
Cllck
Here

lq

Full
Article

WATER RESOURCES RESEARCH, YOL. 42, wl1407, doi:10.1029/2005WR004622. 2006

Modeling ice growth on Canadian lakes using artilicial neural
networks
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lrl This paper presents artiticial neural network (ANN) models designed to predict
ice in Canadian lakes and reservoirs during the early winter ice thickness growth
period. The rnodels fit ice thickness measurements at one or more monitored lakes and
predict ice thickness during the growth period either at the same locations for dates
without measurements (local ANN models) or at any site in the region (regional ANN
model), provided that the required meteorological input variables are available. The input
variables were selected after preliminary assessments and were adapted from time series
of daily mean air telnperature, rainfall, cloud cover, solar radiation, and average snow
depth. The results of the ANN models compared well with those of the deterministic
physics-driven Canadian Lake Ice Model (CLIMO) in terms of root-mean-square error and
in terms of relative root-mean-square errors. The ANN models predictions were also
marginally more precise than a revised version of Stefan's law (RSL), presented herein.
They reproduced some intrawinter and interannual growth rate fluctuations that were
not accounted for by RSL. The performance of the models results in good part from a
careful choice of input variables, inspired from the work on deterministic models such as
CLIMO. ANN models of ice thickness show good potential for the use in contexts
where ad hoc adjustments are desirable because of the limited availability of
measurements and where poor data nature, availability, and quality precludes using
deterministic physics-driven models.

Citation: Seidou, O., T. B. M. J. Ouarda, L. Bilodeau, M. Hesstrmi, A. St-Hilaire, and P. Bruneau (2006), Modeling ice growth on
Canadian lakes using artificial neural networks, lYater Resour. Res.,42, Wll407, doi:10.1029/2005WR004622.

1. Introduction

[z] This paper investigates the capacity of artificial
neural networks to simulate the growth of ice thickness
on Canadian lakes. Although the growth of ice thickness
can be modeled with nurnerical physically driven models,
the lack of suffrcient and precise data is often a linritation
to the applicability of this kind of models. On the other
hand, extensive records of meteorological variables such
as temperature, rainfall and snow on the ground are widely
available over the Canadian territory, along with ice
thickness measurements on a number of lakes. Neural
network models are often proposed for situations where
the physics of the involved processes may be cornplex or
not fully defined, and where an extensive data sct is
available for training a network while being incomplete
from the point of view of deterministic physically driven
models [e.g., Olsson et a1,, 2001; Cannon and Whitfield,
2002; Hewett,2003l.

[l] Several artificial neural network (ANN) models of
lake ice thickness growth are considered in this study. One
of these ANN models is regional in scope and is applicable
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to any location in the country, while the others are specific
fo the measurement station to which they were adjusted.
The results of the ANN models are compared to those of a
modified version of Stelàn's law and to published results of
the detern.rinistic model CLIMO (Canadian Lake lce Model)
lMenard et a\.,200?a.2002b; Dugualt et aL.,20031.

[+] The remainder of this paper is composed of six parts:
an overview of ice growth rnodels based on thermodynamic
principles (section 2), an introduction to artificial neural
networks (section 3), the methodology for choosing input
variables and rating results (section 4), the case study ofice
growth on Canadian lakes (section 5), resr.rlts and discussion
(section 6), and finally, conclusions (section 7).

2. Ice Growth Models Based on
Thermodynamic Principles

[s] This section presents an overview of ice growth
models based on thermodynamic principles. Special atten-
tion is given to the formula known as Stefan's law, and to a
modified formr.rla referred herein as the revised Stefan's law
(RSL), as this formula is later used with the same data sets
as the ANNs in order to compare their performances in
predicting ice thickness.

[o] Formation and evolution of river and lake ice are
govemed by heat fluxes in the water body, heat transfers at
the interfaces of air-watcr, air-ice, water-bed, and water-ice,
and by radiation exchanges with ahnosphere. The different
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components of the energy budget are not easy to quantifu
since they are related to hydraulic conditions (turbulence
and velocity distribution), turbidity (which has an effect on
the absorption ofradiation energy), the albedo and the depth
and compactness of snow above the ice cover.

[r] All numerical ice growth rnodels use a more or less
simplified version of energy budget. Some of these models
apply to a specific aspect of ice development such as the ice
cover initiation lSchulyakovskii, 19661, border ice formation
fMatousek,1984; Svensson et a\.,19891, frazil ice formation
fomstedt, 1985a, 1985b; Svensson and Omstedt, i9941, and
ice cover growth [e.g., B eltaos, 199 5; Schulyaknvskii, 1966;
Lock, 19901. Other models are more complete and may
sirnulate ice fonnation, transport, growth and decay lShen
and Chiang,1984; Shen and Ho, 1986; Shen et al.,1990,
1e951.

[t] They all use energy balance to compute ice evolution.
They differ from each other by the level of details used to
describe ttre different aspects of the phenorncnon: hydrau-
lics, heat transfer and radiation. Lake ice models are sirnpler
since water velocity is low enough to justify the use of one-
dimensional energy balance models [e.g., Stefan and Fang,
1997; Fang et al.,1996; Dugual, et aL.,20031. For Canadian
Iakes, Ménard et al.12002a,2002b1 used a one-dimensional
thermodynamic lake ice model called CLIMO (Canadian
Lake lce Model) which computes vertical water temperature
profiles by solving the heat equation taking account ofsolar
radiation penetrating the water body, ice cover and snow on
ice. CLIMO is a modified version of a one-dimensional sea
ice model [Flato and Brov,tr,1996] and has been described
in detail by Duguay et al. 120031. The inputs of the model
are daily mean temperatures, wind speed. reiative humidity,
cloud cover, snow depth on the ice and lake latitude.
Outputs are dates offreeze/thaw and ice thickness. Mënard
et al. l2002al used CLIMO to simulate ice growth at station
YZF (Back Bay) for the years 1960-1991, and ir repro-
dr.rced ice thickness with a mean quadratic error of 9 cm.
They also simulated ice thickness for the years 1977 -1990
at station YFL (Fort Reliance) and obtained a root-mean-
square elror of l8 crn.

[e] Another themrodynamic lake ice model was pre-
sented by Fang et al. |9961 to compute ice thickness and
dates of freezelthaw on lakes located in Minnesota, USA.
The model solves the heat eqr-ration along a vertical axis and
uses wind-triggered surface layer mixing and water temper-
ature as criteria for predicting the ice cover formation date.
Tlre mean quadratic error for ice thickness predictions was 2
cm (for a maximal observed thickness of 55 cm) when this
model was validated on lake Ryan located in Minnesota,
USA.

[to] This kind of model requires types of data that are not
always available, unless there is a meteorological station
close to the site. Consequently, in practice, simplified
formulas are used based on air terrperature.

[rr] The simplest and the most widely used formula is
the Stefan's law (SL) which could be derived by simpli-
fying the equations obtained using energy balance [e.g.,
Lock, 19901:

tu:  kJD,t  ( l )

where 1{ is the ice thickness, Da is the sum of degree-
days below the freezing point since the onset of the ice
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cover in any given year, and fr is a constant. In practice É
is used as an adjustable parameter with a value that is
lower than the theoretical value to account lbr varying
conditions of exposure and insulation; Michel ll97ll
gives a range of values adapted for a variety of lakes and
rivers.

[rz] The date of the onset of the ice cover is a basic
parameter for using Stefan's law as it determines the date at
which the accumulation of freezing degree-days is started
for any given winter. For the majority of sites of interest in
this study, this date is not known so that the normal usage of
Stefan's law was not feasible. lt was therefore decided to
use a "revised Stefan's taw" (RSL), which is based on Dn,
the accumulation of freezing degree-days starting with the
first day of below freezing air temperature in any given
season. RSL presents one more adjustable parameter, C, the
eflèctive number of degree-days to be subhacted from Dn in
order to obtain D.1.

" , _ [ r J D * T  , " f  D r 2 C  t ) \
l 0  {  D r < C  V r

The parameter C will normally take on a positive value
since the date of ice onset arrives several days or weeks
after the occun'ence of the first day of freezing daily mean
alr temperâture.

3. Artificial Neural Networks

[t:] An artificiai neural network (ANN) is a set of
simple cornputational units or processing nodes grouped
in layers and working in paraliel. It is ca11ed a neural
network because the processing nodes mimic the behavior
of biologic neurons. These nodes are also called neurons.
In the nctwork, each layer makes an independent process-
ing of the information and forward the results to the next
layer. The information given to the network passes frorn
the input layer to the output layer through optional
intermediate layers (or hidden layers). An ANN model
can have more than one hidden layer. However, research
has shown that a single hidden layer is sufficient for
ANNs to approximate any complex nonlinear function
fCybenko, 1989; Hornik et al., 1989). A larger number
of hidden layers can speed up the learning process, but
many experimental results seem to confirm that one
hidden layer is su{ficient for prediction and forecasting
problems fZhang et al., 1994; Coulibafu and Anctil, 1999;
Coulibaly et aL.,20001. Artificial neural networks have the
ability to memorize empirical knowledge and make it
available for use. The empirical knowledge relbrs here to
the unknown relationship between observed data series.
This ernpirical knowledge is acquired through the learning
algorithm, which essentially modifies intemal tleuron
parameters to fit the outputs of the neural network to the
observed response variable. The acquired knowledge is
mernorized in the synaptic weights, obtained by a training
or adaptation process. Finally, this knowledge is restituted
when the model is used to simulate the response variable
on new input data sets. The use of ANNs is deemed to be
particularly useful when the physical processes are com-
plex and not fulty detined, when the model has many
uncertainties (model coefficients andior input parameters),
and when there is extensive data for trainins the network.
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rons in the hidden layer and a linear neuron iu the output
layer lHagan, 19961:

antt :  J:n+t ( i l r^+t a^ + B'*t) m = 0, |  (3)

where, a0 is ttre network input, al is the output of the hidden
layer, az is the network ouçut, /t and f2'are respectively
sigmoid and linear transfer functions:

Figure l. Architecture of a tèed forward network with two
neurons at the hidden layer and one neuron at the output
layer.

It is a "black box" type of model for which the user has
no control on the intemal behavior, and it can poorly
perform when used for generalization especially when the
number of neurons is too high for the complexity of the
problem (overfitting). In hydrology, ANNs have been used
for hydrologic data classification [e.g., Liang and Hsu,
19941, river discharge prediction le.g., Sham,seltlin, 19911,
evaluation and forecasting of \vater quality [e.g., Zhang et
al., 1994], inflow forecasting for irrigation and hydroelec-
tric darns le.g., Coulibaly et al., 20001, rainfall estimation
[e.g., Xiao and Chantlrttsekar, 1997], and correction of
streamflow under ice lOuarda et a1.,2003).

4. Methodology

[ta] The capabilities of RSL and ANNs to model ice
growth on individual Canadian lakes are investigated. The
performances of the ANN models are investigated as
function of its input variables and their intemal structure,
and a procedure is set up to select the best perfomting
models.

[ts] Two kinds of ANN models were considered in this
stndy: (l) site specific ANN models were trained and
validated with ice thickness data from a single site and
(2) a regional ANN model was also constructed in order to
simulate ice growth for sites without field measurements of
ice thickness. Each model is characterized by the set of its
input variables (referred to as a combination of input
variables), and the ANN architecnrre (defined by the num-
ber of neurons on the hidden layer).

[te] Choosing the best set of input variables and assess-
ing the performance of a model requires some performance
criteria, some model validation procedures, and a method of
picking the best model among all possible configurations.
Since our models are data-driven, two validation procedures
were used to ensure that the final ANN rnodels are properly
hained and can be used with confidence for generalization
purposes. These validation procedures are described at
section 4.4.

4.1. Architecture of the Artilicial Neural Networks

[n] The artificial neural network used in this resealch
was a one-hidden-layer neural network with sigmoid neu-

. f ' (r):#,

f , (n)  : , ,

L/'"*t and, B'''L are network weights and biases
defined with the following formulas:

HIDOEN LAYÊR OUPW LAYER

(4)

(5)

which are

| 4'T'
w^r t  :  

|  
, .

L "t_:1.,
m  : 0 , 1

where ,56 is the nr.rmber of input variables, Sr is the number
of neurons at the first layer and 52 is the number of neurons
at the second layer.

[ta] One-hiddenJayer neural nefworks with sigmoid ac-
tivation function on the hidden layer and a linear activation
neuron were shown to be able to approximate any bounded
continuous function with arbitrarily small enor fCybenkn,
1989], provided the number ofneurons in the hidden layer
is sufficient. Because of the neurons with sigmoid activation
functions in the hidden layer, this ANN model is not a linear
nrodel. Other architectures may have been chosen, br.rt there
are no rules for choosing the number and the sizes of an
ANN model. For instance, it is believed that increasing the
number of layers can increase the learning capabilities of the
model, but it also increases the number of parameters and
thus the length ofthe series required to properly train it. For
the onset of this study, the simpler and most popular
architecture was chosen.

[rs] Figure I shows the architecture of a one-hidden-layer
neural network with three input variables, two neurons in
the hidden layer and one neuron in the output layer. The
synaptic weights are obtained using a supervised training
algorithm using Bayesian regulation lMackay, 1992, 199 51.
In supervised training, both the inputs and the outputs are
provided. The network then processes the inputs and
compares its resulting outputs with the desired outputs.
Emors are then propagated back through the system, cansing
the system to adjust the weights which control the nefwork.

[zo] An iterative trial and error process, described in more
details in the rest of the paper, will be used to set tlre optimal
number and nature of input variables as well as the number
of neurons in the hidden layer.

4.2. Selection of lnput and Output Variables

[zr] ANNs are data-ddven models, so their performance
for a given problem relies on the relevance of the inpuV
output variables that are considered in the training process,
and on the complexity of the relationship between inputs

/iij I [àî*''l

,(-,-lrr.l 
' 8"" : 

lru,;] tu'
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and outputs. As it is the case for physically driven models,
problem pararfieterization can dramatically change algo-
rithm efficiency. The purpose of the ANN being the
prediction of ice thickness, the formulation of its input
and output variables was guided by these practicai consid-
erations: (l) inputs should be rneaningful for the ice growth
process and available at all ice measurement stations, (2) the
sensitivity ofthe output variable to input variations should
be as high as possible to enhance training efficiency, and
(3) the sensitivity of the output variable to input variations
should have the sane order of magnitude for all input
variables.
4.2.1. Output Variable

lzzl At first, it seerned obvious hhat Hl the ice thickness,
should serve as tlre output of the ANN. Early runs of the
ANN showed however that the ANN relied almost exclu-
sively on the sum of freezing degree-days and made little
use ofthe other variables (presented below). The reason for
this is that the influence ofthe sun offreezing degree-days
on the output function was so strong that the training
algorithm (which is basically a numerical optimization
algorithm) was unabie to account for the effect of the otirer
variables. Other variables closely related to the ice thickness
were then sought with the intent of improving the fit
between observations and predictions of ice tlrickness.

[z:] After some exploration, the output variable that was
retained for this study is the parameter HilDl, which
corresponds to the Stefan coefficient. Once a time serics
ofthe growth rate ofthe square ofthe ice thickness has been
computed, a time series of ice thickness is easily recon-
structed. The parameter HjlDl is drawn directly from the
classic Stefan's law and represents an instantaneous evalu-
ation of the square of its constant Ë. Using this output
variable led to a reduction of the weight of the degree-days
input variable in the ANNs, compared to that of other input
variables, and presnmably allowed the ANN to extract
additional information from the other input variables. It
was found that this choice of an output variable increased
appreciably the precision ofthe ice thickness prediction and
led to a better comprehension of the eftèct of the other
variables in rrodeling the ice thickness.
4.2.2. Input Variables

[z+] In the present shrdy, selecting the input variables of
the ANNs was a two step process. First, candidate physi-
cally observed variables were identified. Then, ANN input
variables were formulated using the physically observed
variables. These physical ly observed variables were
retained according to their availability and recognized
significance for the heat budget involved in ice growth:
(1) daily mean air temperatrre, (2) daily total solar radia-
tion, (3) daily rainfall, and (4) daily snow depth on the
ground (as measured at weâther stations). Longitude and
latitude were also tested as additional parameters for the
regional neural network model.

[zs] The preceding variables were used to construct a
variety of variables, to be used singly or in linear combi-
nations as input variables for the ANNs. When these
variables are sums, the sumrnation starts on the first day
of frost based on the daily mean air temperature and ends on
the day assigned to the variable. The following variables
were considered and computed for each winter: (1) the sum
of freezing degree-days derived from the air temperature

Clombinations of
Meteorological Variables Variables'

I
2
3

5
6
7
8
9
l 0
l l
t 2
T J

l 4
l 5
t 6
t 7
l 8
l 9
70
2 l
22
23

Da; Rad,,
Da; Rad,.. + 0.25 Rad,,
Dd ; Rad'," + 0.50 Rad,
Da; Rad,. +. 0.75 Rad"
D1 ;Rad,,"+ Rad"
D6 ;Rad , . ;Fg
Da; Rad,,.+ 0.25 Rqd; Fls
D1 ; Rad* + 0.50 Rad";I{ s
Da ; Rad," + 0.75 Rad"; È g
Dd; Rad^" + Rad"; H s
D7; Rad^";R
Da; Rad,," + 0.25 Rad.;R
Da; Rad,,. + 0.50 Rdd.;ll
D,; Rad," + 0.75 Rad";R
Da: Rad,," + Rodc;R
Da; Rad,";H"; R
Da ; Rad,. + 0.25 Rad; FI s I R
Dd ; Rad^. + 0.50 Rad"; F! 3; R
Dd  ;Rad , , . +  0 .75  Radc ;Ê3 ; -R
D6 Rgd," + r1o4;Às; F
Da )_Hs
DaiR
D a ; H s ; R

'Note is used only for data preprocessing and posprocessing.

D"("Cdav), as was already described earlier in this paper,
(2) the sum of solar radiation during the period of ice
growth for days with precipitation (W daylm'), divided by
the sum of degree-days ,Rad" (this quantity is a proxy to
the quantity of solar radiation attemrated by cloud cover),
(3) the sum of solar radiation during the period of ice
growth for days without precipitation (W daylm-), divided
by the sum of degree-days Radn", (4) the average daily
rainfall (over time) during the ice growth period R (mm),
and (5) the average on-ground snow depth (over time)
during the ice growth period Hs{cm).

[zo] The sum of degree-days D, was used to compute
HllD, on the calibration data set (preprocessing), and to
reconstruct ice thickness time series from simulated series
(postprocessing). It wiil be referred to as an input variable
in the remainder of the text.

[zz] The sum of solar radiation was split into two parts
because only the total amount that reaches the ground
should be considered. Consequently, attenuation due to
cloud cover has to be accounted for by multiplying Rad"
by a positive factor * smaller than or equal to l. Five sets of
combinations of Rad," and Rad. were considered: Radn.,
Radn,+025 Rad,, Radn. Rad., Radn"+0.75 Rad", Rad,,"+
Rad., corresponding lespectively to o : 0,0.25,0.50, 0.75
and 1. A total of 23 sets of combinations of meteorological
variables (listed in Table 1) were tested as inputs for the
artificial neural network models.

[zs] Other important variables for ice growth would have
been variables based on lake morphology such as maxlmum
depth, mean depth, surface area, perimeter length and other
variables that could be derived from these. For most of the
lakes considered, depth information could not be found
within the scope of this study. Other parameters basecl on
the surface area and lake shape ol1 maps were not used in
the eird. It should be noted that this information is never-
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Figure 2. Location of the 26 lake ice measLrrement
stations.

theless considered to be relevant, particularly for the eval-
uation of the date of freezeup. It is felt by the investigators
that the use of morphological lake data could provide
interesting avenues for the use of the ANNs ibr the
modeling of lake ice in future studies. They would require
a specialized focus on sources of data that could not be
explored within the framework of the present study.

4.3. Performance Criteria

[zo] The performance of a given ANN model is evaluated
using five performance criteria: root-mean-sqr.rare error

Table 2. Ice Thickness Measurernent Stations

(RMSE), relative root-mean-squal€ error (RRMSE), model
explained variance (l), Nash criterion (NASH), and bias
(BIAS). The criteria are defined as follows:

RMSE: 
Gtr, 

- uïf)' (7)

RRMSE: (;e e"!)')'

, ,  -  c o v ( [ n ] . . . . . n ' l , l  t , . . . ,  ̂ ' l ) 2  
.'  

var(fv| , .  . . ,n i l )var( in j  , .  ,nf}"

B'AS:  l i  fa l  -  r f )  ( ro)
t r - '

D@f - nf)'
N A S H : t - o i  ( 1 r )

\ta'; - rt,1'

where .Hf, i  :  1,. . ,n and nf, i  :  1,. . . ,n are observed and
simulated ice thicknesses.

4.4. Validation Procedures
po] Two validation procedures were used: the leave-

one-out cross-validation procedure to find the best combi-

(8 )

(e)

Station Code Station Name Water Body
Longitude, Latitude,

HA1"
LI ' I
WFN'
WIQ
WLH"
WHO
WTL"
YAH"
YBK,
YBT"
YBX'
YEI"
YGK"
YGM"
YGV
YIV"
YKL'
YNE
YNI
YPY"
YQl'
YVP,
YYR"
YZE
YZF"
YFL,

68.36
6 1 . 5
105 . t 5
109.93
86.09
73.69
8 8 . 1  1
I  L . J O

95.96
100.3 I
56.8 I
99.09
/ ) . J

95 .01
63.88
93 .31
65 . r9
96.16
69.08
I  I  0.83
88.78
67.53
59.58
8l  .9t3
114.34
I  08.86

61 .03
82.46
)  / . J J

54.76
52.21
46.03
53.8  r
) J .  / O

64.3
57.86
51 .45
6 1 . 1  1
44.7
50.61
50.29
53.84
54.78
53.98
5 3 . 1  8
5  8 .7
48.43
58 .1  1
53.33
45.54
62.45
62.70

Quaqtaq
Alert
Cree Lake
Primrose Lake
Lansdowns house
Sainte agathe des monts
Big trout Lâke
La grande IV
Baker Lake
Brochet
tslancMsablon
Ennadai Lake
Kingston
Gin l i
Havre Saint Piene
Island Lake
Scheiferuille
Noruay house
Nitchequon
l'ort chipewyan
'l 'hunder 

bay
Kuujjuaq
(ioose bay
South baynrouth
Yellorvknife

Quaqtaq

Unnamed Lake
Upper Dumbell Lake
Cree Lake
Primrose Lake
Attawapiskat Lake
Lac des sables
Big trout Lake
Lac la Tanière
Baker Lake
Brochet bay of Reindeer Lake
Lac à la Truite
Ennadai Lake
Lake Ontario-Horsey Bay
Lake Winnipeg
Patterson Lake
Tsland Lake
Knob Lake
Little Playgreen Lake
Nitechequon Lake
Lake Athabasca
Thunder Bay
Stewart Lake
Tenington Basin
Huron Lake (South Bay)
Great Slave Lalie (Back Bay)
Great Slave Lake (Fort Reliance)

"Stations with enoush data to calibrate local ANN models.
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nation of input variables aud ANN structure, and the
standard split sample procedure in which the data is split
in two subsets, the first being used to hain the neural
network and the latter being used to check the model
performance.

[lt] The leave-one-out procedure aims to assess the
generalization capability of a given ANN model. In the
leave-one-out procedure, the data is divided in subsets. A
subset is represented by all measuremeûts during a year (for
local ANN models and RSL) or all measurements at a given
site (for the regional ANN model). All subsets but one are
used to train the neural network. Then the trained ANN
model is used to simulate the subset that is left out. The
same process is repeated so that every subset ofthe data is
left out once. The performance indices are then computed
using the observed and sirnulated values over the whole
data set. The pair of input variables and ANN structure
which best explain the data is then selected for the rest of
the procedure. Unfortunately, the leave-one-out procedure
does not give a final model since the neural network is
trained several times (one time for eaclr subset) to compute
the perflomrance indices.

pz] The objective of the split sample validation proce-
dure is to have a trained neural network to use for the rest of
the study. In this procedure. the data is repeatedly and
randomly divided into two parts containing 80% and 20%
of the observations. The first part is used to train the ANN
and the other is used to rate it. The operation is performed
twenty times and the pârameter set of the run which gives
the srnallest RMSE is retained and completes the assembly
of the rrodel.

4.5. Selection of the Best Combination of
Meteorological Variables and ANN Structure

[r] First, all possible pairs composed of a set of input
rneteorological variables (listed in Table l) and a network
structure (defined by the number of neurons in the hidden
layer) ale formed, given that the number of neurons on the
hidden layer is constrained to be less than 10 for compu-
tational purposes. For example, the pair (3, 7) rcpresents an
ANN model with seven rleurons on the hidden layer and for
which the inputs variables arc D4, Rad,,, + 0.50 Rarl.. The
performance criteria of each pair are then rated using the
leave-one-out procedure.

[l+] When some values of an input variable (such as surn
of rain or snow on ground) are missing at a given site, the
combinations of meteorological inputs containing that
variable cannot be used. In this case, only a part of the
23 possible combinations of inputs ale tested when
searching the best local ANN model. To avoid this
situation with the regional ANN rnodel, it was trained
and validated with tlie data of the measurement stations
where the entire input variable were available.

psl The best pair is then chosen, and the cornbination of
meteorological variables in this pair is considercd to be the
one which best explains the data, while the number of
neulons in the pair defines the best ANN structr-rre.

5. Case Study
5.1. Data

pol The data used in this study is of three types: (l) ice
tlrickness data from the Canadian lce Service [2005],

E
i;c

t0:

c[

f,
0 5I] 10ûr 150û 2ttû &Ê 3ù+l 35æ 4m i5m

Sum o, ljegre.Days

Figure 3. Identification of ice growth phase in the data
sets at station YZF: (a) all observations and (b) ice growth
phase.

(2) daily meteorological data obtained from Environment
Canada, and (3) incident solar radiation at the top of
atmosphere which have been computed as function of time
and geographic location of the studied sites using the
formulas presented in Appendix A.

pz] The data set contains ice tbickness and snow depth
measurements on 53 sites located on Canadian lakes

fLenormand et a1.,20021. Only 26 ofthese sites have years
with enough measurements to calibrate Stefan's law and the
local ANN. Eight of these stations were not used for
calibration and validation of the regional ANN because of
data availability issues that will be further explained. The
26 ice measurement stations are listed in Table 2, and
their geographic locations are presented in Figure 2.

[:a] The weather data was provided by the national
climatic archives of Environment Canada and contains the
daily data of temperature, precipitation (snow and rain)
and snow on the ground for more than 10,000 stations
distributed all over the Canadian territory.

5.2. Proxy Variable for Solar Radiation
at Ground Level

[:e] Solar radiation was considered as a relevant variable
at the onset of tbis study because radiative fluxes were
recognized to be a significant part of the lake energy by
most authors [e.g., Lock, 1990; F'ang et a|.,1996; Menard et
a1.,2002a, 2002b; Duguay et al., 2003). Howeveq solar

500 100û 150û :û0t 2gD 3u 35û)
Sum ûf0e0pe-0ays
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temperature on a given date at a given point is interpolated
using the observed values at the nearby stations: a data
processing program secks the nearest weather station suc-
cessively in the northeast, northwest, southwest, and south-
east quadrants. the temperature of the ice measurement site
is computed as the weighted average of the temperatures at
the weather stations. The weights are inversely proportional
to the distances frorn the site of measurement to the weather
stations. If historical measurements are not available at the
ten closest stations in a quadrant on a given date, the data is
considered missing. When a variable (such as rain, degree-
days or snow) has missing values, the combinations of
inputs containing this variable cannot be used. This may
happen when weather stations are too far frorn the ice
measurement station. In this case only part of the 23
possible combinations of input listed in Table I can be
considered. At eight of the 26 lake ice thickness lneasure-
ment stations, some irregularities were observed in the data
(such as a long delay between first freezing air temper-

90-

80.
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Figure 4. Spatial variability of RSL
a) parameter C; b) parameter k.
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radiation measurements at the ground level were not avail-
able in su{Iicient quantity since they are not measured at al1
weather stations. As an altemative, assumed ground level
solarradiation was calculated using solar radiation on top of
the atmospirere multiplied by a factor o; ci is equal to the
unity on days without precipitation, and lower than the unity
on days when rain or snow was observed. The values of
solar radiation on top of the atrnosphere were calculated as
functions of the date and the geographic location according
to an algorithm giveir in Appendix A.

5.3. Spatial Interpolation of Weather Data

[.lo] As geographic positions of the ice measuring sites
did not coincide with that of the weather stations. the air

*
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Figure 5. Observed and simulated (RSL) ice thicknesses
versus sum of degree-days at some ice measurement
stations: (a) YBK (Baker Lake) and (b) YGK (Kingston).
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Table 3. Performance Criteria tbr the Revised Stefan's Law
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Calibration Validation

Station
k,

a'n 6-0.s oç-o.s I RRMSE
L ,

d ' c
RMSE,

cm
BIAS,

cnl
RMSE.

cm .2
BI,AS,

RRMSE cm

HAI
LT I
WFN
WIQ
VYLH
woH
WTL
YAH
YBK
YBT
YBX
YEI
YCK
YGM
YGV
YIV
YKL
YN-E
Ylit
YPY
YQ'
YVP
YYR
YZE
Y7F
YFL
Muimum
Minimum
Mean

14.06
46.16
90.23

231 .50
33.67
60.66
14.72
62.73

154.t2
t2 .87
56.24
44.42

209.03
58.67

l 08.00
140.33
59.87
10 .71
57.78
95 .19

147.73
58.89
l  6.58
58.27
52.98
423.2

423.20
10 .71
89 .1  8

4.97
I  1.94
4 .17
6 .21
5.87
4.94
),tr I
5.53
6.07
6.50
7.92
7.29
4.83
5.90
5 .  t 5
5 .  l 4
6.29
8.05
5 .81

10.30
4 . t 9
6.24
7.80
5.75
6.57

15.24
t5.24
4 . 1 7
6.70

1 .02
3 . 1 6
0 . 1 0

-2.94
- l - / o

0.73
0.49

-t .99
4.27

-0.28
1 .08
4.06
3 . 1 7
l  - o J

1 .24
0 .  l 5
0.83
2.88
2 . 1 7
| . 25

*  1 .06
2.78
't.62

-0.92
2 .21

-0.30

--.2.94
0.98

9.81
30.29
14.84
8.49
9.34
8.4 r

r3 .82
10.65
I  1.69
7.32

21.86
13.64
10 .51
14.20
32.87
| . 22
l  1 . 38
9.26
9.41

l  3.83
lt.24
t t .44
|  3.68
6.95

13 .80
2.21

32,87
2 .21

12.78

0.96
0.72
0.68
0.74
0.83
0.82
0.87
0.89
0.96
0.92
0.83
0.92
0.77
0.85
0.74
0.76
0 .91
0.88
0.89
0.70
0.80
0.95
0.67
0.74
0.84

r 3.80
r3.80
0.67
1.32

- J . ) ô

47.30
-6.68

2.90
3 .61
1 .20

-8.09
7.20

-4,22
-  t . J )

t9.12
2.94
8 .31

,9.81
28.97

1 .78
- ô . )  I

10.46
-5.44

8.65
5 1 . 1 0
6.28
3.05
2.30
0.27
0.27

5 1 . 1 0
-9 .81

6 .16

2.80
2.57
1 .54
1.84
t . 86
2.06
1.95
1.76
3.05
| .64
2,91
2.70
2.70
2.22
2 . 5 )

1 .88
2.09
2 . t 2
1 . 7  5
1 .89
3 . 1 3
2.53
2 . t 6
2.32
2 . 1 4
1.99
J . I  J

1 .54
2.23

0.98
0.90
0.86
0.84
0.70
0.69
0.91
0.93
0.97
0.86
0.72
0 .81
0 .71
0.60
0 .87
0.69
0.92
0.80
0.92
0.55
0.74
0.86
0.'73
0.70
0.85
0.80
0.98
0.55
0.80

0.05
0 , 1 2
0.07
0 . t 7
0 .10
0.08
0.08
0 . 1 0
0.06
0 . l  l
0.23
0.08
0.40
0.07
0 . l 0
0.08
0.07
0 .21
0 . 1 I
0.26
0.08
0.08
0 . 1 6
0 . l 3
0.09
0.09
0.40
0.05
0 . t z

0.09
0 . l 9
0 . l 6
0.28
0 .14
0. t  8
0 .  l 5
0 . l 6
0 . l 0
0 . t 4
0.50
0.  l3
0.91
0 .15
l . l 3
0 .19
0 . 1 5
0 .1  7
0 . 1 3
0.29
0.92
0 .12
0 .19
0 .1  6
0 . l 6
0 . l 6
l . l 3
0.09
0.27

atures and the ice growth starting period, or nrissing
values in some of the interpolated weather variables) so only
the 18 remaining stations were used forthe construction ofthe
ANN models. These stations are indicated in Table 2.

5.4. Elimination of the Period of Thinning at the End
of the Winter in the Data Set

[ar] The model developed in the present study is appli-
cable to the growth phase ofthe ice thickness. It is therefore
important to eliminate the period of ice thinning which
happens at the end of winter. For this purpose, we use an
empirical iterative procedure: starting from the end of the
data series and moving toward its beginning, all measure-
ments are successively considered for eventual rernoval. All
the dates when the measured ice thickness happened to be
higher than the average ice thickness of the remaining
subsequent rneasurements. Previously elirninated values
are not accounted for when cornputing the average ice
thickness of the remaining subsequent measurements. When
a given measurement is removed, all subsequent ûleasure-
ments are also rernoved. This practical procedure insur.es
tirat the thinning period, and part of the period when the
thickness stagnates are eliminated. The rcsults of the appli-
cation of such a procedure to station YZF are illustrated in
Figure 3. Figure 3a presents the wbole set of measurements
including the thinning period and displays several step
drops on the ice thickness which would have affected the
training of the ANN models. The retained nleasuremenrs
after application ofthe proposed procedure are illustrated in
Figure 3b. These results corespond to what was expected

when designing the procedure and were used for subsequent
analyses.

6, Results and Discussion

[+z] The data sets described in section 5 were used to
calibrate the RSL, and to train the local and regional ANN
models. ANN training and simulations were performed
using the Neural Networks toolbox of Matlab fThe
Mathvorks, 20051. The training function (trainbr function
in the Matlab environment) uses Bayesian regulation
p4ackay, 1992, 19951 to enhance generalization capabili-
ties. The maximum number of epochs is set to 1000, and
the minirnum gradien^t (for minimization of the objective
function) to I x l0-'". The training algorithm also uses an
adjustable parameter p-u which controls how far the next
values of the parameters will be searched during the
optimization process. lr,max was set to its default value in
M a t l a b . i . e . - 1 x 1 0 ' " .

6.1. Comparison of RSL ând Local ANN Models

[+:] The spatial variations of RSL parameters are illus-
trated ûr Figure 4, and no trend could be found with respect
to geographical location. It was found that RSL l'epresents
an excellent ice growth model when it is calibrated for a
given site. Observed and sinnrlated data are represented tbr
sorne of the ice thickness neasurement stations in Figure 5.
The pararneters of Stefan's law are obtained by the least
squares method using 80% ofthe data. There is a very good
agl€ement befween simulated data and observations. with a
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RRMSE
R2 (ANN), /

(Stefan) cm (ANN)

Table 4. Performance Criteria for Revised Stefan's Law and Local
ANN Models"
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the Stefan's law except at two stations: the station YBK
(Baker Lake: Figure 5a) and station YGK (Kingston:
Figure 5b). The data of YBK (Baker Lake) present very
little variabilify and the two models had quasi equal
performances. The data of the second station come from
Lake Ontario, one of the Great Lakes with an average
depth of 91 m and it comes as no surprise that the
growth of the ice starts rather late comparatively to all the
others (degree-days of about 200).

[as] The number of cornbinations for which ANN
models perform better than the Stefan's law vary from
two at station YBT (Brochet lake) to more than 120 at
station YAH (La Tertière Lake). The best combinations
(in terms of RMSE) for eacb station are given in Table 4.
The best combination is different for each station, but
86% contain the proxy for radiation, 550/o contain snow
on the ground and 33Yo contain rainfall. The dominating
factor aparl from the degree-days in the ice growth process is
then solar radiation, followed by snow and rainfall.

[.to] Once the best combination of variables for a given
station selected, the local neural network model for this
station is obtained following the procedure described in
section 4.4. The perfornrance indices of the retained local
ANN models are listed in Table 5.

[ar] The variation of the ice thicknesses simulated with
both the local ANN and RSL at stat ion YGM when
performing the leave-one-out procednre are presented in
Figure 6. Figures 6a and 6b both correspond to a case where
a year of data has been excluded. It can be seen that the
ANN rnodel follows data variations more closely than RSL.
The ANN model adapts well to the intrawinter and inter-
annual variations of the ice growth regime while RSL is
always represented by a single curve that tends to follow an
average interannual regime.

6.2. Comparison of the Retained Local ANN Models
With ANN Models With Sigmoid Oufput Function and
Multiple Linear Regression

[+s] In this study, the choice of one-hidden-layer neural
nehvorks with linear output funct'ions and signoid neurons

HAI
WFN
WLH
WTL
YAH
YBK
YBT
YBX
YEI
YGK
YGM
YIV
YKL
YPY
YVP
YYR
YZF
YFL

l0
5

23
o

22
l 5()

l 0
7
9

l 0
I

l l
20
t 4
t 0
5

t 0
I
9
3
2
9
9
7
9
2

t 0

8.94 0.95
I  1 .59  0 .71
t4.s4 0.59
10.54 0.85
8.96 0.81

I L59 0.96
8.53 0.86

13.63 0.66
15.55 0.86
9 . t 6  0 .74

14.70 0.59
12.03 0.69
9.72 0.89

19.98 0.54
t3.22 0.88
12.86 0.69
13.73 0.83
17.10 0.74

8.02 0.96
I  1.07 0.74
r I .28 0.'7 6
r0.50 0.85
7.97 0.85

n.72 0.96
8.52 0.86

r3.03 0.69
t4.27 0.88
13.43 0.47
10.99 0.77
n.47 0.72
9.36 0.90

19.88 0.55
12,25 0.90
I  l .9 l  0.74
t2.48 0.86
16.78 0.75

"Best combination ancl optimal number of neurons on the hidden layer
and perfomrance indices obtained during the leave-one-out cross-validation
procedure.

rnean RRMSE of 0.12 fbr the calibration set and 0.27 for the
validation set (Table 3)- Hence RSL may be an excellent
rnodel for engineering purposes when errors of a few
ceutimeters do not matter. However, its major drawback is
that parameter values are variable ltom lake to lake. It is
thus difficult to determine which values to apply for a lake
without observations, unlike the legional ANN model
developed in this paper which can readily be used tbr such
lakes.

[a+] Table 4 illustrates the performance of the local ANN
rnodels and the revised Stefan's law when using the leave-
one-out cross-validation procedure. It tumed out that it is
always possible to find a combination of meteorological
variables such that the neural networks perform better than

Table 5. Perfonnance Criteria of RSL and the Retained Local ANN Models'

Combination of RMSE
Meteorological (RSL),

Station Variables cm

RMSE
(RNA),

cm
r

(RSL)
I RRvsn

(A]\rl\i) (RSL)
RRMSE
(Ar.rN)

NASH
(RSL)

BIAS BIAS
NASH (RSL), (ANIù),
(AI.IN) cm cm

HAI
WF'N
WLH
WTL
YAH
YBK
YBT
YBX
YEI
YGK
YGM
YIV
YKL
YPY
YVP
YIR
YZF
YFL

l 0 . l l
7.84
5.30
u.85
7.35
7.59
8 .31

I  1 .82
14 .5  l
1 . 36

t4.42
8.33

1 0 . 1 8
t 8 . l l
I  0.80
9.64
9.50

I J . J O

5.00
7.76
4.7 |
7.36
6.99
7.28
7.38
9.63

I t .77
t0.27
6 . t 4

9.66
t7  . 57
7.40
9. l -5
8.00
1  À <

0.98
0.85
0.93
0.93
0.93
0.98
0.88
0.76
0.8 8
0.92
0.64
0 .88
('t.92
0.69
0.94
0 .77
0.93
0.93

0.99
0.85
0.96
0.93
0,93
0.99
0 ,89
0.83
0.93
0 .91
0.93
0.90
0.92
0.70
0.96
0 .81
0.94
0.95

0 .1  I
0 .1  3
0 .1  |
0 . 1  3
0 .14
0.06
0 .14
0.24
0 . 1 6
0.?7
0 .1  8
0 . l 5
0 . 1 4
0 .31
0 . 1 3
0 .14
0 . 1 3
0 . 1 8

0.05
0 .13
0 .10
0 . 1  I
0 .13
0.06
0 . t 2
0.20
0 .  l 3
0.31
0.08
0 .13
0 .11
0.30
0.09
0 .14
0 . 1  I
0 . 1 0

0.91
0.83
0.90
0.90
0.87
0.98
0.85
0 .71
0 .87
0.86
0.63
0.84
0.90
0.67
0.90
0.77
0.92
0.83

0.98
0.84
0.92
0.93
0.88
0.98
0 .88
0 .81
0 .91
0.72
0.93
0.87
0.91
0.69
0.95
0.79
0.94
0.94

l 0
5

L5

9
22
l 5
9
4

l 0
1
9

t 0
I

l l
20
l 4
l 0
5

-8.45 -3.65
r . 55  2 .10
3.03 -2.82
4.54 1.33
4 .63  4 .17
0.28 0.21

- 1.93 0.26
4.20 3.32
3 .72  3 .21
3.76 -3.35
0 .83  0 . I  8
3 .79  r . 80
3.83 2.47
032 -2.04
5.45 1.30

-0.58 2,61
-4.25 -2.19

9 .45  3 .15

"Data sets randomlv snlit in ti0-20% subsets,
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Figure 6. Comparison of local ANN models and RSL at
station YCM (leave-one-out procedure) for (a) 1977 and
(b) 1980.

on the hidden layer was due to the demonstrated value of
this kind of architecture. In theory the capability of an
ANN model to leam the hidden logic in a data set is not
supposed to heavily rely on the shape of the activation
function unless there is a major incompatibility between the
range of the output function and the range of the training
data sets (e.g., binary data and continuous activation
ftrnction for the output neuron). To investigate this point,
previously described local ANN models (with sinusoidal
activation ftinction for hidden neurons and linear activation
function for output neuron) are compared to local ANN
models with a sigmoid output activation function for all
neurons. The comparison exercise was also performed for
multiple linear regression (with an additional intercept
parameter). The same procedures for the selection of
explanatory variables were applied and the best models
were selected for each site. The change of RMSE (negative
when the new model is better; positive when the new
model is worse) due to the use of these two nerv rnodels
at the ice measurement sites is plotted in Figure 7. 

'fhe 
use

wlt407

of a sigmoid activation function resulted in RMSE reduc-
tions of up to 10% at some sites, and an increase of RMSE
ofup to 15% at others (Figure 7, top). In general, the use of
a sigmoid activation function for the output neuron gives
slightly better results. On the other hand, the use of
multiple linear regression always resulted in an increased
RMSE (Figure 7, bottom), confirming the non linear nature
of the ice growth process.

6.3. Influence of the Data Sets Characteristlcs on the
Best Performing Solutions

[+o] The retained combinations of explanatory variables
for the local ANN models are very different from site to site.
Consequently, it is important to investigate whether the
characteristics of the input variables have an effect on the
best perfbrming variables. Figure 8a presents the mean
snow depth on the ground for the ice measurement stations
listed in Table 4. Figure 8b presents the list of sites where
the best combination of explanatory variables includes
snow Similar results are presented lbr rainfall (Figure 9a
and 9b) and radiations (Figure 10a and lOb). As for the
parameters of the revised Stefàn's law, there seems to be no
clear relationship befween the magnitude of a variable, and
whether or not it is chosen as an explanatory variable.
Figure I I  presents the maximum ice rneasurements
(Figure 11a) as well as the RMSE of the regional model
at these sites (Figure I 1b). The RMSE of the regional model
seems to be constant all over the territory. The bias of the
regional model is presented on Figure 12. It can be seen on
Figure 12 that the regional rnodel slightly underestimates
ice thicknesses in the northwestem part of the country
where ice thickness is generally large. Conversely, it slightly
overestimates ice thickness in the southwestern part of the
country, where ice thickness is smaller.

6.4. Limited Comparison of Local ANN Models and
Deterministic Model CLIMO

[so] The determinist ic model CLIMO was
Mënard et al. 12002b) to simulate ice growth at

Figure 7. Increase in RMSE when switching from local
ANN with sigmoid activation function for hidden neurons
and linear activation function for the output neuron to (top)
ANN model with sigmoid activation function for all
neurons and (bottom) multiple linear regression model.
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the local ANN rnodel respectively gave an RMSE of
14.10 and 14.31 cm, which is l3oÂ and 15% higher than
CLIMO. Both models performed better than CLIMO
when simulating ice growth at station YFL (Fort Reliance)
on the data of years 197 7 - I 990. The RMSE was I 7. I 0 crn for
revised Stefan's law and 16.78 cm for the local ANN model,
slightly lower than the 18 cm obtained with CLIMO. Despite
the much higher complexity of the deterministic model, its
performance is comparable to those of the local ANNs and
RSL.

I 40.61 cm
i 31,45cm
a 22.æcm
r 13.13cm
. 3.97cm

140 130 120 110 100 90 80
r-orcrruoe (W)

ê- .<-+ ' 'È

a locrlANtl $ih smw fr il* grflnd âs inplt

il LùralANN wiltro{tr sw m ihe Eolld âs inpll

110 100 q) 80
uolcrruoe (W)

Figure 8. Effect of the statistical characteristics of input
variables on the best performing solution: (a) mean snow
depth on the ground during the ice growth period and
(b) usage of snow depth on the ground as explanatory
variable by local ANN models.

YZF (Great Slave Lake-Back Bay) for the years 1960-
i991, and at station YFL (Great Slave Lake-Fort Reli-
ance) tbr years 1977 -1990. They obtained an RMSE of
9 cnt at YZF and 18 cm at YFL. Since those stations are
included in our database, the results of the two studies
were compared. It can be seen in Table 4 that RSL gives
a RMSE of 13.73 cm (12.48 cm tbr the local ANN
model) using the "leave-one-out" method on the data of
the years 1958-1996 and 2002-2003 at station YZF.
When sirnulated on the same period than CLIMO (years
1960 1991) using the leave-one-out procedure, RSL and
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Figure 9. Eftbct of the statistical characteristics of input
variables on the best perfbrming solution: (a) mean daily
rainfall during the ice growth period and (b) usage of
rainfàll as explanatory variable by local ANN models.
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Figure 10. Effect of the statistical characteristics of input
variables on the best perfonning solution: (a) mean sum of
solar radiation during the ice growth period and (b) usage of
radiation as explanatory variable by local ANN models.

6.5. Regional ANN Model

[sr] The perfomance criteria for the five best combina-
tions forthe regional ANN model are given in Table 6. The
best combinatiorl (in terms of RMSE) to explain ice growth
at tlre regional level is cornbination 1-5 (D"; Rad,,"+ Rad,;R)
lol lowed closely by combination 20 (Du: Rad,,"+ Rad"; H.,
R). The optirnal number of neurons on tle hidden layer was
found to be one (as indicated earlier, ANN structures with
1 to 10 neurons on the hidden layer were tested, but only
one is retained corresponding to the best perfonnance). The
regional model is thus relatively parsimonious since it uses
only six palameters: one bias and one weight parameter for
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each ofthe connections ofthe inputs (Rad,"+ Rad" and R) to
the hidden neuron, and olle bias and one weight parameter
for the connection of the hidden neuron to the output
neuron.

[sz] The radiation parameter for the regional model is
Radn" + Rad" (a: 1), but the choice to split the radiation
value into two parts is justified by the fact that for sorne of
the local ANN models, the optimal value of o is lower
than l. For example, for station WTL, the optimal value
of o was fotrnd to be 0.75 (see Tables 4 and l).

[s:] It was also noticed when rating the different combi-
nations of input variables for the regional ANN model that
latitude and longitude do not have an influence on the result.
However. geographic location has a direct influeuce on all
input variables. In other terms, geographic location has an

a)
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Figure ll. (a) Maximum ice thickness and (b) RMSE of
the regional ANN rnodel.
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Figure 12. Bias of the regional ANN model.

influence on the range of input variables, but not directly on
ice growth relationship to input variables.

[sa] An unexpected result in this study is that snow depth
on the ground was not identified as an important parameter
at the regional level for lake ice growth. This is probably
due to the great variability of this parameter in space, which
was estimated by interpolation from the weather stations
located at several kilometers.

[s:] To illustrate the ability of the regional ANN model to
reproduce ice growth dynamics simulated ice thickness
(using the regional ANN) at station YZF (Great Slave
Lake-Back Bay) is presented in Figure 13. It can be seen
that the agreement is excellent.

7. Conclusions

[se] It is shown in this paper that artificial neurai
networks can be valuable altematives to complex thermo-
dynamic lake ice growth models, especially when dala is
not available in sufficient quantity and quality. The
performances of tlre proposed ANN models were fairly
good when compared to that of the deterministic Cana-
dian Lake lce CLIMO. They also offered much more
flexibility than the Stefan's law and were able to trans-
pose information on ice growth dynamics from monitored
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sites to unmonitored sites or periods using only six
weight and bias parameters. They also reproduced various
ice growth pattems with a t'ew easily obtained meteoro-
logical data.

[sr] The methodology presented in this paper is of the
greatest importance for Nordic hydrologists since no oper-
ational model of lake ice growth exists for ungauged sites.
This gap needed to be addressed for several reasons: a
practical rnodel of lake ice growth can help assess the
impact of climate change on lake ecosystems, which is a
topic of great concern nowadays. It can also be used to
estimate the arnount of water that is lost as ice left on the
banks of hydroelectric reservoirs during winter operation,
which may be important for large annual reservoirs in
northem countries.

[sa] The main limitation of the work presented in this
paper is that it applies only to the ice growth period. In
other empirical rnodels, a combination of freezing degree-
days and n.relting degree-days have provided good results
in modeling the whole duration of the ice cover [e.g.,
Thompson et al., 2005). The extension of the developed
rnethod to the whole duration of the ice cover using a
single ANN rnodel is a challenging problern because of
the differences in the two processes to be rnodeled. The
leaming perfonnance of the ANN may hence be reduced.
A possible alternative solution is to train an ANN model
for the growth phase and another one for the decay
phase.

Appendix A: Solar Radiation at the Top of
Atmosphere

[:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::r] These relations are obtained from the Solar Radia-
tion Monitoring Laboratory [2004]. On average extrater-
restrial inadiance is 1367 W/m2. This value varies ly t3Yo
as the earth orbits the sun.

( A l )

where Ào, is the average Sun-Earth distance, R is the actual
Sun-Earth distance depending on the day of the year, and Z
the zenith (the angle of the sun relative to a line
perpendicular to the Earth's surface) which depends on
the declination of the Earth, latitude and solar tirne. If one
notes n the Julian day, Eq, (equation of time) the variation in
minutes of the solar time (f.,1,,.) compared to the standard
time (76,) during the year. w the solar hour angle (in
radians), Longç,.o1the longih,rde of the cenhal meridian line
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Table 6. Perl'omrance Criteria of the Resional Model for the Five Best Combinationso

Combination of
Meteorological

Vari ables

RMSE
(RSL),

cm (RSL)

RMSE
(ANN),

cm
RRMSE
(ANN)

NASH
(RSL)

NASH
(ANN)

r, RRMSË
(ANN) (RSL)

BIAS BIAS
(RSL), (ANN)

cm cm

l 5
20
l 9
1 4
l 8

25.08
25.08
25.08
25.08
25.08

0.65
0.65
0.65
0.6-5
0.65

1 8 . r 5
I  8 . 1 7
1 8 . 1 7
1 8 .  1 9
18.24

0.82
0.82
0.82
0.82
0.82

0,42
0,42
0.47
0.12
0.42

0.43
0.43
0.43
0.43
0.43

0.65
0.65
0.65
0.65
0.65

0 .82
0 .82
0.82
0 8 2
0 . 8 1

-0 .15  0 .65
*0.  15 0.56
-0 .15  0 .1  2
- .0.  15 t .23

0.  15 -0.48

uOne neuron on the hidden layer and perfomrance indices obtained during the leave one out cross-validation procedure. Note longitude and latitude are
not l isted as explanatory variables because it was fbund that they have no intluence on the output ofthe regional model.
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Figure 13. Simulated and observed ice thickness at station YZF.

of the tirne zone and Lon5g,n, the longitude of the point of
calculation, we have the following approximations:

f & ) ' -  l . 0 0 0 l l  +  0 . 0 3 4 2 2 1 * . o r l ' z n '  \  +  0 . 0 0 1 2 8 0
\R, /  \  l6s /

-  s in (z '3 )  +  0  00071e * .o . (+o3)  F  0 .000077
\  Jô ) /  \  J65 /

.  L  n \
+ s r n ( 4 ; r *  I  ( ^ 2 )

\  J O ) /

cos(Z) :  s in( / )  s in(d)  *  cos(/ )  cos(d) cos(u,)  (A3)

tt:23.45."i"(2"?!ff) tool

. . . _ _ *  ( t 2  T , , a , . )
l 2

,  .  E q t  . ,T,uru, - Tlocal *;0 * (Long,n, - Long1,,,.,1)/15

Notation

e'n ANN output vector of the mth layer.
B^ ANN bias vector of the connections fonn the

(m-l)th layer to the (m)th tayer.
C bias parameter of the rnodifred Stefan's law.

C,, heat transfer coeffrcient from ice to air.
Da sum of degree-day from the date of ice cover

fomration.
Ds sum of degree-day from the first below zero

remperarure.
ANN transfer function of the mth laver.
ice thickness.
rnean ice thickness.
kth ice thickness in the data set.
estimate of the kth ice thickness in the data set.
on-ground snow depth.
lnean on-ground snow depth.
coefficient of Stefan's law.
average rainfall during the ice growth period.
snm of solar radiation of days with precipitation
(snow or rainfall).

Rad," sum of solar radiation of days without precipitation
(snow or rainfall).

(A5) [l''n ANN weight vector of the connections form the
(m-l)th layer to the (m)th layer.
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