catchment of 17,100 km2

and experiences forest fire bursts from time to time (Figure 4).
According to the Canadian Large Fire Database [Natural
Resources Canada, Canadian large fires database, online
document http://fire.cfs.nrcan.gc.ca/Downloads/LFDB/
LFD_5999_e.ZIP, downloaded on August 2005; Stocks et
al., 2002], major forest fires occurred during the summer

Figure 5. Data for changepoint detection in summer-autumn flood peaks for the Broadback River,
(a) mean hydrograph, (b) summer-autumn flood peak time series, (c) precipitation time series, (d) burned
catchment area time series.
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of 1971, burning 506 km2 in the upper parts of the
catchment (1/34 of the total basin area). It can be
hypothesized that the deforestation because of these fires
can change the basin response function to meteorological
inputs. In order to perform the analysis, the 1961–1981
daily maximum flood discharges at station 80801 were
obtained from Quebec Ministry of the Environment. The

Broadback River is subject to two types of floods, spring
floods, which are dominated by snowmelt, and summer-
autumn floods which are caused by direct liquid precipita-
tions. Figure 5a presents the mean daily discharge at this
station for the 1961–1981 period. It appears that the
summer-autumn maximum flood peak is generally observed
at the end of October (Figure 5a). Daily precipitations for

Table 1. Basin Scale Precipitation and Summer-Autumn Flood Peak Time Series for the Broadback River Basin

Year

Total Precipitation for the
16th–31st July
Period, mm

Total Precipitation for the
1st–15th August

Period, mm

Total Precipitation for the
16th–31st August

Period, mm

Total Precipitation for the
September–October

Period, mm

Summer-Autumn
Maximum Flood

Peak, m3/s

1961 47.60 24.99 29.85 110.71 535
1962 79.61 45.34 70.96 90.98 714
1963 46.52 55.41 55.76 101.69 433
1964 69.96 30.52 36.23 132.00 762
1965 56.37 49.07 53.60 146.21 572
1966 44.56 59.93 33.27 213.33 796
1967 37.91 34.25 13.84 216.20 847
1968 49.04 52.02 54.45 152.14 745
1969 102.94 88.15 57.50 157.51 702
1970 53.04 55.06 68.32 102.24 586
1971 38.67 38.29 76.19 157.44 399
1972 29.98 61.48 50.26 137.10 552
1973 75.31 39.16 71.57 135.31 612
1974 33.14 59.81 48.58 168.72 1140
1975 66.11 43.33 59.15 104.56 493
1976 42.46 41.89 60.29 69.45 603
1977 57.16 61.02 41.64 126.90 759
1978 56.95 57.92 37.51 97.12 632
1979 59.22 49.73 73.62 143.59 1060
1980 66.02 20.74 61.98 124.47 478
1981 70.38 27.73 88.40 123.76 705

Figure 6. Changepoint detection in summer-autumn flood peaks of the Broadback river, (a) posterior
probability of the number of changepoints, (b) posterior probability of the first point of the segment after
the changepoint obtained with the proposed methodology, (c) posterior probability of the last point of the
segment before the change obtained with a recursive application of the methodology of Seidou et al.
[2006].
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the July–October period from 1961 to 1981 were obtained
by interpolation from the neighboring weather stations on a
regularly spaced grid of 100 � 100 points and averaged to
have a time series representing precipitation at the catchment
scale. This time series was then used to obtain the sum of
precipitations on the Broadback river catchment for every
half-month period from July to October. Exploratory
analysis of the linear relationship between observed flood
discharge and the obtained precipitation series led to the
choice of four explanatory variables for the flood peak
values, (1) the sum of precipitations of the 16th–31st of July
period, (2) the sum of precipitations of the 1st–15th of
August period, (3) the sum of precipitations of the 16th–31st
of August period, and (4) total precipitations for the
September–October period. The values of the 1961–1981
summer-autumn flood peaks are presented in Figure 5b, and
those of the chosen explanatory variables are presented in
Figure 5c. Figure 5d presents the burned areas on the
catchment for each year of the period of study. The series of
explanatory variables as well as the maximum flood peaks
are summarized in Table 1.
9.1.2. Results
[66] The application of the proposed changepoint detec-

tion method leads to a probability of nearly 0.3 for the
absence of changepoints, 0.7 for the existence of a unique
changepoint (Figure 6a). A small weight (<0.1) is attributed
to the existence of two changes. The posterior probability
distribution of the changepoint t is illustrated in Figure 6b.
The posterior probability distribution of tc obtained with the
same data set by Seidou et al. [2006], using another
Bayesian method, is also presented in Figure 6c. The two
Bayesian methods agree that the changepoint occurred
probably between 1973 and 1974, with however different
weights for these two dates. The method of Vincent [1998]
with p = 5% also gave one changepoint in 1973 (potential
dates of changes were 1973 and 1974, with a maximum F
statistics for 1973). Hence the three methods agree that a
change occurred in 1973 or 1974. The differences in
posterior probabilities displayed by the two Bayesian
methods may be due to the differences in the prior
specifications of the two methods. However, this point

cannot be proven since it is not possible to interchange the
prior formulations of the two Bayesian models.
[67] All three methods are based on the assumption of

normal residuals. It is hard to check the normality of
residuals in a Bayesian context, but it can be tested for
classical methods. Figure 7 presents the normal probability
plots of the residuals in the case of a changepoint in 1973 as
found with the method of Vincent [1998]. It can be seen that
the residuals are approximately normal and that the
normality assumption is not violated.
[68] This example was also an occasion to compare the

relative computational cost of the three methods, on a
Pentium M with a 2.13Ghz processor and 1Go ram, the
method of Vincent [1998] executed in 1.75s, the proposed
methodology in 14.2s and the method of Seidou et al.
[2006] in 101.72s.

9.2. Shifts and Trend Change Detection in the Flood
Peaks of the Ogoki River

9.2.1. Data
[69] The Ogoki River is a 480-km-long river located in

the province of Ontario, Canada. It flows northeast from
lakes west of Lake Nipigon to join the Albany River which
ends into the James Bay. Station 04GB004 (Ogoki River
above Whiteclay Lake) is part of the Canadian Reference
Hydrometric Basin Network (RHBN) which comprises
stations that have been carefully selected for climate change
detection and assessment studies [Brimley et al., 1999]. The
RHBN network comprises stations that are pristine. Station
04GB004 was selected because it displays a relatively large
number of changepoints. The location of this station is
given in Figure 8.
9.2.2. Results
[70] The results of the changepoint analysis of the Ogoki

River streamflows with the method proposed in this paper
are presented in Figure 9. The results obtained with the
approach of Seidou et al. [2006] are provided in Figure 10.
The posterior probability distribution of the number of
changepoints obtained with the proposed method is plotted
in Figure 10a, while the simulated mean before and after the
changepoint is given in Figure 10b. Up to four changepoints

Figure 7. Normal probability plot of the residuals given
(Broadback river).

Figure 8. Location of station 04GB004 (Ogoki River
above Whiteclay Lake).
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Figure 9. Detection of trend changes at station 04GB004 (Ogoki River above Whiteclay Lake) with the
proposed methodology.

Figure 10. Detection of trend changes at station 04GB004 (Ogoki River above Whiteclay Lake) with a
recursive application of the methodology of Seidou et al. [2006].
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are plausible (Pr (m = 4) > 0), but the most probable number
of changepoints is two. Figures 9b and 9c provide the
posterior probability distributions of the first and second
changepoints, conditional to m = 2. The position of each of
these changepoints is chosen to be the mode of the posterior
distribution, 1961 for the first changepoint and 1971 for the
second changepoint. Given these positions, the posterior
means of the three segments in the data series are readily
computed (Figure 9d). According to the analysis, the flows
of the Ogoki River displayed a negative downward trend
from 1951 to 1967. There was an abrupt shift in 1968, with
another smaller downward trend up to 1983. From 1984 to
the present date, the streamflow record displayed a small
upward trend.
[71] Figure 9a illustrates the posterior probability distri-

bution of the changepoint obtained with the methodology of
Seidou et al. [2006]. This method gives less than 0.01
probability of no change (with this method, the probability
of no change is equal to the probability that the changepoint
is at the end of the data series). The mode of the posterior
distribution of the date of change corresponds to 1968. The
recursive application of the method of Vincent [1998] gave
only one changepoint, located at position 1968 (potential
changepoints are 1969 and 1970, with a maximum F
statistics for 1969). Figure 11 presents the normal
probability plot of the residuals given a change in 1968.
Once again, the residuals are approximately normal, with a
slight departure from normality in the upper tail. At this
stage of the research, the sensitivity of the proposed method
to moderate violation of the normality assumption is not
known, but its extension to nonnormal distributions is (in
theory) straightforward and will be discussed at the end of
this section.
[72] These dates (1968 and 1969) correspond grossly to

the first of the two changepoints detected with the method-
ology presented in this paper. This indicates that the results
of the three methods are consistent. The method of Seidou et
al. [2006] displayed a multimodal posterior distribution
which is sometimes the sign of the existence of more than
one changepoint. In this example, the fact that the posterior

distribution is bimodal suggests that there may be another
changepoint in 1955. However, this seems to have been
caused rather by the high discharge observed in 1954 than
by a real change of trend in the data series.
[73] Since the causes of trend change in the streamflow

record are not known, it is impossible to decide whether the
results of one or the other of the two methods correspond to
the reality. However, two major advantages of the proposed
approach (1) are the smaller computational burden and
(2) the fact that it has fewer constraints and gives a larger
chance for the data to influence the posterior distributions.
The proposed approach is thus preferable in cases where
there is only one response variable, where no data is
missing, and where more than one change is plausible.
The results presented in this work are also easier to interpret
than those of the approach proposed by Seidou et al. [2006].
[74] As most hydrological variables display nonnormal

distributions, the extension of the methodology presented in
this paper to more general models is highly desirable. Such
extension is straightforward since the most important equa-
tions were obtained without assumptions on model struc-
ture. The remaining task is to derive an expression of the
cohesion P(t, s) [cf. equations (3) and (9)] or at least find an
efficient numerical estimation of P(t, s) for the candidate
model. However, obtaining an analytical expression for
P(t, s) given a data model is not an easy task. Fearnhead
[2005, 2006] provides such expressions for single series with
normally distributed or Poisson-distributed observations.
Numerical approximation seems attractive, but truncation
errors and the computational burden would become delicate
issues to deal with.
[75] Another alternative to handle nonnormality is to

develop a similar approach to the hidden Markov chain
models. Complex changepoint problems can be handled in
the framework of hidden Markov chain models, such as
problems involving nonnormal data and those which dis-
play a serial dependence structure in the observations [e.g.,
Thyer and Kuczera, 2003a, 2003b].

10. Conclusions

[76] A Bayesian method of multiple changepoint detec-
tion in multiple linear regression is developed and validated
with both simulated data and real data sets. The paper also
proposes a new class of priors for the parameters of the
multiple linear model, as well as useful formulas that permit
straightforward computation of the posterior distribution of
the positions of changepoints. Results suggest that, in the
particular case of series with 75 observations, the proposed
method can be trusted if the shifts in the data set have the
order of magnitude of the standard deviation and if the
number of changes is known to be inferior to three. It is also
shown that the proposed method is computationally more
efficient than its MCMC-based counterpart. Hence, in cases
where there is only one response variable, where no data is
missing, and where more than one change is plausible, it is
better to use the proposed methodology instead of the work
of Seidou et al. [2006].
[77] As the most important equations were obtained

without assumptions on model structure, its extension to
more complex data models using nonnormal distributions is
straightforward using minor analytical developments or

Figure 11. Normal probability plot of the residuals given
(Ogoki river).
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numerical approaches. Extension to hidden Markov Models
is briefly discussed.

Appendix A: Properties of p(sja, c) ////// s�a exp
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a� 3

2

� �
2�

a�3
2 C�a�1

2 G
a� 1

2

� � ¼
G

a� 2

2

� �
2Cð ÞG a� 1

2

� �
ðA5Þ

Var sð Þ ¼ E s2
� �

� E sð Þð Þ2¼
G

a� 3

2

� �
G

a� 1

2

� �
� G

a� 2

2

� �� �2

2CG
a� 1

2

� �2
 !

ðA6Þ

The case a < 3 leads to an infinite variance for s, that is,
limx!þ1

Rx
0

p(s)ds = + 1. Any value of a less than 3 can

thus be used as a noninformative prior. Note that when s is
very large, p(s) / s�a.

Appendix B: Derivation of L({i1, i2,. . .,in1})

[79] In this section, we will derive the expression for
L({i1, i2,. . .,in1}). To simplify the notation, let idx = {i1,

i2,. . .,in1}. Let �̂ be the ordinary least squares solution of the
equation Yidx = Xidxq and eidx = Yidx � Xidx > �̂}. Note

that eidx does not depend on q or s. It is well known from
linear algebra that �̂ = (Xidx

T Xidx)
�1 Xidx

T Yidx. We also

suppose that p sja; cð Þ ¼
s�a exp � c

2s2

� �
2
a�3
2 c

�a�1
2 G a�1

2ð Þ
, a > 1,c > 0.

We have:

L idxð Þ ¼
Z
s

2ps2
� �� card idxð Þð Þ=2

p sð Þ

�
Z
b

exp � Yidx�Xidxqð ÞT Yidx�Xidxqð Þ
2s2

" #
dsdq

ðB1Þ

Equation (B1) can be simplified since

Yidx�Xidx�ð ÞT Yidx�Xidxqð Þ
2s2

¼
eidx�Xidx q �q̂

� �� �T
eidx�Xidx q �q̂

� �� �
2s2

¼ 1

2s2

�
eTidxeidx�eTidxXidx q �q̂

� �
q �q̂
� �T

XT
idxeidx

þ q �q̂
� �T

XT
idxXidx

� �
q �q̂
� ��

ðB2Þ

and

XT
idxeidx ¼ eTidxXidx

� �T¼XT
idx Yidx�Xidx XT

idxXidx

� ��1
XT

idxYidx

� �
¼ 0;

ðB3Þ

thus:

L idxð Þ ¼
Z

2ps2
� �� card idxð Þð Þ=2

p sð Þ

� exp �
eTidxeidx þ q �q̂

� �T
XT

idxXidx

� �
q �q̂
� �

2s2

2
64

3
75dsdq

ðB4Þ

L idxð Þ ¼
Z

2ps2
� ��card idxð Þ=2p sð Þ exp � eTidxeidx

2s

� �

�
Z
q

�
q � q̂
� �T

XT
idxXidx

� �
q � q̂
� �

2s
dsdq

ðB5Þ

let S be s2 (Xidx
T Xidx)

�1 )jSj = d2d*

XT
idx
Xidxj j;

L idxð Þ¼
Z
s

2ps2
� �� card idxð Þð Þ=2

p sð Þ exp � eTidxeidx
2s2

� �
2pð Þd*=2 Sj j1=2

�
Z
b

2pð Þ�d*=2

Sj j1=2
exp �

q �q̂
� �T

S�1 q �q̂
� �

2

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}R
q

Ncard idxð Þ qjq0 ;Sð Þ¼1

dsdq

ðB6Þ

In equation B6, d* is the length of q, i.e., the number of
explanatory variables (including the intercept if any).
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L idxð Þ ¼ 2pð Þ� card idxð Þ�d*ð Þ=2
XT

idxXidx

�� ���1=2

�
Z
s

sd*�card idxð Þ exp � eTidxeidx
2s2

� �
p sð Þds

ðB7Þ

L idxð Þ ¼
2pð Þ� card idxð Þ�d*ð Þ=2 XT

idxXidx

�� ��1=2
2
a�3
2 c�

a�1
2 G

a� 1

2

� �

�
Z
s

sd*�card idxð Þ exp � eTidxeidx þ C

2s2

� �
p sð Þds

ðB8Þ

L idxð Þ ¼
2pð Þ� card idxð Þ�d*ð Þ=2 XT

idxXidx

�� ���1=2

2
a�3
2 c�

a�1
2 G

a� 1

2

� � 2
card idxð Þþa�3

2

� eTidxeidx þ C
� �� card idxð Þþa�d*ð Þ

2 G
card idxð Þ þ a� d*

2

� �
ðB9Þ

L idxð Þ ¼ 2pð Þ
d*
2
p eTidxeidx þ C
� �� �� card idxð Þþa�1ð Þ

2

Cpð Þ�
a�1
2 XT

idxXidx

�� ��1=2

�
G

card idxð Þ þ a� d*
2

� �
G

a� 1

2

� �
ðB10Þ

as eidxT eidx = Yidx
T Yidx � Xidx (Xidx

T Xidx)
�1 Yidx

T Yidx) we
finally obtain the expression for P1 (idx):

L idxð Þ ¼ 2pð Þ
d*
2

p eT
idx
eidxþCð Þð Þ�

card idxð Þþa�d*ð Þ
2

Cpð Þ�
a�1
2 XT

idx
Xidxj j1=2

�
G

card idxð Þ þ a� d*
2

� �
G

a� 1

2

� �
ðB11Þ

List of symbols

b1* Regression parameters before the
changepoint in the methodology of
Seidou et al. [2006]

b2* Regression parameters after the chan-
gepoint in the methodology of Seidou
et al. [2006]

b0 Component of the vector of regression
parameter that does not change in the
methodology of Seidou et al. [2006]

b1 Component of the vector of regression
parameter that change to b2 after tc t
in the methodology of Seidou et al.
[2006]

b2 Component of the vector of regres-
sion parameter that replaces b1 after
tc in the methodology of Seidou et
al. [2006]

e Vector of random errors in the linear
regression equation (one response
variable)

es:t Part of the vector of random errors
between s and t

ut Vector of random errors in the linear
regression equation (several response
variables)

F Parameters of the linear regression
equation

Sy Variance-covariance matrix of the
distribution of ut

tc Last point of the segment before the
change (methodology of Seidou et al.
[2006])

tk kth changepoint in the proposed
methodology

q Vector of regression parameters

qt(tc) Vector of regression parameters at
date t given tc (methodology of
Seidou et al. [2006])

a Parameter of the prior distribution of
F

c Parameter of the prior distribution of
F

d* Number of explanatory variables
(including the intercept if any)

d0* Number of explanatory variables for
which the regression coefficients do
not change

d1* Number of explanatory variables for
which the regression coefficients dis-
play a change (methodology of
Seidou et al. [2006])

E Set of generated scatter schemes
G(t) Cumulative probability distribution

of the time interval between conse-
cutive changepoints

g(t) Probability distribution of the time
interval between consecutive change-
points

G0(t) Cumulative probability distribution
of the first changepoint

g0(t) Probability distribution of the first
changepoint

k Number of generated scatter schemes
Sk = {~t1

k, ~t2
k,. . .,~tmk

k } in the inference
procedure

L({i1, i2,. . .,in})
R
F

(f(yi1jF) f(yi2jF). . .f(yinjF))p1(F)dF

M Number of scatter schemes to gen-
erate with the posterior distributions
of the positions of changepoints

MCDPI Multiple change detection perfor-
mance index

mu Number of changes in the uth gener-
ated series
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_mu
Estimate of the number of changes in
the uth generated series

~mk
Number of changes in the kth gener-
ated scatter scheme during the simula-
tion of the changepoints

n Length of the data series
N Number of sets to generate

P(t, s), s 
 t Probability that t and s be in the same
segment

PCDN Percentage of correct detections of
the number of changepoints

Q(t) Likelihood of the segment Yt:n given
a changepoint at t � 1

r Number of response variables (meth-
odology of Seidou et al. [2006])

RMSE Root mean square error
RPS Ranked probability score

Sk = {~t1
k, ~t2

k,. . .,~tmk

k } kth scatter scheme generated with the
posterior distributions of the posi-
tions of changepoints

t Time

~t i
k Estimate of the ith change in the kth

generated scatter scheme
ti
k ith change in the kth generated scatter

scheme
u Number of the generated series {Y}u

in the validation procedure
X Vector of explanatory variables
Xt tth row of the vector of explanatory

variables
Xt:s Rows t to s of the vector of

explanatory variables
Yt Rows t to s of the vector of response

variables
{Y}u uth generated series in the validation

procedure
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Statistical Hydrology, INRS-ETE, 490 rue dela Couronne, Quebec (QC),
G1K949 Quebec, Canada. (ousman_seidou@ete.irnrs.ca)

18 of 18

W07404 SEIDOU AND OUARDA: MULTIPLE CHANGEPOINT IN MULTIVARIATE LIN W07404


