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[1] Multivariate linear regression is one of the most popular modeling tools in hydrology
and climate sciences for explaining the link between key variables. Piecewise linear
regression is not always appropriate since the relationship may experiment sudden
changes due to climatic, environmental, or anthropogenic perturbations. To address this
issue, a practical and general approach to the Bayesian analysis of the multivariate
regression model is presented. The approach allows simultaneous single change point
detection in a multivariate sample and can account for missing data in the response
variables and/or in the explicative variables. It also improves on recently published change
point detection methodologies by allowing a more flexible and thus more realistic
prior specification for the existence of a change and the date of change as well as for the
regression parameters. The estimation of all unknown parameters is achieved by
Monte Carlo Markov chain simulations. It is shown that the developed approach is able
to reproduce the results of Rasmussen (2001) as well as those of Perreault et al.
(2000a, 2000b). Furthermore, two of the examples provided in the paper show that the
proposed methodology can readily be applied to some problems that cannot be addressed
by any of the above-mentioned approaches because of limiting model structure and/or
restrictive prior assumptions. The first of these examples deals with single change point
detection in the multivariate linear relationship between mean basin-scale precipitation
at different periods of the year and the summer–autumn flood peaks of the Broadback
River located in northern Quebec, Canada. The second one addresses the problem of
missing data estimation with uncertainty assessment in multisite streamflow records with a
possible simultaneous shift in mean streamflow values that occurred at an unknown date.
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1. Introduction

[2] Because of the growing evidence of climate change,
the common assumption of stationarity of hydrologic phe-
nomena no longer holds. Several recently published works
point out shifts or trend changes in hydrologic time series
[e.g., Salinger, 2005; Woo and Thorne, 2003; Burn and Hag
Elnur, 2002]. Possible reasons of change in statistical
characteristics of observed data series include natural
or anthropogenic actions on the physical environment
(deforestation, construction of hydraulic structures, pollu-
tion, etc.), and modifications in measurement equipment or
protocol.
[3] To deal with these nonstationary data sets, change

point analysis in hydrologic time series is regularly revisited
using various assumptions on the data model, on the
parameter that exhibits a change as well as on the type of
change. However, problems in hydrology often involve
missing data and interactions between several data series

that cannot easily be handled by recently published meth-
odologies. The main objective of the present paper is to
develop a change point model that allows simultaneous
change point analysis of several time series, each time series
being modeled as a linear combination of a set of explan-
atory variables. The method generalizes the model of
Rasmussen [2001] to cases where there is more than one
response variable, to cases where the change point does not
occur with certainty and to cases where informative priors
on the regression parameters are required. It also improves
on the models of Perreault et al. [2000a, 2000b] which
are all special cases of the model presented in this
paper. Unfortunately, the solution is no longer analytic
and inference is performed using Monte Carlo Markov
chain simulation.
[4] The developed model is also applied to three different

examples to illustrate its features and flexibility: (1) detec-
tion of a single shift in univariate data, (2) detection of a
change point in univariate data with several covariates, and
(3) a case of shift detection and missing data estimation in a
multivariate data set. The first example aims to show that
the proposed methodology gives the same results than the
above-mentioned approaches when applied to the same data
sets with the same prior assumptions. The two last examples
illustrate the additional features of the proposed approach
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and prove that it can be applied to cases where the other
published methodologies are inadequate.
[5] Aside from the introduction, the paper is organized as

follows: a quick review of recently published change point
methodologies is presented in section 2. Section 3 presents
the development of the proposed method of change
point detection in multiple linear regression using Gibbs
sampling. The three case studies are described in section 4,
and the findings are discussed in section 5. A conclusion is
finally given in section 6.

2. Review of Recently Published Bayesian
Change Point Detection Models

[6] A change point can be defined as the date at which at
least one parameter of a statistical model (e.g., mean,
variance, intercept, trend) undergo an abrupt change. It is
a very common problem in signal processing and a large
number of techniques can be found in the literature to find
the date of a potential change and to check if the change is
significant or not. Most of the published methodologies use
classical statistical hypothesis testing to detect changes in
slopes or intercept of linear regression models [Solow, 1987;
Easterling and Peterson, 1995; Vincent, 1998; Lund and
Reeves, 2002; Wang, 2003]. For instance, Solow [1987],
Easterling and Peterson [1995], Vincent [1998], Lund and
Reeves [2002] and Wang [2003] all use the Fisher test to
compare the model with a change point to the model
without change points. Vincent [1998] uses the Durbin-
Watson test to check the autocorrelation of the residuals
before applying the Fisher test. The Student test and the
Wilcoxon test can be applied sequentially to detect change
points in data series [Beaulieu et al., 2007].
[7] However, not all change point approaches are based

on hypothesis testing: for instance, Wong et al. [2006] used
the grey relational method [Moore, 1979; Deng, 1989]
for single change point detection in streamflow data series.
In some rare cases, other curve fitting methods are used
[e.g., Sagarin and Micheli, 2001; Bowman et al., 2006].
Extensive reviews of change point detection and correction
methodologies in hydrology and climate sciences can be
found in work by Peterson et al. [1998] and Beaulieu et al.
[2007].
[8] The change point problem was also addressed in

Bayesian statistics. The advantage of Bayesian statistics
over classical statistics is the comprehensive description
of parameters uncertainty. While classical statistics may
give the most probable position of the change point,
Bayesian methods provide a full posterior probability
distribution of its position. The posterior probability distri-
bution can for instance be skewed and/or multimodal. It
thus provides much more information than a simple esti-
mation and a credibility interval as usually obtained with
classical methods.
[9] The Bayesian methods were applied considering

single or multiple changes, in conjunction with a known
or an unknown number of change points. The case where
the number of change points is known is easier to handle,
while multiple change points can involve sophisticated
algorithms in which several potential models with different
number of change points are compared. For instance, Green
[1995] uses reversible jump Monte Carlo Markov chains to
solve a multiple change point problem, using a sampler that

jumps between parameter subspaces of differing dimension-
ality. Examples of alternative strategies for handling an
unknown number of change points can also be found in
work by Barry and Hartigan [1993], Fearnhead [2005] or
Seidou and Ouarda [2006]. Barry and Hartigan [1993]
introduced the multiple change point component by a
normal random variable that can be added anytime to the
mean of the series, but only with a certain probability. In
work by Fearnhead [2005] and Seidou and Ouarda [2006],
the conditional distributions of the (i + 1)th change point
given the ith change points are derived in a Bayesian
framework.
[10] Examples of approaches using a known number of

change points include Gelfand et al. [1990], Stephens
[1994], and Rasmussen [2001]. Stephens [1994] imple-
mented a Bayesian analysis of a multiple change point
problem where the number of change points is assumed
known, but the times of occurrence of the change points
remain unknown. Gelfand et al. [1990] also considered a
known number of change points and discussed Bayesian
analysis of a variety of normal data models, including
regression and ANOVA-type structures, where they allowed
for unequal variances. Rasmussen [2001] considered a
single change point in a simple linear regression model
with noninformative priors and derived the exact analytical
posterior distribution of the regression parameters. His
model assumes that the change point occurred with certainty,
and does not allow a clear diagnosis of the existence of the
change.
[11] Other authors emphasized on problem in which the

data series contain at most one change point (i.e., the
authors give a criterion to decide whether there is zero or
one change points in the data series). We cite, for example,
Carlin et al. [1992], who applied a three-stage hierarchical
Bayesian analysis to a simple linear change point model for
normal data where a single change point occurs on the
regression and variance parameters. Perreault et al. [2000a]
gave Bayesian analyses of several change point models of
univariate normal data. All of these authors implemented
their analyses using Gibbs sampling. Exact analytical
Bayesian analyses were proposed by Solow [1987] for the
two-phase regression model and by Perreault et al. [2000b]
for a change in the mean of a series of multivariate normal
random variables. More recently, Zhao and Chu [2006]
used a hierarchical Bayesian model to detect multiple
change points in annual Hurricane counts.
[12] In the three following subsections, more details are

provided on three well known change point models that will
be compared to the proposed methodology: the model of
single shift detection in univariate data developed by
Perreault et al. [2000a], the model of single shift detection
in multivariate normal data of Perreault et al. [2000b], and
the change point detection model in the general linear model
developed by Rasmussen [2001].

2.1. Single Change Point Detection in a Normal
Univariate Random Sample

[13] The single shift in a normal random sample can be
represented by the following model:

Yi
N m1;s

2ð Þ; i ¼ 1; . . . ; t
N m2;s

2ð Þ; i ¼ t þ 1; . . . ; n;

�
ð1Þ
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where t is the date of change, s2 the variance, m1 and m2 the
mean before and after the change. This problem was first
addressed in a Bayesian context by Chernoff and Zacks
[1963], followed by several others [Smith, 1975; Lee and
Heighinian, 1977; Booth and Smith, 1982; Bruneau and
Rassam, 1983; Perreault et al., 2000a]. The difference in
the above-mentioned approaches lie mainly in the prior
distributions of the unknown parameters. Perreault et al.
[2000a] derived the exact analytical expression of the
posterior probability of the time and magnitude of the shift
under the assumption of constant variance. Inferences are
based on the analysis of posterior distributions and are
conditional upon the fact that a change happened with
certainty. The following additional assumptions were made
about the prior distributions: The prior distribution of the
date of change p(t) is independent of that of (m, s2); the
prior distribution of m1 is normal with parameters F1 and
l1s

2; the prior distribution of m2 is normal with parameters
F2 and l2s

2; and the prior distribution of s2 is inverted
gamma with parameters a and b:

p s2
� �

¼ ba

G að Þ s2
� ��a�1

exp � b
s2

� �
: ð2Þ

[14] The posterior probability of the change point is then

p tjxð Þ / p tð Þ
ffiffiffiffiffiffiffiffiffiffi
l0
1l

0
2

q
jb0jð Þ�a0

: ð3Þ

where

l0
1 ¼ l1= 1þ tl1½ 
;l0

2 ¼ l2= 1þ tl2½ 
;a0 ¼ aþ n=2;

yt ¼
Xt
i¼1

yi

t
; yn�t ¼

Xn
i¼tþ1

yi

n� t
;

st ¼
Xt
i¼1

yi � �ytð Þ2

t
; sn�t ¼

Xn
i¼tþ1

yi � �yn�tð Þ2

n� t

and

b0 ¼ t
2

st þ 1� l0
1t

� �
f1 � �xtð Þ2

h i
þ n� t

2

� sn�t þ 1� l0
1 n� tð Þ

� �
f2 � �xn�tð Þ2

h i
þ b:

2.2. Single Change Point Detection in a Multivariate
Random Sample

[15] Perreault et al. [2000b] generalized the approach
presented in section 2.1 to the case of a change point in a
multivariate sample. The equations are quite similar except
that the parameters are now p dimensional. The multivariate
normal distribution replaces the univariate one and the
inverse Wishart distribution is used instead of the inverse
Gamma distribution:

Yi �
Np m1;Pð Þ; i ¼ 1; . . . ; t

Np m2;Pð Þ; i ¼ t þ 1; . . . ; n;
:

8<
: ð4Þ

where Np stands for the multivariate normal distribution
with mean vector m and precision matrix P.
[16] As in the univariate case, the following assumptions

are made about the prior distributions: The prior distribution
of the date of change p(t) is independent of that of (m, P);
the prior distribution of m1 is multivariate normal with
parameters F1 and l1P; the prior distribution of m2 is
multivariate normal with parameters F2 and l2P; and the
prior distribution of P is inverse Wishart with parameters a
and B, i.e.,

p Sð Þ ¼ 2�k=2pk k�1ð Þ=4
Yk
i¼1

G
�þ 1� i

2

� � !�1

jSj�=2 jSj� �þkþ1ð Þ=2

� exp � 1

2
tr SS�1
� �� �

:

ð5Þ

[17] Under these assumptions, the posterior probability of
the change point

p tjYð Þ / p tð Þ
ffiffiffiffiffiffiffiffiffiffi
l0
1l

0
2

q
jB0j�a0 ; ð6Þ

where

l0
1 ¼ l1 þ t; l0

2 ¼ l2 þ n� t; a0 ¼ aþ n=2;

�yt ¼
Xt
i¼1

yi
t
; �yn�t ¼

Xn
i¼tþ1

yi
n� t

;

St ¼
1

t

Xt
i¼1

yi � �ytð Þ yi � �ytð ÞT ;

Sn�t ¼
1

n� t

Xn
i¼tþ1

yi � �yn�tð Þ yi � �yn�tÞ
T

�

and

B0 ¼ t St þ 1� t
l0
1

� �
�xt � f1ð Þ �xt � f1ð ÞT

� �
þ n� tð Þ

� Sn�t þ 1� n� tð Þ
l0
2

� �
�xn�t � f2ð Þ �xn�t � f2ð ÞT

� �
þ B:

2.3. Single Change Point Detection in the General
Linear Regression

[18] Rasmussen [2001] considered the Bayesian estima-
tion of change point in the general linear model for which
the mean at a given time i is a linear combination of M basis
functions gk (i), i = k, .., M. The basis functions gk () are
function of the observation time, and may just represent a
time series of explanatory variables such as precipitation or
temperature:

Yt

N
PM
k¼1

b1kgk tð Þ;s2

� �
; t ¼ 1; . . . ; t

N
PM
k¼1

b2kgk tð Þ;s2

� �
; t ¼ t þ 1; . . . ; n:

:

8>>><
>>>: ð7Þ
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[19] Rasmussen [2001] takes advantage of the fact that
for a given value of t, equation (7) can be written in matrix
form as a plain linear regression equation:

Y ¼ Ftq þ e: ð8Þ

[20] Assuming a uniform distribution for the elements of ��,
for log(s) and for any parameter of the basis functions, the
posterior distribution of the date of change is obtained:

P tjYð Þ

¼
jFT

t�1Ft�1j�1=2
YTY� YTFt�1 FT

t�1Ft�1

� ��1
FT
t�1Y

h i� n�Mð Þ=2

Pn�1

i¼1

jFT
i Fij�1=2

YTY� YTFi F
T
i Fi

� ��1
FT
i Y

h i� n�Mð Þ=2
:

ð9Þ

3. General Change Point Detection in Multiple
Linear Regression Using Gibbs Sampling

[21] We now present the model that is proposed in the
paper. For extensive details on the model derivation, the
reader is referred to Asselin et al. [2005].

3.1. Formulation

[22] The simplest formulation for the change point model
assumes that the random vector Yt has a probability density
function (pdf) f for t = 1,. . .,t and pdf g for t = t + 1,. . .,n.
The case t = n stands for the absence of a change point. It
follows that the likelihood of t is

L tjYð Þ ¼
Yt
t¼1

f Ytð Þ:
Yn

t¼tþ1

g Ytð Þ ð10Þ

with
Qn

t¼nþ1

g(.) = 1, if t = n. For known pdfs f and g, the

maximum likelihood estimate (MLE) for t can be directly
obtained by calculating the likelihood (10) for each t 2 {1,
2,. . .,n}. When we consider parametric families f (�jx) and
g(�jz), the likelihood becomes

L t; x; z Yjð Þ ¼
Yt
t¼1

f Yt xjð Þ
Yn

t¼tþ1

g Ytjzð Þ:

[23] Obtaining maximum likelihood estimates of t, x and
z can be challenging for problems involving a large number
of unknown parameters, even when using numerical
methods as opposed to mathematical inference. A Bayesian
formulation of the change point problem gives an alternate
approach to inferring on the parameters. Assuming a prior
p(t, x, z) for the parameters, the joint distribution of data
and parameters is

L t; x; z Yjð Þp t; x; zð Þ; ð11Þ

which is proportional to the joint posterior distribution of t,
x and z. Obtaining the exact posterior marginal distribution
of the parameter t requires the integration of (11) with
respect to x and z. However, this might not be practical in
high-dimensional problems. In such cases, we prefer to

approximate the posterior distribution using Markov chain
Monte Carlo methods as will be discussed later.
[24] We now present the multivariate regression model

with a change point that is developed in this work. Multi-
variate regression is widely used in applied science to
describe relationships between observation series. The
change at time t can be interpreted as a natural of
anthropogenic perturbation of the system dynamics.
[25] Our strategy in this paper is to redesign the change

point model into a multivariate regression model, so that
normal theory can be used and applied whenever possible.
This greatly simplifies analytical developments. The change
point model (redesigned later in this section) assumes that
the (r � 1) vector Yt is related to the (r � m*) matrix Xt by

Yt ¼ Xtq
tð Þ
t þ ut; ð12aÞ

where

q tð Þ
t ¼

b*1 ; 1 � t � t

b*2 ; t < t � n

8<
: ð12bÞ

under the constraints

b*1 ¼ b1; b0ð ÞT and b*2 ¼ b2;b0ð ÞT : ð12cÞ

[26] The dimensions of the vectors qt(t), b1*, b*, b0, b1,
b2 are respectively (m* � 1), (m* � 1), (m* � 1), (m0* � 1),
(m1* � 1) and (m1* � 1). Equation (12c) implies that m* =
m0* + m1*. It is also assumed that error terms {ut} are
independent and identically distributed following N[0, Sy].
[27] Model (12a) assumes a change point in the vector

qt(t) from the subvector b1 to the subvector b2. The
subvector b0 is assumed to remain part of qt(t) throughout
the observation series. This feature allows to model, as a
special case, a change point in the intercept parameter.
[28] By defining q = (b1, b2, b0)

T and

D tð Þ
t ¼ d tð Þ

t I
m1* 1� d tð Þ

t

� �
I
m1* 0

0 0 I
m0*

 !
;

where Im*0 and Im*1 are the identity matrixes of dimension m*0
and m*1, and

d tð Þ
t ¼ 1; t � t

0; t > t;

�

model (12a) can be written in a simpler form as

Yt ¼ XtD
tð Þ
t q þ ut: ð13Þ

[29] Hence, with the knowledge of the time t of the
change point, the change point structure can be redesigned
as a single multivariate regression equation. This fact allows
the use of the general and well known linear model

Yt ¼ Ftq þ ut; ð14Þ
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where Ft is any (r � m) design matrix. Conditional
distributions based on (14) are derived in section 3.3.
Models (12a), and (13) correspond to the special case Ft =
XtDt

(t). Note that in practice, there may be a continuity
constraint at the change point even if some parameters
undergo an abrupt change. This is the case when a time
series temporarily displays a trend due to a progressive
increase of a causal factor. In this case the expressions of q
and Dt

(t) are different of those presented in the preceding
sections. These expressions are given in Appendix A for the
case of two linear relationships before and after the change
point, and the case of a linear relationship followed by a
constant mean, assuming that the mean is continuous at the
change point.

3.2. Monte Carlo Markov Chain

[30] To make inference on a parameter of a Bayesian
model, it will be necessary to integrate the joint posterior
probability with respect to all the other parameters. Except
in very simple cases where the solution is analytical, this
integration is carried out through computer simulation. The
idea of studying the stochastic properties of a random
variable through computer simulation is not recent [see
Metropolis and Ulam, 1949]. Contributions from Metropolis
et al. [1953] and Hastings [1970] led to a general method
nowadays referred to as the Metropolis-Hastings algorithm.
When all conditional distributions are known, Gibbs
sampling [Geman and Geman, 1984] is preferred to the
Metropolis-Hastings algorithm because it leads to less
numerical problems. The power of the Metropolis-Hastings
algorithm and the Gibbs sampler is undeniable. They allow
Bayesian analysis of highly complicated models even when
exact closed-form solutions are theoretically impossible to
obtain.

3.3. Conditional Distributions

[31] To simplify the developments, an approach similar to
the one proposed by Gelman et al. [1995] is adopted. Only
relevant results are presented, and the reader is referred to
Gelman et al. [1995] for details on the derivation of
conditional distributions for multivariate regression models.
The extension to missing data is given in Appendix B.
[32] First, model (14) is expressed into the equivalent

univariate multiple regression representation by stacking the
observed Yt s in a single vector Yv. Hence we define

Yv ¼ YT
1 ;Y

T
2 ; . . . ;Y

T
n

� �T
;

F ¼ FT
1 ; . . . ;F

T
n

� �
;

uv ¼ uT1 ; uT2 ; . . . ; uTn
� �T

;

where Yv is the (nr � 1) vector of observations, F is the
(nr � m) matrix of explanatory variables, and uv is the
(nr � 1) multivariate normal vector of residuals with zero
mean. Under the assumption of normality of the residual
vector uv, and considering a multivariate Normal prior for
the parameter vector theta with a vector of means f and
covariance matrix Sq , the posterior distribution of Yv is

Yv Fj ; q;Sy N F��; In �Sy

� �
ð15Þ

and

Yv

q

� �
jF;Sy N

f

q0

� �
;

Q ST

S Sq

� �� �
; ð16Þ

where

S ¼ SqF
0:

f ¼ Fq0

Q ¼ In �Sy þ FSqF
T :

ð17Þ

[33] Using a normal prior for q, we have

q Yj ;F;Sy N m;C½ 
;

where

m ¼ q0 þ SQ�1 Yv � fð Þ

C ¼ Sq � SQ�1ST ð18aÞ

¼ S�1
q þ FT In � S�1

y

� �
F

� ��1

: ð18bÞ

[34] If a proper prior for q is selected, (18a) is well
defined. However, if jSqj ! 1, then (18a) may be
computationally undefined, so (18b) should be used
when Sq

�1 is easily obtained and jSq
�1j is finite. Since Q

is (nr � nr), Q�1 should be calculated as

Q�1 ¼ In � S�1
y

� �
� In � S�1

y

� �
FCFT In � S�1

y

� �
ð19Þ

with C obtained from (12b), rather than by directly
inverting (17). The advantage of (19) is that Sy

�1 is only
(r � r) and C is only (m � m) in contrast to the (nr � nr)
matrix Q�1.
[35] We now focus on the derivation of the conditional

distributions of Sy given q. In general, we have

p SyjY;F; q
� �

/ p Sy Fj ; q
� �

p Yv Fj ; q;Sy

� �
;

/ p Sy Fj ; q
� �Yn

t¼1

p Yt Fj ; q;Sy

� �
/ p Sy Fj ; q
� �

Sy

�� ���n=2
exp �tr nŜyS�1

y

� �
=2

� �
;

where

Ŝy ¼ n�1
Xn
t¼1

utut;ut ¼ Yt � Ftq: ð20Þ

[36] Under model (20) and the assumption of inverse
Wishart prior for Sy, i.e., SyjF, q Wu

�1 (Ly), the conditional
posterior distribution of Sy is

SyjY;F; q W�1
uþn Ly þ uŜy

� �
:
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[37] In the case when Sy = d2Gy, where Gy is a known
positive definite matrix, a conjugate inverse gamma prior
(i.e., d2jF, q G�1(a, b)) is assumed. The corresponding
conditional posterior for d2 is

d2 Yj ;F; q G�1 aþ nr

2
; bþ 1

2
tr nŜyG�1

y

� �� �
:

[38] The noninformative case corresponds to imposing
a ! 0 and b ! 0. In the important case of independent
response variables (Gy = Ir), we have

d2 Yj ;F; q G�1 aþ nr

2
; bþ 1

2
tr nŜy

� �� �
:

3.4. Change Point Inference

[39] In this section, we focus on the change point inference
part of the problem. As noted in the introduction, any
change point in a regression formulation can be modeled
by a plain regression model conditioned on the time of
change point. It is then a matter of ‘‘rewriting’’ the design
matrices {Xt} as a single matrix F given t and obtaining a
conditional posterior for the time of change point.
[40] For any prior p(tj{Xt}, q,Sy) under model [14] with

Ft = XtDt
(t) depending on t, we have

p t Yj ; fXtg; q;Sy

� �
/ p F; q;Sy Yj

� �
/ p F; q;Sy

� �
p Yv Fj ; q;Sy

� �
/ p F; q;Sy

� �
Sy

�� ���n=2
exp �tr nŜyS�1

y

� �
=2

� �
; ð21Þ

where Ŝy is obtained from (20). This result can be used to
sample t under any prior assumption on q, Sy and the
missing values. Equation (21) is the ‘‘regression’’ version of
(11): it is the exact posterior density of all unknown
parameters. Hence this equation would remain valid for any
structure built in F. The use of the Metropolis-Hastings
algorithm with (21) provides a general method to generate
from the joint posterior of {F, q, Sy}, although this may be
computationally difficult in practice, which explains why
direct Gibbs sampling with conjugate priors is often
preferred.
[41] Although Gibbs sampling of t from (21) is always

possible (provided that some regularity conditions are
satisfied), it is possible to do better under further prior
assumptions. In section 3.3, we have assumed a normal
prior for q. With this additional assumption, we can
integrate (21) with respect to q and we have

p tjY; fXtg;Sy

� �
/ p F;Sy Yj

� �
/ p F;Sy

� �
p Yv Fj ;Sy

� �
; ð22Þ

where

YvjF;Sy N f ;Q½ 
:

[42] Since the parameters t and q may be strongly
dependent, the use of (22) as opposed to (21) has the
desirable feature of reducing the dependencies in the series
of Gibbs samplers. Therefore the use of (22) would improve
mixing and would speed up convergence to the joint
posterior of all parameters. Ideally, we should integrate (22)
with respect to Sy as well, but our prior assumptions render
this task very difficult. Perreault et al. [2000b] performed
successfully a similar integration under a simpler model
with more restraining priors.
[43] When choosing the prior for t, since the particular

event t = n stands for the absence of a change point, it
might be appropriate to place more or less prior probability
mass on this event, depending on the question of interest or
on the prior knowledge of the data. In their application

Figure 1. Comparison of the proposed methodology with
those of Rasmussen [2001] and Perreault et al. [2000a] on a
single shift detection in the Saint Lawrence streamflow data:
(a) discharge, (b) Perreault et al. [2000a], (c) Rasmussen
[2001], and (d) proposed methodology.
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example, Carlin et al. [1992] used the discrete uniform on
{1, 2,. . ., n} as a prior pmf for t.

3.5. Extension to Missing Data

[44] In practice, the data set could contain missing values.
Bayesian methods cope with this problem elegantly by
replacing the missing values with unknown parameters that
are updated in the Gibbs sampling routine in the same way
it is done for the parameters of interest. In order to update a
missing value through Gibbs sampling, we need its condi-
tional distribution given all other parameters and data.
Appendix B provides the conditional distributions that
allow Gibbs sampling of missing values in Yv or F.

4. Case Studies

[45] In this section, three examples in hydrology are
analyzed using applicable methods among those that have
been described in section 2. The first example was pre-
sented by Rasmussen [2001]. It was considered to allow for
a rational comparison of the original methodologies with the
approach proposed in this paper. These examples are as
follows.
[46] Example 1: This example deals with a single shift

detection in the Saint Lawrence streamflows data at
Ogdensbourg, New York. The analysis was performed using

the methodology of Perreault et al. [2000a] (model (1)),
Rasmussen [2001] (model (7)) and the proposed methodol-
ogy (model (12)).
[47] Example 2: This example deals with single change

point detection in the multiple linear regression between
mean basin-scale precipitation at four different periods of
the year and the summer–autumn flood peaks of the Broad-
back River located in northern Quebec, Canada. Inference
was performed for models (7) and (12).
[48] Example 3: The data of five rivers located in the

Côte-Nord region of the province of Quebec, Canada, are
investigated for a single shift using model (12),. Model (4)
[Perreault et al., 2000b] could not be used in this case
because of several gaps in the observations.

4.1. Single Shift Detection in the Saint Lawrence
Streamflow Data

[49] We consider the 1861–1950 annual streamflows of
the Saint Lawrence River at Ogdensbourg, New York. This
data set was analyzed by Rasmussen [2001]. The data are
plotted in Figure 1a and seems to indicate that mean annual
flow of that river displays either a downward trend of a
negative shift. As this example is very simple, all the
models presented in section 2 can be used except that of
Perreault et al. [2000b] which is intended to work on
multivariate data sets only. Models (1), (7) and (12), were

Figure 2. Location map of station 080801.
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thus applied to the data set. As there are no explicative
variables in this example, the vector X in the regression
equation is a simple column for which each element has
value 1.
4.1.1. Prior Specification and Inferences on Model
Parameters
[50] The posterior distributions for model (3) [Rasmussen,

2001] were obtained using Jeffrey’s noninformative priors
for the parameters (the Jeffrey’s prior is a noninformative
prior distribution which is invariant under reparameteriza-
tion of the parameter vector. It thus expresses the same
belief no matter the scale used). Consequently, no prior
specifications are required for this particular approach. The
prior distributions for the parameters of the two other
models were thus set to be noninformative in order to allow
for a rational comparison of the various approaches. t was
assumed to be uniformly distributed over {1,. . .,n} for all
models. The parameters a and b for model (1) were set to 2

and var(Y) which corresponds to an inverse gamma
distribution of mean var(Y) and infinite variance [see
Perreault et al., 2000a], while l was set to 10000. For
model (12), the prior mean for q was set to the sample
mean, and the prior variance of q was set to 10000 times the
sample variance.
[51] The posterior distributions of models (1) and (4) were

obtained using their analytical expressions (equations (3)
and (9)). To make inferences on the parameters of model
(12), 10000 iterations of the Gibbs sampler were performed.
Convergence was successfully assessed at iteration 100.
Inferences on model parameters were performed using the
9900 last iterations.
4.1.2. Results
[52] The posterior distributions of the date of change are

plotted in Figures 1b, 1c, and 1d for models (1), (7) and
(12), respectively. It appears that the three models display
the same shape for the posterior probability of the date of

Figure 3. Data for change point detection in summer–autumn flood peaks of the Broadback River:
(a) mean hydrograph, (b) summer–autumn flood peak time series, (c) precipitation time series, and
(d) burned area time series.
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change: the mode and 95% credibility interval obtained with
all the three models are 1891 and [1886 1894]. The results
of model (1) [Perreault et al., 2000a] and (7) [Rasmussen,
2001] are particularly similar, although there are very small
differences in the posterior distributions because of different
model parameterizations. Model (12), gives a posterior
distribution that is also very close to the two others. Note
that it was not necessarily expected that empirical distribu-
tions computed from MCMC chains would fit exactly the
analytical solution. Variability due to numerical errors and
the limited size of MCMC chains will always be present.
The results presented in Figure 1 are thus very satisfying
and can be considered as a successful validation of the
proposed methodology for the case of univariate normal
data with a single shift.

4.2. Change Detection in a Multivariate Regression
Model: Influence of Forest Fires on Summer–Autumn
Flood Peaks of the Broadback River

[53] The change point detection methods will now be
applied to the relationship between summer–autumn max-
imum flood discharge and precipitation at station 80801
located on the Broadback River, Quebec, Canada. This river
has a catchment of 17100 km2 and experiences from time to
time forest fire bursts (Figure 2). According to the Canadian
Large Fire Database [Stocks et al., 2002] (see also Natural
Resources Canada, Canadian large fires database, 2005,
available at http://fire.cfs.nrcan.gc.ca/Downloads/LFDB/
LFD_5999_e.ZIP), major forest fires occurred during the
summer of 1971, burning 506 km2 in the upper parts of the
catchment (1/34 of the total basin area). It is hypothesized
that the deforestation due to these fires has changed the
basin response function to meteorological inputs. In order to
perform the analysis, the 1961–1981 daily flood discharges

at station 80801 were obtained from Quebec Ministry of
Environment. The Broadback River is subject to two types
of floods: spring flood, which are dominated by snowmelt,
and summer–autumn floods which are caused by direct
liquid precipitation. Figure 3a presents the mean daily
discharge at this station for 1961–1981. It appears that
the summer–autumn maximum flood peak is generally
observed at the end of October (Figure 3a). Daily
precipitation of July–October from 1961 to 1981 were
obtained by interpolation from the neighboring weather
stations on a regularly spaced grid of 100*100 points and
averaged to have a time series representing precipitation at
the catchment scale. This time series was then used to
obtain the mean precipitation on the Broadback River
catchment for every half month from July to October.
Exploratory analysis of the linear relationship between
observed flood discharge and the obtained precipitation
series led to the choice of four explanatory variables for the
flood peak values: (1) the mean precipitation of 16–31 July,
(2) the sum of precipitation of 1–15 August, (3) the sum of
precipitation of 16–31 August and (4) the sum of
precipitation of September–October. The values of 1961–
1981 summer–autumn flood peaks are presented in
Figure 3b and those of the chosen explanatory variables
in Figure 3c. Figure 3d presents the burned areas on the
catchment for each year of the period of study.
4.2.1. Prior Specification and Inferences on Model
Parameters
[54] An equal weight was set for the probability of change

(t = 1,. . .,n � 1) and the absence of change (t = n). Note
that this prior is more realistic than the flat prior in example
1 because it acknowledges the fact that a change may not
happen. The prior for q was set as follows: since in this
application mt = Ftq represents the expectation of the flood

Figure 4. Change point detection in summer–autumn flood peaks of the Broadback River: (a) posterior
probability of change point obtained with the methodology of Rasmussen [2001] and (b) posterior
probability of change point obtained with the proposed methodology.
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peak at date t, it seems reasonable to give to its mean a prior
distribution for which the 95% lower confidence interval is
positive, i.e., Ftq̂ p � 1.96FtSq

pFt
T > 0, t = 1, .., n where q̂ p

andSq
p represent the prior mean and the prior variance for q.

These considerations led to q̂p = q̂reg and Ŝq
p = kŜq

reg where
qreg and Ŝq

reg are the mean and variance of the regression
parameters obtained using ordinary least squares, and k =
max{kj8t 2 {1,. . .,n}, Ftq̂p � 1.96k (Ft Ŝq

p Ft
T)0.5 > 0}.

[55] As for the first example, 10000 iterations of the
Gibbs sampler were performed. Convergence was success-
fully assessed at iteration 100. Inferences on model param-
eter were performed using the 9900 last iterations.
4.2.2. Results
[56] Figure 4a presents the posterior probability of the

date of change in the linear relationship that was obtained
with the approach of Rasmussen [2001]. The maximum
posterior distribution of the date of change is maximal at the
beginning and at the end of the series, and displays no peak.
This kind of shape of posterior distribution of date of
change is typical of model (7) when applied to homo-
geneous series. Thus the application of this approach leads
to a ‘no change’ conclusion.
[57] The posterior probability of the date of change

obtained with model (12), is given in Figure 4b. The mode
and credibility interval for this distribution are 1972 and
(1972, 1978) respectively. It shows a clear peak in 1972
leading to a strong conclusion of change between 1972 and
1973. The mode and credibility intervals of the posteriors
distributions of each coefficient of the linear regression
before and after the change point were also computed from
the MCMC chains and listed in Table 1. The posterior
probability distributions of each of these coefficients before
and after the change point are provided in Figure 5.
Inspection of Figure 5 shows that the weight of the sum
of precipitation of 16–31 July decreased from positive
to negative values while that of the sums of precipitation
of 1–15 August and 16–31 August increased significantly.
The negative values in the regression coefficients after the
change point can be explained by the dependence between

the sums of precipitation of consecutive periods. This
dependence could have been removed using techniques
such as principal component analysis (PCA), but such task
is beyond the scope of this paper and is not supposed to
change the existence and date of change in the linear
relationship. The uncertainty on the regression coefficients
is also higher after the change point since the 95% credi-
bility interval is wider in all cases (Table 1), and the
distributions have a larger support (Figure 5).
[58] Since the two approaches give dramatically different

results, an alternative procedure was sought to check
whether there was a change in 1972 or not. We used the
change point detection method in multivariate regression
described by Vincent [1998]. This method is applied as
follows.
[59] 1. For each year i between 1961 and 1981: (1) Fit two

linear regression models to segments [1961– i] and [i + 1,
1981] and compute the series of residuals. (2) Test the
autocorrelation of the residuals using the Durbin-Watson
test at 5% significance level. (3) If the test is positive, use
the classical F test at 5% significance level to compare the
model with a change point at year i with the model without
change point (See Vincent, 1988 for details on how to
compute the test statistics and the associated critical values).
[60] 2. In case the two tests are positive for several years,

consider the year with the higher F test statistics as the date
of change.
[61] The application of the above-mentioned method

gave two potential dates of change (1972 and 1973) with
a higher F statistics for 1972. While the residuals of the
model without change point were found autocorrelated, no
significant autocorrelation was found in the residuals of the
fitted model. Figure 6 presents the normal probability plot
of the residuals given a change in 1972. It can be seen that
the residuals are reasonably normal, as required by linear
regression theory.
[62] Hence the method of Vincent [1998] supports the

hypothesis of change in 1972. The main reason for which
the model of Rasmussen [2001] failed to detect the change
point is the use of the Jeffrey’s noninformative prior for the
regression parameters. The choice of Jeffrey’s noninforma-
tive prior is motivated by mathematical convenience, but
such a choice gives the same prior probability for each value
between �1 and +1, while the range of physically
possible values is much smaller. It is well known in
Bayesian statistics that when the prior is too vague, weak
signals in the observations series are not detected. The
prior used with the proposed method is vague but at a much
less extent than the Jeffrey’s noninformative prior (see
section 4.2.1). It led thus to the clear detection of changes in
the data series.

4.3. Single Shift Detection in a Multivariate Data Set
With Missing Data

[63] Five rivers in the Côte-Nord region (province of
Quebec, Canada) were selected for this application. These
stations have a sufficiently long common period of obser-
vation to set up the prior distributions. As all the other
stations of the same hydrological region display a signifi-
cant amount of missing data, only the approach proposed
in this paper can be used in this case. The selected rivers
are the Godbout River (station 71401), the Moisie River

Table 1. Mean Value and Credibility Intervals Before and After

the Change Point for the Coefficients of the Linear Regression

Describing the Relationship Between Summer–Autumn Flood

Peaks and Precipitation on the Broadback River’s Basin

Before the Change
Point

After the Change
Point

Mode
95% Credibility

Interval Mode
95% Credibility

Interval

Coefficient of the sum
of precipitation
of 16–31 July

4.69 [0.52 7.98] �6.83 [�12.25 0.83]

Coefficient of the sum
of precipitation of
1–15 August

�0.18 [�5.25 4.30] 6.90 [1.61 11.92]

Coefficient of the sum
of precipitation of
16–31 August

�0.32 [�3.89 3.00] 6.43 [�0.50 10.82]

Coefficient of the sum
of precipitation of
September–October

2.99 [1.87 4.26] 3.38 [1.05 5.94]
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Figure 6. Normal probability plot of the residuals given a change in 1972.

Figure 5. Posterior probability distributions of the coefficients of the linear regression describing the
relationship between summer–autumn flood peaks and precipitation on the Broadback River’s basin.
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(station 72301), the Magpie River (station 73503), the
Romaine River (station 73801) and the Saint Paul River
(station 74601), which all have observations during the
period 1975–1987. The characteristics of these rivers are
listed in Table 2, and their annual maximum flood peaks are
plotted in Figure 7a.

4.3.1. Prior Specification and Inferences on Model
Parameters

[64] The prior specification for q and t are the same as in
section 4.2.1 except that only the common period of
observation was used to compute q̂reg, Ŝq

reg and k. There are
no covariates in this model, except the intercept, given as a

Table 2. Characteristics of the Five Rivers of Northern Quebec

Station
Number Station Name Longitude Latitude

Catchment
Area, km2

Observation
Period

Number of
Missing Values
Between 1957

and 2001

71401 Godbout �67.65 49.33 1 570 1972–2000 19
72301 Moisie �66.18 50.35 19 000 1966–2001 12
73503 Magpie �64.58 50.68 7 230 1971–2001 22
73801 Romaine �63.62 50.30 13 000 1957–2001 1
74601 Nabissipi �62.21 50.25 2 060 1963–1987 20

Figure 7. Change point detection on the five rivers of northern Quebec: (a) flood peak time series and
(b) posterior probability of change point.
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column of ones. Jeffrey’s noninformative prior was first
used for Sy (v ! �1 and jLyj ! 0). The flood discharges
times series were also standardized to verify the hypothesis
of common variance assumed by the proposed method.
100000 iterations of the Gibbs sampler were performed and
convergence was successfully assessed after iteration 1000.
The number of iterations is higher because there is much
more variables to update than in the first four examples.
4.3.2. Results
[65] Figure 7b presents the posterior probability distribu-

tion of the date of change for model (12). Inspection of
Figure 7 shows that the posterior probability of the date is
concentrated between 1977 and 1984 with clear peak in
1977. The posterior probability of the date of change is
maximal in 1978. It could be concluded that there is an
evidence of regional change in river flows of the Côte-Nord
region in the province of Quebec around 1978.
[66] The most interesting aspect of this application is the

straightforward estimation of missing data in a context of
nonstationarity. As mentioned earlier, there was a significant
number of gaps in the streamflow data of the Côte-Nord
region. Estimation of the missing values is not an easy task
even with a stationarity hypothesis. The proposed method-
ology addresses this issue in a straightforward manner, and
the obtained posterior distributions allow a full assessment
of the uncertainty associated with the results. The recon-
stituted streamflows in which missing values are estimated
by the mean of their posterior distributions are given in
Figure 8. The credibility intervals for missing data are also
provided in Figure 8.

5. Discussion

[67] The three case studies presented in this paper show
that the proposed approach is very flexible and can be
applied to a wide range of problems in hydrology. In
Example 1, it is compared to published change point
detection approaches with the same priors and data and it
gave exactly the same results. In example 2, it is shown that
it gives better results than Rasmussen [2001] on the problem
of change point detection in summer–autumn flood peaks
of the Broadback River probably because it allows for a
more realistic but still vague prior specification on
regression parameters as well as on the variance parameter.
[68] This flexibility leads to nonexplicit solutions for the

posterior probability distributions, thus to MCMC simula-
tions, while the approaches of Rasmussen [2001] and
Perreault et al. [2000a, 2000b] provide posterior distribu-
tions in closed forms. However, model flexibility is a
requirement for a realistic analysis of hydrological data sets
and the proposed methodology can be applied to a much
broader range of problems: for instance, example 3 is of
particular importance for hydrologists since it also allows
the estimation of missing data in a nonstationary context,
along with a full uncertainty assessment of the results. The
posterior probability distribution of the missing data takes
into account the uncertainty on the date of change, on
regression parameters as well as on the variance-covariance
structure. The results are thus much more informative than
any classical estimation with confidence intervals often
based on unverified regularity hypotheses.
[69] A number of other hydrological problems can be

analyzed with the change point detection methodology such

as homogenization of historical data or estimation of miss-
ing data in the explanatory variables. An interesting but
quite straightforward topic of further work would be the
generalization of the approach to multiple change point
problems.
[70] Another interesting future development would be the

extension of the approach to the analysis of series of
unequal variances between series and/or before and after
the change point. For instance, multivariate data sets have
been standardized before applying themethodology provided
in this paper. If the shifts in the mean were very severe (e.g.,
more than five times the standard deviation), the variance of
the standardized series would have be dramatically different
before and after the change and the proposedmethod does not
apply. Generalization to thz.
[71] Finally, as one may not know how much change

points exist in a given series, the extension to multiple
change points is desirable. A possible solution in this case is
to use the method recursively (i.e., segments between
consecutive change points of between a change point and
the limits of the series are tested until all segments are found
homogeneous). See for example Beaulieu et al. [2007] for
examples of application of method designed for one
inhomogeneity to multiple change point problems. Another
solution for multiple changes is to exploit the same idea for
more complicated models, including a multiple change
point model or the more general segmented multivariate
regression. The latter is formally described as

Yt ¼ Xtbi þ ut ; if xt2
ai�1;ai
;

for t = 1,. . .,n and i 2 {1,. . .,l}. The (r � 1) observations
{Yt} are modeled as piecewise regressions depending on the
covariates {xt}. {Xt} are (r � m) design matrices, {bi} are
(m � 1) regression parameters, and {ut} are (r � 1) residual
vectors. A natural approach for the analysis of this model is
to obtain estimation equations for the bi s separately.
However, this problem is greatly simplified if the model is
written as its equivalent multivariate regression form.
Define the (1 � l) row vector

d tð Þ ¼ 0; 0; . . . ; 0; 1
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{i

; 0; . . . ; 0

0
@

1
A; if xt 2 ai�1;aið 
:

[72] With qT = (b1
T,. . .,bl

T), the segmented multivariate
regression is equivalent to

Yt ¼ Xt d tð Þ � Im

� �
q þ ut:

[73] Under the appropriate assumptions on the residuals
{ut}, results of sections 4 and 5 are immediately applicable.
With Ft = Xt (d

(t) � Im), the conditional posterior (18), (or
(19) if q has a normal prior) can be used to obtain the
conditional posterior of the parameters {ai} and perform
their Gibbs sampling. There is no doubt that the same idea
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Figure 8. Estimations and credible intervals for missing data: (a) station 74601, (b) station 73801,
(c) station 73503, (d) station 72301, and (e) station 71401.
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can be used to obtain a practical solution for a wide variety
of switching models.

6. Conclusions

[74] This paper provided an implementation of Bayesian
analysis for multivariate regression via Gibbs sampling. The
method was extended to the inclusion of missing values and
to the inclusion of a change point structure in the model. An
attractive feature of the approach presented in this paper is
that it can be applied to cases that cannot be analyzed with
recently published change point detection methodologies
such as Rasmussen [2001] and Perreault et al. [2000a,
2000b]: It can readily be applied to cases where the change
point simultaneously occurs in several response variables, to
cases where the change does not occur with certainty and to
cases where informative priors are appropriate. Three
applications that highlight these features are presented.
[75] An interesting future development would be to relax

the assumption of constant residual variance over time and
the one of normality. A potential approach for this would be
to introduce dependencies in the variance evolution over
time, hence allowing for variable variance estimation. The
scope of possibilities for the developed approach goes
beyond the analysis of the single change point problem.
Potential applications of this model include not only change
point models, but also other switching models such as
segmented multivariate regression or shifting-level models.
Such generality is made possible by the fact that the design
matrices {Ft} can be structured in accordance to such
models. This opens the door for a practical approach to
analyze these models and apply them in the field of water
resources.

Appendix A: Design Matrix F When There Is a
Continuity Constraint at the Change Point

[76] When there is a continuity constraint at the change
point, the expression of the design matrix F is slightly
different of that presented at section 3. We give here its
expression for two practical cases.

A1. Continuity Constraint at the Change Point

Yt ¼
Xtb0

1 þ nt if t � t

Xt � Xtð Þb0
2 þ Xtb0

1 þ nt if t > t

8<
:

X*t ¼ Xt;Xtð Þ

q ¼ b1b2ð Þ

Dt
t ¼

dtð ÞtIm 1� dtð Þtð ÞIm

1� dtð Þtð ÞIm � 1� dtð Þtð ÞIm

0
@

1
A

Ft¼ Xt*D
t
t :

[77] Note that in this special case, if X has a column with
constant values, the coefficient of the first element of b2 is

always null, thus this parameter should not be updated in the
MCMC computations.

A2. Linear Relationship Before the Change, Constant
Mean After the Change, and Continuity of the
Mean Model at the Change Point

Yt ¼
Xtb0 þ nt if t � t

Xtb0 þ nt if t > t

8<
:

X*t ¼ Xt;Xtð Þ

Dt
t ¼

dtð ÞtIm*

1� dtð Þtð ÞIm*

0
@

1
A

q ¼ b0

Ft¼ X*t D
t
t

Yt¼ Ftqþ nt:

Appendix B: Extension to Missing Data

[78] The case where missing values are present in Yv is
examined. For any given matrix (or vector) a, let a(u) be the
matrix (or vector) composed of the values in a correspond-
ing to the set of indices U. Hence define Y(M)

v to be the
vector of missing values in Yv, where M is the set of indices
corresponding to the missing values in Yv, and define Y(O)

v

to represent the vector of observed values in Yv, where O is
the set of indices corresponding to the observed values.
[79] From (15), the posterior distribution of the missing

values in Yv is

Yv
Mð ÞjYv

Oð Þ;F;Sy N ~f Mð Þ; ~Q M�Mð Þ

� �
;

where

~f Mð Þ ¼ f Mð Þ þQ M�Oð Þ Q O�Oð Þ

� ��1

Yv
Oð Þ � f Oð Þ

� �
and

~Q M�Mð Þ ¼ Q M�Mð Þ �Q M�Oð Þ Q O�Oð Þ

� ��1

Q O�Mð Þ:

[80] If F has missing data, it can also be generated by
Gibbs sampling. With this approach, the model for F cannot
be ignored and prior distributional assumptions on F must
be considered. For instance, in the case of model [13], the
prior must account for the change point structure Ft = Xt

Dt
(t). We present a solution for this special case.
[81] Define Xt

v by stacking the columns of Xt into a single
column vector. Inference on missing data will be obtained
from the conditional joint distribution of Yt and Xt

v. These
two components are related by model [13], which can also
be written as

Yt ¼ q tð Þ0
t � Ir

� �
Xv

t þ ut: ðB1Þ
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[82] Let {X1
v,. . .,Xn

v} be independent with

Xv
t mxj ;Wx N mx;Wx½ 
; t ¼ 1; . . . ; n

and define for a given time t when some values are missing

Zt ¼
Yt

Xv
t

� �

From (B1), it follows that

Ztjt; q;Sy;mx;Wx N gt ;Rt½ 
;

where

gt ¼
q tð Þ
t � Ir

� �
mx

mx

0
B@

1
CA

Rt ¼
Sy þ q tð Þ

t � Ir

� �
Wx q tð Þ

t � Ir

� �
q tð Þ0
t � Ir

� �
Wx

Wx q tð Þ
t � Ir

� �
Wx

0
B@

1
CA:

[83] From model assumptions, {Z1,. . .,Zn} are indepen-
dent. Hence the posterior distribution of the missing values
in Zt is directly obtained by normal theory, that is,

Zt Mð ÞjZt Oð Þ; t; q;Sy;mx;Wx N ~gt Mð Þ; ~Rt M�Mð Þ

h i
;

where

~gt Mð Þ ¼ gt Mð Þ þ Rt M�Oð Þ Rt O�Oð Þ
� ��1

Zt Oð Þ � gt Oð Þ

� �
ðB2aÞ

~Rt M�Mð Þ ¼ Rt M�Mð Þ � Rt M�Oð Þ Rt O�Oð Þ
� ��1

Rt O�Mð Þ: ðB2bÞ

[84] However, (Rt(O�O)) may not be strictly positive
definite, but only nonnegative definite. This will happen if,
for example, an intercept parameter is part of model (7). It
can be shown that (B2) remains valid if the g inverse
(generalized inverse) (Rt(O�O))

� is used instead of
(Rt(O�O))

�1. The g inverse of a matrix A is denoted by
A� and can be calculated by A� = GL�1G0, where G is a
column orthonormal matrix of eigenvectors corresponding
to the s nonzero eigenvalues L = diag(l1,. . .,ls) of A. A
more general definition of the g inverse is reviewed by
Mardia et al. [1979].
[85] To provide an estimation tool for the parameters mx

and Wx , we consider the conjugate normal inverse Wishart
prior

Wx � W�1
u0

V0ð Þ ðB3aÞ

mxjWx � N m0;Wx=k0½ 
: ðB3bÞ

[86] From Gelman et al. [1995], the conditional posterior
is

Wx Xtf gj � W�1
un Vnð Þ

mx Xtf gj ;Wx � N mn;Wx=kn½ 
;

where

mn ¼
1

kn
k0m0 þ nX
� �

kn ¼ k0 þ n

un ¼ u0 þ n

Vn ¼ V0 þ Sþ k0n

kn
X� m0

� �
X� m0

� �0
and

X ¼ 1

n

Xn
t¼1

Xv
t

S ¼
Xn
t¼1

Xv
t X

v
t � nXX

0
:

[87] We can easily obtain samples from this joint poste-
rior by first sampling Wxj{xt} and then sampling mxj{xt},
Wx. The noninformative multivariate Jeffrey’s prior density
for {mx, Wx} is

mx;Wx½ 
 / Wxj j
� rm*þ1

� �
=2
:

[88] This is the limiting case of the normal inverse
Wishart prior in (B3) k0 ! 0, u0 ! �1 and jV0j ! 0.
The posterior distribution {mx, Wx j {Xt}}for this case can
be written as

Wx Xtf gj � W�1
n�1 Sð Þ

mx Xtf gj ;Wx � N X;Wx=n
� �

;

in which we find the sample estimators of the parameters mx

and Wx.
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