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[1] The objective of the present study is to develop efficient estimation methods for the
use of the GEV distribution for quantile estimation in the presence of nonstationarity.
Parameter estimation in the nonstationary GEV model is generally done with the
maximum likelihood estimation method (ML). In this work, we develop the generalized
maximum likelihood estimation method (GML), in which covariates are incorporated
into parameters. A simulation study is carried out to compare the performances of the
GML and the ML methods in the case of the stationary GEV model (GEV0), the
nonstationary case with a linear dependence of the location parameter on covariates
(GEV1), the nonstationary case with a quadratic dependence on covariates (GEV2), and
the nonstationary case with linear dependence in both location and scale parameters
(GEV11). Simulation results show that the GLM method performs better than the ML
method for all studied cases. The nonstationary GEV model is also applied to a case study
to illustrate its potential. The case study deals with the annual maximum precipitation
at the Randsburg station in California, and the covariate process is taken to be the
Southern Index Oscillation.
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1. Introduction

[2] Extreme value analysis of hydrometeorological data
allows interpreting past records and making inference about
future probabilities of occurrence of extreme events, such as
floods, extreme rainfalls, or wind speeds. Extreme values
are often represented by the maximum value of a given
variable over a time period such as a year. Extreme value
theory indicates that these maxima can generally be
described by one of the three extreme value distributions
that can be generalized as the generalized extreme value
(GEV) distribution [e.g., Jenkinson, 1955]. This GEV
distribution has three parameters. It is among the most
frequently used distributions for extreme value analysis
[Stedinger et al., 1993; Ouarda et al., 2001; Katz et al.,
2002] in hydrology and climatology. Several methods have
been developed for the estimation of GEV distribution
parameters. They include the method of maximum likeli-
hood (ML) [Smith, 1985], the method of moments (MM)
[Madsen et al., 1997], the method of L moments (LM)
[Hosking, 1990], and the method of probability weighted
moments (PWM) [Hosking et al., 1985]. A comprehensive

review of recent developments in extreme value analysis in
hydrology is presented by Katz et al. [2002].
[3] There are two fundamental assumptions for the clas-

sical frequency analysis to provide useful engineering
design values. The proper estimation of design values
requires that the data series from which the probability
distribution parameters are to be estimated come from
independent and identically distributed (iid) observations.
The proper assessment of risk factors for an engineering
structure requires that the statistical inference has also to be
valid during the projected life span of the structure. This
requires that the conditions (e.g., climate) under which the
inferences are made will remain the same in the future.
There are, however, mounting evidence suggesting that
such assumptions can hardly be met in reality. On the one
hand, observed historical extreme events are hardly nonsta-
tionary. In fact, statistically significant trends have been
identified in extreme values of different hydroclimatological
series [Intergovernmental Panel on Climate Change, 2001]
in different parts of the world. On the other hand, the
anthropogenic influence on the climate system caused by
the increase in the emission of greenhouse gases into the
atmosphere has a potential to make future climate very
different from what it is today. Climate extremes will likely
change in the future [e.g., Jain and Lall, 2001; Wang et al.,
2004; Wang and Swail, 2004; Kharin and Zwiers, 2005].
The reality of nonstationary hydrometeorological extremes
needs to be properly addressed since the GEV model with
constant parameters may no longer be valid under nonsta-
tionary conditions [Leadbetter et al., 1983].
[4] Nonstationarity of extreme values may be detected by

identifying trends in the extreme values [e.g., Zhang et al.,
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2001, 2004; Clarke, 2002]. In this situation, ‘‘covariates’’
may be introduced into the probability distribution when
modeling extreme values [Smith, 1989] in order to deter-
mine conditional distributions. Scarf [1992] introduced a
trend in the position parameter for the GEV model. Coles
[2001] provided a general description of the covariate
approach to the modeling of extreme values. An example
of hydrological application of the covariate approach is
given by Katz et al. [2002]. Sankarasubramanian and Lall
[2003] studied quantile regression with climate indicators to
estimate quantiles under climate change conditions. The
covariate approach has also found applications in climate
studies. Using Monte Carlo simulations, Zhang et al. [2004]
compared several methods for detecting trends in the
magnitude of extreme values. They found that methods that
specifically model trend in the parameters of extreme value
distributions provide the highest power of detection of
statistically significant trends. Wang et al. [2004] used
covariates in their analyses of projected extreme ocean
wave heights for the end of the 21st century. Kharin and
Zwiers [2005] applied a similar model to general climate
model simulated extremes to estimate the impact of anthro-
pogenic climate change on climate extremes. All of these
studies used the ML method for parameter estimation.
Recently, Cunderlik and Ouarda [2006] developed the
nonstationary approach to regional flood-duration-frequency
(QdF) modeling.
[5] The method of maximum likelihood is efficient when

the sample size is sufficiently large. Because of the com-
plexity of the likelihood function, the ML estimates of the
parameters for the GEV distribution can only be obtained
through numerical methods. The ML method may diverge
when sample size is small. To resolve the problems of
divergence occurring in the numerical techniques used for
ML,Martins and Stedinger [2000] suggest the use of a prior
distribution for the shape parameter of the GEV model such
that the most probable values of the parameter are included.
This approach is similar to the quasi-Bayesian maximum
likelihood estimator (QBML) of Hamilton [1991], which
considers prior information about the parameters to elimi-
nate the singularities associated with the ML method. The
latter approach was successfully applied by Venkataraman
[1997] for the solution of problems in finance. Morrison
and Smith [2002] introduced a new method, named ‘‘mixed
L moments: maximum likelihood,’’ to resolve the same
singularity problem and to obtain unbiased estimators such
as those produced by the ML method. This method consists
of solving the equations of the maximum likelihood esti-
mation method under the constraints given by the first
L moment or the first two L moments. Through a simulation
experiment, Morrison and Smith [2002] show that the
estimators obtained with this method conserve the property
of being unbiased and are characterized by a low variance.
Dose and Menzel [2004] used a Bayesian approach to build
nonparametric models when studying climate change effects
in phenology.
[6] The majority of the models that consider dependence

of parameters on covariates are based on the normality
assumption of the variable. This assumption is not always
verified, especially in the case of extreme values. Mean-
while, even when trends or any other causes of nonstatio-
narity are eliminated, the resulting residual series is not

necessarily normal. Hydroclimatic extreme value variables
are often characterized by a strong skewness.
[7] The objective of this study is to use the GEV

distribution for quantile estimation in the presence of non-
stationarity in the data series. To this end, we consider a
nonstationary GEV model [Coles, 2001] in which the
parameters are time-dependent or dependent on other cova-
riates. We suggest the generalized maximum likelihood
estimation method (GML) for parameter estimation
[Martins and Stedinger, 2000]. The GML method integrates
the prior information on the shape parameter. We present a
generalization of this method in the case of a nonstationary
GEV model. An additional advantage of the GML approach
is that the numerical problems that may occur with the ML
method when estimating parameters for short series can be
avoided.

2. Nonstationary GEV Model

[8] The distributions of extreme values, introduced by
Fisher and Tippett [1928], include three families: Gumbel,
Fréchet, and Weibull. Jenkinson [1955] combined the three
families into the generalized extreme values distribution
(GEV) with a cumulative distribution function:

FGEV xð Þ ¼ exp � 1� k
a

x� mð Þ
� �1=k

� �
k 6¼ 0

¼ exp � exp � x� mð Þ
a

� �� �
k ¼ 0 ð1Þ

where, m + a/k � x < +1 when k < 0 (Fréchet), �1 < x <
+1 when k = 0 (Gumbel) and �1 < x � m + a/k when
k > 0 (Weibull). m(2R), a(> 0) and k(2R) are the location,
the scale and the shape parameters, respectively.
[9] In the nonstationary case, the parameters are

expressed as a function of covariates such as time: GEV
(mt, at, kt) [Coles, 2001]. To ensure a positive value for the
scale parameter, a transformation such that 8t = log(at) is
used when estimating the parameters. We assume that the
location parameter mt is a function of nm covariates U =
(U1 U2. . . Unm

)0. Let b = (b1 b2. . . bnm
)0 be the vector of

hyperparameters. In the case of linear dependence we have

mt ¼ U 0 tð Þb ¼
Xnm
i¼1

biUi tð Þ ð2Þ

For the scale parameter at, let V = (V1 V2. . . Vna
)0 be the

vector of covariates. We have

8t ¼ log atð Þ ¼ V 0 tð Þ:d ¼
Xna
i¼1

diVi tð Þ ð3Þ

Where d = (d1 d2. . . dna)
0 are the hyperparameters. The same

applies to the shape parameter kt:

kt ¼ W 0 tð Þ:g ¼
Xnk
i¼1

giWi tð Þ ð4Þ
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where, W = (W1 W2. . . Wnk
)0 are the covariates and g = (g1

g2. . . gnk)
0 are the hyperparameters.

[10] For the nonstationary GEV model, the likelihood
function for the sample x = {x1, . . ., xn} is:

Ln ¼
Yn
t¼1

f xt;mt;8t;ktð Þ ð5Þ

where f is the probability density function (PDF) of the
GEV distribution. For the sake of simplicity and for
practical considerations, we restrict this study to the case
of nonstationarity in the location and scale parameters,
expressed as the following three nested models.
[11] 1. GEV0(m, a, k) is the classic model with all

parameters being constant: mt = m, at = a et kt = k. In this
case nm = na = nk = 1 and U1 = V1 = W1 = 1.
[12] 2. GEV1(mt = b1 + b2Yt, a, k) is the homoscedastic

model with location parameter linearly dependent on one
covariate (Yt). nm = 2, U(t) = (U1(t) = 1 U2(t) = Yt), na = nk =
1 and V1 = W1 = 1.
[13] 3. In GEV2(mt = b1 + b2Yt + b3Yt

2, a, k) the location
parameter is a quadratic function of the covariate Yt. nm = 3,
U(t) = (U1(t) = 1 U2(t) = Yt U3(t) = Yt

2), na = nk = 1 and V1 =
W1 = 1.
[14] 4. In GEV11(mt = b1 + b2Yt, a = exp(a1 + a2Yt), k)

the location and scale parameters are function of the
covariate Yt. This model is recommended when the cova-
riate is time, since trends are usually observed at the same
time in the location and scale parameters. nm = 2, U(t) =
(U1(t) = 1 U2(t) = Yt), na = 2, V(t) = (V1(t) = 1 V2(t) = Yt),
nk = 1 and V1 = W1 = 1.
[15] Note that ‘‘nonstationary model’’ is a conventional

name for models which parameters are function of cova-
riates. Indeed, when covariates are not represented by the
time, the studied process may be stationary. However, the
term ‘‘nonstationary model’’ will be used for both cases. A
more fundamental issue is that frequency analysis applica-
tions are quite different in the cases in which the covariate is
the time argument and the cases in which the covariate is a
time-varying stochastic process. In the former case, one can
easily compute quantiles of the process of interest and
examine how they vary over time. In the latter case, one
can compute conditional distributions, given the value taken
by the covariate.

3. Generalized Maximum Likelihood Estimators

[16] The vector of parameters q to be estimated is, q = (m,
a, k) for the model GEV0, q = (b1, b2, a, k) for the model
GEV1, q = (b1, b2, b3, a, k) for the model GEV2 and q =
(b1, b2, d1, d2, k) for the model GEV11. These models are
considered to illustrate the estimation method. However, the
methodology is general and can be applied to large range of
nonstationary or dependent parameter models.
[17] In this section we present the generalized maximum

likelihood method for the estimation of the parameters of
nonstationary GEV model. The GML is based on the
maximum likelihood (ML) estimator. In the following, we
first introduce ML estimators for the three models. We then
present the GML estimators.
[18] For a sample of n observations x = (x1, . . ., xn), the

maximum likelihood estimators of the nonstationary GEV

model parameters can be determined by maximizing the
likelihood function, given by the general form [Coles, 2001]

Ln xjmt;at;ktð Þ ¼
Yn1
t¼1

1

at

exp � 1� kt

xt � mt

at

� �� ��1=kt
( )

* 1� kt

xt � mt

at

� �� �� 1� 1
ktð Þ
*

Yn
t¼n1þ1

1

at

� exp � xt � mt

at

� �� �
* exp � exp � xt � mt

at

� �� �� �
ð6Þ

where n1 is the number of observations such as kt 6¼ 0. For
all models considered in this paper, nonstationarity is related
to the location parameter and scale parameter. We then
have: kt = k is a constant. When k 6¼ 0, we also have n1 = n,
and the log likelihood function becomes

ln x;mt;at ;kð Þ ¼ � n log atð Þ �
Xn
t¼1

1� k
xt � mt

at

� �� �1=k

�
Xn
t¼1

1� 1

k

� �
log 1� k

xt � mt

at

� �� �
ð7Þ

In practice, it is easier to maximize the log likelihood
function. The ML estimators are the solution of an equation
system formed by setting to zero the partial derivatives of ln
with respect to each parameter.
[19] For the GEV1 model the ML estimators of the

parameters (b1, b2, a, k) are the solution of the following
system:

Xn
i¼1

1� k� z
1=k
t

zt
¼ 0

Xn
i¼1

t
1� k� z

1=k
t

zt
¼ 0

� nþ
Xn
i¼1

1� k� z
1=k
t

zt

xt � mt

a

� �" #
¼ 0

Xn
i¼1

ln ztð Þ 1� k� z
1=k
t

h i
þ 1� k� z

1=k
t

zt
k

xt � mt

a

� �( )
¼ 0 ð8Þ

where zt = [1 � k
a (xt � mt)].

[20] Numerical methods, such as the Newton-Raphson
method, must be used to solve this system. Similarly, an
equation system equivalent to (8) can be obtained for the
GEV2 (respectively, GEV11) models, with the fifth equa-
tion corresponding to the b3 (respectively, d2) parameter.
[21] Under certain regularity conditions, the ML estima-

tors have the desired asymptotic properties. These condi-
tions are not verified, however, when the shape parameter
k 6¼ 0, since the support of the distribution depends on the
parameters [Smith, 1985]. In the classic case (GEV0), this
problem generally leads to estimators with a very high
variance. The ML estimator properties for each of the three
models will be examined in section 4. Standard error and
confidence interval approximations can be obtained, as in
the classic case, by a numerical evaluation of the Fisher
information matrix. Another problem associated with the
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ML method when used with small sample sizes, is that the
numerical resolution of the ML system ((8) for GEV1
model) can lead to physically impossible estimators of the
parameters, and to very high quantile estimator variances.
[22] The GML method is based on the same principle as

the ML Method with an additional constraint on the shape
parameter to eliminate potentially invalid values of this
parameter. A prior distribution of k, in the case of the
hydrometeorological series, was introduced by Martins and
Stedinger [2000] based on practical considerations. Martins
and Stedinger [2000] presented the GML method for the
GEV0 model, using a Beta distribution as prior for the
shape parameter k: pk(k) = Beta(u = 6, v = 9). This
distribution is centered on the value �0.1 and has the
interval [�0.5, +0.5] as support. This method can be
generalized to the nonstationary GEV model by using a
similar prior for the shape parameter and resolving the ML
system generated under this constraint (equation system (8)
for the GEV1 model). The GML parameter estimators are
the solution to the following optimization problem:

max
q

Ln x; qð Þ
k  Beta u; vð Þ

(
ð9Þ

This is equivalent to maximizing the posterior distribution
of the parameters conditionally to the data:

p q xjð Þ / Ln x qjð Þpk kð Þ ð10Þ

where Ln is given by the equation (6).
[23] As indicated by Martins and Stedinger [2000], the

GML method is a particular case of the Bayesian approach,
where the prior distribution is only specified for the shape
parameter. An important advantage, of the use of the GML
method, is the possibility to integrate any additional infor-
mation, such as historical and regional information, to
define the prior distributions. This point was well discussed
by Reis and Stedinger [2005].
[24] The GML parameter estimator corresponds to the

mode of the posterior distribution, which is not explicitly
known, and can be computed by numerical methods
[Martins and Stedinger, 2000]. An alternative is the use
of simulation methods such as Monte Carlo Markov Chain
methods (MCMC). The MCMC approach allows to deter-
mine the empirical posterior distribution of the parameter
vector, and to deduct the marginal distributions of the
parameters and their characteristics. The GML estimators
are thus the modes of the empirical marginal distributions
generated by the MCMC method.

4. Parameter and Quantile Computation via
MCMC

[25] The MCMC method constitutes an alternative to the
numerical methods, especially in Bayesian statistical anal-
ysis. The basic idea of the MCMC method is, for each
parameter, to construct a Markov chain with the posterior
distribution being a stationary and ergodic distribution.
After running the Markov chain, of size N, for a given
burn-in period, N0, one obtains a sample from the posterior
distribution p(qjx). One popular method for constructing a
Markov chain is via the Metropolis-Hastings (MH) algo-

rithm [Metropolis et al., 1953; Hastings, 1970]. For the
GML method, we simulated realizations from the posterior
distribution by way of a single-component MH algorithm
[Gilks et al., 1996]. Each parameter was updated using a
random walk Metropolis algorithm with a Gaussian pro-
posal density centered at the current state of the chain. Some
methods to assess the convergence of MCMC methods
make it possible to determine the length of the chain and
the burn-in time such as Raftery and Lewis and subsam-
pling methods [El Adlouni et al., 2006]. In all cases, the
convergence methods indicated that the Markov chains
converged within some iteration. In this study, we consid-
ered chains of size N = 15000 and a burn-in period of N0 =
8000 runs. In every case, a sample of N � N0 = 7000 values
is collected from the posterior of each of the elements of q.
The GMLE corresponds to the mode of the empirical
posterior distribution obtained from the histogram of N �
N0 values generated by the MCMC algorithm.
[26] The MCMC algorithm produces also the conditional

quantile distribution for an observed value, y0, of the
covariate Yt. Indeed, for each iteration i of the MCMC
algorithm, i = 1, . . ., N, the quantiles with nonexceedance
probability p, xp,y0

(i) corresponding to the parameter vector
(my0

(i), ay0

(i), k(i)), are computed using the inverse of the
cumulative distribution function of the GEV distribution:

x ið Þ
p;y0

¼ m ið Þ
y0

� �
þ
a ið Þ
y0

k ið Þ 1� � log pð Þð Þk
ið Þ

h i
ð11Þ

Where my0

(i), ay0

(i) are the position and scale parameters
conditional on the particular value y0 of Yt. We have: my0

(i) =
m(i) ay0

(i) = a(i) for the GEV0 model; my0

(i) = b1
(i) + b2

(i) y0 for the
GEV1 model and my0

(i) = b1
(i) + b2

(i) y0 + b3
(i) y0

2 for the GEV2
model. For these models ay0

(i) = a(i). For the GEV11 model
my0

(i) = b1
(i) + b2

(i) y0 and ay0

(i) = exp(d1
(i) + d2

(i) y0). Several
statistical characteristics of the conditional quantile dis-
tribution, such as the mean, the mode or intervals of
credibility, can be determined from the values xp,y0

(i), i =
N0, . . ., N.

5. Simulation Study

[27] In order to study and compare the estimation param-
eter methods for each of the three models (GEV0, GEV1,
GEV2, and GEV11), we considered the case of a time-
dependent location parameter (Yt = t). The quantiles, xp,n,
are computed conditionally to Yt = n, which corresponds to
an update of the parameter distribution. We considered the
same parameters used by Martins and Stedinger [2000] to
compare the GML method, the ML method, the method of
moments (MM), and the probability-weighted moments
method (PWM). We are interested in the case of positive
skewness with the following values of the shape parameter:
k = �0.1 k = �0.2 k = �0.3. The main objective of the
simulation study is to compare the performance of the
estimation methods presented above for various skewness
values. The parameters defining the nonstationarity were
chosen to have weak trends, which often corresponds to the
conditions observed with hydrometeorological series. For
the GEV1 model two cases were considered, in order to test
the sensitivity of simulation results to the values of param-
eters. The first one (case 1) corresponds to b1 = 0 and b2 =

4 of 13

W03410 EL ADLOUNI ET AL.: GMLE FOR THE NONSTATIONARY GEV MODELOR W03410



0.1 and the second case (case 2) b1 = 0 and b2 = �0.2. For
the GEV2 model b1 = 0, b2 = 0.3 and b3 = �0.005 and for
the GEV11 model b1 = 0, b2 = �0.1, d1 = 1 and d2 = �0.02.
For models with fixed scale parameter: a = 1. Examples of
the generated series are presented in Figure 1.
[28] The Monte Carlo simulation study was carried out to

compare the ML and GML methods. The bias and the root-
mean-square error (RMSE) were computed for each quan-
tile of nonexceedance probabilities p = 0.5, 0.8, 0.9, 0.99 et
0.999 (corresponding to return periods 2, 5, 10, 100 and
1000 years in the classic case). The bias and RMSE were
calculated for R = 1000 samples with a sample size of
n = 50 generated by each of the studied models.

5.1. GEV0 Model

[29] For the classic GEV0 model, the comparison was
made for three skewness values corresponding to k = �0.1,
k = �0.2, and k= �0.3. The location and scale parameters
were fixed to m = 0 and a = 1. Table 1 presents the bias and
the RMSE of the nonexceedance probability quantiles
obtained with the GEV0 model.
[30] Results in Table 1 show that for the low skewness

value (k = �0.1), the GML method provides the best results
for all quantiles. The prior distribution mode used in the
GML method for the shape parameter is equal to �0.1154.
This choice gave more weight to the central value of the
prior distribution which explains the negative bias obtained
with the larger skewness values (k = �0.2 and k = �0.3).
Concerning the ML method, Table 1 supports the conclu-
sions made in the literature: High RMSE values are due to

the large ML estimator variance, caused by a few aberrant
values of the ML estimation of the shape parameter k.

5.2. GEV1 Model

[31] As mentioned above, the covariate used during the
simulations studies was time Yt = t. In order to study the

Figure 1. Series generated by the GEV1, GEV2, and GEV11 models.

Table 1. GEV0 Model: Bias and RMSE of Quantiles Estimated

by the ML and GML Methods

p

Bias RMSE

ML GML ML GML

k = �0.1
0.5 0.02 0.01 0.35 0.17
0.8 �0.03 0.05 0.44 0.33
0.9 �0.05 0.04 0.45 0.45
0.99 0.02 0.11 1.86 0.94
0.999 0.71 0.22 6.01 1.60

k = �0.2
0.5 �0.01 0.05 0.20 0.24
0.8 �0.02 �0.03 0.35 0.33
0.9 �0.01 �0.05 0.57 0.42
0.99 0.57 �0.17 3.31 1.20
0.999 1.72 �0.37 14.35 3.53

k = �0.3
0.5 �0.04 �0.01 0.17 0.20
0.8 �0.12 �0.04 0.35 0.39
0.9 �0.16 �0.07 0.75 0.64
0.99 0.19 �0.23 4.44 2.48
0.999 1.96 �0.42 21.08 7.83
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sensitivity of simulation results to the value of trend
parameter used for the GEV1 model, we consider two
cases. However, we think that, for the GEV distribution,
results are more sensitive to the value of the shape param-
eter. Two case of trend parameter are considered for the
GEV 1 model. For case 1: b1 = 0, b2 = 0.1, a = 1 and the
shape parameter represented three positive skewnesses.
[32] Table 2 reports the bias and the RMSE values for

each quantile estimate for the GEV1 model (case 1). Results
demonstrate that the GML method performed better than the
ML method especially for quantiles corresponding to high
nonexceedance probabilities. For higher probabilities, the

ML estimator produced a negative bias and high RMSE
values. Compared to the GEV0 model, the GML estimators
of the GEV1 model parameters have a smaller bias (in
absolute value). For the second case of GEV1 model,
b1 = 0, b2 = �0.2, a = 1, and the shape parameter
represented three positive skewnesses.
[33] Table 3 reports the bias and the RMSE values for

each quantile estimate of the GEV1 model (case 2). This
case confirms results obtained for case 1. The GML method
leads to better estimates than the ML method. Note that for
this case RMSE values are higher than those obtained for
case 1 for all quantiles and the bias values for the GML
estimators are negative but small in absolute value.

5.3. GEV2 Model

[34] The GEV2 model typifies the case where the loca-
tion parameter is a quadratic function of a covariate,
represented by time in this case. This case demonstrates
the flexibility of the nonstationary GEV model for studying
different types of dependence structure.
[35] Results obtained with the GEV2 model show that the

GML method leads to small bias and RMSE especially for
small skewness (Table 4). The use of a quadratic depen-
dence structure reduces the impact of the central value of
the shape parameter prior distribution used in the GML
method. The bias of the ML estimators is negative for all
quantiles and skewness values. It is also relatively large (in
absolute value) compared to the GML method. However,
the variance of the ML estimators is smaller than that
obtained with the GEV0 and GEV1 models.

5.4. GEV11 Model

[36] The last model, GEV11, is also a generalization of
the GEV1 model. For this model, location and scale
parameters are linear functions of the same covariate (time
in this case). Parameters considered in this study are: b1 = 0,
b2 = �0.1, d1 = 1, and d2 = �0.02. As in all cases the
sensitivity of results is tested for three shape parameter

Table 2. GEV1 Model (Case 1): Bias and RMSE of Quantiles

Estimated by the ML and GML Methodsa

p

Bias RMSE

ML GML ML GML

k = �0.1
0.5 0.06 0.01 0.41 0.39
0.8 0.04 0.03 0.47 0.50
0.9 �0.02 0.03 0.56 0.56
0.99 �0.17 0.05 1.58 0.85
0.999 �0.14 0.12 4.17 1.36

k = �0.2
0.5 0.01 0.02 0.45 0.30
0.8 0.02 0.05 0.53 0.51
0.9 0.03 0.06 0.73 0.73
0.99 0.26 �0.11 3.04 2.08
0.999 1.74 �0.17 11.33 5.24

k = �0.3
0.5 0.07 0.03 0.56 0.36
0.8 0.04 0.04 0.66 0.59
0.9 �0.03 0.04 0.88 0.83
0.99 �0.64 �0.12 4.10 2.44
0.999 �1.34 �0.61 17.95 7.06

aFor case 1, b2 = 0.1.

Table 3. GEV1 Model (Case 2): Bias and RMSE of Quantiles

Estimated by the ML and GML Methodsa

p

Bias RMSE

ML GML ML GML

k = �0.1
0.5 �0.26 �0.01 1.32 0.11
0.8 �0.21 0.03 1.31 0.22
0.9 �0.34 0.06 2.38 0.37
0.99 �0.79 0.25 5.13 1.79
0.999 �0.84 0.68 7.94 3.27

k = �0.2
0.5 �0.15 0.03 1.61 0.10
0.8 �0.78 0.03 1.53 0.21
0.9 �0.72 0.15 1.56 0.38
0.99 �0.83 �0.69 4.69 1.49
0.999 �1.34 �1.02 18.01 7.19

k = �0.3
0.5 �0.77 0.08 1.42 0.13
0.8 �0.75 �0.05 1.61 0.38
0.9 �0.77 �0.21 2.09 1.42
0.99 �1.06 �0.79 7.52 4.76
0.999 �1.35 �1.22 25.08 12.52

aFor case 2, b2 = �0.2.

Table 4. GEV2 Model: Bias and RMSE of Quantiles Estimated

by the ML and GML Methods

p

Bias RMSE

ML GML ML GML

k = �0.1
0.5 �0.06 0.01 0.98 0.56
0.8 �0.71 0.04 1.02 0.66
0.9 �0.76 0.07 1.09 0.77
0.99 �0.99 0.13 1.96 1.30
0.999 �1.12 0.18 4.63 2.12

k = �0.2
0.5 �0.81 0.02 1.22 0.64
0.8 �0.79 0.05 1.23 0.80
0.9 �0.80 0.06 1.30 0.97
0.99 �0.93 �0.11 2.83 1.94
0.999 �1.79 �0.17 8.93 3.73

k = �0.3
0.5 �0.83 0.27 1.47 0.97
0.8 �0.92 0.48 1.46 1.38
0.9 �0.81 0.61 1.87 1.86
0.99 �1.57 1.42 3.87 3.48
0.999 �3.69 2.87 12.62 8.54
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values (�0.1, �0.2, and �0.3). Empirical studies on non-
stationary models indicate that it is preferable to represent
the nonstationarity in both location and scale parameters.
Indeed, for observed data, a trend in the location is often
accompanied by a reduction or increase in the variance.
[37] Results obtained with the GEV11 model show that

the GML method leads to a high bias for all skewness
values especially for quantiles with high probability of
nonexceedance (Table 5). The increase in RMSE of the
estimators in this case, compared to the GEV1 model, is due
to the bias. However, when compared to the ML method,
the GML approach gives good results for all skewness
values.

6. Annual Maximal Precipitations and the SOI
Index

[38] We applied the models presented above to a series X =
(x1, . . ., xn) of annual maximum precipitation (mm),
recorded at the Randsburg station in California (station
047253) with 51 years of record. The latitude of the station
is 35.3700, its longitude 117.650 and the period of record is
1949–1999. Figure 2 illustrates the geographic location of
the Randsburg station. Located in the southern part of
California, precipitation in this station should be strongly
affected by the El Niño phenomenon.
[39] In this application of the nonstationary GEV models,

the main objective was to study the conditional distribution
of the annual maximal precipitation (X) as a function of the
Southern Oscillation Index (SOI). The SOI is computed
using monthly mean sea level pressure anomalies at Tahiti
(T) and Darwin (D). Strongly negative values of SOI are
observed during an El Nino, around 0 on a normal year and
strongly positive during a La Nina. The correlation coeffi-
cient between the annual maximal precipitations X and the
SOI is r = �0.60 (Figure 3).
[40] We observe a significant negative correlation

between X and the SOI. Figure 4 shows that the extreme

values of X correspond to low SOI values. Each of the three
GEV models, presented in section 2, is used to study the
conditional distribution of the annual maximal precipitation
according to the SOI index.
[41] The parameters, of GEV0, GEV1, and GEV2

models, were estimated by the ML and the GML methods.
However, only the results of the GML method are reported
herein. Figure 5 illustrates the convergence of the N =
15000 iterations of the Metropolis-Hastings algorithm used
for the estimation of the GEV0 model parameters. After
running the MH algorithm for a burn-in period of N0 = 8000
runs, samples were generated from the posterior distribu-
tion. The histograms of the last N � N0 iterations represent
the empirical posterior distributions of the parameters and
allow the determination of all theoretical distribution prop-
erties (Figure 6). The GML estimators correspond to the
modes of the marginal distributions, listed in Table 6 with
the maximized log likelihood l*n values.
[42] The GEV0 model is a particular case of the GEV1

model, which itself is a particular case of the quadratic
dependence GEV2 model. The most general model is
usually the best model to represent data variance. However,
when the difference between two models is not evident it is
preferable to use the simplest model in order to respect the
parsimony principle. Indeed, for nonstationary models, the
use of covariates leads to a better description of the process
that generates data but the number of parameters to be
estimated increases. For small and moderate samples, this
leads to a large variance and consequently and an increased
uncertainty in quantile estimation.
[43] A simple method to compare the validity of a model

M1 against another model M0, such as M0 � M1, is to use
the deviance statistic defined by [Coles, 2001]:

D ¼ 2 l*n M1ð Þ � l*n M0ð Þ
� �

ð12Þ

where l*n(M) is the maximized log likelihood function of
model M. Large values of D indicate that model M1 is more

Table 5. GEV11 Model: Bias and RMSE of Quantiles Estimated

by the ML and GML Methods

p

Bias RMSE

ML GML ML GML

k = �0.1
0.5 �0.06 �0.05 2.04 0.25
0.8 �0.27 �0.03 3.18 0.63
0.9 �0.55 0.12 4.33 1.12
0.99 �0.79 0.14 6.31 3.32
0.999 �1.27 0.62 11.31 6.62

k = �0.2
0.5 �0.45 �0.25 1.73 1.04
0.8 �1.19 �0.34 2.29 1.83
0.9 �2.29 �0.33 4.30 3.84
0.99 �2.98 �1.56 9.83 7.65
0.999 �4.98 �2.78 18.93 12.71

k = �0.3
0.5 0.12 �0.36 2.46 1.47
0.8 �0.08 �0.42 2.26 2.13
0.9 �0.81 �0.83 4.35 3.16
0.99 �1.58 �1.36 12.87 7.38
0.999 �2.49 �1.68 22.62 13.24

Figure 2. Geographic location of the Randsburg station in
California.
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adequate and explains more of the data variation than model
M0. The statistic D is distributed according to a chi-square
(cn

2) distribution. The parameter n is the difference between
the dimensions (number of parameters) of the M1 and M0

models. Values of D greater than the quantiles of the cn
2

distribution for a particular confidence level, are considered
significant thus model M1 is better than model M0.
[44] The models studied in this work, can also be com-

pared in a Bayesian framework using the posterior predic-
tive distributions. Simulations from these distributions can
be compared with respect to goodness of fit or proposed
inferences [Gelman et al., 1995]. The posterior predictive
p value and conditional p value are also emerging as
popular measures of model fit [Bayarri and Berger, 2000;

Aitkin et al., 2005]. It would be interesting to study the
power of all these techniques within a nonstationary case.
[45] There is a significant difference between the GEV0

and the GEV1 models since D = 6.2 is bigger than the 0.95
quantile of the c1

2 distribution (Pr(c1
2 � 6.2) = 0.9872). The

GEV1 model led to a maximized log likelihood value of
l*n(GEV1) = �206.86. In the case of quadratic dependence
in the location parameter m, the maximized log likelihood
becomes l*n(GEV2) = �204.71. The deviance statistic for
comparing these two models is therefore D = 4.3. This value
is large when compared to the c1

2 distribution (Pr(c1
2 �

4.3) = 0.9619), implying that the quadratic model (GEV2)
explains a substantial amount of the variation in the data,
and is likely to best represent the dependence between the
annual maximal precipitation and the SOI index.

Figure 3. Observed annual maximal precipitation and the SOI series.

Figure 4. Observed annual maximal precipitation and corresponding SOI value.
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[46] The GEV1 model can also be compared to the
GEV11 model, by the deviance statistic, since the first
one is a special case of the second. Log likelihood functions
are given in Table 6 and the deviance statistic D =
2{l*n(GEV11) � l*n(GEV1)} = 33.08. It is clear that there is a
significant difference between GEV11 and GEV1. Indeed,
this value is large when compared to c1

2 distribution (Pr(c1
2�

33.08) = 0.9999), implying that the GEV11 model is more
adequate to represent data than the GEV1 model.
[47] The difference between the three models can also be

demonstrated by comparing the quantiles estimated by each
model. Quantiles and their credible intervals are calculated
using equation (11). Figure 7 illustrates the conditional
medians for various values of the SOI and the 95% credible
intervals estimated for the GEV0 and GEV1models. Figure 8
presents similar results for the GEV0 and GEV2 models.
[48] Table 7 presents, in more detail, the exact GML

estimator values of the median and the 95% credible
intervals for the following values of the SOI: �3.16, 0.04
and 2.04. These values correspond to the minimum ob-
served value, a central value, and the maximum observed
value of the SOI index.

[49] Results show that the difference is greater for neg-
ative values of SOI which correspond to extreme values in
the annual maximal precipitation data. Indeed, the median
estimated by the quadratic model, GEV2, can be three times
greater than that estimated by the classic model, GEV0.
Results of the comparison test with the deviance statistic
indicate that the GEV2 model is more adequate to represent
the precipitation data. Thus the use of either simplified
model (GEV0 or GEV1) could lead to a significant under
estimation of the median in some cases. Indeed, the GEV0
model leads to an under estimation of the median in the case
of negative SOI values, while the GEV1 leads to an under
estimation of the median for large SOI values. On the other
side, overestimation can result of the use of the GEV0
model with large positive values of SOI.
[50] As mentioned above, trend and dependence on

covariates, are often characterized by a change in the
position and/or scale parameters. The deviance statistic
shows that GEV11 is more adequate to represent data than
the GEV1 model. Point estimates of quantiles given by the
GEV11 model are equivalent to those obtained by GEV1 for
low and mean values of SOI (Figure 9). However for a high

Figure 5. Convergence of the N = 15,000 iterations of the Metropolis-Hastings algorithm for the
estimation of the GEV0 model parameters by the GML method.

Figure 6. Histograms of the posterior distributions of the GEV0 model parameters obtained from the
last 7000 iterations of the MCMC algorithm.
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value of SOI, median estimates for GEV11 are three times
larger than GEV1 estimates (Table 7). Another important
difference between these two models, concerns the range of
credible intervals. For the GEV11 model, credible intervals
are larger than GEV1 for high and low values of SOI.
However, for central values, GEV11 estimates are smaller.
Consequently, the precision of the estimation is also func-
tion of the covariate. Since very few observations are
available in the case of low values of SOI, little information
is available on the dependence between parameters and
covariates. Consequently, the GEV11 credibility interval
with in this case is large.

7. Conclusions and Recommendations

[51] In this study, we presented the nonstationary GEV
model which can be used efficiently to describe data
variance. The focus was on nonstationarity (dependence
on covariates) in the location and scale parameters of the
GEV distribution. Several other models are available in the
literature to describe random variables in nonstationary
cases but are based on the hypothesis of normality. In the
case of extreme value variables, the nonstationary GEV
model is a commonly accepted model to describe non-
stationarity. The models presented in this study correspond
to the classic stationary GEV case, the case in which there is
a linear trend in the location parameter, the case where the

location parameter is a quadratic function of the covariate
and the case with linear trend in both location and scale
parameters.
[52] Parameter estimation for these models is generally

carried out using the maximum likelihood estimation
method. The resulting estimators have good asymptotic
properties under certain regularity conditions that are, in
general, not verified by the GEV model. For small-size
samples, maximum likelihood estimators may have a very
large variance. In addition to efficiency problems, the
numerical resolution of the maximum likelihood equations
can lead to convergence problems and can, in some cases;
result in solutions that are not physically acceptable. In
order to resolve numerical problems, the generalized max-
imum likelihood method introduced by Martins and
Stedinger [2000] assumes a prior distribution for the shape
parameter which eliminates impossible solutions. We ex-
tended the GML method for the estimation of parameters to
the nonstationary case, using the same prior distribution for
the shape parameter as in the classic stationary GEV case.
The GML method is itself a special case of the Bayesian
approach, where an informative prior distribution is speci-
fied for the shape parameter. An important issue associated
with the Bayesian approach is the selection of the prior
distributions. For the nonstationary GEV model, further
research should focus on the noninformative prior case in
order to study the sensitivity of the estimators with respect
to the choices of the parameters of the MCMC methods.
[53] The Monte Carlo Markov chains (MCMC) method

was used for estimator calculations in the case of the GML
method. The MCMC methods allow to obtain the posterior
distributions of parameters and quantiles and thus to deduce
the credible intervals for the inference. The comparison of
the estimation methods ML and GML, with a simulation
experiment shows that, in all cases, the GML method
produces the best results with respect to bias and root-
mean-square error (RMSE). In the case of the classical
stationary GEV model, the GML method led to negative

Table 6. Maximized Log Likelihood Function and GML Para-

meter Estimators for Each Model

l*n b1 b2
b3(GEV2)
d1(GEV11) a d2(GEV11) k

GEV0 �209.96 19.52 � - 12.36 �0.05
GEV1 �206.86 18.89 �9.92 - 12.21 �0.07
GEV2 �204.71 16.57 �10.61 3.03 12.14 �0.06
GEV11 �188.17 23.02 �4.57 2.17 �0.55 �0.06

Figure 7. GML estimators of the median and 95% credible intervals conditional upon values of the
SOI, obtained by the GEV0 and GEV1 models.
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bias values for high skewness cases. This can be explained
by the fact that the prior distribution of the shape parameter
is centered on �0.1. When the GML method is applied in
practice, it is important to take into consideration any
additional information, such as historical and regional
information, to define the prior distributions [Reis and
Stedinger, 2005].
[54] The three models considered in the simulation

experiment (classic model GEV0, linear trend model
GEV1, and quadratic dependence structure model GEV2)
were used to estimate quantiles of the annual maximum
precipitation at the Randsburg station in California, condi-
tional on the SOI index. The comparison of these models
using a test based on the deviance statistic shows that the
GEV2 model most adequately represents the data variance.
This example demonstrates the importance of using the
nonstationary model to take into consideration the depen-
dencies that may exist between the variables of interest and
other covariates in order to improve the estimation quality.
It was observed, in the case of the Randsburg station, that
the median GEV2 model estimator conditional on a low
SOI index value can reach three times the median estima-
tion value of the GEV0 model.
[55] The nonstationary GEV model presented in this

paper constitutes an efficient tool to take into consideration
the dependencies between extreme value random variables
or the temporal evolution of the climate. For instance, such
tool can be of high significance for the design of hydraulic
structures with consideration of changes occurring in the
Earth’s climate. The design event frequency should also
take into consideration the regime that is expected toward
the end of the life time of the structure and not only at the
time of the design of the structure. In the case of design
problems, the covariate to be considered is the time. The
nonstationary model presented in this paper can also be
useful for management purposes: For example it is possible

to adjust flood plain limits to the current state of some
predictors such as relevant low-frequency climate oscilla-
tion indices (such as the SOI index considered in section 6).
Flooding risk levels can then be reestimated more efficiently
on a yearly basis. The nonstationary approach could also be
used for the solution of the problem of hydropower capacity
estimation [Ouarda et al., 1997]. Hydrogeneration compa-
nies could then set their reliable delivery levels on a yearly
basis with consideration of the current state of the climate
and by using the appropriate covariates as predictors. In the
case of management problems, the covariates to be consid-
ered are hence climate indices.
[56] In this paper, we only considered the case where the

location parameter of the GEV distribution depends on one
covariate. Other nonstationary cases warrant study. Further
studies can focus on other statistical distributions and
different nonstationarity structures, such as trends in the
variance of the series (scale parameter). The GML estima-
tion method is presented in a general manner and can be
used in other nonstationary conditions. Future work can also
focus on the development of a new framework for risk

Figure 8. GML estimators of the median and 95% credible intervals conditional upon values of the
SOI, obtained by the GEV0 and GEV2 models.

Table 7. GML Estimators of the Median, Conditional on Three

Values of SOI, and 0.95 Credible Intervals

SOI

�3.16 0.04 2.04

GEV0 24 24 24
(21–28) (21–28) (21–28)

GEV1 54 23 4
(51–58) (19–27) (0.5–7)

GEV2 77 21 17
(72–82) (18–24) (15–22)

GEV11 56 26 14
(47–67) (23–28) (12–17)
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assessment in the case of nonstationarity. Indeed, the use of
the common notion of ‘‘return period’’ is no longer appro-
priate in a nonstationary framework. The return period
associated to any extreme event value depends on time.
Risk assessment should then be carried out through inte-
grating the risk level throughout the life time of a structure,
or by considering the worst case scenario, which may occur
toward the end of the life time of the structure.
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