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[1] We present a coupling between the one-dimensional Richards equation for vertical
unsaturated flow and the one-dimensional hillslope-storage Boussinesq equation (HSB)
for lateral saturated flow along complex hillslopes. Here the capillary fringe is included in
the flow domain as an integral part of the Boussinesq aquifer. The coupling allows
quantitative investigation of the role of unsaturated storage in the relationship between
rainfall and recharge. The coupled model (HSB coupled) is compared to the original
HSB model (HSB original) and a three-dimensional Richards equation (RE) based model
(taken to be the benchmark) on a set of seven synthetic hillslopes, ranging from
convergent to divergent. Using HSB original, the water tables are overestimated and the
outflow rates are generally underestimated, and there is no delay between rainfall
and recharge. The coupled model, however, shows a remarkably good match with the
RE model in terms of outflow rates, and the delay between rainfall and recharge is
captured well. We also see a clear improvement in the match to the water tables, even
though the values are still overestimated for some hillslope shapes, in particular the
convergent slopes. We show that for the hillslope configurations and scenarios examined
in this paper it is possible to reproduce hydrographs and water table dynamics with a good
degree of accuracy using a low-dimensional hydrological model.
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1. Introduction

[2] Our understanding of hillslope subsurface flow pro-
cesses and their effect on catchment response to atmo-
spheric forcing is incomplete and has been the subject of
much research for several decades. Among the first to reveal
the importance of hillslope subsurface flow with regard to
catchment stormflow were Hewlett and Hibbert [1967] and
Dunne and Black [1970]. They concluded that for humid
climates water table dynamics in hillslopes have a large
effect on channel stormflow through the formation of
areas of saturation along the channel network, often called
saturated source areas, which cause saturation excess over-
land flow. Since then many studies have investigated sub-
surface flow processes experimentally [e.g., O’Loughlin,
1981; Woods et al., 1997; Torres et al., 1998; McGlynn et

al., 2004] and through modeling. The two-part paper by
Freeze [1972], where stormflow processes are examined
using a three-dimensional Richards-based model to describe
subsurface processes, is one of the first (computer) model-
ing studies of hillslope processes, and since then many have
followed.
[3] In addition to the rather complex, three-dimensional

models that are often used in these modeling studies [e.g.,
Abbott et al., 1986; Wigmosta et al., 1994], several simpli-
fied low-dimensional models have been proposed, because
of the computational expense and parameterization difficul-
ties associated with the former type of model. Efforts
include those of Beven and Kirkby [1979], who describe
the original version of TOPMODEL, Duffy [1996], who
develops a two-state variable integral-balance (hillslope)
model, Reggiani et al. [1998], who describe the ‘‘represen-
tative elementary watershed’’ (REW) model, and Sloan
[2000], who describes a storage-discharge type model
which is derived from hydraulic groundwater theory.
Among the simplified models, many studies have focused
on analysis of the Boussinesq equation [e.g., Childs, 1971;
Brutsaert, 1994; Szilagyi et al., 1998; Chapman, 2005].
Most of these studies were conducted on straight hillslopes,
sometimes using linearized versions of the Boussinesq
equation, aiming at an increased fundamental understanding
of the flow and storage dynamics in hillslopes.
[4] In recent work by the authors, the Boussinesq equa-

tion was generalized to account for the three-dimensional
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soil mantle in which the flow processes take place [Troch et
al., 2003; Paniconi et al., 2003; Hilberts et al., 2004]. The
effect of slope shape (i.e., convergent, divergent, and
straight) and bedrock curvature on storage and outflow
processes was examined for drainage and recharge
scenarios, and compared to the three-dimensional Richards
equation (RE) based model of Paniconi and Putti [1994]. A
general conclusion of our recent work with the hillslope-
storage Boussinesq (HSB) model is that the modeled
outflow rates compared relatively well to results of the
RE model, but capturing the water table dynamics was less
successful. Results from a recent laboratory experiment
[Hilberts et al., 2005] indicated that this may be caused
by the strong effect of capillarity (or, more precisely, the
unsaturated storage) on groundwater dynamics, especially
for shallow soils as typically encountered on hillslopes.
[5] The capillary fringe is an (almost) entirely saturated

transition zone between the unsaturated zone and ground-
water, of which the effects on groundwater flow are often
ignored. However, the literature provides evidence that in
the capillary fringe, fluxes can have considerable lateral
components, thereby adding to lateral groundwater flow
[e.g., Luthin and Miller, 1953; Jayatilaka and Gillham,
1996]. These flow processes were investigated numerically
[e.g., Luthin and Day, 1955; Vachaud and Vauclin, 1975]
and experimentally [e.g., Berkowitz et al., 2004], and all of
these studies clearly show large lateral flow components in
the capillary fringe. Vachaud and Vauclin [1975] demon-
strated that the fluxes in the capillary fringe are of the same
order of magnitude as groundwater fluxes, and that they
often have a large lateral component. They estimated that,
for their experiment, roughly 14% of the lateral flux takes
place above the water table.
[6] The effect of capillarity on water table dynamics,

which in hydraulic groundwater models is usually
accounted for through parameters such as specific yield,
effective porosity, or drainable porosity, has been noted by
Hooghoudt [1947], who referred to it as the ‘‘Wieringermeer
effect,’’ and later by Gillham [1984], Abdul and Gillham
[1989], Parlange et al. [1990], Kim and Bierkens [1995],
and Nielsen and Perrochet [2000]. However, only few
have tried to account for the effect. In a benchmark paper
by Parlange and Brutsaert [1987] the capillarity effect on
groundwater systems is modeled, assuming a deep profile
for which q = qr holds at the land surface. Assuming
instantaneous equilibrium in the unsaturated zone, an
analytical expression to account for capillarity effects is
derived that can be added to the Boussinesq equation.
Barry et al. [1996] extended the equations derived by
Parlange and Brutsaert [1987] to include higher-order
capillarity effects, and they are used to investigate the
inland propagation of oscillations in water tables for a
coastal aquifer. Nachabe [2002] derives an analytical
expression to account for dynamic capillarity effects,
which also includes delayed recharge due to rapidly
dropping water tables. Hilberts et al. [2005] derived an
analytical expression to account for capillarity effects
under equilibrium in shallow groundwater systems, and
its influence on hillslope dynamics is investigated. All of
these studies are mainly applicable in situations where
recharge is negligibly small. To extend the investigation of
the effect of unsaturated zone storage on saturated flow to

recharge scenarios, a coupling of the saturated zone model
to a dynamic unsaturated zone model is needed, and the
impact of the capillary fringe on water table dynamics
needs to be incorporated.
[7] Hydrological studies at the hillslope and catchment

scale, as well as land surface modeling, have put much
emphasis on the processes that occur in the soil layer close
to the soil surface. This is because the interactions of the
unsaturated zone with the atmospheric boundary layer are
known to have an important effect on surface fluxes and
therefore also on climate [Koster et al., 2003]. It is well
known that subsurface flow processes are currently not well
simulated in land surface models [Liang et al., 2003]. A
more thorough understanding of the interactions between
(shallow) groundwater and soil moisture in the unsaturated
zone is needed if we are to improve model results signif-
icantly [Koster et al., 2000].
[8] Several authors have described a coupling of separate

models for unsaturated and saturated flow under a diversity
of assumptions. Pikul et al. [1974] coupled a one-dimen-
sional Boussinesq model to a one-dimensional RE model
for the unsaturated zone. The coupled system was solved as
a boundary value problem, and the drainable porosity for
the saturated zone model was taken to be a constant
(namely, qs � qm), where qs (dimensionless) is saturated
soil moisture content and qm (dimensionless) is ‘‘the min-
imum soil moisture content below the depth from which
moisture may be removed directly by evapotranspiration.’’
As no functional form is given for qm, its value is somewhat
arbitrary [Vachaud and Vauclin, 1975]. A very similar
approach was used by Kim et al. [1999], but they also did
not give a relationship describing the drainable porosity.
Smith and Hebbert [1983] coupled a Boussinesq model to a
kinematic wave model for the unsaturated zone. To calcu-
late the recharge from the unsaturated zone to the saturated
zone, they assumed that the soil moisture pulses in the
unsaturated zone have attenuated when they reach the
groundwater table. The coupled system was solved as a
system of ordinary differential equations. A similar
approach was taken by Beven [1982]; however, in his work,
two kinematic wave models were coupled. Liang et al.
[2003] described a coupling between a one-dimensional
RE model for the unsaturated zone and a generalized bucket
model for lateral subsurface flow, which was linked to the
VIC model [Wood et al., 1992]. The coupled system was
also solved as a boundary value problem. However, in none
of the mentioned papers that deal with coupling of models,
the actual functional interactions between the saturated zone
and the unsaturated zone are investigated.
[9] In this work the one-dimensional Richards equation is

coupled to the HSB equation. In the coupled model, the
capillary fringe is treated as an integral part of a Boussinesq
aquifer, i.e., lateral groundwater transport takes place over
the entire saturated depth (and not only below the atmo-
spheric pressure plane). By introducing the unsaturated zone
matric pressure head as a system state and reformulating the
derived equations in state-space notation, we solve the
coupled system simultaneously as a set of ordinary differ-
ential equations, and obtain a functional state-dependent
expression for the drainable porosity. With a Richards
equation representation for the unsaturated zone and a
functional form for the drainable porosity, this coupled
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model allows us to investigate more accurately the inter-
actions between the saturated and unsaturated zone and the
relationship between rainfall intensity, unsaturated storage
(and drainable porosity), and recharge. We assume that a
single (space-averaged) soil moisture profile can sufficiently
describe the unsaturated zone processes, which is an
assumption that is done to retain the coupled model’s low
dimensionality. A similar assumption underlies the work of
Boussinesq [1877], where recharge was assumed uniform
over a hillslope. The coupled HSB model’s behavior is
compared to the original HSB model of Troch et al. [2003]
and the three-dimensional RE model of Paniconi and Putti
[1994] (which is taken to be a benchmark model) for a set of
seven synthetic hillslopes.

2. Governing Equations

2.1. Unsaturated and Saturated Zone of the Coupled
Model

[10] If we assume that the soil water movement in the
unsaturated zone is predominantly vertical, it can be de-
scribed using the one-dimensional Richards equation:

@q
@t

¼ dq
dy

� @y
@t

¼ @qv
@z

ð1Þ

where q = q(x, z, t) (dimensionless) is the volumetric soil
moisture content, y = y(x, z, t) [L] is the matric pressure, t is
time, z is the vertical coordinate, positive downward (see
Figure 1), and qv is the vertical soil moisture flux [L/T],
expressed as

qv z; tð Þ ¼ �K yð Þ � @y
@z

þ 1

� �
ð2Þ

where K(y) [L/T] is the hydraulic conductivity as a function
of matric pressure. To describe q(y) and K(y), we use the
van Genuchten [1980] relationships:

q yð Þ ¼ qr þ qs � qrð Þ 1

1þ ayð Þn
� �m

ð3Þ

K yð Þ ¼ k
�1þ 1� 1þ ayð Þnð Þ�mð Þm

�1
� �m� �2

1þ ayð Þnð Þm=2
ð4Þ

where k [L/T] is the saturated hydraulic conductivity,
qr (dimensionless) is the residual soil moisture content,
n (dimensionless), m (dimensionless), and a [1/L] are
fitting parameters, and m = 1 � 1/n. To integrate the soil
water retention curve, an alternate parameterization is more
convenient:

q yð Þ ¼ qr þ qs � qrð Þ 1

1þ a0yð Þn0

 !m0

ð5Þ

where n0, m0, and a0 are again fitting parameters, and m0 =
1 + 1/n0 (see Troch [1992] and Hilberts et al. [2005]).
Both parameterizations of the unsaturated zone are used in
our modeling approach. The conventional parameterization
is used to describe the relationships between pressure head,
soil moisture content, and hydraulic conductivity for
Richards’ equation, whereas the alternate parameterization
in a later stage is used to determine the value for the state-
dependent drainable porosity (see section 2.2). Note that a
single parameterization does not suffice in this modeling
approach: the conventional parameterization is required to
determine the unsaturated hydraulic conductivity and
pressure head (using (4)), and the alternate parameterization
is required to determine the drainable porosity in a later
stage (using (20)).

Figure 1. Definition sketch showing a hillslope cross section with relevant parameters and the
coordinate systems for the unsaturated zone (vertical flow) and saturated zone (lateral flow).
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[11] The saturated zone dynamics are modeled with the
HSB model [Troch et al., 2003; Paniconi et al., 2003;
Hilberts et al., 2004]:

wg
@h

@t
¼ � @ wqð Þ

@x
þ N cos ið Þw ð6Þ

where w = w(x) [L] is the hillslope width at x [L] running
along the bedrock slope (positive in the upslope direction),
g (dimensionless) is the drainable porosity, h = h(x, t) [L] is
the water table height perpendicular to the bedrock, t [T] is
time, N = N(x, t) [L/T] is the vertical recharge to the
groundwater table, and q = q(x, t) [L2/T] is the lateral Darcy
flux which is assumed to be parallel to the bedrock (i.e.,
Dupuit-Forchheimer assumption):

q x; tð Þ ¼ �kh
@h

@x
cos ið Þ þ sin ið Þ

� �
ð7Þ

where i = i(x) (dimensionless) is the bedrock slope. In
Figure 1 both the hillslope coordinate system and the
vertical coordinate system are depicted.

2.2. Interactions Between the Saturated and the
Unsaturated Zone

[12] Using the unsaturated zone model, it is possible to
calculate the recharge N based on the position of the water
table and the actual soil moisture profile. Mass conservation
requires that for each location on the hillslope the following
relationship holds

N x; tð Þ ¼ r tð Þ � @

@t

Z D�hð Þ
cos ið Þ

0

q x; z; tð Þ � qrð Þdz
 !

ð8Þ

where D [L] is the soil depth and r(t) [L/T] and N(x,t) [L/T]
are the vertical rainfall rate and recharge rate, respectively.
Note that all terms in (8), including the integration
boundaries, are in vertical coordinates. Chapman [2005]
argued that although many studies use rainfall and recharge
rates perpendicular to the bedrock, it is more realistic to
consider the vertical fluxes. Furthermore, Chapman [2005]
shows that both approaches yield similar results in terms of
average water table height as long as the recharge/
conductivity ratio is relatively small.
[13] For notational convenience we will use

l hð Þ ¼ D� hð Þ
cos ið Þ ð9Þ

to indicate the depth to the water table in the vertical
coordinate. Equation (8) can then also be formulated as

N x; tð Þ ¼ r tð Þ � @

@t

Z l

0

qe x; z; tð Þ � qrð Þdz
� ��

þ @

@t

Z l

0

q x; z; tð Þ � qe x; z; tð Þð Þdz
� ��

ð10Þ

where qe(x, z, t) is the soil moisture profile under hydraulic
equilibrium conditions at t for a given water table position

and zero recharge. The changes in unsaturated storage are
now expressed as storage changes relative to the hydraulic
equilibrium storage profiles. This is done to avoid a
singularity in the coupled model, as will be explained in
section 2.4. Equation (10) can be written as

N x; tð Þ ¼ r tð Þ � @h0

@t

d

dh0

Z l

0

qe x; z; tð Þ � qrð Þdz
� ��

þ @

@t

Z l

0

q x; z; tð Þ � qe x; z; tð Þð Þdz
� �	

ð11Þ

where h0 = h/cos(i) is the vertical water table height above
the bedrock. Because @h0/@t = 1/cos(i)@h/@t, and d/dh0 =
cos(i)d/dh, (11) is equivalent to:

N x; tð Þ ¼ r tð Þ � @h

@t

d

dh

Z l

0

qe x; z; tð Þ � qrð Þdz
� �

� @

@t

Z l

0

q x; z; tð Þ � qe x; z; tð Þð Þdz
� �

ð12Þ

[14] The term d/dh(
R
0
l(qe(x, z, t) � qr)dz) is the change of

storage in the unsaturated zone (in hydraulic equilibrium)
with respect to a change in water table height, which
Hilberts et al. [2005] denoted as �ds1/dh and for which
an analytical expression was derived:

d

dh

Z l

0

qe x; z; tð Þ � qrð Þdz
� �

¼ � qs � qrð Þ 1þ �a0lð Þn
0� �� n0þ1

n0ð Þ

ð13Þ

where a0 and n0 are modified van Genuchten parameters
defined by (5).
[15] The second term within the square brackets in (11)

can be expanded by applying Leibniz’ rule:

@

@t

Z l

0

q x; z; tð Þ � qe x; z; tð Þð Þdz
� �

¼ � 1

cos ið Þ
@h

@t
� q x;l; tð Þ � qe x;l; tð Þð Þ

þ
Z l

0

@q
@t

dz�
Z l

0

@qe
@t

dz ð14Þ

Note that both the equilibrium and the actual soil moisture
content are at full saturation at the position of the water
table (i.e., q(x, l, t) = qe(x, l, t) = qs), which allows (14) to
be further reduced. The changes in the equilibrium profile
depend directly on the changes in water table height (i.e.,
the profile is displaced according to the displacement of the
water table):

Z l

0

@qe x; z; tð Þ
@t

dz ¼
Z l

0

dq
dy

@ye x; z; tð Þ
@t

dz

¼
Z l

0

dq
dy

@h0 x; tð Þ
@t

dz

¼ 1

cos ið Þ

Z l

0

dq
dy

@h x; tð Þ
@t

dz ð15Þ
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where ye is the equilibrium pressure head. Upon combina-
tion of (12), (13), (14), and (15), equation (8) becomes

N x; tð Þ ¼ r tð Þ þ @h

@t
qs � qrð Þ 1þ �a0lð Þn

0� �� n0þ1
n0ð Þ

�
Z l

0

@q
@t

dzþ 1

cos ið Þ

Z l

0

dq
dy

@h

@t
dz ð16Þ

For a Boussinesq-type aquifer (i.e., without any retention
effects of the unsaturated zone), the drainable porosity
parameter in (6) is a constant

g ¼ qs � qrð Þ ð17Þ

Substitution of (16) and (17) into (6) yields the expression
for the saturated zone model, and taking the derivative of
(2) with respect to z and substituting this into (1) yields the
unsaturated zone model. Together these form a coupled
system with a state-dependent drainable porosity, without
inclusion of the capillary fringe in the Boussinesq flow
domain:

wf
@h

@t
¼� @ wqð Þ

@x
þ w r �

Z l

0

@q
@t

dzþ 1

cos ið Þ

Z l

0

dq
dy

@h

@t
dz

� �
� cos ið Þ ð18Þ

C
@y
@t

¼ � @K yð Þ
@z

1� @y
@z

� �
þ K yð Þ @

2y
@z2

ð19Þ

where f = f (h) is the drainable porosity after Hilberts et al.
[2005], modified such that recharge rate is vertical instead
of perpendicular to bedrock:

f hð Þ ¼ qs � qrð Þ 1� cos ið Þ 1þ �a0lð Þn
0� �� n0þ1

n0ð Þ� �
ð20Þ

and C = C(y) is the differential moisture capacity:

C yð Þ ¼ dq
dy

ð21Þ

2.3. Governing Equations With Inclusion of the
Capillary Fringe

[16] The conclusions of Paniconi et al. [2003] are that the
high outflow rates and the relatively low water table values
for the RE model compared to the HSB models indicate that
the HSB models are draining too slowly. Given the findings
from this study and the importance of the capillary fringe on
lateral groundwater flow and water table dynamics as
reported in the literature reviewed earlier, we will include
the capillary fringe in our coupled model.
[17] When a capillary fringe yc is introduced as an

integral part of the aquifer, the governing equations for
the coupled model are not greatly altered. If we define

h* ¼ h� yc ð22Þ

to be the saturated depth over which lateral transport takes
place [L], and we substitute this expression into (18) and (19),
the equations essentially remain the same. In (18) the

integral boundary becomes l = (D � h)/cos(i) � yc, and
equation (19) does not change. However, flow equation (7)
changes to

q x; tð Þ ¼ �kh*
@h

@x
cos ið Þ þ sin ið Þ

� �
ð23Þ

and the drainable porosity f (equation (20)) is now
calculated based on the new value for l.
[18] We will refer to the model based on (18), (19), and

(23) as HSB coupled, and this model’s behavior will be
compared to the original HSB model and an RE based
model.
[19] We will test the hypothesis that the term within

accolades in (18) can be approximated using a single soil
moisture profile derived for the entire hillslope, analogous to
the assumption underlying the original work of Boussinesq
[1877] that recharge is uniform. If this hypothesis leads to
acceptable levels of accuracy, it allows for a significant
reduction in the dimensionality of the model. This hypothesis
implies that q(x, z, t) is assumed equal for all x, and the
integration over the profile q(x, z, t) therefore is conducted
using boundaries based on a hillslope-averaged water table
height:

l ¼ l h*
 �

¼
D� h*
 �
cos i
 � ð24Þ

where

h* tð Þ ¼ 1= wLð Þ
Z L

0

w xð Þh* x; tð Þdx

i ¼ 1= wLð Þ
Z L

0

w xð Þi xð Þdx

w ¼ 1=L

Z L

0

w xð Þdx

where h* is the average height of the saturated zone (the
capillary fringe included), w is the average width, i is the
average bedrock slope, and L [L] is the hillslope length
measured along the bedrock. By introducing a state vector
X = [h(x, t), y(z, t)], and discretizing in the spatial
coordinates z and x (see Figure 1), (18) and (19) can be
solved simultaneously as a set of ordinary differential
equations.

2.4. Alternate Derivation Involving Singularity

[20] The most obvious manner to expand (8) would be to
directly regard soil moisture profile changes with respect to
qr. Applying Leibniz’ rule in this case yields:

N x; tð Þ ¼ r tð Þ �
Z l

0

@q x; z; tð Þ
@t

� �
dzþ @h

@t
q x;l; tð Þð Þ � qrÞ ð25Þ

The third term on the right-hand side of (25) would
normally be brought to the left-hand side, thereby altering
the constant parameter g in (6) to become a state-dependent
parameter f(h). However, since q(x, l, t) = qs, upon
combination of (25) and (6) a singularity arises on the
left-hand side of (6):

f ¼ qs � q x; l; tð Þð Þ ð26Þ
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and since at the water table q(x, l, t) = qs, it causes a
singularity in equation (6).
[21] In the derivation of section 2.2 this singularity is

avoided by regarding the changes of soil water profile with
respect to equilibrium profile, for which the drainable
porosity is expressed analytically and subsequently cor-
rected by an extra source term (namely,

R
0
ldq
dy

@h
@tdz) that

accounts for changes in equilibrium profile.

2.5. Three-Dimensional Richards Equation Based
Model

[22] The governing equation for the three-dimensional
RE model is [Paniconi and Wood, 1993]:

h yð Þ @y
@t

¼ r � K yð Þ ryþ ezð Þð Þ ð27Þ

where h = SwSs + qs(dSw/dy) is the general storage term, Sw
is the water saturation defined as q/qs, Ss is the aquifer
specific storage coefficient, ez is the vector (0,0,1)

T (positive
upward), and the hydraulic conductivity tensor is K(y) as
in (4). The nonlinear retention characteristics are described
using the van Genuchten relationship given in (3). The RE
model used in this work is the subsurface module of a
coupled surface-subsurface numerical model using a
tetrahedral finite element discretization in space, a weighted
finite difference scheme in time, and Newton or Picard
iteration to resolve the nonlinearity [Paniconi and Putti,
1994; Putti and Paniconi, 2004].

3. Interpretation

3.1. Interpretation of the Equations for the Coupled
Model

[23] In the coupled model (equation (16)) the unsaturated
zone affects the water table dynamics in two distinct ways.
First, the unsaturated zone replenishes the groundwater

(namely, the third and fourth terms on the right-hand side of
(16)). These terms together indicate the total change in soil
moisture storage for a certain depth to thewater table l. Second,
the soil moisture profile in the unsaturated zone determines the
available storage capacity in the soil above the water table,
which is reflected in the second term on the right-hand side
of (16), thereby directly influencing the drainable porosity.
[24] In Figure 2, hypothetical soil moisture profiles for

times t and t + dt (and corresponding depth to water table
values l(h(t)) and l(h(t + dt))) are depicted for a drainage
and a rainfall scenario. The solid lines give the actual soil
moisture profiles (at two different times), the dashed lines are
the equilibrium soil moisture profiles, the black lines corre-
spond to the profiles at t = t, and the gray lines correspond to
those at t + dt. For convenience let us name the term within
accolades in (18):

N* x; tð Þ ¼ r tð Þ �
Z l

0

@q
@t

dz|fflfflfflfflfflffl{zfflfflfflfflfflffl}
actual

þ 1

cos ið Þ

Z l

0

dq
dy

@h

@t
dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

equilibrium

ð28Þ

For a drainage scenario (Figure 2a) starting from hydraulic
equilibrium, the total change in actual soil moisture content
(the second term on the right–hand side of (28)) is always
equal to or greater (i.e., less negative) than the total change
in equilibrium soil moisture storage (the third term). Note
that because initially all the soil moisture changes will be
negative for a drainage experiment, the absolute value of the
second term will be smaller than the value of the third term.
Therefore, for a short time at the onset of a drainage
experiment, N* will be negative. Later in the drainage
process the water tables will drop more slowly and the
unsaturated zone replenishes the saturated zone, causing N*
to become positive. The drainable porosity f (equation (20))
accounts for the changes in equilibrium profile and is
smaller than (qs � qr), and greater than zero. In the case

Figure 2. Sketch of soil moisture profile, and changes in soil moisture content for (a) a drainage and (b)
a recharge scenario at times t and t + dt.
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where the actual profiles collapse into the equilibrium
profiles N* becomes zero, and the solution converges to the
solution derived in Hilberts et al. [2005] but modified for
vertical drainage.
[25] In the case of rainfall, the value and sign of N*

depends strongly on the water table height, the soil moisture
conditions and the rainfall rate. When the water table is
steady (i.e., l(h(t)) = l(h(t + dt))) and the unsaturated zone
is initially relatively dry, most water from rainfall will be
stored in the unsaturated zone. In (28) this means that the
third term on the right-hand side becomes zero, the first and
second term become equal, thereby causing N* to be zero.
When the unsaturated zone initially is relatively wet
(Figure 2b), only part of the water coming from rainfall
will be stored in the unsaturated zone, and the remainder
will recharge the groundwater. In case the water table is
dropping, and a soil moisture pulse is traveling toward the
water table, a mix of the responses above will occur.

3.2. Relationship Between Rainfall, Recharge, and
Unsaturated Storage

[26] The interaction between rainfall and recharge rates is
illustrated in Figure 3, showing the (simplified) response of
the unsaturated and saturated zones to a constant rainfall
rate. We distinguish three stages: stage A, where a soil
moisture wave due to rainfall is traveling toward a static
water table in an initially relatively dry profile, stage B
where the soil moisture pulse reaches the water table and
causes the water table to rise, and stage C where the water
table has reached a new equilibrium under recharge. In stage
A all the rainwater that infiltrates is stored in the unsaturated
zone and recharge is zero. Stage B shows the situation just

after the soil moisture front has reached the groundwater,
causing a rapid rise in water table height. Note that during
this stage of rising water tables, the recharge is higher than
the rainfall rate. For a static water table, the flux across the
water table surface would be equal to the rainfall rate, but
since the water table is rising and thereby ‘‘taking up’’ water
from the unsaturated zone, the recharge is higher than the
rainfall rate. The phenomenon of the unsaturated and
saturated zones competing for unsaturated storage just
above the water table was also mentioned in studies such
as Duffy [1996], Seibert and McDonnell [2002], and Weiler
and McDonnell [2004]. When a new steady state water table
position is reached (i.e., stage C), the water table is static,
and the flux across it is equal to the rainfall rate.
[27] Since the increased recharge of stage B is due to

movement of the water table @h/@t, and is therefore brought
to the left-hand side of (6), the term determines the value of
drainable porosity f. The second term on the right-hand side
of (16) can thus be either regarded as an input term, or as a
correction term for the storage coefficient g in (6).

4. Model Comparison Setup

4.1. Models and Hillslopes

[28] We compare the coupled HSB (HSB coupled) model’s
response to that of the three-dimensional Richards equa-
tion (RE) model described in section 2.5, and the original
uncoupled HSB model (HSB original) described by Troch
et al. [2003] and given by (6). The original HSB model is
run in an uncalibrated mode assuming that the value of
drainable porosity is g = (qs � qr), which can be
considered a reasonable and conservative a priori estimate

Figure 3. Schematic representation of the interactions between soil moisture dynamics (as a result of
rainfall) and recharge rates (a) before, (b) during, and (c) after a soil moisture pulse reaches the water
table.
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for a sandy soil when precise retention characteristics are
unknown. Moreover, this is the value of g one would obtain
for a perfectly draining soil, which corresponds to a Bous-
sinesq aquifer. We test the model’s response under rainfall
and during drainage on a set of seven artificial hillslopes
that were also used by Troch et al. [2003], consisting of
three convergent, three divergent, and one straight hillslope.
The hillslope outlines are based on the nine geometries
described by Troch et al. [2002] but have noncurved
bedrock; thus the three straight slopes of Troch et al.
[2002] collapse into a single slope, yielding seven hillslopes
as depicted in Figure 4. The aquifer properties are given in
section 4.3. The hillslopes have a length of 100 m and range
in width from 50 m to 1.72 m. A sandy soil of 3 m depth
overlies an impervious bedrock layer. On these hillslopes
the models are compared under a constant rainfall intensity
of 10 mm/d for the first 50 days, followed by a free drainage
period.
[29] We use a sandy soil in our simulations since its

properties correspond best with the original assumptions
underlying Boussinesq’s theory, which are 1) presence of a
free surface (i.e., a sharp transition from saturated to dry
aquifer material), and 2) bed-parallel flow lines in the
saturated zone (i.e., the Dupuit-Forchheimer assumption).
Moreover, in the process of coupling the models it is
assumed that 3) the flow lines are predominantly vertical
in the unsaturated zone and lateral in the saturated zone. All
assumption becomes less valid for soils with a more gradual
transition from the ‘‘wet’’ to ‘‘dry’’ part of the retention
curve (e.g., loam or clay soils). A strongly capillary soil has
no sharp transition from saturated to dry aquifer material
(assumption 1). Moreover, a strongly capillary soil shows

an increasingly laterally directed flux as one moves toward
the wetter end of the retention curve (i.e., toward the water
table), which is in conflict with assumption 3. The impor-
tance of this phenomenon is also acknowledged by Michiels
et al. [1989] and by Berkowitz et al. [2004], who state that
in their experiments, complex distributions of soil moisture
as well as horizontal flows are seen to occur both above and
below the water table.
[30] If inclusion of capillarity effects leads to improved

results for a sandy soil, we will have demonstrated the
importance of unsaturated storage for a ‘‘worst-case’’ sce-
nario. We thus expect even more noticeable effects for soil
types with a larger capillary fringe (i.e., loam, clay), even
though it then remains to be seen if the original assumptions
underlying the work still prove valid for these soil types.
[31] The discretization is conducted such that, even

though the unsaturated zone varies in depth, the vertical
and lateral coordinates are both situated in a static frame of
reference and discretized using a fixed number of nodes.
The node spacing for the simulations in this work are Dz =
0.075 m and Dx = 1 m.

4.2. Boundary and Initial Conditions

[32] For the saturated zone, it is assumed that the down-
hill boundary condition is h(0,t) = 0, and the uphill
boundary condition is a zero-flux boundary as are all sides
and the bedrock. At the upper boundary of the unsaturated
zone we assume that the flux across the soil surface is equal
to the rainfall rate: qv(0, t) = r(t). At the lower boundary
(i.e., the bedrock) the pressure head is equal to the average
water table height y(D/cos(i), t) = h(t)/cos(i) for the coupled
HSB model.

Figure 4. Three-dimensional view of (a, b, c) three convergent, (d, e, f) three divergent, and (g) a
straight hillslope used in the model comparison study.
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[33] The initial condition for all models is a uniform
water table h(x,0) = 0.10 m above the bedrock, measured
perpendicular to the bedrock for the coupled and original
HSB models and vertical for the RE model, yielding
comparable initial conditions (see Paniconi et al. [2003]
for details). For HSB coupled and the RE model we
furthermore assume that the initial condition in the unsat-
urated zone is that of vertical hydraulic equilibrium. This
yields a positive pressure head at the bedrock y(D/cos(i), t) =
h(t)/cos(i) for HSB coupled, and y(D/cos(i), t) = h(t)/cos(i)
for the RE model. The two formulations for the initial
conditions differ slightly because HSB coupled uses a single
unsaturated zone profile, whereas the RE model is fully
three-dimensional.

4.3. Hillslope and Soil Parameters

[34] The hillslope plan shapes and dimensions are shown
in Figure 4. For the simulations a bedrock slope of i(x) = 5%
is used. The sandy soil overlaying the impervious bedrock
has a saturated hydraulic conductivity of k = 5 m/d, and a
aquifer specific storage coefficient Ss = 0.01 m�1. Table 1
lists the van Genuchten parameters for the conventional
parameterization (i.e., m = 1 � 1/n), and for the modified
parameterization of Troch [1992] and Hilberts et al. [2005]
(i.e., m0 = 1 + 1/n0). The corresponding soil water retention
characteristics are plotted in Figure 5.

4.4. Parameterization of the Capillary Fringe

[35] The capillary fringe is a narrow zone that serves as a
transition between the vadose zone and the groundwater
zone. The lower limit of the capillary fringe is commonly
accepted to be the surface where pressure head is equal to
zero, but the upper limit is scarcely definable [Hillel, 1980],
with different authors placing it anywhere between 75% and
100% water saturation. Berkowitz et al. [2004] argued that
the term ‘‘capillary fringe’’ should be replaced by the term
‘‘partially saturated fringe’’, because just above (and below)
the water table we often find small inclusions of entrapped
air or inclusions of partially saturated soil causing the water
content to be less than 100%. A range of y values for which
q(y) is ‘‘close’’ to qs therefore is a more appropriate
definition [Bear, 1972]. For the soils in this study the
capillary fringe (or partially saturated fringe) is defined as
the lowest value of y for which the soil moisture value is
higher than 0.85 qs ’ 0.35, which corresponds to a capillary
fringe yc ’ �0.27 m. The value is set at 85% water
saturation because this is in good agreement with textbook
values [e.g., Bear, 1972], and the resulting value for yc is

also in the range of values for a sandy soil [e.g., Harr, 1962;
Bear, 1972].

5. Model Comparison Results

5.1. Hydrographs and Water Tables

[36] We describe the results of the model runs using HSB
coupled and we compare them with HSB original and the
RE model.
[37] Figure 6 shows the outflow rates of the RE model,

HSB original, and HSB coupled. The fit of the hydrographs
of both HSB models compared to the RE model, for the
rising and falling limb, is summarized in Table 2. From
Figure 6, we notice that for short times after initiation of the
experiment, HSB original shows higher fluxes than the RE
model, which is due to the absence of an unsaturated zone
description in this model, causing an instantaneous reaction
to rainfall. This is most clearly visible for the divergent
slopes (i.e., hillslopes d, e, f ), where the hydrographs only
climb after approximately 5–10 days for both the RE and
the HSB coupled model, whereas the HSB original model
shows an increase in flux starting at t = 0. At later times,
however, the HSB original fluxes are generally underesti-
mated. These findings are supported by the values of the
mean absolute errors given in Table 2. We see that HSB
original has higher mean absolute error values for all slopes
in both the rising and falling limbs, with the exception of
slope 3 (rising limb only) where due to a low estimation of
the initial flux the errors for HSB original and HSB coupled
are comparable.
[38] Comparing the hydrographs of HSB coupled and the

RE model, we see a remarkably good agreement on all
hillslopes. Also the timing of both hydrographs (i.e., the
time at which the hydrograph starts to climb, and the time
when peak outflow is reached) matches well. The goodness
of fit suggests that a single soil moisture profile yields an
adequate approximation of the unsaturated zone processes
(as hypothesized in section 2.2) is accepted.

Table 1. Van Genuchten Parameters (Conventional and Modified)

for the Sandy Soil Used in the Comparison Study

Parameter

Sand

Conventionala Modifiedb

qs 0.408 0.408
qr 0.054 0.054
a, 1/cm �0.0254 �0.0081
n 1.9529 1.4154

aFor conventional, m = 1 � 1/n.
bFor modified, m = 1 + 1/n.

Figure 5. Retention characteristics of the sandy soil used in
the model comparison. The black line depicts the conven-
tional van Genuchten curve (m = 1� 1/n), and the gray line is
the modified van Genuchten curve (m0 = 1 + 1/n0).
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[39] In Figure 7 the water tables are shown for HSB
coupled, the RE model, and HSB original, after 5 days,
20 days, 50 days, and 100 days. Table 3 summarizes the
mean absolute errors in the water table values for each of
these times when compared to the benchmark RE model.
The water tables after 5 days are remarkable: whereas HSB
original is performing very poorly (i.e., large overestimation
of water tables), the HSB coupled water tables match almost
perfectly on all hillslopes; the modeled water tables are in
many cases indistinguishable from the RE results. The water
tables after 20 days also show a remarkable match for HSB
coupled for all hillslopes. Looking at the results after 50 and
100 days, we see that both HSB models produce similar
water table heights for the convergent slopes, with both
models overestimating the water table heights. For the
divergent slopes both models again overestimate the water
table height, but the match for the HSB coupled model is
much better than that of HSB original.
[40] Overall we conclude that HSB coupled is clearly

better able to reproduce the hydrographs for all hillslopes,
and in particular for the divergent slopes. The same holds
for the water table values, except that the advantages of
HSB coupled over HSB original for the convergent slopes
at later times in the experiment is less noticeable. The
differences between the HSB coupled and RE water table
profiles, for the convergent slopes in particular, may be
caused by errors introduced when using a single soil
moisture profile for HSB coupled. We expect that this error
will be largest for convergent slope shapes and steep slope
angles, because of the relatively sharp gradients in water
tables at later times in the experiment. The validity of using
a single soil moisture profile for higher bedrock slopes and
more convergent shapes will be investigated in future work,
especially considering that overland flow may occur in
these simulations, causing very different local responses.

5.2. Recharge Rates

[41] Figure 8 shows the value of the recharge term N in
(16) and the rainfall rates during the experiment. We see that
the values of N are initially negative due to a rapidly
dropping water table and little water supply by the unsat-
urated zone. When the soil moisture front (due to rainfall)
approaches the water table (roughly between t = 2 and t =
4 days), the value of N rises to positive values. The positive
recharge rates cause the water tables to rise, thereby taking
up water from the unsaturated zone, which in turn causes
enhanced recharge rates (roughly between t = 4 and t =
10 days). As the water table rises, the lateral flux increases
and (roughly around t = 10 days) the water table and
outflow rate start to converge toward steady state. A new
equilibrium is reached when r = N, which on the divergent
hillslopes (d to f) is approached around t = 50 days. Because
the rainfall rates drop to 0 mm/d at t = 50 days, the
equilibrium is not fully reached. Just after t = 50 days we

Figure 6. Outflow hydrographs as a result of a rainfall rate of 10 mm/d for the first 50 days followed by
a pure drainage period for HSB coupled (solid lines), HSB original (dashed lines), and the RE model
(circles).

Table 2. Mean Absolute Errors in the Hydrographs of HSB

Original and HSB Coupled When Compared to the RE Modela

Slope

a b c d e f g

Rising Limb Error
HSB original 0.23 0.36 0.33 0.80 0.58 0.56 0.54
HSB coupled 0.22 0.32 0.36 0.41 0.36 0.35 0.35

Falling Limb Error
HSB original 0.38 0.51 0.44 1.00 0.66 0.61 0.62
HSB coupled 0.06 0.13 0.16 0.39 0.47 0.51 0.26

aValues are in mm/d.
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see that the recharge rates decline quickly, and eventually
drop to below N = 0 due to the falling water tables.

6. Discussion

[42] In the Introduction we indicated that over the past
decades there have been many attempts to model hillslope
and catchment hydrological processes. Most of these
attempts have been aimed at predicting outflow rates, but
recently several model studies have also investigated the
water table dynamics (or saturated storage dynamics) that
are of crucial importance in determining the location and
size of variable source areas, and thereby also to assess the
risk for flood peaks in the channel network draining a
hillslope or catchment. Examples include work byWigmosta
et al. [1994] and Ivanov et al. [2004], who present high-
dimensional catchment-scale models, and Seibert and
McDonnell [2002], Weiler and McDonnell [2004], and
Brooks et al. [2007] who present the results of a conceptual
modeling study applied to the hillslope scale. Even though
these models have been applied successfully in the studies
presented, they are all partly or fully conceptual instead of
physically based, which makes the investigation of the exact
interactions between the saturated and unsaturated zones
cumbersome. In this work we have presented a physically
based low-dimensional hillslope model. In the test cases we
assumed that the conductivity, soil depth and other soil
properties are constant in depth and in the direction along
the hillslope, but the saturated module of the coupled model
and the original HSB model are capable of handling spatial
variability along these axes. On the other hand, since all
variables and properties are assumed to be constant over the
width of the hillslope, we cannot account for spatial
variability along this axis. In the current version of the
coupled formulation we also cannot account for spatial
variability in rainfall rate or soil hydraulic properties of
the unsaturated zone, because a single soil moisture profile

is used to model the unsaturated zone dynamics. Moreover,
we assume that groundwater fluxes are parallel to the
bedrock, and we do not use an infiltration model, thus the
rainfall is assumed to infiltrate fully into the soil column
(i.e., no infiltration excess runoff).
[43] The properties of the sandy soil in our simulations

correspond best with the original assumptions underlying
Boussinesq’s theory, as the equations were derived for
highly conductive and relatively shallow soils. Also the
assumption of vertical flow in the unsaturated zone and
lateral flow in the saturated zone correspond best to a soil
with a quick transition from ‘‘wet’’ to ‘‘dry’’ in the soil
water retention curve. Sandy soils have a smaller capillarity
effect than silt, loam or clay soils. Hence the improvement
in hydrological simulations when coupling the saturated and
unsaturated zones presented here, provides a good test case
in terms of saturated properties and retention characteristics.
For less conductive soils, we expect greater improvement
when including the capillarity effects than achieved for the
sandy soil type. However, we should note that as the effects

Figure 7. Water tables for HSB coupled (solid lines), HSB original (dashed lines), and the RE model
(circles), after 5 (black), 20 (blue), 50 (red), and 100 days (green).

Table 3. Mean Absolute Errors in the Water Tables of HSB

Original and HSB Coupled When Compared to the RE Modela

Model Time, days

Slope

a b c d e f g

HSB original 5 0.16 0.17 0.17 0.18 0.18 0.18 0.17
HSB coupled 5 0.01 0.01 0.01 0.02 0.01 0.01 0.01
HSB original 20 0.26 0.26 0.26 0.25 0.26 0.26 0.26
HSB coupled 20 0.06 0.05 0.06 0.02 0.01 0.02 0.03
HSB original 50 0.34 0.37 0.39 0.30 0.31 0.30 0.35
HSB coupled 50 0.29 0.27 0.32 0.09 0.09 0.08 0.16
HSB original 100 0.40 0.39 0.44 0.15 0.16 0.14 0.26
HSB coupled 100 0.35 0.31 0.36 0.07 0.08 0.09 0.17

aValues are in m.
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of capillarity become more prominent and conductivities
decrease, the validity of the Boussinesq assumptions be-
come increasingly questionable.
[44] The developed HSB coupled model is an efficient,

parsimonious model that can be used in investigations of
variable source areas, which play an important role in the
generation of saturated overland flow and floods. Because
the described model also outputs pressure heads and soil
moisture contents in the unsaturated zone, it has potential
applications in combination with land surface models,
where unsaturated zone processes and interactions with
shallow groundwater are generally not simulated well.
Overall, the low dimensionality of the HSB model makes
it appealing for poorly gauged catchments, since the
required parameters are relatively easily accessible and
since the model is much less computationally demanding
than a full three-dimensional RE (or analogous) model.
Future work includes testing the model in the field, for
instance on the experimental hillslope and small catchment
described by Brooks et al. [2004, 2007], and accounting for
hysteresis and macropore flow.

7. Conclusions

[45] In this work we have presented a coupling between
the one-dimensional Richards equation for unsaturated flow
and the one-dimensional hillslope-storage Boussinesq model
(HSB) [Troch et al., 2003] for lateral saturated flow along
complex hillslopes. In the model we have included the
capillary fringe in the Boussinesq flow domain, i.e., the
aquifer depth was taken to be the sum of the water table
height and the height of the capillary fringe, yc. We
assumed the fluxes in the unsaturated zone to be vertical,
and in the saturated zone parallel to the underlying imper-
vious bedrock (i.e., Dupuit-Forchheimer assumption). We
assumed that an average soil moisture profile derived for the
entire hillslope provides an adequate description of unsat-

urated zone processes. This assumption, which proves to
yield sufficiently accurate results based on the timing of the
hydrographs, together with the manner in which the HSB
formulation is able to represent a three-dimensional soil
mantle as a one-dimensional flow system, makes possible a
very efficient low-dimensional model of unsaturated and
saturated hillslope dynamics.
[46] The role of the unsaturated zone in transmitting the

soil moisture pulses as a result of rainfall is investigated,
and the relationships between rainfall, recharge, drainable
porosity and unsaturated storage are analyzed. Besides the
expected delaying effect of the unsaturated zone on recharge
rates, the simulations also showed that the unsaturated zone
does not always dampen the rainfall signal, but can also
amplify it, causing recharge rates to exceed rainfall rates
under certain conditions. This effect is caused by water
tables including water from the unsaturated zone into the
saturated zone as they rise.
[47] The coupled model (HSB coupled) was compared (in

terms of hydrographs and water table distributions) to
the original HSB model (HSB original) and to a three-
dimensional RE model (taken to be the benchmark) on a set
of seven synthetic hillslopes, ranging from convergent to
divergent. The modeled outflow rates of HSB original are
systematically lower than those of the RE model. For the
HSB coupled model, the outflow rates and the timing of
the hydrographs (the time to the first increase in outflow, the
time to peak, etc.) very closely matched that of the RE
model for all hillslopes at all times. Also the match to the
water tables is significantly better than that of HSB original,
especially for the divergent slopes. The correct timing of the
HSB coupled hydrographs suggests that a single soil mois-
ture profile suffices to describe the unsaturated zone
dynamics. We conclude that for the hillslope configurations
and scenarios examined in this paper it is possible to
reproduce hydrographs and water table dynamics with a
good degree of accuracy.

Figure 8. Rainfall rates (gray lines) and recharge rates (black lines) calculated using equation (16).

12 of 14

W03445 HILBERTS ET AL.: MODELING OF HILLSLOPE SUBSURFACE FLOW W03445



[48] Acknowledgments. This work has been supported in part by
Delft Cluster (project DC-030604). The authors also wish to thank John
Selker and the reviewers for their very helpful comments.

References
Abbott, M., J. Bathhurst, J. Cunge, P. O’Connell, and J. Rasmussen (1986),
An introduction to the European Hydrological System–Systeme Hydro-
logique Europeen, ‘‘SHE,’’ 1: History and philosophy of a physically-
based, distributed modelling system, J. Hydrol., 87, 45–59.

Abdul, A., and R. Gillham (1989), Field studies on the effects of the
capillary fringe on streamflow generation, J. Hydrol., 112, 1–18.

Barry, D., S. Barry, and J.-Y. Parlange (1996), Capillary correction to
periodic solution of the shallow flow approximation, in Mixing in Estu-
aries and Coastal Seas, Coastal Estuarine Stud., vol. 50, edited by
C. Pattiaratchi, pp. 496–510, AGU, Washington, D. C.

Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
Berkowitz, B., S. Silliman, and A. Dunn (2004), Impact of the capillary
fringe on local flow, chemical migration, and microbiology, Vadose Zone
J., 3, 534–548.

Beven, K. (1982), On subsurface stormflow: Prediction with simple kine-
matic theory for saturated and unsaturated flows, Water Resour. Res., 18,
1627–1633.

Beven, K., and M. Kirkby (1979), A physically based variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 24(1), 43–69.

Boussinesq, J. (1877), Essai sur la thorie des eaux courantes, Mem. Acad.
Sci. Inst. Fr., 23, 680 pp.

Brooks, E., J. Boll, and P. McDaniel (2004), A hillslope-scale experiment to
measure lateral saturated hydraulic conductivity, Water Resour. Res., 40,
W04208, doi:10.1029/2003WR002858.

Brooks, E., J. Boll, and P. McDaniel (2007), Distributed and integrated
response of a geographic information system-based hydrologic model
in the eastern Palouse region, Hydrol. Processes, 21(1), 110 –122,
doi:10.1002/hyp.6230.

Brutsaert, W. (1994), The unit response of groundwater outflow from a
hillslope, Water Resour. Res., 30, 2759–2763.

Chapman, T. (2005), Recharge-induced groundwater flow over a plane
sloping bed: Solutions for steady and transient flow using physical and
numerical models, Water Resour. Res., 41, W07027, doi:10.1029/
2004WR003606.

Childs, E. (1971), Drainage of groundwater resting on a sloping bed, Water
Resour. Res., 7, 1256–1263.

Duffy, C. (1996), A two-state integral-balance model for soil moisture and
groundwater dynamics in complex terrain, Water Resour. Res., 32,
2421–2434.

Dunne, T., and R. Black (1970), An experimental investigation of runoff
production in permeable soils, Water Resour. Res., 6, 478–489.

Freeze, R. (1972), Role of subsurface flow in generating surface runoff:
1. Base flow contributions to channel flow,Water Resour. Res., 8, 609–623.

Gillham, R. (1984), The capillary fringe and its effect on water-table
response, J. Hydrol., 67, 307–324.

Harr, M. (1962), Groundwater and Seepage, McGraw-Hill, New York.
Hewlett, J., and A. Hibbert (1967), Factors affecting the response of small
watersheds to precipitation in humid areas, in Forest Hydrology, edited
by W. Sopper and H. Lull, pp. 275–290, Elsevier, New York.

Hilberts, A., E. van Loon, P. Troch, and C. Paniconi (2004), The hillslope-
storage Boussinesq model for spatially variable bedrock slope, J. Hydrol.,
291, 160–173.

Hilberts, A., P. Troch, and C. Paniconi (2005), Storage-dependent drainable
porosity for complex hillslopes, Water Resour. Res., 41, W06001,
doi:10.1029/2004WR003725.

Hillel, D. (1980), Applications of Soil Physics, Elsevier, New York.
Hooghoudt, S. (1947), Waarnemingen van grondwaterstanden voor de land-
bouw, Versl. Tech. Bijeenkomsten 1-6, Tech. Natuurw. Onderz., The
Hague, Netherlands.

Ivanov, V., E. Vivoni, R. Bras, and D. Entekhabi (2004), Catchment
hydrological response with a fully distributed triangulated irregular
network model, Water Resour. Res., 40, W11102, doi:10.1029/
2004WR003218.

Jayatilaka, C., and R. Gillham (1996), A deterministic-empirical model of
the effect of the capillary fringe on near-stream area runoff: 1. Descrip-
tion of the model, J. Hydrol., 184, 299–315.

Kim, C., and M. Bierkens (1995), A formula for computation of time-
varying recharge of ground water—Comment, J. Hydrol., 171, 191–193.

Kim, C., G. Salvucci, and D. Enthekhabi (1999), Groundwater-surface
water interaction and the climatic spatial patterns of hillslope hydrological
response, Hydrol. Earth Syst. Sci., 3(3), 375–384.

Koster, R., M. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar (2000), A
catchment-based approach to modeling land surface processes in a gen-
eral circulation model, J. Geophys. Res., 105(D20), 24,809–24,822.

Koster, R., M. Suarez, R. Higgins, and H. van den Dool (2003), Observa-
tional evidence that soil moisture variations affect precipitation, Geo-
phys. Res. Lett., 30(5), 1241, doi:10.1029/2002GL016571.

Liang, X., Z. Xie, and M. Huang (2003), A new parameterization for sur-
face and groundwater interactions and its impact on water budgets with
the variable infiltration capacity (VIC) land surface model, J. Geophys.
Res., 108(D16), 8613, doi:10.1029/2002JD003090.

Luthin, J., and P. Day (1955), Lateral flow above a sloping water table, Soil
Sci. Soc. Am. Proc., 19, 406–410.

Luthin, J., and R. Miller (1953), Pressure distribution in soil columns
draining into the atmosphere, Soil Sci. Soc. Am. Proc., 17, 329–333.

McGlynn, B., J. McDonnell, J. Seibert, and C. Kendall (2004), Scale effects
on headwater catchment runoff timing, flow sources, and groundwater-
streamflow relations, Water Resour. Res., 40, W07504, doi:10.1029/
2003WR002494.

Michiels, P., R. Hartmann, and E. de Strooper (1989), Subsurface water
flow on a slope in the loamy region of Belgium, Earth Surf. Processes
Landforms, 14, 533–543.

Nachabe, M. (2002), Analytical expressions for transient specific yield and
shallow water table drainage, Water Resour. Res., 38(10), 1193,
doi:10.1029/2001WR001071.

Nielsen, P., and P. Perrochet (2000), Watertable dynamics under capillary
fringes: Experiments and modelling, Adv. Water Resour., 23, 503–515.

O’Loughlin, E. (1981), Saturation regions in catchments and their relations
to soil and topographic properties, J. Hydrol., 53, 229–246.

Paniconi, C., and M. Putti (1994), A comparison of Picard and Newton
iteration in the numerical solution of multidimensional variably saturated
flow problems, Water Resour. Res., 30, 3357–3374.

Paniconi, C., and E. Wood (1993), A detailed model for simulation of
catchment scale subsurface hydrological processes, Water Resour. Res.,
29, 1601–1620.

Paniconi, C., P. Troch, E. van Loon, and A. Hilberts (2003), Hillslope-
storage Boussinesq model for subsurface flow and variable source areas
along complex hillslopes: 2. Intercomparison with a three-dimensional
Richards equation model, Water Resour. Res., 39(11), 1317, doi:10.1029/
2002WR001730.

Parlange, J. Y., and W. Brutsaert (1987), A capillarity correction for free
surface of groundwater, Water Resour. Res., 23, 805–808.

Parlange, J. Y., W. Brutsaert, J. Fink, and A. El-Kadi (1990), A capillarity
correction for free surface flow revisited, Water Resour. Res., 26, 1691–
1692.

Pikul, M., R. Street, and I. Remson (1974), A numerical model based on
coupled one-dimensional Richards and Boussinesq equations, Water
Resour. Res., 10, 295–302.

Putti, M., and C. Paniconi (2004), Time step and stability control for a
coupled model of surface and subsurface flow, in Computational Methods
in Water Resources, vol. 2, edited by C. Miller et al., pp. 1391–1402,
Elsevier, New York.

Reggiani, P., M. Sivapalan, and S. Hassanizadeh (1998), A unifying frame-
work for watershed thermodynamics: Balance equations for mass,
momentum, energy and entropy, and the second law of thermodynamics,
Adv. Water Res., 22(3), 367–398.

Seibert, J., and J. McDonnell (2002), On the dialog between experimentalist
and modeler in catchment hydrology: Use of soft data for multicriteria
model calibration, Water Resour. Res., 38(11), 1241, doi:10.1029/
2001WR000978.

Sloan, W. (2000), A physics-based function for modeling transient ground-
water discharge at the watershed scale,Water Resour. Res., 36, 225–241.

Smith, R., and R. Hebbert (1983), Mathematical simulation of interdepen-
dent surface and subsurface hydrologic processes, Water Resour. Res.,
19, 987–1001.

Szilagyi, J., M. Parlange, and J. Albertson (1998), Recession anaylsis for
aquifer parameter determination, Water Resour. Res., 30, 1851–1857.

Torres, R., W. Dietrich, D. Montgomery, S. Anderson, and K. Loague
(1998), Unsaturated zone processes and the hydrologic response of a
steep, unchanneled catchment, Water Resour. Res., 34, 1865–1879.

Troch, P. (1992), Conceptual basin-scale runoff process models for humid
catchments: Analysis, synthesis and applications, Ph.D. thesis, Ghent
Univ., Brussels.

Troch, P., E. van Loon, and A. Hilberts (2002), Analytical solutions to a
hillslope-storage kinematic wave equation for subsurface flow, Adv.
Water Resour., 25, 637–649.

Troch, P., C. Paniconi, and E. van Loon (2003), Hillslope-storage Boussi-
nesq model for subsurface flow and variable source areas along complex

W03445 HILBERTS ET AL.: MODELING OF HILLSLOPE SUBSURFACE FLOW

13 of 14

W03445



hillslopes: 1. Formulation and characteristic response, Water Resour.
Res., 39(11), 1316, doi:10.1029/2002WR001728.

Vachaud, G., and M. Vauclin (1975), Comment on ‘‘A numerical model
based on coupled one-dimensional Richards and Boussinesq equations’’
by Mary F. Pikul, Robert L. Street, and Irwin Remson, Water Resour.
Res., 11, 506–509.

van Genuchten, M. (1980), A closed-form equation for predicting the
hydraulic conductivity of unsaturated soils, Soil Sci. Am. J., 44, 892–898.

Weiler, M., and J. McDonnell (2004), Virtual experiments: A new approach
for improving process conceptualization in hillslope hydrology, J. Hydrol.,
285, 3–18.

Wigmosta, M., L. Vail, and D. Lettenmaier (1994), A distributed hydrology-
vegetationmodel for complex terrain,Water Resour. Res., 30, 1665–1679.

Wood, E., D. Lettenmaier, and V. Zartarian (1992), A land-surface hydrology
paramerization with subgrid variability for general circulation models,
J. Geophys. Res., 97(D3), 2717–2728.

Woods, R., M. Sivapalan, and J. Robinson (1997), Modeling the spatial
variability of subsurface runoff using topographic index, Water Resour.
Res., 33, 1061–1073.

����������������������������
J. Boll, Department of Biological and Agricultural Engineering,

University of Idaho, Moscow, ID 83844, USA. (jboll@uidaho.edu)

A. G. J. Hilberts, Climate Hazard Model Development, Risk Manage-
ment Solutions Ltd., Peninsular House, 30 Monument Street, London
EC3R 8HB, London, UK. (arno.hilberts@gmail.com)

C. Paniconi, Centre Eau, Terre et Environnement, Institut National de la
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