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[1] This paper presents artificial neural network (ANN) models designed to predict

ice in Canadian lakes and reservoirs during the early winter ice thickness growth
period. The models fit ice thickness measurements at one or more monitored lakes and
predict ice thickness during the growth period either at the same locations for dates
without measurements (local ANN models) or at any site in the region (regional ANN
model), provided that the required meteorological input variables are available. The input
variables were selected after preliminary assessments and were adapted from time series

of daily mean air temperature, rainfall, cloud cover, solar radiation, and average snow
depth. The results of the ANN models compared well with those of the deterministic
physics-driven Canadian Lake Ice Model (CLIMO) in terms of root-mean-square error and
in terms of relative root-mean-square errors. The ANN models predictions were also
marginally more precise than a revised version of Stefan’s law (RSL), presented herein.
They reproduced some intrawinter and interannual growth rate fluctuations that were
not accounted for by RSL. The performance of the models results in good part from a
careful choice of input variables, inspired from the work on deterministic models such as
CLIMO. ANN models of ice thickness show good potential for the use in contexts
where ad hoc adjustments are desirable because of the limited availability of
measurements and where poor data nature, availability, and quality precludes using

deterministic physics-driven models.
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Canadian lakes using artificial neural networks, Water Resour. Res., 42, W11407, doi:10.1029/2005WR004622.

1. Introduction

[2] This paper investigates the capacity of artificial
neural networks to simulate the growth of ice thickness
on Canadian lakes. Although the growth of ice thickness
can be modeled with numerical physically driven models,
the lack of sufficient and precise data is often a limitation
to the applicability of this kind of models. On the other
hand, extensive records of meteorological variables such
as temperature, rainfall and snow on the ground are widely
available over the Canadian territory, along with ice
thickness measurements on a number of lakes. Neural
network models are often proposed for situations where
the physics of the involved processes may be complex or
not fully defined, and where an extensive data set is
available for training a network while being incomplete
from the point of view of deterministic physically driven
models [e.g., Olsson et al., 2001; Cannon and Whitfield,
2002; Hewett, 2003].

[3] Several artificial neural network (ANN) models of
lake ice thickness growth are considered in this study. One
of these ANN models is regional in scope and is applicable
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to any location in the country, while the others are specific
to the measurement station to which they were adjusted.
The results of the ANN models are compared to those of a
modified version of Stefan’s law and to published results of
the deterministic model CLIMO (Canadian Lake Ice Model)
[Menard et al., 2002a, 2002b; Duguay et al., 2003].

[4] The remainder of this paper is composed of six parts:
an overview of ice growth models based on thermodynamic
principles (section 2), an introduction to artificial neural
networks (section 3), the methodology for choosing input
variables and rating results (section 4), the case study of ice
growth on Canadian lakes (section 5), results and discussion
(section 6), and finally, conclusions (section 7).

2. Ice Growth Models Based on
Thermodynamic Principles

[s] This section presents an overview of ice growth
models based on thermodynamic principles. Special atten-
tion is given to the formula known as Stefan’s law, and to a
modified formula referred herein as the revised Stefan’s law
(RSL), as this formula is later used with the same data sets
as the ANNs in order to compare their performances in
predicting ice thickness.

[6] Formation and evolution of river and lake ice are
governed by heat fluxes in the water body, heat transfers at
the interfaces of air-water, air-ice, water-bed, and water-ice,
and by radiation exchanges with atmosphere. The different
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components of the energy budget are not easy to quantify
since they are related to hydraulic conditions (turbulence
and velocity distribution), turbidity (which has an effect on
the absorption of radiation energy), the albedo and the depth
and compactness of snow above the ice cover.

[7] All numerical ice growth models use a more or less
simplified version of energy budget. Some of these models
apply to a specific aspect of ice development such as the ice
cover initiation [Schulyakovskii, 1966), border ice formation
[Matousek, 1984; Svensson et al., 1989), frazil ice formation
[Omstedt, 19852, 1985b; Svensson and Omstedt, 1994}, and
ice cover growth [e.g., Beltaos, 1995; Schulyakovskii, 1966;
Lock, 1990). Other models are more complete and may
simulate ice formation, transport, growth and decay [Shen
and Chiang, 1984; Shen and Ho, 1986; Shen et al., 1990,
1995].

[8] They all use energy balance to compute ice evolution.
They differ from each other by the level of details used to
describe the different aspects of the phenomenon: hydrau-
lics, heat transfer and radiation. Lake ice models are simpler
since water velocity is low enough to justify the use of one-
dimensional energy balance models [e.g., Stefan and Fang,
1997; Fang et al., 1996; Duguay et al., 2003]. For Canadian
lakes, Ménard et al. [2002a, 2002b] used a one-dimensional
thermodynamic lake ice model called CLIMO (Canadian
Lake Ice Model) which computes vertical water temperature
profiles by solving the heat equation taking account of solar
radiation penetrating the water body, ice cover and snow on
ice. CLIMO is a modified version of a one-dimensional sea
ice model [Flato and Brown, 1996] and has been described
in detail by Duguay et al. [2003]. The inputs of the model
are daily mean temperatures, wind speed, relative humidity,
cloud cover, snow depth on the ice and lake latitude.
Outputs are dates of freeze/thaw and ice thickness. Ménard
et al. [2002a] used CLIMO to simulate ice growth at station
YZF (Back Bay) for the years 1960—1991, and it repro-
duced ice thickness with a mean quadratic error of 9 cm.
They also simulated ice thickness for the years 19771990
at station YFL (Fort Reliance) and obtained a root-mean-
square error of 18 cm.

[2] Another thermodynamic lake ice model was pre-
sented by Fang et al. [1996] to compute ice thickness and
dates of freeze/thaw on lakes located in Minnesota, USA.
The model solves the heat equation along a vertical axis and
uses wind-triggered surface layer mixing and water temper-
ature as criteria for predicting the ice cover formation date.
The mean quadratic error for ice thickness predictions was 2
cm (for a maximal observed thickness of 55 cm) when this
model was validated on lake Ryan located in Minnesota,
USA.

[10] This kind of model requires types of data that are not
always available, unless there is a meteorological station
close to the site. Consequently, in practice, simplified
formulas are used based on air temperature.

[11] The simplest and the most widely used formula is
the Stefan’s law (SL) which could be derived by simpli-
fying the equations obtained using energy balance [e.g.,
Lock, 1990]:

Hy = k\/Da )

where H; is the ice thickness, D, is the sum of degree-
days below the freezing point since the onset of the ice
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cover in any given year, and k is a constant. In practice &
is used as an adjustable parameter with a value that is
lower than the theoretical value to account for varying
conditions of exposure and insulation; Michel [1971]
gives a range of values adapted for a variety of lakes and
rivers.

[12] The date of the onset of the ice cover is a basic
parameter for using Stefan’s law as it determines the date at
which the accumulation of freezing degree-days is started
for any given winter. For the majority of sites of interest in
this study, this date is not known so that the normal usage of
Stefan’s law was not feasible. It was therefore decided to
use a “revised Stefan’s law” (RSL), which is based on Dy,
the accumulation of freezing degree-days starting with the
first day of below freezing air temperature in any given
season. RSL presents one more adjustable parameter, C, the
effective number of degree-days to be subtracted from D, in
order to obtain D,.

H[:{kw/Dg—C if Dg>C 2)

0 if Dg<C

The parameter C will normally take on a positive value
since the date of ice onset arrives several days or weeks
after the occurrence of the first day of freezing daily mean
air temperature.

3. Artificial Neural Networks

[13] An artificial neural network (ANN) is a set of
simple computational units or processing nodes grouped
in layers and working in parallel. It is called a neural
network because the processing nodes mimic the behavior
of biologic neurons. These nodes are also called neurons.
In the network, each layer makes an independent process-
ing of the information and forward the results to the next
layer. The information given to the network passes from
the input layer to the output layer through optional
intermediate layers (or hidden layers). An ANN model
can have more than one hidden layer. However, research
has shown that a single hidden layer is sufficient for
ANNSs to approximate any complex nonlinear function
[Cybenko, 1989; Hornik et al., 1989]). A larger number
of hidden layers can speed up the leaming process, but
many experimental results seem to confirm that one
hidden layer is sufficient for prediction and forecasting
problems [Zhang et al., 1994; Coulibaly and Anctil, 1999;
Coulibaly et al., 2000]. Artificial neural networks have the
ability to memorize empirical knowledge and make it
available for use. The empirical knowledge refers here to
the unknown relationship between observed data series.
This empirical knowledge is acquired through the learning
algorithm, which essentially modifies internal neuron
parameters to fit the outputs of the neural network to the
observed response variable. The acquired knowledge is
memorized in the synaptic weights, obtained by a training
or adaptation process. Finally, this knowledge is restituted
when the model is used to simulate the response variable
on new input data sets. The use of ANNs is deemed to be
particularly useful when the physical processes are com-
plex and not fully defined, when the model has many
uncertainties (model coefficients and/or input parameters),
and when there is extensive data for training the network.
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Figure 1. Architecture of a feed forward network with two
neurons at the hidden layer and one neuron at the output
layer.

It is a “black box” type of model for which the user has
no control on the internal behavior, and it can poorly
perform when used for generalization especially when the
number of neurons is too high for the complexity of the
problem (overfitting). In hydrology, ANNs have been used
for hydrologic data classification [e.g., Liang and Hsu,
1994], river discharge prediction {e.g., Shamseldin, 1997],
evaluation and forecasting of water quality [e.g., Zhang et
al., 1994, inflow forecasting for irrigation and hydroelec-
tric dams [e.g., Coulibaly et al., 2000], rainfall estimation
fe.g., Xiao and Chandrasekar, 1997], and correction of
streamflow under ice [Quarda et al., 2003].

4. Methodology

[14] The capabilities of RSL and ANNs to model ice
growth on individual Canadian lakes are investigated. The
performances of the ANN models are investigated as
function of its input variables and their internal structure,
and a procedure is set up to select the best performing
models.

[15] Two kinds of ANN models were considered in this
study: (1) site specific ANN models were trained and
validated with ice thickness data from a single site and
(2) a regional ANN model was also constructed in order to
simulate ice growth for sites without field measurements of
ice thickness. Each model is characterized by the set of its
input variables (referred to as a combination of input
variables), and the ANN architecture (defined by the num-
ber of neurons on the hidden layer).

[16] Choosing the best set of input variables and assess-
ing the performance of a model requires some performance
criteria, some model validation procedures, and a method of
picking the best model among all possible configurations.
Since our models are data-driven, two validation procedures
were used to ensure that the final ANN models are properly
trained and can be used with confidence for generalization
purposes. These validation procedures are described at
section 4.4.

4.1. Architecture of the Artificial Neural Networks

[17] The artificial neural network used in this research
was a one-hidden-layer neural network with sigmoid neu-

SEIDOU ET AL.: ICE GROWTH ON CANADIAN LAKES

W11407

rons in the hidden layer and a linear neuron in the output
layer [Hagan, 19961:

amﬂ :fm—H (Wm+lam +Bm+l) m = 0! 1 (3)
where, a° is the network input, a' is the output of the hidden

layer, 2 is the network output, /' and f? are respectively
sigmoid and linear transfer functions:

1 —
S = l+e"

4)

Fin)=n (5)

W™ and B™! are network weights and biases which are
defined with the following formulas:

1+ 1 1 m+1
Wi WIS, b
WmH — . .. . , BmH — : (6)
il +1 41
Wsner 1 W S b,
m=20,1

where S is the number of input variables, S is the number
of neurons at the first layer and S, is the number of neurons
at the second layer.

[18] One-hidden-layer neural networks with sigmoid ac-
tivation function on the hidden layer and a linear activation
neuron were shown to be able to approximate any bounded
continuous function with arbitrarily small error [Cybenko,
1989], provided the number of neurons in the hidden layer
is sufficient. Because of the neurons with sigmoid activation
functions in the hidden layer, this ANN model is not a linear
model. Other architectures may have been chosen, but there
are no rules for choosing the number and the sizes of an
ANN model. For instance, it is believed that increasing the
number of layers can increase the learning capabilities of the
model, but it also increases the number of parameters and
thus the length of the series required to properly train it. For
the onset of this study, the simpler and most popular
architecture was chosen.

[19] Figure I shows the architecture of a one-hidden-layer
neural network with three input variables, two neurons in
the hidden layer and one neuron in the output layer. The
synaptic weights are obtained using a supervised training
algorithm using Bayesian regulation [Mackay, 1992, 1995].
In supervised training, both the inputs and the outputs are
provided. The network then processes the inputs and
compares its resulting outputs with the desired outputs.
Errors are then propagated back through the system, causing
the system to adjust the weights which control the network,

[20] An iterative trial and error process, described in more
details in the rest of the paper, will be used to set the optimal
number and nature of input variables as well as the number
of neurons in the hidden layer.

4.2. Selection of Input and Output Variables

[21] ANNSs are data-driven models, so their performance
for a given problem relies on the relevance of the input/
output variables that are considered in the training process,
and on the complexity of the relationship between inputs
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and outputs. As it is the case for physically driven models,
problem parameterization can dramatically change algo-
rithm efficiency. The purpose of the ANN being the
prediction of ice thickness, the formulation of its input
and output variables was guided by these practical consid-
erations: (1) inputs should be meaningful for the ice growth
process and available at all ice measurement stations, (2) the
sensitivity of the output variable to input variations should
be as high as possible to enhance training efficiency, and
(3) the sensitivity of the output variable to input variations
should have the same order of magnitude for all input
variables.

4.2.1. Output Variable

[22] At first, it seemed obvious that H, the ice thickness,
should serve as the output of the ANN. Early runs of the
ANN showed however that the ANN relied almost exclu-
sively on the sum of freezing degree-days and made little
use of the other variables (presented below). The reason for
this is that the influence of the sum of freezing degree-days
on the output function was so strong that the training
algorithm (which is basically a numerical optimization
algorithm) was unable to account for the effect of the other
variables. Other variables closely related to the ice thickness
were then sought with the intent of improving the fit
between observations and predictions of ice thickness.

[23] After some exploration, the output variable that was
retained for this study is the parameter H¥D, which
corresponds to the Stefan coefficient. Once a time series
of the growth rate of the square of the ice thickness has been
computed, a time series of ice thickness is easily recon-
structed. The parameter H3/D, is drawn directly from the
classic Stefan’s law and represents an instantaneous evalu-
ation of the square of its constant k. Using this output
variable led to a reduction of the weight of the degree-days
input variable in the ANNs, compared to that of other input
variables, and presumably allowed the ANN to extract
additional information from the other input variables. It
was found that this choice of an output variable increased
appreciably the precision of the ice thickness prediction and
led to a better comprehension of the effect of the other
variables in modeling the ice thickness.

4.2.2. Input Variables

[24] In the present study, selecting the input variables of
the ANNs was a two step process. First, candidate physi-
cally observed variables were identified. Then, ANN input
variables were formulated using the physically observed
variables. These physically observed variables were
retained according to their availability and recognized
significance for the heat budget involved in ice growth:
(1) daily mean air temperature, (2) daily total solar radia-
tion, (3) daily rainfall, and (4) daily snow depth on the
ground (as measured at weather stations). Longitude and
latitude were also tested as additional parameters for the
regional neural network model.

[25] The preceding variables were used to construct a
variety of variables, to be used singly or in linear combi-
nations as input variables for the ANNs. When these
variables are sums, the summation starts on the first day
of frost based on the daily mean air temperature and ends on
the day assigned to the variable. The following variables
were considered and computed for each winter: (1) the sum
of freezing degree-days derived from the air temperature
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Table 1. Tested Combinations of Meteorological Variables

Combinations of

Meteorological Variables Variables*
1 Dy ; Rad,,
2 Dy ; Rad,. + 0.25 Rad,
3 Dy ; Rad,. + 0.50 Rad,
4 Dy ; Rad,, + 0.75 Rad,
5 Dy ; Rad,. + Rad,
6 Dy ; Rad,.; Hs
7 Dy ; Rad,, + 0.25 Rad,; Hs
8 Dy ; Rad,. + 0.50 Rad;H
9 Dy; Rad,. + 0.75 Rad,; Hg
10 Dy; Rad,. + Rad,; Hg
11 Dy ; Rad,;R
12 D, : Rad,. + 0.25 Rad;R
13 Dy Rad,. + 0.50 Rad,;R
14 Dy Rad,, + 0.75 Rad;R
15 Dy Rad,,. + Rad ;R
16 Dy; Rad,;H, ; R
17 D, ; Rad,. + 0.25 Rad,; As: R
18 Dy ; Rad,. + 0.50 Rad,; Hg, R
19 Dy; Rad,.+ 0.75 Rad,; Hg ; R
20 Dy, Rad,. + Rad ;Hg, R
21 Dy; Hy
22 DdZR
23 DyiHs; R

“Note is used only for data preprocessing and postprocessing.

D,(°Cday), as was already described earlier in this paper,
(2) the sum of solar radiation during the period of ice
growth for days with precipitation (W day/m?), divided by
the sum of degree-days Rad, (this quantity is a proxy to
the quantity of solar radiation attenuated by cloud cover),
(3) the sum of solar radiation during the period of ice
growth for days without precipitation (W day/m®), divided
by the sum of degree-days Rad,., (4) the average daily
rainfall (over time) during the ice growth period R (mm),
and (5) the average on-ground snow depth (over time)
during the ice growth period A ¢(cm).

26] The sum of degree-days D, was used to compute
Hj/Dg on the calibration data set (preprocessing), and to
reconstruct ice thickness time series from simulated series
(postprocessing). It will be referred to as an input variable
in the remainder of the text.

[27] The sum of solar radiation was split into two parts
because only the total amount that reaches the ground
should be considered. Consequently, attenuation due to
cloud cover has to be accounted for by multiplying Rad,.
by a positive factor « smaller than or equal to 1. Five sets of
combinations of Rad,. and Rad. were considered: Rad,,
Rad, 4025 Rad., Rad,. Rad. Rad,+0.75 Rad., Rad,+
Rad,, corresponding respectively to a = 0, 0.25, 0.50, 0.75
and 1. A total of 23 sets of combinations of meteorological
variables (listed in Table 1) were tested as inputs for the
artificial neural network models.

[28] Other important variables for ice growth would have
been variables based on lake morphology such as maximum
depth, mean depth, surface area, perimeter length and other
variables that could be derived from these. For most of the
lakes considered, depth information could not be found
within the scope of this study. Other parameters based on
the surface area and lake shape on maps were not used in
the end. Tt should be noted that this information is never-
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Figure 2. Location of the 26 lake ice measurement
stations.

theless considered to be relevant, particularly for the eval-
uation of the date of freezeup. It is felt by the investigators
that the use of morphological lake data could provide
interesting avenues for the use of the ANNs for the
modeling of lake ice in future studies. They would require
a specialized focus on sources of data that could not be
explored within the framework of the present study.

4.3. Performance Criteria

[29] The performance of a given ANN model is evaluated
using five performance criteria: root-mean-square error

Table 2. Ice Thickness Measurement Stations
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(RMSE), relative root-mean-square error (RRMSE), model
explained variance (#*), Nash criterion (NASH), and bias
(BIAS). The criteria are defined as follows:

n

i
RMSE = (%Z (H¥ - H,"f) )

k=1

RRMSE = (}i (%ﬁ)zf (®

e

o _ cov([H}... H) (A}, ... H7)°
var([H}, ... HY)var ([}, ... Hf])

©

I
BIAS—”;(H, &) (10)

"

> (uf - i)

NASH-I—;——— (11)

Z —11,

=1

where Hfi = 1,.,n and H%i = 1,...n are observed and

simulated ice thicknesses.
4.4. Validation Procedures

[30] Two validation procedures were used: the leave-
one-out cross-validation procedure to find the best combi-

Longitude, Latitude,
Station Code Station Name Water Body W °N
HATI® Quagqtaq Unnamed Lake 68.36 61.03
LT1 Alert Upper Dumbell Lake 61.5 82.46
WEN? Cree Lake Cree Lake 105.15 57.33
WIQ Primrose Lake Primrose Lake 109.93 54.76
WLH* Lansdowns house Attawapiskat Lake 86.09 5221
WHO Sainte agathe des monts Lac des sables 73.69 46.03
WTL* Big trout Lake Big trout Lake 88.11 53.81
YAH® La grande IV Lac la Tarriére 72.36 53.76
YBK*® Baker Lake Baker Lake 95.96 64.3
YBT* Brochet Brochet bay of Reindeer Lake 100.31 57.86
YBX* BlancMsablon Lac a la Truite 56.81 51.45
YEP Ennadai Lake Ennadai Lake 99.09 61.11
YGK® Kingston Lake Ontario-Horsey Bay 75.5 442
YGM* Gimli Lake Winnipeg 95.01 50.61
YGV Havre Saint Pierre Patterson Lake 63.88 50.29
YIV? Island Lake Island Lake 93.31 53.84
YKL? Schefferville Knob Lake 65.19 54.78
YNE Norway house Little Playgreen Lake 96.16 53.98
YNI Nitchequon Nitechequon Lake 69.08 53.18
YPY* Fort chipewyan Lake Athabasca 110.83 58.7
YQT Thunder bay Thunder Bay 88.78 48.43
Yvp® Kuujjuaq Stewart Lake 67.53 58.11
YYR® Goose bay Terrington Basin 59.58 53.33
YZE South baymouth Huron Lake (South Bay) 81.98 45.54
YZF* Yellowknife Great Slave Lake (Back Bay) 114.34 62.45
YFL? Quagqtag Great Slave Lake (Fort Reliance) 108.86 62.70

“*Stations with enough data to calibrate local ANN models.
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nation of input variables and ANN structure, and the
standard split sample procedure in which the data is split
in two subsets, the first being used to train the neural
network and the latter being used to check the model
performance.

[31] The leave-one-out procedure aims to assess the
generalization capability of a given ANN model. In the
leave-one-out procedure, the data is divided in subsets. A
subset is represented by all measurements during a year (for
local ANN models and RSL) or all measurements at a given
site (for the regional ANN model). All subsets but one are
used to train the neural network. Then the trained ANN
model is used to simulate the subset that is left out. The
same process is repeated so that every subset of the data is
left out once. The performance indices are then computed
using the observed and simulated values over the whole
data set. The pair of input variables and ANN structure
which best explain the data is then selected for the rest of
the procedure. Unfortunately, the leave-one-out procedure
does not give a final model since the neural network is
trained several times (one time for each subset) to compute
the performance indices.

[32] The objective of the split sample validation proce-
dure is to have a trained neural network to use for the rest of
the study. In this procedure, the data is repeatedly and
randomly divided into two parts containing 80% and 20%
of the observations. The first part is used to train the ANN
and the other is used to rate it. The operation is performed
twenty times and the parameter set of the run which gives
the smallest RMSE is retained and completes the assembly
of the model.

4.5. Selection of the Best Combination of
Meteorological Variables and ANN Structure

[33] First, all possible pairs composed of a set of input
meteorological variables (listed in Table [) and a network
structure (defined by the number of neurons in the hidden
layer) are formed, given that the number of neurons on the
hidden layer is constrained to be less than 10 for compu-
tational purposes. For example, the pair (3, 7) represents an
ANN model with seven neurons on the hidden layer and for
which the inputs variables are D, Rad,,. + 0.50 Rad,. The
performance criteria of each pair are then rated using the
leave-one-out procedure.

{34] When some values of an input variable (such as sum
of rain or snow on ground) are missing at a given site, the
combinations of meteorological inputs containing that
variable cannot be used. In this case, only a part of the
23 possible combinations of inputs are tested when
searching the best local ANN model. To avoid this
sitnation with the regional ANN model, it was trained
and validated with the data of the measurement stations
where the entire input variable were available.

[35] The best pair is then chosen, and the combination of
meteorological variables in this pair is considered to be the
one which best explains the data, while the number of
neurons in the pair defines the best ANN structure.

5. Case Study
5.1. Data

[36] The data used in this study is of three types: (1) ice
thickness data from the Canadian Ice Service [2005],
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Figure 3. Identification of ice growth phase in the data
sets at station YZF: (a) all observations and (b) ice growth
phase.

(2) daily meteorological data obtained from Environment
Canada, and (3) incident solar radiation at the top of
atmosphere which have been computed as function of time
and geographic location of the studied sites using the
formulas presented in Appendix A.

[37] The data set contains ice thickness and snow depth
measurements on 53 sites located on Canadian lakes
[Lenormand et al., 2002]. Only 26 of these sites have years
with enough measurements to calibrate Stefan’s law and the
local ANN. Eight of these stations were not used for
calibration and validation of the regional ANN because of
data availability issues that will be further explained. The
26 ice measurement stations are listed in Table 2, and
their geographic locations are presented in Figure 2.

[38] The weather data was provided by the national
climatic archives of Environment Canada and contains the
daily data of temperature, precipitation (snow and rain)
and snow on the ground for more than 10,000 stations
distributed all over the Canadian territory.

5.2. Proxy Variable for Solar Radiation
at Ground Level

[39] Solar radiation was considered as a relevant variable
at the onset of this study because radiative fluxes were
recognized to be a significant part of the lake energy by
most authors [e.g., Lock, 1990; Fang et al., 1996; Menard et
al., 2002a, 2002b; Duguay et al., 2003]. However, solar

6 of 15



W11407

a)

o 5 16

Latitude

140 120 100 8 6 140 120 100 &
Longitude (W)
b)
<]
e
s ey SuS é*;,:‘?@;y
Ay i\«\ ‘»’:::';::2:.
;/f S
70 g "'«g
Q - v e
3 %, e gl
2 s ”1“991 2
- N ! T qgueh‘ g
g N el $ 206815
N ) 222 -
50 R B 2 o1
40+
o
140 120 100 &0 60 140 1200 100 80
Longitude (W)
Figure 4. Spatial wvariability of RSL parameters:
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radiation measurements at the ground level were not avail-
able in sufficient quantity since they are not measured at all
weather stations. As an alternative, assumed ground level
solar radiation was calculated using solar radiation on top of
the atmosphere multiplied by a factor o; « is equal to the
unity on days without precipitation, and lower than the unity
on days when rain or snow was observed. The values of
solar radiation on top of the atmosphere were calculated as
functions of the date and the geographic location according
to an algorithm given in Appendix A.

5.3. Spatial Interpolation of Weather Data

[40] As geographic positions of the ice measuring sites
did not coincide with that of the weather stations, the air
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temperature on a given date at a given point is interpolated
using the observed values at the nearby stations: a data
processing program seeks the nearest weather station suc-
cessively in the northeast, northwest, southwest, and south-
east quadrants. the temperature of the ice measurement site
is computed as the weighted average of the temperatures at
the weather stations. The weights are inversely proportional
to the distances from the site of measurement to the weather
stations. If historical measurements are not available at the
ten closest stations in a quadrant on a given date, the data is
considered missing. When a variable (such as rain, degree-
days or snow) has missing values, the combinations of
inputs containing this variable cannot be used. This may
happen when weather stations are too far from the ice
measurement station. In this case only part of the 23
possible combinations of input listed in Table 1 can be
considered. At eight of the 26 lake ice thickness measure-
ment stations, some irregularities were observed in the data
(such as a long delay between first freezing air temper-
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Figure 5. Observed and simulated (RSL) ice thicknesses
versus sum of degree-days at some ice measurement
stations: (a) YBK (Baker Lake) and (b) YGK (Kingston).
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Table 3. Performance Criteria for the Revised Stefan’s Law
Calibration Validation
k, C, RMSE, BIAS, RMSE, BIAS,
Station cm d7%% °C0S d°C cm I RRMSE cm cm I RRMSE cm

HAl 2.80 14.06 4.97 0.98 0.05 1.02 9.81 0.96 0.09 —3.56
LTt 2.57 46.16 11.94 0.90 0,12 3.16 30.29 0.72 0.19 47.30
WFN 1.54 90.23 4.17 0.86 0.07 0.10 14.84 0.68 0.16 -6.68
WIQ 1.84 231.50 6.21 0.84 0.17 —2.94 8.49 0.74 0.28 2.90
WLH 1.86 33.67 5.87 0.70 0.10 —-1.76 9.34 0.83 0.14 3.61
WOH 2.06 60.66 494 0.69 0.08 0.73 8.41 0.82 0.18 1.20
WTL 1.95 14.72 5.61 0.91 0.08 0.49 13.82 0.87 0.15 -8.09
YAH 1.76 62.73 5.53 0.93 0.10 —-1.99 10.65 0.89 0.16 7.20
YBK 3.05 154.12 6.07 0.97 0.06 4,27 11.69 0.96 0.10 -4.22
YBT 1.64 12.87 6.50 0.86 0.11 —0.28 7.32 0.92 0.14 —1.35
YBX 291 56.24 7.92 0.72 0.23 1.08 21.86 0.83 0.50 19.12
YEI 2.70 44.42 7.29 0.81 0.08 4.06 13.64 0.92 0.13 2.94
YGK 2.70 209.03 4.83 0.71 0.40 3.17 10.51 0.77 0.91 8.31
YGM 2.22 58.67 5.90 0.60 0.07 1.63 14.20 0.85 0.15 -9.81
YGV 235 108.00 5.15 0.87 0.10 1.24 32.87 0.74 1.13 28.97
YIV 1.88 140.33 5.14 0.69 0.08 0.15 11.22 0.76 0.19 1.78
YKL 2.09 59.87 6.29 0.92 0.07 0.83 11.38 0.91 0.15 —6.51
YNE 2.12 10.71 8.05 0.80 0.21 2.88 9.26 0.88 0.17 10.46
YNI 1.75 57.78 5.81 0.92 0.11 2.17 9.41 0.89 0.13 ~5.44
YPY 1.89 95.19 10.30 0.55 0.26 1.25 13.83 0.70 0.29 8.65
YQT 3.13 147.73 4.19 0.74 0.08 -1.06 11.24 0.80 0.92 51.10
YVP 2.53 58.89 6.24 0.86 0.08 2.78 11.44 0.95 0.12 6.28
YYR 2.16 16.58 7.80 0.73 0.16 1.62 13.68 0.67 0.19 3.05
YZE 232 58.27 5.75 0.70 0.13 —0.92 6.95 0.74 0.16 2.30
YZF 2.14 52.98 6.57 0.85 0.09 2.21 13.80 0.84 0.16 0.27
YFL 1.99 4232 15.24 0.80 0.09 -0.30 2.21 13.80 0.16 0.27
Maximum 3.13 423.20 15.24 0.98 0.40 427 32.87 13.80 1.13 51.10
Minimum 1.54 10.71 4.17 0.55 0.05 -2.94 2.21 0.67 0.09 —-9.81
Mean 2.23 89.18 6.70 0.80 0.12 0.98 12.78 1.32 0.27 6.16

atures and the ice growth starting period, or missing
values in some of the interpolated weather variables) so only
the 18 remaining stations were used for the construction of the
ANN models. These stations are indicated in Table 2.

5.4. Elimination of the Period of Thinning at the End
of the Winter in the Data Set

[#1] The model developed in the present study is appli-
cable to the growth phase of the ice thickness. It is therefore
important to eliminate the period of ice thinning which
happens at the end of winter. For this purpose, we use an
empirical iterative procedure: starting from the end of the
data series and moving toward its beginning, all measure-
ments are successively considered for eventual removal. All
the dates when the measured ice thickness happened to be
higher than the average ice thickness of the remaining
subsequent measurements. Previously eliminated values
are not accounted for when computing the average ice
thickness of the remaining subsequent measurements. When
a given measurement is removed, all subsequent measure-
ments are also removed. This practical procedure insures
that the thinning period, and part of the period when the
thickness stagnates are eliminated. The results of the appli-
cation of such a procedure to station YZF are illustrated in
Figure 3. Figure 3a presents the whole set of measurements
including the thinning period and displays several step
drops on the ice thickness which would have affected the
training of the ANN models. The retained measurements
after application of the proposed procedure are illustrated in
Figure 3b. These results correspond to what was expected

when designing the procedure and were used for subsequent
analyses.

6. Results and Discussion

[42] The data sets described in section 5 were used to
calibrate the RSL, and to train the local and regional ANN
models. ANN training and simulations were performed
using the Neural Networks toolbox of Matlab [The
Mathworks, 2005]. The training function (trainbr function
in the Matlab environment) uses Bayesian regulation
[Muackay, 1992, 1995] to enhance generalization capabili-
ties. The maximum number of epochs is set to 1000, and
the minimum gradient (for minimization of the objective
function) to 1 x 107'°. The training algorithm also uses an
adjustable parameter ftmq Which controls how far the next
values of the parameters will be searched during the
optimization process. fima.x Was set to its default value in
Matlab, i.e., 1 x 10'°.

6.1. Comparison of RSL and Local ANN Models

{43] The spatial variations of RSL parameters are illus-
trated in Figure 4, and no trend could be found with respect
to geographical location. It was found that RSL represents
an excellent ice growth model when it is calibrated for a
given site. Observed and simulated data are represented for
some of the ice thickness measurement stations in Figure 5.
The parameters of Stefan’s law are obtained by the least
squares method using 80% of the data. There is a very good
agreement between simulated data and observations, with a
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Table 4, Performance Criteria for Revised Stefan’s Law and Local
ANN Models*

Number of  RMSE RRMSE
Best Neurons on the (Stefan), R (ANN), /7
Station Combination Hidden Layer cm  (Stefan) com  (ANN)
HAI 10 1 894 095 8.02 096
WFN 5 9 11.59  0.71 11.07 074
WLH 23 4 14.54  0.59 1128 0.76
WTL 9 1 10.54  0.85 10.50  0.85
YAH 22 3 8.96 0.8t 797 085
YBK 15 1 11.59 096 11.72 096
YBT 9 1 8.53  0.86 8.52 0.86
YBX 4 10 13.63  0.66 13.03  0.69
YEI 10 1 15.55 0.86 1427 0.88
YGK 7 9 9.16 074 13.43 047
YGM 9 3 1470 0.59 1099 077
YIvV 10 2 12.03  0.69 1147 072
YKL 1 9 9.72  0.89 936  0.90
YPY 11 9 1998 054 1988 0.55
YVP 20 2 1322 0.88 1225 090
YYR 14 9 1286  0.69 1191 0.74
YZF 10 2 1373 0.83 1248  0.86
YFL 5 10 17.10 074 1678 0.75

“Best combination and optimal number of neurons on the hidden layer
and performance indices obtained during the leave-one-out cross-validation
procedure.

mean RRMSE of 0.12 for the calibration set and 0.27 for the
validation set (Table 3). Hence RSL may be an excellent
model for engineering purposes when errors of a few
centimeters do not matter. However, its major drawback is
that parameter values are variable from lake to lake. It is
thus difficult to determine which values to apply for a lake
without observations, unlike the regional ANN model
developed in this paper which can readily be used for such
lakes.

f44] Table 4 illustrates the performance of the local ANN
models and the revised Stefan’s law when using the leave-
one-out cross-validation procedure. It turned out that it is
always possible to find a combination of meteorological
variables such that the neural networks perform better than
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the Stefan’s law except at two stations: the station YBK
(Baker Lake: Figure 5a) and station YGK (Kingston:
Figure 5b). The data of YBK (Baker Lake) present very
little variability and the two models had quasi equal
performances. The data of the second station come from
Lake Ontario, one of the Great Lakes with an average
depth of 91 m and it comes as no surprise that the
growth of the ice starts rather late comparatively to all the
others (degree-days of about 200).

[45] The number of combinations for which ANN
models perform better than the Stefan’s law vary from
two at station YBT (Brochet lake) to more than 120 at
station YAH (La Terriére Lake). The best combinations
(in terms of RMSE) for each station are given in Table 4.
The best combination is different for each station, but
86% contain the proxy for radiation, 55% contain snow
on the ground and 33% contain rainfall. The dominating
factor apart from the degree-days in the ice growth process is
then solar radiation, followed by snow and rainfall.

[46] Once the best combination of variables for a given
station selected, the local neural network model for this
station is obtained following the procedure described in
section 4.4. The performance indices of the retained local
ANN models are listed in Table 5.

[47] The variation of the ice thicknesses simulated with
both the local ANN and RSL at station YGM when
performing the leave-one-out procedure are presented in
Figure 6. Figures 6a and 6b both correspond to a case where
a year of data has been excluded. It can be seen that the
ANN model follows data variations more closely than RSL.
The ANN model adapts well to the intrawinter and inter-
annual variations of the ice growth regime while RSL is
always represented by a single curve that tends to follow an
average interannual regime.

6.2. Comparison of the Retained Local ANN Models
With ANN Models With Sigmoid Output Function and
Multiple Linear Regression

[48] In this study, the choice of one-hidden-layer neural
networks with linear output functions and sigmoid neurons

Table 5. Performance Criteria of RSL and the Retained Local ANN Models®

Combination of RMSE RMSE BIAS BIAS

Meteorological (RSL), (RNA), 'S r RRMSE RRMSE NASH NASH (RSL), (ANN),
Station Variables cm cm (RSL) (ANN) (RSL) (ANN) (RSL) (ANN) cm cm
HALl 10 10.11 5.00 0.98 0.99 0.11 0.05 0.91 0.98 —~8.45 ~3.65
WEN 5 7.84 7.76 0.85 0.85 0.13 0.13 0.83 0.84 1.55 2.10
WLH 23 5.30 4.71 0.93 0.96 0.11 0.10 0.90 0.92 3.03 -2.82
WTL 9 8.85 7.36 0.93 0.93 0.13 0.11 0.90 0.93 4.54 1.33
YAH 22 7.35 6.99 0.93 0.93 0.14 0.13 0.87 0.88 4.63 4.12
YBK 15 7.59 7.28 0.98 0.99 0.06 0.06 0.98 0.98 0.28 0.21
YBT 9 8.31 7.38 0.88 0.89 0.14 0.12 0.85 0.88 -1.93 0.26
YBX 4 11.82 9.63 0.76 0.83 0.24 0.20 0.71 0.81 4.20 332
YEI 10 14.51 11.77 0.88 0.93 0.16 0.13 0.87 0.91 3.72 3.21
YGK 7 7.36 10.27 0.92 0.91 0.27 0.37 0.86 0.72 3.76 -3.35
YGM 9 14.42 6.14 0.64 0.93 0.18 0.08 0.63 0.93 0.83 0.18
YIV 10 8.33 7.34 0.88 0.90 0.15 0.13 0.84 0.87 3.79 1.80
YKL 1 10.18 9.66 0.92 0.92 0.14 0.13 0.90 0.91 3.83 2.47
YPY 11 18.11 17.57 0.69 0.70 0.31 0.30 0.67 0.69 0.32 —2.04
YVP 20 10.80 7.40 0.94 0.96 0.13 0.09 0.90 0.95 —5.45 1.30
YYR 14 9.64 9.15 0.77 0.81 0.14 0.14 0.77 0.79 —-0.58 2,61
YZF 10 9.50 8.00 0.93 0.94 0.13 0.11 0.92 0.94 —4.25 -2.19
YFL 5 13.36 7.45 0.93 0.95 0.18 0.10 0.83 0.94 9.45 3.15

“Data sets randomly split in 80-20% subsets.
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Figure 6. Comparison of local ANN models and RSL at
station YGM (leave-one-out procedure) for (a) 1977 and
(b) 1980.

on the hidden layer was due to the demonstrated value of
this kind of architecture. In theory, the capability of an
ANN model to learn the hidden logic in a data set is not
supposed to heavily rely on the shape of the activation
function unless there is a major incompatibility between the
range of the output function and the range of the training
data sets (e.g., binary data and continuous activation
function for the output neuron). To investigate this point,
previously described local ANN models (with sinusoidal
activation function for hidden neurons and linear activation
function for output neuron) are compared to local ANN
models with a sigmoid output activation function for all
neurons. The comparison exercise was also performed for
multiple linear regression (with an additional intercept
parameter). The same procedures for the selection of
explanatory variables were applied and the best models
were selected for each site. The change of RMSE (negative
when the new model is better; positive when the new
model is worse) due to the use of these two new models
at the ice measurement sites is plotted in Figure 7. The use
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of a sigmoid activation function resulted in RMSE reduc-
tions of up to 10% at some sites, and an increase of RMSE
of up to 15% at others (Figure 7, top). In general, the use of
a sigmoid activation function for the output neuron gives
slightly better results. On the other hand, the use of
multiple linear regression always resulted in an increased
RMSE (Figure 7, bottom), confirming the non linear nature
of the ice growth process.

6.3. Influence of the Data Sets Characteristics on the
Best Performing Selutions

f49] The retained combinations of explanatory variables
for the local ANN models are very different from site to site.
Consequently, it is important to investigate whether the
characteristics of the input variables have an effect on the
best performing variables. Figure 8a presents the mean
snow depth on the ground for the ice measurement stations
listed in Table 4. Figure 8b presents the list of sites where
the best combination of explanatory variables includes
snow. Similar results are presented for rainfall (Figure 9a
and 9b) and radiations (Figure 10a and 10b). As for the
parameters of the revised Stefan’s law, there seems to be no
clear relationship between the magnitude of a variable, and
whether or not it is chosen as an explanatory variable.
Figure 11 presents the maximum ice measurements
(Figure 11a) as well as the RMSE of the regional model
at these sites (Figure 11b). The RMSE of the regional model
seems to be constant all over the territory. The bias of the
regional model is presented on Figure 12. It can be seen on
Figure 12 that the regional model slightly underestimates
ice thicknesses in the northwestern part of the country
where ice thickness is generally large. Conversely, it slightly
overestimates ice thickness in the southwestern part of the
country, where ice thickness is smaller.

6.4. Limited Comparison of Local ANN Models and
Deterministic Model CLIMO

[s0] The deterministic model CLIMO was used by
Ménard et al. [2002b] to simulate ice growth at stations

Lccal ANN model with sigmoid output function
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Figure 7. Increase in RMSE when switching from local
ANN with sigmoid activation function for hidden neurons
and linear activation function for the output neuron to (top)
ANN model with sigmoid activation function for all
neurons and (bottom) multiple linear regression model.
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YZF (Great Slave Lake—Back Bay) for the years 1960
1991, and at station YFL (Great Slave Lake-Fort Reli-
ance) for years 1977-1990. They obtained an RMSE of
9 cm at YZF and 18 c¢m at YFL. Since those stations are
included in our database, the results of the two studies
were compared. It can be seen in Table 4 that RSL gives
a RMSE of 13.73 cm (12.48 cm for the local ANN
model) using the “leave-one-out” method on the data of
the years 1958-1996 and 2002-2003 at station YZF
When simulated on the same period than CLIMO (years
1960—-1991) using the leave-one-out procedure, RSL and
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the local ANN model respectively gave an RMSE of
14.10 and 14.31 cm, which is 13% and 15% higher than
CLIMO. Both models performed better than CLIMO
when simulating ice growth at station YFL (Fort Reliance)
on the data of years 19771990, The RMSE was 17.10 cm for
revised Stefan’s law and 16.78 cm for the local ANN model,
slightly lower than the 18 cm obtained with CLIMO. Despite
the much higher complexity of the deterministic model, its
performance is comparable to those of the local ANNs and
RSL.

a)
80r o ;‘?{6; : :,
P e R
P, =i A
RIS
\\ "“"15 »
60" T = : (

LATITUDE
3

A
(/’
}:' X
MR
_&

40+ @ 1.74mm
® 1.33mm
® 0.92mm
B e 051 mm
+ 010 mm
20k . ; : . . :
140 130 120 110 100 90 80 70 60
LoNGITupe (W)
b)
%-
80_

\.
o
Mfé
.

¥
i
/

LATITUDE
2
o
b
-
i
O

@ Local ANN with rainfall as input

30F () Local ANN without rainfall as input

] L i I ' i 1 1 i
140 130 120 110 100 90 80 70 60
LonGITupe (W)

Figure 9. Effect of the statistical characteristics of input
variables on the best performing solution: (a) mean daily
rainfall during the ice growth period and (b) usage of
rainfall as explanatory variable by local ANN models.
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6.5. Regional ANN Model

[s1] The performance criteria for the five best combina-
tions for the regional ANN model are given in Table 6. The
best combination (in terms of RMSE) to explain ice growth
at the regional level is combination 15 (Dg; Rad,+ Rad;R)
followed closely by combination 20 (Dy; Rad,,; + Rad_; H,
R). The optimal number of neurons on the hidden layer was
found to be one (as indicated earlier, ANN structures with
1 to 10 neurons on the hidden layer were tested, but only
one is retained corresponding to the best performance). The
regional model is thus relatively parsimonious since it uses
only six parameters: one bias and one weight parameter for

SEIDOU ET AL.: ICE GROWTH ON CANADIAN LAKES

W11407

each of the connections of the inputs (Rad,.+ Rad, and R) to
the hidden neuron, and one bias and one weight parameter
for the connection of the hidden neuron to the output
neuron,

[s21 The radiation parameter for the regional model is
Rad,; + Rad. (o = 1), but the choice to split the radiation
value into two parts is justified by the fact that for some of
the local ANN models, the optimal value of « is lower
than 1. For example, for station WTL, the optimal value
of o was found to be 0.75 (see Tables 4 and 1).

[53] It was also noticed when rating the different combi-
nations of input variables for the regional ANN model that
latitude and longitude do not have an influence on the result.
However, geographic location has a direct influence on all
input variables. In other terms, geographic location has an

a)

8
2
7
-
40-  ®29000cm o
® 23400cm
¢ 17800cm
30 e 12200em
¢ 6600¢em
20‘ H ) H () L i
140 130 120 110 100 90 80 70 60
LONGITUDE (W)
b)
90-
80 X - Lo
e RV
70 Py \fﬁ‘fg
}‘1" T\W'L@? )
[y \""\»M._,) . ~
N ) [ '
60- =
1 LT
-
£ i\ “ :
3 50- SN N
40- @ 2009¢cm
@ 19.18¢m
®1827¢cm
30 ® 17.36¢cm
@ 16.45¢m

o 100 50
LonGITUDE (W)

Figure 11. (a) Maximum ice thickness and (b) RMSE of
the regional ANN model.
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influence on the range of input variables, but not directly on
ice growth relationship to input variables.

[s4] An unexpected result in this study is that snow depth
on the ground was not identified as an important parameter
at the regional level for lake ice growth. This is probably
due to the great variability of this parameter in space, which
was estimated by interpolation from the weather stations
located at several kilometers.

[55] To illustrate the ability of the regional ANN model to
reproduce ice growth dynamics simulated ice thickness
(using the regional ANN) at station YZF (Great Slave
Lake-Back Bay) is presented in Figure 13. It can be seen
that the agreement is excellent.

7. Conclusions

[s6] It is shown in this paper that artificial neural
networks can be valuable alternatives to complex thermo-
dynamic lake ice growth models, especially when data is
not available in sufficient quantity and quality. The
performances of the proposed ANN models were fairly
good when compared to that of the deterministic Cana-
dian Lake Ice CLIMO. They also offered much more
flexibility than the Stefan’s law and were able to trans-
pose information on ice growth dynamics from monitored
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sites to unmonitored sites or periods using only six
weight and bias parameters. They also reproduced various
ice growth patterns with a few easily obtained meteoro-
logical data.

[577 The methodology presented in this paper is of the
greatest importance for Nordic hydrologists since no oper-
ational model of lake ice growth exists for ungauged sites.
This gap needed to be addressed for several reasons: a
practical model of lake ice growth can help assess the
impact of climate change on lake ecosystems, which is a
topic of great concern nowadays. It can also be used to
estimate the amount of water that is lost as ice left on the
banks of hydroelectric reservoirs during winter operation,
which may be important for large annual reservoirs in
northern countries.

{s¢] The main limitation of the work presented in this
paper is that it applies only to the ice growth period. In
other empirical models, a combination of freezing degree-
days and melting degree-days have provided good results
in modeling the whole duration of the ice cover [e.g.,
Thompson et al., 2005]. The extension of the developed
method to the whole duration of the ice cover using a
single ANN model is a challenging problem because of
the differences in the two processes to be modeled. The
learning performance of the ANN may hence be reduced.
A possible alternative solution is to train an ANN model
for the growth phase and another one for the decay
phase.

Appendix A: Solar Radiation at the Top of
Atmosphere

[s9] These relations are obtained from the Solar Radia-
tion Monitoring Laboratory [2004]. On average extrater-
restrial irradiance is 1367 W/m?. This value varies by +3%
as the earth orbits the sun.

R(nl
R,

I= 1.367< )h*cos(Z) KW /m? (A1)

where R,, is the average Sun-Earth distance, R is the actual
Sun-Earth distance depending on the day of the year, and Z
the zenith (the angle of the sun relative to a line
perpendicular to the Earth’s surface) which depends on
the declination of the Earth, latitude and solar time. If one
notes  the Julian day, £, (equation of time) the variation in
minutes of the solar time (7,,,,,) compared to the standard
time (7,..) during the year, w the solar hour angle (in
radians), Long,..; the longitude of the central meridian line

Table 6. Performance Criteria of the Regional Model for the Five Best Combinations®

Combination of RMSE RMSE BIAS BIAS
Meteorological (RSL), I (ANN), r RRMSE RRMSE NASH NASH (RSL), (ANN),
Variables cm (RSL) cm (ANN) (RSL) (ANN) (RSL) (ANN) cm cm
15 25.08 0.65 18.15 0.82 0.42 0.43 0.65 0.82 —0.15 0.65
20 25.08 0.65 18.17 0.82 0.42 0.43 0.65 0.82 —~0.15 0.56
19 25.08 0.65 18.17 0.82 0.42 0.43 0.65 0.82 -0.15 0.12
14 25.08 0.65 18.19 0.82 042 0.43 0.65 0.82 -0.15 0.23
18 25.08 0.65 18.24 0.82 0.42 0.43 0.65 0.81 —0.15 ~0.48

*One neuron on the hidden layer and performance indices obtained during the leave one out cross-validation procedure. Note longitude and latitude are
not listed as explanatory variables because it was found that they have no influence on the output of the regional model.
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Figure 13. Simulated and observed ice thickness at station YZF.

of the time zone and Long,,, the longitude of the point of
calculation, we have the following approximations:

R\ n
e = * i
(R ) 1.00011 + 0.034221* cos (27r365) +0.001280

v

«sin (h%) +0.000719 * cos (M-’L) +0.000077

365
. n
*sin (47r %) (A2)
cos(Z) = sin(l) sin{d) + cos(/) cos{d) cos(w) (A3)
284 +n
d =23.45*%sin| 27
sm( 36 ) (A4)
(12 ’ Tw;lar)
) == * A
W s ]2 ( 5)
Egt
Tsolar = Tlocal + 3 + (Longgn — Longieew) /15 (A6)
~14.2sin (71'”1_{_17> 1 <n< 106
-1

4.05in<ﬂ” 06) 107 < n < 166
Eqt = > ) (A7)

—6.5sin <7r” 8(:“) 167 < n < 246

16.4sin <7r’ :é‘”) 247 < n < 365

Notation
a” ANN output vector of the mth layer.
B™ ANN bias vector of the connections form the
(m-1)th layer to the (m)th layer.
C bias parameter of the modified Stefan’s law.

C, Theat transfer coefficient from ice to air.

D, sum of degree-day from the date of ice cover
formation.

D, sum of degree-day from the first below zero
temperature.

f™ ANN transfer function of the mth layer.

H, ice thickness.

H | mean ice thickness.

Hy;  kth ice thickness in the data set.

HY  estimate of the kth ice thickness in the data set.

on-ground snow depth.
mean on-ground snow depth.
k coefficient of Stefan’s law.

R average rainfall during the ice growth period.
Rad, sum of solar radiation of days with precipitation
(snow or rainfall).
Rad,. sum of solar radiation of days without precipitation
(snow or rainfall).
W™ ANN weight vector of the connections form the

(m—1)th layer to the (m)th layer.
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