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[1] Models based on canonical correlation analysis (CCA) and artificial neural networks
(ANNs) are developed to obtain improved flood quantile estimates at ungauged sites.
CCA is used to form a canonical physiographic space using the site characteristics from
gauged sites. Then ANN models are applied to identify the functional relationships
between flood quantiles and the physiographic variables in the CCA space. Two ANN
models, the single ANN model and the ensemble ANN model, are developed. The
proposed approaches are applied to 151 catchments in the province of Quebec, Canada.
Two evaluation procedures, the jackknife validation procedure and the split sample
validation procedure, are used to evaluate the performance of the proposed models.
Results of the proposed models are compared with the original CCA model, the canonical
kriging model, and the original ANN models. The results indicate that the CCA-based
ANN models provide superior estimation than the original ANN models. The ANN
ensemble approaches provide better generalization ability than the single ANN models.
The CCA-based ensemble ANN model has the best performance among all models in
terms of prediction accuracy.
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1. Introduction

[2] Regional flood frequency analysis has been widely
used to improve flood quantile estimation at catchments
where streamflow records are either short or not available. A
number of regionalization techniques have been developed
for this purpose [see, e.g., Wiltshire, 1986; Burn, 1990a,
1990b; Cavadias, 1990; Zrinji and Burn, 1994; Castellarin
et al., 2001; Ouarda et al., 2001; Chokmani and Ouarda,
2004; Shu and Burn, 2004]. Groupe de Recherche en
Hydrologie Statistique (GREHYS) [1996a, 1996b] provided
an extensive review and comparative evaluation of different
regionalization techniques.
[3] Identification of homogeneous regions is one of the

major steps in regional flood frequency analysis. The
purpose of this step is to select a group of sites that are
hydrologically similar to the target site. Traditionally, ho-
mogeneous regions are formed on the basis of geographic or
administrative boundaries [Matalas et al., 1975; Beable and
McKerchar, 1982]. However, this approach is not hydro-
logically sound, since regions formed using this approach
are seldom homogeneous in terms of their hydrologic
response [Cunnane, 1988].
[4] ‘‘Site focused’’ regionalization techniques, where

each site has a potential unique set of catchments forming
the homogeneous region for the site, has received much
attention because of its flexibility and effectiveness. The
region of influence (ROI) method [Burn, 1990a, 1990b] laid

the foundation for this technique. The site focused approach
is also known as the hydrological neighborhood approach
[GREHYS, 1996a; Ouarda et al., 2000, 2001]. The com-
parison studies by GREHYS [1996b] concluded that the
neighborhood approach has superior performance than the
fixed region approach.
[5] Canonical correlation analysis (CCA) [Ouarda et al.,

2000, 2001] is also a frequently used approach to define
hydrological neighborhoods. CCA was introduced by
Cavadias [1990] to flood quantile estimation where the
regions are formed on the basis of visual judgment of
clustering patterns. Ouarda et al. [2000] applied the CCA
approach to estimate extreme flood quantiles in Quebec,
Canada. Ouarda et al. [2001] presented additional improve-
ments to the method and proposed the detailed algorithms to
delineate homogeneous regions for gauged and ungauged
sites using CCA.
[6] Chokmani and Ouarda [2004] presented a CCA-

based kriging approach, named canonical kriging, for flood
quantile estimation at ungauged sites. CCA is introduced by
the authors to construct a projected physiographical space.
Ordinary kriging is then used for the interpolation of flood
quantiles over the physiographical space defined by CCA.
The application of the method to data from the province of
Quebec, Canada showed that canonical kriging can provide
comparable results to the traditional CCA-based flood
estimation method. The physiographic space defined using
the CCA method is more feasible to provide hydrological
variable estimation than using other methods, such as
principle component analysis (PCA).
[7] Different quantile estimation methods can be used

with the CCA approach [GREHYS, 1996a, 1996b; Ouarda
et al., 2001]. Regional regression is frequently integrated
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with the CCA approach to provide quantile estimation,
especially at ungauged sites, from site physiographic char-
acteristics. The frequently used regional regression model
has the following generalized form [Thomas and Benson,
1970]

QT ¼ axq11 x
q3
2 � � � xqii � � � xqnn ð1Þ

where QT is the flood quantile at the site of interest; xi is the
ith site characteristic used for flood quantile estimation; qi is
the ith model parameter which needs to be estimated using
statistical analysis; n is the total number of site character-
istics used in the model; and a is the multiplicative error
term. A log transformation is frequently used to estimate the
parameters of equation (1). The solution obtained by linear
regression methods is theoretically unbiased in the loga-
rithmic domain, but is biased in the real flood flow domain
[McCuen et al., 1990]. Pandey and Nguyen [1999] and
Grover et al. [2002] compared a wide range of regression
techniques applied to regional flood frequency analysis, and
the results indicated that nonlinear regression methods
directly solving equation (1) can provide more precise
estimates than linear regression techniques.
[8] As an alternative to standard nonlinear regression

methods, artificial neural networks (ANNs) and ANN
ensemble models are introduced by Shu and Burn [2004]
for index flood and flood quantile estimation. Seidou et al.
[2006] applied ANNs to the regional estimation of lake ice
thickness in ungauged sites. ANNs are nonparametric
approaches which require no assumptions about the form
of the true underlying function being estimated. The appli-
cation to selected catchments in the United Kingdom (UK)
indicates that the nonlinearity introduced by ANN models
allows them to outperform multiple linear regression
methods. The generalization ability of a single ANN can
be improved by using a properly designed ANN ensemble.
Dawson et al. [2006] applied ANNs to flood quantile and
index flood estimation for 870 catchments across the UK.
The results obtained from the ANNs are comparable in
accuracy with those obtained by the Flood Estimation
Handbook (FEH) [Reed and Robson, 1999] models.
[9] In the present paper, regional flood quantile estima-

tion methods based on CCA and ANN are proposed. CCA
is used to define a transformed physiographical space. An
ANN is then used to establish the nonlinear relationships
between the site physiographical variables in the CCA space
and hydrological variables to be estimated. To improve the
generalization ability of a single ANN, the ANN ensemble
technique is used. Since only physiographical and climatic
data are required as input to the ANN models, the proposed
approaches are feasible for flood estimation at ungauged
sites. A comparison study is carried out between the
proposed approaches and several other approaches using
data from the province of Quebec, Canada.
[10] The remainder of this paper is organized as follows.

In section 2, a general introduction to CCA and ANNs is
provided and the methodology for integrating the two
techniques for flood quantile estimation is presented. In
section 3, the details for designing the ANNs, the estimation
models to be compared, and the evaluation methodology are
presented. In section 4, a description of the study area is
provided. In section 5, the results obtained by applying the

proposed approaches are presented and discussed. Finally,
in section 6, the conclusions of this work and recommen-
dations for further research are presented.

2. ANN Models in the CCA Physiographical
Space

[11] In the proposed approach, site characteristics includ-
ing physiographical and climatic data are projected in the
canonical space. The canonical variables in the physio-
graphical space are then fed to ANN models to generate
flood quantile estimates. CCA preserves the character of the
original data by omitting nonessential data [Razavi et al.,
2005]. Models built upon the data processed using the CCA
analysis could lead to better generalization ability.
Chokmani and Ouarda [2004] compared two dimensional
reduction techniques, PCA and CCA, and the results indi-
cate that CCA leads to a much better performance than
PCA. A brief description of the CCA and ANN techniques
is provided in sections 2.1 and 2.2, respectively. The
methodology of integration of the two techniques for
regional flood frequency analysis at ungauged sites is
provided in section 2.3.

2.1. Canonical Correlation Analysis

[12] Canonical correlation analysis (CCA) is a way of
explaining the linear relationship between two sets of
variables. Consider X and Y are two random variables,
CCA computes two sets of basis vectors (canonical varia-
bles), one for X and the other for Y, such that the correlations
between the projections of the variables onto these basis
vectors are mutually maximized [Muirhead, 1982]. The
maximum number of canonical variable pairs is equal to
or less than the smallest dimensionality of the two variables.
[13] Let W and V be linear combinations of X and Y,

respectively,

W ¼ a 0X ð2Þ

V ¼ b 0Y ð3Þ

Let S be the covariance matrix of variables X and Y, defined
as

X
¼ cov

X

Y

� �
¼

P
X

P
XYP

YX

P
Y

2
4

3
5 ð4Þ

The correlation between W and V can then be calculated as

r ¼ a0 P
XY bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 P
X ab 0 P

Y b
p ð5Þ

The goal of CCA is to find the vectors of a and b
maximizing r subject to the constraint that W and V must
have unit variances. Once the first pair of canonical
variables is obtained, other pairs of canonical variables
can be obtained in the uncorrelated directions to the
previous ones by maximizing equation (5) subject to the
constraint of unit variance.
[14] CCA was recently used by Chokmani and Ouarda

[2004] to construct a transformed space defined by the
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physiographical and meteorological characteristics. The
hydrological variables (flood quantiles in our case) are
generally not continuous in the geographical space. How-
ever, they are continuous in the canonical physiographical
space [Chokmani and Ouarda, 2004]. This characteristic is
crucial for flood estimation at ungauged sites. Because the
physiographic variables and the meteorological variables
are generally available at the ungauged sites, one can easily
locate an ungauged site in the physiographical space con-
structed by these variables. For more detailed information
regarding CCA, the readers are referred to Ouarda et al.
[2001].

2.2. ANN and ANN Ensemble

[15] An ANN is an information processing system which
is designed to mimic certain structures and functions of
biological neural networks of the human brain. Given
sufficient parameters, an ANN can be used for creating
nonlinear mathematical models for universal approximation.
This extraordinary capability has enabled ANNs to solve
large complex problems such as pattern recognition, non-
linear modeling, classification, and control.
[16] Multilayer perceptrons (MLPs) represent the most

commonly used and well researched class of ANNs, origi-
nally because of work by Rumelhart and McClelland [1986].
This type of ANN implements a feed forward supervised
paradigm. A MLP consists of an input layer, one or more
hidden layers, and an output layer. The input layer receives
values of the input variables for a given problem. The output
layer provides the ANN prediction and represents model
output. Layers lying between the input and output layer are
called hidden layers. Nodes in each layer are interconnected
through weighted acyclic arcs from each preceding layer to
the following, without lateral or feedback connections.
[17] To improve the generalization ability and stability of

a single ANN, an ANN ensemble can be used. To construct
an ANN ensemble, a number of ANNs are trained to tackle
a given problem, and the results produced by these indi-
vidual networks are combined to generate a unique output.
Each network in an ensemble is first trained using the
training instances. Then, for each example, the predicted
output of each of these networks is combined to produce the
output of the ensemble.
[18] Using ensemble ANN to improve model generaliza-

tion performance is an active research topic [Dietterich,
1997]. For many real world problems, ensemble models can
outperform the best base models. There have been some
successful applications of ANN ensemble models in hy-
drology. Cannon and Whitfield [2002] used a bootstrap
aggregated ANN ensemble to predict changes in streamflow
conditions. Results showed that the prediction obtained by
the ANN ensemble model was better than a stepwise linear
regression model. Furthermore, by adopting the ensemble
approach, some commonly encountered problems when
applying ANNs in hydrology can be easily solved. Shu
and Burn [2004] introduced the ANN ensemble methods to
estimate the index flood and flood quantile at ungauged
sites. Shu and Burn [2004] evaluated three methods (ran-
domization, bagging and boosting) for generating the mem-
ber networks and two methods (averaging and stacking) for
integrating the member networks. The results showed that
properly designed ANN ensemble models can significantly

reduce prediction error when compared with parametric
regression methods. Anctil and Lauzon [2004] compared
five ANN generalization approaches for streamflow predic-
tion: stop training, Bayesian regularization, stacking, bag-
ging and boosting. The application to six selected
catchments indicated that the performance of standard
ANNs can be improved by using any of the generalization
approaches. The ANN ensemble methods of stacking,
bagging and boosting provided better improvement than
the other two generalization approaches.
[19] The task of using ANN ensembles to model a given

problem can be broken down into the following two
questions: (1) how to generate the component ANN con-
structing the ensemble? and (2) how to combine the
multiple outputs from the component networks to generate
a unique output? [Merz, 1998]. To benefit from the ensem-
ble approach, member networks in an ensemble should have
diverse generalization ability. A number of methods have
been proposed for this purpose. The frequently used
methods for generating ensemble ANNs include manipulat-
ing the set of initial random weights, using different
network topology, training component networks using dif-
ferent training algorithms, and manipulating the training set
[Sharkey, 1999]. The methods of manipulating the training
set using bagging [Breiman, 1996] and boosting [Schapire,
1990; Freund and Schapire, 1996] have been most fre-
quently used. Many approaches have been proposed for
integrating the multiple outputs from the component net-
works [Sharkey, 1999; Ahmad and Zhang, 2002]. The two
frequently used methods are averaging and stacked gener-
alization [Wolpert, 1992].
[20] The bagging procedure is selected in this paper to

generate the individual member networks. Simple averaging
is selected in this paper to combine the outputs from each
individual ANN. This method is a simple and effective way
to generate ensemble output [Shu and Burn, 2004].

2.3. Integrating CCA and ANNs for Regional Flood
Frequency Analysis at Ungauged Sites

[21] For ungauged sites, no historical flood records are
available to directly estimate the hydrological variables such
as flood quantiles. However, by establishing a functional
relationship between the physiographical variables and the
hydrological variables, the hydrological variables can be
indirectly estimated. The model used for the estimation is
usually calibrated using data from the gauged sites. In the
approaches proposed in the present research work, the
physiographical variables are projected into the canonical
space, and the projected variables are then fed to the ANN
models to generate estimates of the hydrological variables.
[22] Suppose a set of physiographic and climatic varia-

bles, X, and hydrological variables, Y, are associated with
each gauged site. Using CCA, canonical variables W and V
can be obtained as a linear combination of X and Y,
respectively. The coefficients used for the combination are
computed so that the correlation between the variables W
and V is maximized. Knowing the combination coefficients,
the physiographical variable Xu for an ungauged site can be
easily projected into the CCA space to obtain the physio-
graphical variable Wu in the CCA space.
[23] The goal of the ANN model is to approximate the

functional relationship between the canonical variables W
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and the hydrologic variables Y which act as the input and
output of an ANN, respectively. The canonical variables V
are not used in the ANN training and estimation phase. To
achieve this goal, the ANN must be trained using the
samples from the gauged sites in the study a.rea. During
the training process, network parameters must be updated so
as to minimize the estimation error made by the network.
The error of a particular configuration of the network can be
determined by running all the training cases through the
network and comparing the actual generated output with the
desired or target outputs. The differences are combined
together by an error function to give the network error.
Several learning algorithms exist for determining the net-
work parameters. The most well known is the back prop-
agation algorithm [see Haykin, 1994; Fausett, 1994]. It uses
gradient descent techniques to minimize the network error
function. There are also other training algorithms which use
techniques for nonlinear function optimization. These
methods include the conjugate gradient algorithm, the
quasi-Newton algorithm and the Levenberg-Marquardt al-
gorithm [see Bishop, 1995]. They are collectively known as
second-order training algorithms.
[24] After an ANN model is trained using data from

gauged sites, obtaining the estimation of hydrological
variables for an ungauged site is straightforward. Applying
the projected physiographic data to the ANN input layer, the
estimation can be obtained directly from the output layer.
[25] The approach described above uses a single ANN

(SANN) to estimate flood quantiles at ungauged sites in the
CCA physiographic space. The abbreviation SANN-CCA
will be used in the remainder of the paper to represent this
model.
[26] To improve the generalization ability and the stabil-

ity of the single ANN, the ANN ensemble model is used.
Component networks in the ANN ensemble are generated
using the bagging approach and the resulting networks are
combined using simple averaging. Bagging stands for
bootstrap aggregation. The bagging approach was devel-
oped by Breiman [1996] to improve the accuracy of
predictions in classification and regression problems. The
algorithm is based on the bootstrap resampling technique
[Efron and Tibshirani, 1993]. Bagging can be implemented
in parallel, and the method is easy to use and has been
shown to effectively improve the generalization ability of
the single network [Cannon and Whitfield, 2002; Shu and
Burn, 2004; Anctil and Lauzon, 2004]. Each member ANN
of the ensemble is trained by only a subset of the training
set. The subset is drawn from the original training set Twith
replacement using bootstrap sampling. Training instances in
the training set have equal chance of being drawn. The
number of training instances in the subset is the same as the
training set. Thus some data in the training set appear more
than once in the subset, and the probability an individual
training sample from T will not be part of a bootstrap
resampled training set is (1 � 1/N)N � 0.37, where N is
the number of training samples in T. Suppose the process is
repeated K times, and each time an ANN is trained on the
basis of the training subset. Then, K member networks can
be generated with each network trained with a different
random sampling of the original training set. After all the
member networks are generated, a unique output for the
ensemble can be derived by averaging the outputs from

member networks. Suppose, for the site i, that the predicted
flood quantile using the kth member ANN is q̂i

k(k =
1, . . . K). The ensemble output can be calculated using

q̂i ¼
1

K

X
k¼

q̂ki ð6Þ

[27] The approach described above uses an ANN ensem-
ble to estimate flood quantiles at ungauged sites in the CCA
physiographic space. The abbreviation EANN-CCA will be
used in the remainder of this work to represent this model.

3. Methodology

3.1. ANN Model Structure

[28] For the SANN-CCA approach, a MLP having one
output layer, one hidden layer and one input layer is used.
The system inputs are the canonical variables in the phys-
iographical space derived using CCA. The outputs of the
system are the specific quantiles. The tan-sigmoid transfer
function is used for neurons in the hidden layers. The use of
the nonlinear transfer function extends the nonlinear ap-
proximation ability of the ANN. A linear transfer function is
used for the output layer. A linear transfer function for the
output neuron has the advantage of a potentially unbounded
output [Shu and Burn, 2004].
[29] Determining the number of hidden neurons in the

hidden layer is an important task when designing an ANN.
Too many hidden neurons may lead to the problem of
overfitting which is caused by not having enough training
cases to adequately train all the neurons in an ANN. Too
few neurons in the hidden layer may cause the problem of
underfitting which occurs when an ANN does not have
sufficient complexity to fully represent the functional rela-
tionship between the system input and output. Thus some
compromise must be made between too many and too few
neurons in the hidden layer. As a rule of thumb, the number
of hidden neurons should be less than twice the input layer
size. Shu and Burn [2004] showed that a MLP with five
hidden neurons in the hidden layer provided sufficient
generalization ability when it is applied to provide flood
estimation from catchment characteristics. In this paper, a
sensitivity analysis is carried out to identify the optimal
number of hidden neurons. By varying the number of
hidden neurons from three to eight, ANNs with five hidden
neurons are identified to provide most accurate estimation
when they are applied to estimate the selected specific
quantiles. Five hidden neurons are finally used in the hidden
layer. The training algorithm selected in this work is the
Levenberg-Marquardt (LM) algorithm [Hagan and Menhaj,
1994]. This algorithm is much faster than the gradient
descent method to find optimal solutions for various prob-
lems. The scalar parameter m is required to implement the
algorithm [Demuth and Beale, 2003]. When the value of
m is large, the LM algorithm behaves as a gradient descent
method with a small step size. However, when the value of
m is small, the optimization follows Gauss-Newton method
which is faster and more accurate near an error minimum.
An initial value must be set for m, and it is given as 0.005.
The value of m changes during the ANN training process on
the basis of the performance function of the ANN. If a
training epoch decreases the performance function, the
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value of m is multiplied by md = 0.1. If a training epoch
increases the performance function, the value of m is
multiplied by mi = 10. A maximum value of mmax = 1 �
106 is set for m to stop the training algorithm. During the
ANN training, the transfer functions of the hidden neurons
operate increasingly in nonlinear parts of the sigmoid
functions which enables the network to produce more and
more nonlinear mapping. In the same time, the number of
the effective parameters and number of degrees of freedom
in the network also increase which could lead to the
problem of overtraining. To avoid the overtraining problems
in ANN, one of the two effective approaches, regularization
and early stopping, can be generally applied [Bishop, 1995].
However, two problems are triggered if early stopping is
used [Shu and Burn, 2004]. First, a validation set needs to
be extracted from the training set, which may lead to
insufficient data being available to successfully train an
ANN. Secondly, how to optimally separate the validation
set still remains a major challenge. The regularization
technique, which is free of these problems, is selected in
this paper. In the regularization algorithm, the error function
which is minimized during the training phase is augmented
with additional terms that penalize the complexity of the
model. Shu and Burn [2004] provided the background
information related to the implementation of the regulariza-
tion technique.
[30] For the EANN-CAA approach, each component

ANN uses the same configuration as the SANN-CAA
model; however it is trained on bootstrap sampled data.
The identification of the size of an ensemble is important. If
the size is too small, the improvement in generalization is
not apparent; if the size is too large, it will increase the
training time and the effort to establish the ensemble.
Previous studies by Hansen and Salamon [1990] and
Agrafiotis et al. [2002] suggested that using ten networks
can achieve significant reduction in classification error.
Experiments conducted by Opitz and Maclin [1999] showed
that, when the ensemble size increases to ten or fifteen, the
generalization ability of the ensemble can be noticeably
improved. Recent studies by Shu and Burn [2004] suggest
that a network size of ten is necessary to attain sufficient
generalization ability. The authors also found out that a
network size of fourteen achieved best results when applied
to the United Kingdom data. Different ensemble sizes
ranging from two to twenty are applied to the study area,
and results indicate that estimation error gradually decreases
when the ensemble size increases to eleven, while with
further increase of the ensemble size, very little change in
the estimation error can be observed. Beyond a size of 14,
virtually no improvement in the estimation is observed. An
ensemble size of 14 is used in this paper.

3.2. Selection of Methods for the Comparison

[31] The SANN-CCA model and EANN-CAA model
described in section 2 are used to estimate the 10, 50 and
100 year flood quantiles at the study area catchments. To
evaluate the relative performance of these two models, they
are compared to the following four models:
[32] 1. The traditional CCA model (Tradition-CCA)

[Ouarda et al., 2001]. On the basis of CCA analysis, the
optimal hydrological neighborhood for each individual site

is determined. Multiple regression is used for regional flood
estimation.
[33] 2. The canonical Kriging model (Kriging-CCA)

[Chokmani and Ouarda, 2004]. The CCA method is used
to define the physiographical space, and the geostatistical
method of ordinary kriging is used to obtain regional flood
estimates by interpolating the flood quantile over the
canonical physiographical space. The method was shown
to produce flood estimates as precise as the traditional CCA
model; however the computation is less complicated
[Chokmani and Ouarda, 2004].
[34] 3. The original single ANN model (SANN-Origin)

[Shu and Burn, 2004]. An ANN model is used to directly
establish the relationship between site characteristics and
the flood quantile of interest. As opposed to the implemen-
tation of SANN-CCA approach, the physiographical and
meteorological variables are not projected into the CCA
space, but are directly fed to the inputs of an ANN.
[35] 4. The original ensemble neural network model

(EANN-Origin) [Shu and Burn, 2004]. In this approach,
an ensemble ANN model is used to improve the general-
ization ability of the SANN-Origin model. The component
ANNs composing the ANN ensemble are created using the
bagging approach. The ensemble output is generated by
combining the outputs from the individual networks using
simple averaging.

3.3. Evaluation Criteria

[36] Each regional flood frequency analysis model is
assessed using the following five indices: the Nash criterion
(NASH), the root mean squared error (RMSE), the relative
root mean squared error (RMSEr), the mean bias (BIAS),
and the relative mean bias (BIASr). The indices are com-
puted according to the following equations:

NASH ¼ 1�

Pn
i¼1

qi � q̂ið Þ2

Pn
i¼1

qi � �qð Þ2
ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

qi � q̂ið Þ2
s

ð8Þ

RMSEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

qi � q̂i

qi

� �2

vuut ð9Þ

BIAS ¼ 1

n

Xn
i¼1

qi � q̂ið Þ ð10Þ

BIASr ¼ 1

n

Xn
i¼1

qi � q̂i

qi

� �
ð11Þ

where n is the total number of sites being modeled, qi is the
at-site estimation for site i, q̂i is the estimation obtained
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from the regional flood frequency model for site i, and �q is
the mean of at-site estimation of the n sites.

3.4. Evaluation Procedure

[37] The jackknife resampling procedure is used to com-
pare the relative performances of the regional flood estima-
tion methods. In the jackknife resampling procedure, the
flood records of each catchment in the study area are
temporarily removed from the database, thus the site is
assumed to be ‘‘ungauged’’. Then each regional flood
frequency analysis model is calibrated using the data of
the remaining sites. Regional estimates can be obtained for
the ‘‘ungauged site’’ using the calibrated models, and they
are evaluated against its at-site estimates.

4. Case Study

[38] The hydrometric station network of southern Que-
bec, Canada is chosen as case study for this work. Accord-
ing to the following three criteria, 151 hydrometric stations
managed by the ministry of the environment of Quebec
(MENVIQ) services are selected:
[39] 1. To get reliable at-site estimation, a historical flood

record of 15 years or longer is required.
[40] 2. The gauged river should present a natural flow

regime.
[41] 3. The historical data at the gauging stations must

pass the tests of homogeneity, stationarity and independence.
[42] The selected stations are located between 45�N and

55�N. The area of these catchments ranges from 200 km2 to
100000 km2. The locations of these hydrometric stations are
shown in Figure 1. Figure 2 illustrates the distribution of the
number of years of observations for the stations of the case
study.

[43] Three types of data, physiographical, meteorological,
and hydrological are used in this study. The physiographical
and hydrological data were extracted from the MENVIQ
hydrological database and from the topographic digital
maps of Quebec. Meteorological variables were obtained
using interpolated historical data from the MENVIQ mete-
orological network across the province of Quebec.
[44] Five variables including three physiographical vari-

ables and two meteorological variables are selected in this
work on the basis of the previous study by Chokmani and
Ouarda [2004]. The three physiographical variables are
basin area (AREA), mean basin slope (MBS) and the
fraction of the basin area covered with lakes (FAL). The
two meteorological variables are annual mean total precip-
itations (AMP) and annual mean degree days over 0�C
(AMD). The summary statistics of these variables are
presented in Table 1.
[45] At-site flood quantile estimates for all the gauging

stations in the study area were extracted from the database
compiled by Kouider et al. [2002]. The flood quantile
estimates for each site were computed by fitting the most
appropriate statistical distribution to the historical flood
record. Scale effects may have a negative impact on
modeling the underlying physical mechanism of drainage
systems and should be eliminated from experiment data
[Eaton et al., 2002]. Thus specific quantiles (flood quantiles
standardized by basin area) are used to minimize the scale
effect. Three typical specific flood quantiles, the 10-year
(q10), the 50-year (q50), and the 100-year (q100) specific
quantiles are selected for this study.
[46] The scatterplots between the specific quantiles and

the selected physiographical and meteorological variables
are shown in Figure 3. From Figure 3, we can observe that

Figure 1. Hydrometric stations across the province of Quebec, Canada.
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the catchment descriptors MBS and AMP are positively
correlated with the specific quantiles; while the catchment
descriptors AREA, FAL and AMD are negatively correlated
with the specific quantiles. CCA requires all variables be
transformed for normality and standardized. Significant
asymmetry exists in the physiographical, meteorological
and hydrological variables in the study region [Chokmani
and Ouarda, 2004]. Thus a logarithmic transformation is
used for the variables, q10, q50, q100, AREA, MBS, AMP
and AMD, and a root transformation is used for FAL. All
variables were also standardized prior to CCA.

5. Results and Discussion

[47] The two approaches proposed in this paper and the
four models used for comparison purposes are applied to the
study area database. The results obtained using the jackknife
validation procedure are presented in Table 2. For each cell
of Table 2, bold font denotes the best performing approach.
[48] A model can be claimed to produce perfect estima-

tion if the NASH criterion is equal to 1. Normally a model
can be considered as accurate if the NASH criterion is
greater than 0.8. The six models, ranked according to their
performance in the NASH criterion from the highest to
lowest, are listed as follows: EANN-CCA, SANN-CCA,
Kriging-CCA, EANN-Origin, Tradition-CCA, and SANN-
Origin. The NASH values obtained using the SANN-CCA
and EANN-CCA approaches for the estimation of the three
specific quantiles are all very close to or above 0.8. This
indicates that the ANN models in the CCA space can
provide satisfactory estimates.
[49] RMSE and RMSEr indices provide assessment of

prediction accuracy in absolute and relative scale, respec-
tively. The EANN-CCA model has the best performance
among all the models according to these two indices. The
CCA-based ANN approaches show significantly better
generalization ability than the ANN approaches applied in

the original physiographical space. The proposed approach
which combines the advantages of linear and nonlinear
methods seems to lead to a performance improvement.
Furthermore, ANNs are nonparametric approaches which
have strong limitations for the extrapolation beyond the
range of observed data. The combination with a parametric
approach seems to help the performance of the ANNs. The
relative performance of all models ranked using both RMSE
and NASH indicators are the same. A similar pattern can
generally be observed using the RMSEr indicator. The
Kriging-CCA model underperforms the Tradition-CCA
model with the RMSEr indicator, however it outperforms
the Traditional-CCA model with the RMSE and NASH
indices. This indicates that the Traditional-CCA model
and the CCA-based ANN models provide optimal estimates
to minimize the absolute prediction error as indicated by the
RMSE indicator, without sacrificing the performance in the
relative measure as indicated by the RMSEr indicator.
[50] The BIAS and BIASr indices provide indication on

whether a model tends to overestimate or underestimate.
The analysis based on the BIAS index suggests that ANN
models generally overestimate flood quantiles and the mag-
nitude is larger than the Tradition-CCA model. However,

Table 1. Descriptive Statistics of Hydrological, Physiographical,

and Meteorological Variables

Variables Min Mean Max STD

MBS, % 0.96 2.43 6.81 0.99
FAL, % 0.00 7.72 47.00 7.99
AMP, mm 646 988 1534 154
AMD, degree day 8589 16346 29631 5382
AREA, km2 208 6255 96600 11716
q10, m3/s.km2 0.03 0.22 0.53 0.13
q50, m3/s.km2 0.03 0.28 0.77 0.18
q100, m3/s.km2 0.03 0.31 0.94 0.20

Figure 2. Length of data series.
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Table 2. Jackknife Validation Results

Hydrological Variables SANN-CCA EANN-CCA Kriging-CCA Tradition-CCA SANN-Origin EANN-Origin

NASH q10 0.82 0.84 0.78 0.78 0.75 0.78
q50 0.78 0.80 0.72 0.72 0.69 0.72
q100 0.77 0.78 0.70 0.68 0.66 0.69

RMSE, m3/s.km2 q10 0.053 0.050 0.050 0.059 0.060 0.058
q50 0.082 0.079 0.093 0.094 0.098 0.093
Q100 0.095 0.093 0.110 0.112 0.115 0.109

RMSEr, % Q10 38 37 51 43 47 44
Q50 44 43 64 49 55 53
Q100 46 45 70 51 64 60

BIAS, m3/s.km2 Q10 0.006 0.005 �0.004 0.001 0.006 0.004
Q50 0.009 0.009 �0.007 0.005 0.010 0.009
q100 0.013 0.012 �0.008 0.007 0.015 0.013

BIASr, % q10 �5 �5 �16 �9 �7 �7
q50 �7 �5 �21 �11 �8 �8
q100 �7 �6 �23 �11 �11 �10

Figure 3. Scatterplot of site characteristics and specific flood quantiles.
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when the BIASr index is used, both the ANN models and the
Tradition-CCA model underestimate flood quantiles. Esti-
mates obtained by ANN models in the CCA physiographical
space have the lowest bias.
[51] Overall, the SANN-CCA model leads to a much

better performance with NASH, RMSE, RMSEr indices than
the SANN-Origin model. The EANN-CCA model shows
better performance than the EANN-Origin model. These
results indicate that applying ANN models in the CCA
physiographical space can greatly improve the performance
of ANN models than in the original physiographical space.
Chokmani and Ouarda [2004] concluded that the CCA
technique is more capable to characterize the physiograph-
ical space for conducting flood quantile estimation. The
research results of this paper are consistent with their
conclusions.
[52] The ANN ensemble approaches outperform the sin-

gle ANN approach in both the original physiographical

space and the CCA physiographical space according to
most performance indices. These results are not surprising,
as the ensemble approach can be used to improve the
generalization ability of a single ANN [Shu and Burn,
2004].
[53] The regional estimates using the jackknife validation

procedure for specific quantiles q10, q50, q100 using the
SANN-CCA and EANN-CCA are shown in Figures 4 and 5,
respectively. Chokmani and Ouarda [2004] provided the
results using other CCA-based approaches. From Figures 4
and 5, we can observe that the estimation error and bias tend
to increase with the return period. The CCA-based ANN
models and the Tradition-CCA model tend to provide a
better estimation than the Kriging-CCA approach for sites
with specific quantiles lower than 0.15 m3/s.km2. All
models underestimate at sites with higher values of specific
quantiles (over 0.45 for the q10 estimate, over 0.6 for q50

Figure 4. Jackknife estimation using the SANN-CCA approach.
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and over 0.65 for q100). These sites generally represent
smaller basins for which the hydrological response is very
sharp (large specific quantiles). These basins are underrep-
resented in this case study. Indeed, there are only 9 sites in
the database that represent basins with an area smaller than
500 km2. Thus less training data is available in the variable
space occupied by these smaller sites, which also increases
the difficulty to provide precise estimation for small basins.
[54] In order to evaluate the contribution of each individ-

ual variable to flood quantile estimation, an additional
experiment is conducted. A number of methods [Olden et
al., 2004] have been developed over the past few years to
evaluate the relative importance of each input variable on
the contribution to the estimation of the outputs in ANNs.
Olden et al. [2004] compared nine methods for quantifying

variable importance in ANN, and the results indicated that
the connection weight approach [Olden and Jackson, 2002]
is the best methodology. This approach is adopted in this
paper. In this approach, the products of the input-hidden and
hidden-output connection weights between each input neu-
ron and output neuron are first calculated, then the products
are summed across all hidden neurons to generate the
importance of each input. Since the ANN model in the
CCA physiographical space involves an input space pro-
jection, calculation of the contribution of each input variable
to the estimation can be very complicated, and the connec-
tion weight approach cannot be used directly to provide the
measurements. Thus the SANN-Origin model is selected to
do the analysis. The relative importance of each input
variable for the estimation of each specific flood quantile

Figure 5. Jackknife estimation using the EANN-CCA approach.
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is presented in Table 3. FAL and AMP are identified as the
most important variables, and are followed by the variable
MBS. AREA ranks fourth among the five input variables,
and its relative importance ranges between 13.8% and
14.5%. The relative importance of AREA increases with
the increase of the return period. AMD is the least important
variable among all inputs.

6. Conclusions

[55] The methodology of integrating the CCA technique
and ANNs for flood quantile estimation at ungauged sites is
presented in this paper. CCA is used to project the site
characteristics into the canonical physiographic space. ANN
models are then used to approximate the functional rela-
tionship between flood quantiles and the projected physio-
graphic variables. Two CCA-based ANN models, using a
single network and an ensemble network, respectively, are
developed and applied to the data of the case study.
[56] The jackknife validation is used to assess the perfor-

mance of each model. The comparison with the other four
regional flood frequency models shows that the proposed
approaches can provide an estimation with relatively higher
accuracy. The proposed CCA-based ANN models lead to a
much better performance than the original ANN models,
which tends to indicate that the CCA space is more
appropriate for flood quantile estimation. The ensemble
ANN approach outperforms the single ANN approach,
which demonstrates that the generalization ability of a
single ANN can be improved using the ensemble approach.
[57] Compared with the traditional CCA approach, the

CCA-based ANN approaches are much easier to apply. In
the traditional CCA approach, a procedure is required to
optimally determine the value of the parameter a for each
site which is directly related to the size of a hydrological
neighborhood [Ouarda et al., 2000]. In the CCA-based
ANN approaches, once the ANN structure is specified, no
interference is required in the training and estimation phase
of the models.
[58] Although the CCA-based ANN approaches proposed

in this paper lead to a better performance than the other
methods, all methods tend to underestimate flood quantiles
for catchments with very high specific quantiles (catchment
with a small drainage area). Close inspection of these sites
indicates that they locate in the variable space where less
training data is available. Future attention should focus on
the estimation of extreme basins (very small and very large)
for which regional methodologies do not generally lead to
very reliable estimates. To correctly estimate flood quantiles
at these sites, further research is still required to increase the
extrapolation ability of the current models.

[59] Six models for regional flood frequency analysis are
compared in this work. These models are developed using
three estimation techniques (ANN, kriging, multiple regres-
sion) in two physiographical spaces. The research results
indicate that diverse generalization abilities are demonstrated
in these models. For example, the EANN-CCA model
shows better prediction accuracy than the Tradition-CCA
model, while the Tradition-CCA model leads to a less
biased estimation than the EANN-CCA model.
[60] The research in this paper is based on one type of

ANN model, the MLP model. The method developed in this
paper can be extended to use other types of ANNs such as
the Radial Basis Function (RBF) network and the general-
ized regression network.
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