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[1] Because of their impact on hydraulic structure design as well as on floodplain
management, flood quantiles must be estimated with the highest precision given available
information. If the site of interest has been monitored for a sufficiently long period
(more than 3040 years), at-site frequency analysis can be used to estimate flood quantiles
with a fair precision. Otherwise, regional estimation may be used to mitigate the lack of
data, but local information is then ignored. A commonly used approach to combine at-site
and regional information is the linear empirical Bayes estimation: Under the assumption
that both local and regional flood quantile estimators have a normal distribution, the
empirical Bayesian estimator of the true quantile is the weighted average of both
estimations. The weighting factor for each estimator is conversely proportional to its
variance. We propose in this paper an alternative Bayesian method for combining local and
regional information which provides the full probability density of quantiles and
parameters. The application of the method is made with the generalized extreme values
(GEV) distribution, but it can be extended to other types of extreme value distributions.
In this method the prior distributions are obtained using a regional log linear regression

model, and then local observations are used within a Markov chain Monte Carlo
algorithm to infer the posterior distributions of parameters and quantiles. Unlike the
empirical Bayesian approach the proposed method works even with a single local
observation. It also relaxes the hypothesis of normality of the local quantiles probability
distribution. The performance of the proposed methodology is compared to that of local,
regional, and empirical Bayes estimators on three generated regional data sets with
different statistical characteristics. The results show that (1) when the regional log
linear model is unbiased, the proposed method gives better estimations of the GEV
quantiles and parameters than the local, regional, and empirical Bayes estimators;
(2) even when the regional log linear model displays a severe relative bias when
estimating the quantiles, the proposed method still gives the best estimation of the
GEV shape parameter and outperforms the other approaches on higher quantiles
provided the relative bias is the same for all quantiles; and (3) the gain in performance
with the new approach is considerable for sites with very short records.

Citation: Seidou, O., T. B. M. J. Ouarda, M. Barbet, P. Bruneau, and B. Bobée (2006), A parametric Bayesian combination of local
and regional information in flood frequency analysis, Water Resour. Res., 42, W11408, doi:10.1029/2005WR004397.

1. Introduction

[2] Depending of the availability of data, flood quantiles
can be estimated using local frequency analysis, regional
frequency analysis or a combination of both. Much effort
have been spent during the last decades on the study of the
statistical properties of flood distributions, but the lack of
sufficiently long data series continues to limit the precision
of the results {Bobée and Rasmussen, 1995). The region-
alization concept, introduced by Dalrymple {1960], allows
us to mitigate the lack of data by transposing information
from gauged sites toward ungauged sites of interest. The
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concept was continuously developed since, and new
approaches were regularly developed by researchers [e.g.,
Benson, 1962; Matalas and Gilroy, 1968; Vicens et al.,
1975; Rousselle and Hindie, 1976; National Environment
Research Council (NERC), 1975; Tasker, 1980; Greiss and
Wood, 1981; Kuczera, 1982; Hosking et al., 1985;
Lettenmaier et al., 1987; Stedinger and Lu, 1995; Madsen
et al., 1994, 1995; Madsen and Rojsberg, 1997; Fill and
Stedinger, 1998; Burn, 1990; Groupe de recherche en
hydrologie statistique (GREHYS), 1996a, 1996b; Quarda
et al., 2000, 2001; Chokmani and Quarda, 2004]. Region-
alization also results in more precise estimates of quantiles
and parameters in sites with short records. It is however
difficult to decide whether the local data series are long enough
to discard regional information. To deal with this issue,
Matalas and Gilroy [1968] recommend choosing the estimator
that has the smallest variance. It would however make more
sense to combine systematically all available and relevant
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information to have a better knowledge of the hydrological
quantities to be estimated. Attention should be paid to the fact
that, in a highly heterogeneous region, the addition of the
regional information may be counterproductive,

f3] We present in this paper a parametric Bayesian
method for combining local and regional information for
the GEV distribution. In this method, the prior information
is specified from the regional data by the probability
distribution of a quantile and two quantile differences q71,
472 — 4971, 913 — q12 (Where gy is the T-year annual flood
quantile). Guidelines for its extension to other extreme
value distributions are also provided.

[4] The paper is divided into six parts. Section 2 presents
a literature review on the Bayesian approaches for combin-
ing local and regional information. In section 3 the proposed
Bayesian model is presented and the approaches for region-
al estimation and for prior specification are developed. The
MCMC algorithm that was used to make inference on
parameters and quantiles is also presented. The validation
methodology is presented in section 4. The case study is
presented in section 5, and the results are discussed in
section 6. A conclusion is finally presented in section 7.

2. Literature Review

[s] The need to combine regional and local information
was perceived early and several authors tried to address
the issue using various approaches. These approaches can
be classified in two groups: (1) mixed approaches which
consist in estimating some parameters with the local data
and the others with the regional data and (2) approaches
that simultancously use both information sources to
estimate all parameters and quantiles. A Bayesian ap-
proach can be used in both cases, but to the knowledge
of the authors, all approaches that are classified in group 2
are Bayesian. Bayesian approaches can consist either in
the construction of an empirical estimator, or the com-
plete inference of the posterior distributions. Depending
on the distributions of local and regional estimators, the
parametric Bayesian inference can be conducted either
analytically or numerically.

2.1. Mixed Approaches

[6] The index flood method [Dalrymple, 1960; NERC,
1975] represents a mixed approach when it is applied to a
gauged site because the average at-site flow is estimated
with local data, while the parameters of the distribution of
the normalized quantile are estimated with the regional
data. Lettenmaier et al. [1987] used Monte Carlo simula-
tion to show that, if the underlying regional distribution in
the index flood approach is the generalized extreme value
distribution (GEV), and if the parameters of this distribu-
tion are estimated with the L moments or the probability
weighted moments (PWM), then the index flood regional
estimation is more effective than the local estimation even
in case of moderate regional heterogeneity.

[7] Another example of a mixed approach is the “two
parameter” GEV/PWM method in which the shape
parameter of the GEV distribution is estimated by a regional
approach and the two other parameters with the local data.
This method showed to be superior to the three parameter
GEV/PWM regional index flood method for the estimation
of the 100-year flood when the size of local data series
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increases, or when the regional heterogeneousness is
significant [Lettenmaier et al., 1987; Stedinger and Lu,
1995; Fill and Stedinger, 1998].

[s] The procedure recommended by the Interagency
Advisory Committee on Water Data [1982] is also a mixed
approach since it uses a weighted skew (shape of the LP3
distribution) in order to improve the at-site estimator. The
weighted skew may be computed through regression
analysis, with the at-site skew.

[s] More recently, regional flood frequency analysis
using canonical correlation analysis (CCA) has been
extended to account for local data in neighborhood
delineation [Ouarda et al.,, 2001]. CCA is a multivariate
statistical technique which is used to express hydrological
and physiographical variables in two special canonical
spaces with special intercorrelation features. Distance in
the hydrological space allows the delineation of the
neighborhood of a given station using the approach of
confidence level ellipsoid [GREHYS, 1996a, 1996b;
Ouarda et al. 2000; Girard et al, 2000]. Short local
data series can then be helpful to position a station in the
hydrological space, and thus to define a more adequate
neighborhood. It is a mixed approach to regionalization in
the sense that local data influence parameter estimation
through the identification of neighborhood limits. A
mixed approach can also be Bayesian: for instance, a
Bayesian approach was used by Reis et al. [2003, 2005]
to infer the skew coefficient of the LP3 distribution while
using local data to compute the two other parameters.

2.2. Simultaneous Estimation Using Bayesian
Approaches

{10} In the Bayesian framework (which will be pre-
sented in more detail in section 3), the prior knowledge
on the unknown quantities (parameters or quantiles of the
local distribution) is described by probability densities. In
the hydrological literature dealing with the combination of
local and regional information, these prior probability
densities are usually obtained from a regional analysis
fe.g., Vicens et al., 1975; Madsen and Rojsberg, 1997; Fill
and Stedinger, 1998]. The prior probability distributions
are then used with the local observations to infer posterior
distributions using the Bayes theorem.

2.2.1. Empirical Bayes Approach

[11] When the probability distributions of both regional
and local quantile estimators are normal, it is easily
shown [e.g., GREHYS, 1996b] that the quantile posterior
distribution is normal with the following parameters:
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where g7 is the flood quantile we wish to estimate, P
(g% the local (regional) estimation of gz, and of (0%),
its local (regional) estimation variance. The estimator
presented in equation (1) is also called lincar empirical
Bayes estimator and was used by Vicens et al [1975],
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Figure 1. Hydrographic regions in the province of Quebec
and hydrometric stations of the region 05.

Kuczera [1982), Fill and Stedinger [1998), and Madsen and
Rojsberg [1997].

[12] Vicens et al. [1975] assumed that the annual mean
flows of New England rivers could be described by a
normal distribution and obtained the average and the
variance of the prior distribution of the mean annual
flows with a multiple linear regression on physiographic
variables. They then discussed the variation of the shape
of the posterior distributions of flows with respect to the
precision of the local and regional distributions. This
analysis showed that the combination of the two sources
of information reduced the estimation variance of the
parameters and that of the mean annual flow. The
posterior distribution of streamflows was dominated by
the estimator which had the smallest variance.

[13] Kuczera [1982] used an empirical Bayesian method
to stabilize the estimation of the variance of flood
records, which were assumed to have a lognormal distri-
bution. He obtained the prior information by fitting a
gamma distribution to the estimated local variances. He
used this model on a simulated data set without intersite
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correlation and showed that the relative root mean square
error (RRMSE) of the estimated 100-year flood is reduced.
The reduction becomes however less important as the
regional heterogeneousness increases. Kuckzera’s [1982]
approach was later shown to be sensitive to violations of
distributional assumptions [Lettenmaier and Potter, 1995].
The computation of the RRMSE by Kuczera [1982] was
possible only because the true values of the quantiles of the
simulated flood data were known. In a second application,
Kuczera [1982] used real data from selected New England
basins. Since the true values of the quantiles were not
available, he was only able to show that the combination
of the regional and local information stabilizes the estimation
of quantiles, i.e., the posterior distribution of quantiles has a
smaller variance.

[14] Fill and Stedinger [1998] used the empirical
Bayesian method to combine the result of normalized
quantiles regression (NQR) with the two-parameter
GEV/PWM regional estimator. The NQR method, intro-
duced by Koenker and Bassert [1978] and applied in
hydrology by Stedinger [1989], consists in estimating
the normalized quantile (the flood quantile divided by
the average at-site flow) by linear regression on physio-
graphic variables. Fill and Stedinger [1998] showed by
simulation that the empirical Bayesian estimator was more
robust and, in terms of root mean square error, performs
as well or better than the NQR method or the two-
parameter GEV/PWM method.

[15] Madsen and Rojsberg [1997] used two Bayesian
estimators of the T-year event in a study that was
conducted on flood data from New Zealand. They used
the index flood approach for regional estimation and the
generalized Pareto distribution (GP) as the distribution of
flood peaks above a given threshold. The first estimator is the
empirical Bayesian estimator given in equation (1) whereas
the second is the mean of the posterior distribution of the
quantile obtained with a parametric Bayesian approach. In
both cases, the prior information about the parameters of the
GP was obtained by linear regression on physiographic
variables, and then used to calculate the quantile estimation.
Their results indicated that the parametric Bayesian estimator
leads to posterior quantile estimation and variance that are

Table 1. Characteristics of the Stations of the Hydrographic Region 05 of the Province of Quebec, Canada

Parameter Mean Standard Deviation
Gro, m>fs 24334 219.26
G100, M'/S 333.40 300.83
Gro00, M/S 425.09 400.17
Catchment area, km® 1114.49 1160.24
Mean slope of the catchment, m/km 2.88 1.01
Percentage of the area covered by 3.27 2.48
lakes, %
Mean annual solid and liquid 1182.84 217.62
precipitation, mm
Average annual accumulation of 1481.29 173.99
degree-days below zero
Matrix of regression parameters —-13,802 —11,850 -10,494 -
(including the intercept parameter) 0,974 0,974 0,979
0,363 0,576 0,750
1,127 0,618 0,179
-0,178 —0,258 —-0,335
0,631 0,887 1,146
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Figure 2. Histograms of relative error on quantiles g0, g0, and ¢1000 and histograms of the GEV
parameters at target sites for the first set of regions (no bias on quantiles, variance factor of the regional

regression equal to 10%): (a) q10, (b) G100, (€) G100, (d) 11, (€) @, and (f) &.

respectively 5% and 11% higher than those obtained with the
empirical Bayesian approach. They explained this result
with the positive asymmetry introduced by the choice of the
prior distribution.
2.2.2. Parametric Bayesian Approaches

[16] Less often used because of its complexity, the
parametric (or fully) Bayesian inference for nonnormal
distributions consists in inferring the posterior probability
density of the parameters and the quantiles and generally
leads to numerical integration. A common approach to
avoid or reduce numerical integration consists in attrib-
uting to both local and regional estimators mutually
compatible probability distributions (called conjugate dis-
tributions) so that the posterior of the unknown quantities
distribution can be written in a closed analytical form.

[17] Parametric Bayesian approaches to regionalization
were used by Shane and Gaver [1970], Rousselle and
Hindie [1976], Rasmussen and Rojsberg [1991], Madsen
et al. {1994, 1995), and Madsen and Rojsberg [1997] for
PDS models for which the exceedances are assumed to
have a generalized Pareto or an exponential distribution.

[18] Shane and Gaver [1970] assumed that the exceed-
ances above a given threshold follow an exponential
distribution. They derived the equivalents of
equations (1) and (2) for this distribution while searching

for the linear combination of regional and local estima-
tions which gives the smallest root mean square error.
They also considered a Bayesian approach where the prior
information about the parameter of the exponential distribu-
tion describing the magnitude of exceedances is represented
by a Gamma distribution. The mean and variance of the
prior distribution were obtained by regional multiple linear
regression. Shane and Gaver [1970] then compared the
implication of both estimators on the optimal height of a
protection dike and found that both methods give essen-
tially the same result.

[19] Rousselle and Hindie [1976] and Rasmussen and
Rojsberg [1991] considered the classical PDS model with
exponentially distributed exceedances and derived the
posterior distribution of the T-year event. Rousselle and
Hindie [1976] considered an informative gamma prior
distribution for all the parameters while Rasmussen and
Rojsberg [1991] assumed a non informative prior for the
parameter of the exponential distribution of exceedances.

[20] Madsen et al. {1994, 1995] generalized the model
of Rasmussen and Rojsberg [1991] to the case where the
distribution of the exceedances is the Generalized Pareto
distribution and applied it to extreme rainfalls. The model
of Madsen et al. [1994, 1995] was later adapted to index
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Figure 3. Histograms of relative error on quantiles ¢19, g100, and g 099 and histograms of the GEV
parameters at target sites for the second simulated set of regions (no bias on quantiles, variance factor of
the regional regression equal to 50%): (a) g0, (B) G100, (€) g1000, (d) p, (&) o, and (f) &

flood regional estimation in the work by Madsen and
Rojsberg [1997] which was described in section 2.2.1.

3. Bayesian Estimation

[21] In the Bayesian approach, the imperfect knowliedge
of the exact parameter values is accounted for through
probability distributions. As stated by Jaynes [1985], the
width of these probability distributions should be seen
rather as a representation of the range of values that are
consistent with observed data and the knowledge than as
indicators of the range of variability of the parameter. The
specification of prior information requires that belief or
knowledge about the parameters is expressed in terms of
a prior distribution, which must be formulated indepen-
dently of the observations. This probability density is
then used with the observations to obtain the posterior
distribution using the well known Bayes theorem:

f(x|6)7(6)

p(Olx) =
/ F(x10)7(8)d(6)

3)

where x = (x|, X, .. ., X,,) is the vector of observations, 7 (6)
the prior probability density of the parameters, f{x|6) the
likelihood of the observations, and p(0|x) the posterior
probability density of the parameters given the observations.
The posterior distribution is obtained either analytically or
numerically using sophisticated techniques such as Markov

chain Monte Carlo (MCMC) algorithms {e.g., Gilks et al.,
1996]. Example studies using Bayesian methodologies with
the GEV distributions are those by Coles and Powell [1996],
Coles and Tawn [1996], or Huerta and Sansti [2005].

[22] In our application, 8 = (y, o, &) where p, o and £ are
respectively the position, scale and shape parameters of the
GEYV distribution. The PDF of the GEV distribution is given
by

al

0 = (+4C52)) Fonl-(1e(:)
Its CDF is given by

F(x;0) = exp (, (1+62=5) ) s)

The quantiles are given by

(nfe-)

3

qr =g +o
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Figure 4. Histograms of relative error on quantiles gyq, q100, 2nd @000 and histograms of the GEV
parameters at target sites for the third simulated set of regions (100% positive relative bias on quantiles,
variance factor of the regional regression equal to 10%): (2) g10, (b) ¢100, (€) g1000, (d) 1, (€) o, and (f) £.

Because the observations are independent, the likelihood of
an observed sample x = (x|, x3, ..., x,) is given by

Ly(x0) = [ [/ (x:;6) (7)
i=1

The specification of the prior information via « (@) can be
made in several manners, for example, (1) by attributing a
probability distribution to the ratios % and % given the
quantiles g7, g7 and g3 [Crowder, 1992], (2) by specifying
the joint distribution of the parameters £, y and o [Coles and
Powell, 1996], and (3) by using a quantile and two differences
of quantiles (€.8.; 473 — g2, 912 — g1 and ¢gg) to which we
attribute a probability distribution [Coles and Tawn, 1996; A.
Stephenson and M. Ribatet, A users’s guide to the evdbayes
package (version 1.1), the Comprehensive R Archive
Network, http://cran.r-project.org/, hereinfter referred to as
Stephenson and Ribatet, evdbayes user’s guide, 2006].

[23] The last method was selected in this study because
of its simplicity, and ease of implementation since g3 — g7,
g — g and g7 are hydrological quantities readily obtained
using regional multiple linear regression. The estimation of
hydrological quantities using multiple linear regression is
straightforward. It was used in several studies [e.g., Matalas
and Gilroy, 1968; Stedinger and Tasker, 1985; Tasker and

Stedinger, 1989; Thomas and Benson, 1970; GREHYS,
1996a, 1996b; Ouarda et al., 2001] and provides a fitted
(normal) distribution for the explained variable. To the
knowledge of the authors, there is no published work in the
hydrological literature that can orient the choice of a given
class of distribution for &, u, o or for quantile ratios. The use
of the first two methods would thus involve much more
subjective elements than the application of the well known
multiple linear regression model. Indeed, the parameters
could have been obtained using multiple regression on
physiographical variables, but this would have been a naive
approach because of the observed interdependence between
the GEV parameters (Stephenson and Ribatet, evdbayes
user’s guide, 2006): increasing £ or ¢ leads to a heavier tailed
distribution, so a priori negative correlation between these
parameters is expected [Coles and Tawn, 1996]. This inter-
dependence between parameters is taken into account with a
fewer hyperparameters when working in the quantile space
(Stephenson and Ribatet, evdbayes user’s guide, 2006).

[24] In sections 3.1 —3.3, more details will be provided on
the regional model, prior specification with regional infor-
mation, and the MCMC algorithm used to infer the posterior.

3.1. Regional Model

[25] A regional model contains two parts [GREHYS,
1996a]: (1) a method of determination of homogeneous
regions and (2) a regional estimation method. Homogeneous

6 of 21



W11408

0 5000 70000
Itaration

5000 10000 15000
fteration

<)

16000

©)

SEIDOU ET AL.: BAYESIAN COMBINATION OF INFORMATION

W11408

5000 10 16000
Herstion

5000 10000
Iteration

5000 10000
Itsration

15000

1)

Figure 5. Examples of MCMC chains and real values of quantiles and parameters for first region of the
first generated data set: (a) ¢10, (B) 9100, (€) 1000, (d) 1, (€) o, and (f) &.

regions are subsets of stations having similar hydrologic
behavior. Several methods have been proposed in the hydro-
logical literature to delincate homogeneous regions such as
the regions of influence method [Burn, 1990], correspon-
dence analysis and hierarchical ascending classification
[GREHYS, 1996a, 1996b], canonical correlation analysis
[Cavadias, 1989; Ouarda et al., 2000, 2001], and the L
moments method [Hosking and Wallis, 1993]. Regional
estimation can be carried out for instance with the index flood
method [Dalrymple, 1960] or the direct multiple regression
method [Matalas and Gilroy, 1968; Thomas and Benson,
1970].

[26] The notion of similar hydrological behavior (and thus
the concept of regional homogeneity) is relatively vague
since it depends on what the modeler considers as being the
key interactions between hydrological variables. For
instance, a region for which the logarithms of quantiles are
grossly linear combinations of some physiographical varia-
bles is homogeneous from the point of view of the users of
the regional log linear multiple regression model, but not
necessarily for the users of the index flood regional model
for which the similarity of the shape parameter at all sites is
essential. The two approaches can thus lead to different
conclusions from the same data set.

[27] In this paper, the first definition of homogeneity
(linear relation between the logarithm of quantiles and
covariates) is considered. This is important for the valida-
tion phase which will involve the generation of regional

data sets. To be consistent with the latter choice, the
regional estimation method that will be used is direct
multiple regression. There will be no need for a regional
delineation method in the validation process since the
generation algorithm is designed to directly provide hydro-
logical regions with user-defined characteristics.

3.2, Prior Specification Using the Regional Model

[28] Prior information is specified from the regional
model as follows: given three quantiles g7y, g7z, g73 such
as p; = 3- < pa = 7 < p3 = 7. and their differences Agry,
Agp, Agrs defined by

Agry =qry = p— (—log(l —p1))~* (8)

i

Agry =qr2—qn = ((—]og(l —p2)) ¢ — (~log(1 ‘Pl))"€>

—_
AN

Aqrs = qrs =g = ((~log(l = p3)) = (~log(1 = p1)) )
l
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The log linear model is used to describe the relationship
between the hydrological (Il\uantities and physiographic
variables. If we denote Agp the regional estimation of
Agp, the regional regression model is given by

tog(A7,)
log(Aq}) = log([lf;n) = MVN (x$,3) (11)
log(Afn)
where
1
Ay ; 31
X = and 8= | 2
: 33
Am B
with g¥ = <Bé”.,@£”,...,,@f,?). In equation (11), MVYN

(xB, ) stands for the multivariate normal distribution
with mean vector x3 and variance-covariance matrix Y.
Ay represents the value of the kth physiographic or

meteorological variable at the site of interest, ,Bﬁ) is a

regression coefficient, and m is the number of physio-
graphic variables.

[20] We assume that the errors in model (11) do not
display intersite correlation but that there may be some
correlation between the error series corresponding to
different quantiles. Model (11) is thus a case of the
classical multivariate normal distribution with independent
realizations. Its location parameters as well as its variance-
covariance matrix can thus be obtained using ordinary least
squares. More complex procedures such as generalized least
squares [Stedinger and Tasker, 1985, 1986; Tasker and
Stedinger, 1989] which account for intersite correlations
could have been considered. However, this would have
complicated the already difticult simulation of the validation
data set (see section 4). Such procedures can improve the
precision of the regional model when used on real data and
deserve consideration in future work. .

[30] Since there is no intersite correlation, 3 is obtained
by solving the following equation with the ordinary least
squares method (OLS):

log(agt) =xB” +eVT, € {T). Ty, T3} (12)
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Figure 7. RMSE of the estimators of ¢ according to the length of local data series: (a) first generated
data set, (b) second generated data set, and (c) third generated data set.

where £ is the random error term. The clements of ¥ are
directly computed from the data:

¥ = cov (s(i),e(f') (13)

[31] We deduce from (11) and (12) that
1
AqriAgradgrs
e <~ (log(Aqy) — Bx)'=" (log(Aqy) — Z’X)>

w(w,0,€) o J

2
(14)

where J is the Jacobian of the transformation of (Agry,
Agr, Aqrs)toward (i, o, £). The expression of Jis derived
by Stephenson and Ribatet (evdbayes user’s guide, 2006):

% (—l)iﬁ(x,-xj)vglog(ﬁ) si £>0
J- £ ije{l 23} i<j Xi
z (= 1) log(x;) log(xj) log <ﬁ> si £=0
ije(123Yi<j X

(15)
where x; = —log (1 — p)).

[32] For the comparison with the empirical Bayesian
estimator, E(¢%) and Var(gh) are also estimated from the
solutions of the following equation:

log(q5;) = xBY + =¥ (16)
The bias introduced by the logarithmic transformation in
(16) is also corrected:

g% ~ N (5 exp (x8Y) + b, 0F) (17)
where b} and b? are the relative and absolute biases, and o5
the quantile estimation variance. The relative and absolute
biases are estimated by ordinary least squares using observed
values of g5 and those simulated with equation (16).

3.3.

[33] Inference on parameters and quantiles was carried out
with the Metropolis-Hasting algorithm following Stephenson
and Ribatet (evdbayes user’s guide, 2006). The goal of the
Metropolis-Hastings algorithm is to construct a Markov
chain for which the equilibrium distribution is the posterior
defined in (3). The generic Metropolis-Hasting algorithm can
be written as follows.

Inference on Parameters and Quantiles
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data set, (b) second generated data set, and (c) third generated data set.

Table 2. RMSE, Bias, and Standard Deviation of the Estimators of

W11408

First Generated Data Set

Second Generated Data Set

Third Generated Data Set

I M Md Mo L M Md Mo L M Md Mo L
RMSE 5 17.86  17.45° 18.76 25.81 34.51 33.50° 37.40 42.27 35.35 37.36 2593 14.92*
RMSE 10 1441 14.38° 15.96 19.15 23.04 23.00* 24.30 26.03 17.90 17.38 17.91 10.01°
RMSE 20 1121 u21® 12.29 13.96 15.61* 15.66 16.90 16.85 10.96 10.81 11.07 7.05¢
RMSE 40 7.33 7.33% 8.32 8.84 9.25° 9.25 10.05 9.82 6.35 6.29 6.30 4.82"
RMSE 60 6.22° 6.23 7.10 7.05 7.84 7.89 8.87 7.74° 4.84 4.80 5.06 4.16*
RMSE 80 5.52 5.49° 6.17 6.12 6.35 6.32° 7.12 6.54 3.90 3.86 4.29 3.64"
Bias 5 0.107* 0671 1.074 2.891 -0.071 2315 2.524 7.528  18.180 17.837 17.421 0.579*
Bias 10 0.694*  0.901 1.488 1.835 1.265° 1.402 1.294 3336 12.027 11.783  11.292 0.487%
Bias 20 0632  0.729 1.023 0.945 0.472 0.419* 0.551 1.375 6.829 6.723 6.431 0.189"
Bias 40 0.183"  0.201 0.323 0.188  -0.056* --0.084 0265 0.522 3.585 3.521 3.259 0.003*
Bias 60 0.050  0.046 —0.116 0.034° 0348 0386 —0.543 0.022° 2303 2.260 2,189 —0.078*
Bias 80 0.020 0.021 —0.047  0.003" —-0.032* -0.047 0365 0.240 1.594 1.564 1.508  —0.172°
Standard deviation 3 17.86  17.44° 18.73 25.65 34.51 33.42° 37.31 41.59 30.32 32.83 19.20 14.91*
Standard deviation 10 1439  14.35° 15.90 19.06 23.00 22.96* 24.27 25.81 13.26 12.77 13.90 10.00°
Standard deviation 26 11.20  11.19* 12.25 13.93 15.60° 15.66 16.90 16.79 8.57 8.47 9.01 7.05%
Standard deviation 40 7.33 7.32° 8.31 8.83 9.25° 9.25 10.05 9.80 525 5.21 539 4.82°
Standard deviation 60  6.22° 6.23 7.09 7.05 7.83 7.88 8.85 7.74* 4.25 4.24 4.56 4.16*
Standard deviation 80 5.52 5.49* 6.17 6.12 6.35 6.32" 7.11 6.54 3.56 3.53" 4.02 3.64

*Smallest value for a given data set and a given length of the local data series.
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Table 3. RMSE, Bias, and Standard Deviation of the Estimators of
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W11408

a

First Generated Data Set

Second Generated Data Set

Third Generated Data Set

1 M Md Mo L M Md Mo L M Md Mo L
RMSE 5 8.58 8.26 9.87 2343 26.21 25.21% 30.08 30.00 49.79  56.73 17.59 12.49*
RMSE 10 721 7.09* 8.18 15.89 16.35° 16.62 18.55 17.92 13.89 12.73 12.92 7.50°
RMSE 20 636 6.30" 7.12 10.74 11.86 12.09 13.16 11.84% 8.91 8.39 8.59 5.06"
RMSE 40 517 5.13" 5.55 7.54 8.01 7.99* 9.85 8.57 5.39 5.15 5.29 3.59°
RMSE 60 4.51 4.50" 5.12 5.92 6.01 5.92* 6.73 6.53 4.02 3.87 393 295"
RMSE 80  4.03 4.02* 4.58 5.02 5.04 5.02* 5.77 5.46 3.34 3.23 3.50 2.64°
Bias 5 0859 -0.001* -0.156 —1.837 1.634*  -3.089 —6712 2185 15090 14.079 11.899 ~1.648"
Bias 16 0546 —0.015* -0255 -0.534 -0.566" —2.383 —4.056 —1.682 9.840 9.032 8.696 —0.081"
Bias 200 0381 —0.028" -0358 -0.36 -0.622* -1.505 —1.982 -—1.256 6.033 5610 5364 —0.146"
Bias 40 0286  0.018 ~0.247  0.005* 0.190 -0.225 -0.152  0.051* 3372 3150 3010 -0.091*
Bias 60 0.178 -0.031 -0.120 0.012° -0.033" -0331 -0470 —0.121 2284 2.134 1.920  -0.064*
Bias 80 0.073 —0.085 0223 -0.049° -0.015" -0232 —0.148 —0.105 1.797 1.686 1.632 0.020*
Standard deviation S 8.53 8.26" 9.86 23.35 26.16 25.02% 29.32 29.92 4745  54.95 12.96 12.39*
Standard deviation 10 7.19 7.09* 8.18 15.88 16.34 16.45 18.10 17.84 9.80 8.97 9.55 7.50*
Standard deviation 20  6.35 6.30" 7.1 10.74 11.84 12.00 13.01 11.78* 6.56 6.24 6.71 5.05*
Standard deviation 40  5.16 5.13* 5.55 7.54 8.01 7.99¢ 9.85 8.57 4.20 4.07 435 3.59°
Standard deviation 60  4.51 4.50* 5.12 592 6.01 5.91*® 6.71 6.53 331 3.23 343 2.95°
Standard deviation 80  4.03 4.02° 4.57 5.02 5.04 5.02* 5.77 5.46 2.81 2.76 3.09 2.64°

"Smallest value for a given data set and a given length of the local data series.

1. Start with some initial parameter value 8, and set i
to zero.

2. Given the parameter vector 6;, draw a candidate value
8.1 from some proposal distribution.

3. Compute the ratio R of the posterior density at the
candidate and initial points, R = P(0.(|x)/P(0,]x).

4. With probability min(R, 1), accept the candidate
parameter vector, else set 6, = 8.

5. Seti=i+ 1 and return to step 2.

[34] Many versions of this algorithm have been proposed
depending on the proposal distribution and the order in which
the parameters are updated. In this study, the three parameters
of the GEV distribution are updated successively with normal
proposal distributions for u, log (o) and £ as proposed by
Stephenson and Ribatet (edvbayes user’s guide, 2006). The
steps to generate the parameters at step i + 1 (i.e g; 4 1, 07+ and
&+ 1) given w0, and &; are the following.

1. Propose p* ~ N(u; o, ) where N represents the
normal distribution.

= Pp'a1.8ix)
2. Set A =50

3. Set pp = p* with probability min {1, A}, else set
Hivy = e

4. Propose o* ~ LN(o;, 0,) where LN represents the
lognormal distribution.

= Plyyot §ix)
3. Set & = PG e
6. Set g,y = o* with probability min {1,A}, else set
Tivy = O

7. Propose £ ~ N, 7).
8. Set A = Dlmané’lx)

Pl ,&ilx)
9. Set &1 = &* with probability min {1, A}, else set
it = &

[35] The variance parameters o, o, and o of the proposal
distributions are tuned using a trial-error method to improve
convergence speed and acceptance rates. The Geweke [1992]
test was chosen to assess the convergence of the MCMC chain
because of its ease of interpretation. It is based on a test of

equality of the means of the first part and the last part of a
Markov chain.

4. Validation Methodology

[36] Simulation is an attractive way to validate the
proposed methodology of combination of local and
regional information. However, generating regional data
is not a trivial task. It involves reproducing (1) at-site
frequency distributions, (2) the relation between at-site
flood features and explanatory physiographical and me-
teorological variables, (3) the dependence between the
various explanatory variables at a given site, (4) the
relation between explanatory variables at different sites,
and (5) the regional heterogeneity characteristics. Unfor-
tunately, most of these aspects are still not well under-
stood, and even if they were, it would be hard to
generate data sets which respect all the above mentioned
constraints. Nevertheless, a simulation study was per-
formed in which an effort was made to preserve as
much as possible of the elements mentioned above. This
simulation study was performed in four steps: (1) define
the data structures to be generated, (2) set up a gener-
ation procedure which respects the maximum of above
mentioned constraints, (3) generate the data sets, and
(4) evaluate the studied parameters and quantile estima-
tion methods on the data sets. All these steps will be
described in detail in the following sections.

[37] Itis obvious that the performance of the combination
method will be influenced by the size of local data series as
well as the bias and precision of the regional model.
Another intuitive factor is the number of stations within
the region, but its effects are not direct: it plays a role
through its linkage with the bias and precision of the
regional model. For this reason, several cases were consid-
ered in the validation study, corresponding to different
values of the bias and precision of the regional model.
For each of these cases, the performance of the studied
combination methodology were assessed for different
lengths of the local data series. The data structure for each

11 of 21



Ww11408

Third Generated Data Set

Second Generated Data Set

First Generated Data Set

Table 4. RMSE, Bias, and Standard Deviation of the Estimators of £

Mo

Md

Mo

Md

Mo

Md

M

52.60E-2
28.71E-2
18.62E-2
12.33E-2
9.77E-2
8.33E-2
—8.73E-02
—3.80E-02
—59.28E-04"
21.59E-04*
—1.33E-04*
—3.75E-04"
51.87E-2
28.46E-2

7.63E-2°
3.97E-2
2.75E-2
2.94E-2
2.82E-2
2.85E-2
12.27E-04
89.57E-04

8.44E-2
3.71E-2
2.42E-2
2.55E-2
2.55E-2
2.51E-2
—8.45E-04*

7.82E-2
3.68E-2°
2.39E-2°
2.52E-2°
2.52E-2*
2.48E-2°
—11.77E-04
71.20E-04°
1.38E-02
1.77E-02
1.87E-02
1.90E-02

53.17E-2
30.29E-2
19.58E-2
13.56E-2
10.73E-2
9.06E-2
—13.05E-02
—4.68E-02
—2.62E-02
—2.19E-02
—1.35E-02
—1.02E-02

9.63E-2
7.81E-2
7.06E-2
6.54E-2
5.79E-2
5.55E-2
1.66E-02
1.41E-02
1.17E-02
76.29E-04

8.54E-2°
6.98E-2
6.28E-2
5.76E-2
5.39E-2
4.95E-2
70.26E-04

B.66L-2
6.96E-2*
6.27E-2°
5.75E-2°
5.38E-2"
4.94E-2°

33.48E-04"
64.55E-04°

54,78E-2
29.33E-2
17.54E-2
11.97E-2
9.56E-2
8.20E-2
—11.53E-02
—4.,63E-02
—-1.73E-02
—92.39E-04
-77.59E-04
—36.89E-04
53.55E-2
28.96E-2

3.31E-2
3.02E-2
2.94E-2
2.76E-2
2.60E-2
2.62E-2
—11.50E-04*
34.36E-06*

2.90E-2*
2.69E-2
2.56E-2
2.37E-2°
2.30E-2*
2.27E-2°
-14.63E-04
—10.22E-04
—9.81E-04
—9.16E-04
—11.23E-04
—9.88E-04

291E-2
2.68E-2°
2.56E-2*
2.27E-2
~22.18E-04
—16.63E-04
—14.35E-04
—12.21E-04
—14.21E-04
—12.23E-04

2.37E-2
2.30E-2

5
10
20
40
60
80

5
10
20
40

RMSE
RMSE
RMSE
RMSE
RMSE
Bias
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78.75E-04

86.15E-04
91.22E-04
58.58E-04

Bias

1.48E-02
1.87E-02
1.93E-02
2.08E-02
7.62E-2°

1.42E-02
1.80E-02
1.90E-02
1.93E-02

8.44E-2

73.31E-04"
49.99E-04*

6.04E-04*
—5.04E-06*
—3.27E-04*
—4.65E-04>

Bias

Bias

59.411-04
60.27E-04

56.00E-04

52.45E-04*

60

Bias

53.23E-04

53.12E-04°

80

Bias

7.82E-2
3.61E-2*

51.54E-2
29.92E-2

9.49E-2

8.51E-2°
6.92E-2°

8.65E-2

2.89E-2° 3.31E-2

2.90E-2

5
10
20
40

on
on
on
on
on
on

3.87E-2

3.62E-2

7.68E-2

6.93E-2

2.68E-2 3.02E-2

2.56E-2

2.67E-2*

18.61E-2
12.33E-2
9.77E-2

231E-2
2.26E-2

1.96E-2

1.95E-2%
1.80E-2*
1.68E-2"
1.60E-2*

19.40E-2
13.39E-2
10.64E-2
9.00E-2

17.45E-2 6.22E-2 6.21E-2* 6.96E-2
5.73E-2%

11.93E-2
9.53E-2

2.94E-2

2.55E-2%
2.37E-2°

1.81E-2
1.69E-2

6.49E-2

5.73E-2

2.76E-2

2.37E-2

Standard deviat

Standard deviat

Standard deviat;

Standard deviat:

2.06E-2

5.76E-2
5.51E-2

5.36E-2

4.92E-2

5.35E-2°

2.60E-2

2.30E-2*
2.27E-2*

2.30E-2

60
80

Standard deviati

1.94E-2 8.33E-2

1.61E-2

4.91E-2°

8.19E-2

2.62E-2

2.27E-2

Standard deviati

*Smallest value for a given data set and a given length of the local data series.

W11408

of these cases is what we call a ‘regional data set’ and is
described in section 4.1. The parameters used to generate
cach data set are provided in section 5.2.

4.1. Structure of a Regional Data Set

[38] The data structure for each case has three levels
corresponding to (1) the station level, (2) the hydrological
region level, and (3) the regional data set level which is a
collection of regions on which the studied methods will be
evaluated by Monte Carlo simulation. The lowest level
corresponds to the hydrological station scale. Each gener-
ated element at this level is represented by a set of
physiographical variables and a variable length observation
record. The generated elements at the second level represent
hydrological regions and are collections of stations among
which one is designated as the target station. The length of
the generated record at each station is randomly selected
between 15 and 70, except at the target site where 80-years
series are generated. At the third level, several regions are
generated using the same bias and the same variance
covariance matrix of the regional model.

4.2. Generation Procedure

[39] The procedure consists essentially in generating a
triplet(gz, ¢, g73) of ‘real” quantiles at each site, and then
using them to compute the GEV parameters using the
procedure described in Appendix A. This procedure takes
advantage of the fact that, in the specific case of the GEV
distribution, given the triplet of return periods (73,75,73),
there is a bijection between the triplet of parameters (i, 7, &)
and the triplet of quantiles (g7, g2, g73);At non target sites,
the quantiles (g1, g7, gr3) are generated using the following
equation:

log(gr1)
log(gr2)
log(grs)

log(qr) = = MVN(Bx, %) (18)

At target sites, (g7, 972, g73) are generated following:

tog(gr1)
log(gr2)
log(qgrs)

- = MVN({(1 + b,)Bx,3) (19)

log(qr)

where b, is a bias parameter that ensures that the log linear
regional model would be biased if used to estimate quantiles
at the target station. The reason for introducing b, is that the
regional model is always biased to some extent at the target
site, since it is fitted with data from other sites. In a truly
homogeneous region, the bias is null. In practice, there is
always some moderate heterogeneity in hydrological
regions and b, was introduced to represent real life
cases. The magnitude of the elements of ¥ control the
quality of the precision model: the lower the elements on
the diagonal of ¥ , the more precise the regional model
would be. Note that in equation (19), the relative bias
introduced through b, affects all three quantiles, i.e if the
regional model overestimates g5 then it will overestimate
g2 and gp in the same proportions. It seems reasonable
that the relative errors of the regional model for the three
quantiles would be the same. This constraint has an
important implication: it preserves the ratios of quantile
differences, thus the shape parameter (see Appendix A).

[40] To ensure that the simulations reproduce the com-
plex relationships in the data set, we opted to use real
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Figure 9. RMSE of the estimators of gy, according to the length of local data series: (a) first generated
data set, (b) second generated data set, and (c) third generated data set.

field data for the vector x of explanatory variables in
equation (18). The field data should come from a known
hydrological region, each column of x representing a station
inside that region. The vector of regression parameters 3 is
computed from the same data set. The variance covariance
matrix is computed using the following equation:

1 rrir2 YTILT
rTiT2 1 rra_rs
TS KT 1

T =a (20)

In equation (20), « is a parameter that allows to tune the
quality of the regional regression and rp 77 is the
correlation coefficient between regional estimates of ggy
and g7; from the field data.

[41] Even tough the same vector x is used for each
generated region and the same vector 3 is used for each
generated region, the ‘true’ quantiles and parameters are
different since the quantiles (and thus the parameters) are
linked to the realizations of a random process (equations (18)
and (19)). Each generated region is thus different from the
others. Once x and 3 are obtained, the simulation study
proceeds using the following algorithm.

1. Choose the number M of regions to generate (the
number of stations in a region is given by the number of
rows of x, plus one).

2. Choose the values of « and b, to set the characteristics
of the regional model.

3. For each i € {1, ., M}, generate the ith region
following these steps.

3a. Choose a target station ¢ € {I, .., n}.

3b. Foreachk € {1, ..t — 1, t+ 1, .., n} generate
(971, 972, g73) at the kth station using equation (18).

3c. Generate (g1, 472, q73) at the kth station using
equation (19).

3d. For each k € {1, .., n}, compute the ‘true’
parameters iy, oy and & using the procedure given in
Appendix A.

3e.Foreachk e {1,..t— 1,¢t+1, ., n} pick a random
number / between 15 and 70 and generate a /-year GEV
sample using the simulated parameters uy, o and &.

3f. Generate an 80-year GEV sample at the target
site using py, of and &,

4, For each [/ € {5,10,20,40,80}, consider [ first
generated values at the target sites as the recorded stream
flows. Apply the different parameters and quantile
estimation methods presented in this paper. To the regional
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Figure 10. RMSE of the estimators of g o0 according to the length of local data series: (a) first
generated data set, (b) second generated data set, and (c) third generated data set.

data sets, and compute the performance criteria as function
of I.

4.3. Performance Measures

[42] The mode (Mo), the median (Md) and the mean (M)
of the posterior probability distribution of quantiles and
parameters obtained by the parametric Bayesian method
will be used as punctual estimators, along with the empirical
Bayesian estimator (EB), the regional estimator (R) and the
local estimator (L). The performance of these five estimators
will be assessed using the standard deviation (s), the bias (b)
and the root-mean-square error (RMSE) defined by

Lo NG
5= (H—XZ(@—MM")) >

i=1

(21)

(22)

(23)

where n, represents the number of samples, @ the real value
of the variable (quantile or parameter), 8; its ith estimation

n ~
and pp = ;1— 3~ 6, the mean of the estimations. We shall also
T i=1

i=
check whether the parameters 1, o and £ obtained with the
complete Bayesian method are closer to the ‘real’” parameters
than those estimated with the short series of data.

5. Application

[43] As mentioned in section 4.2, a real data set was
required to extract realistic physiographical variables and
compute reliable parameters for equations (18) and (19).
The application consisted in selecting a hydrologic region,
extracting physiographical variables, generating the remain-
ing characteristics and then applying successively all the
studied parameter and quantile estimation methodologies.

5.1. Field Data

[44] The data was extracted from a database of 168
hydrological stations provided by the Quebec Ministry of
the Environment (Province of Quebec, Canada) and for
which the following physiographic and meteorological var-
iables were available: the catchment area, the percentage of
the area covered by lakes, the mean slope of the catchment,
the mean annual precipitation and the average annual accu-
mulation of degree-days below zero.
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[45] As the province of Quebec is commonly divided into
thirteen hydrographic regions (Figure 1), a natural choice
was the hydrographic region which contains the largest
number of stations among those listed in the above men-
tioned database. Hydrographic region 05 was hence selected
with 32 stations. These stations are illustrated in Figure 1,
and their characteristics are listed in Table 1.

5.2. Characteristics of the Generated Regional Data
Sets

[46] Three regional data sets corresponding to different
characteristics of the log linear regional relationship
were generated. Each regional data set contains
1000 regions (M = 1000). The number of station in a
given region is the same as in the Quebec 05 hydrographic
region, from which the physiographic data is borrowed. The
first data set is generated using an unbiased linear relation-
ship between the explanatory variables and the logarithm of
the quantiles (b, = 0), and a very low variance of the error
component (@ = 0.10). The second data set also uses an
unbiased linear relationship between the explanatory vari-
ables and the logarithm of the quantiles, but with a larger
variance (o = 0.50). The third data set is similar to the first

one, but a bias term is introduced at target sites (b, = 100%).
To provide an idea of the range of values that have been
generated the local estimations of 4, ¢ and & as well as
the regional estimations of ¢r, ¢ and ¢35 were
computed at the target site in each region and in each
regional data set. The histograms of the relative error of
the regional estimation of gp, { = 1, .., 3 are given in
Figures 2a, 2b, and 2c for the first generated data set.
The histograms of the local estimations of x, o and £ are
also provided in Figures 2d, 2e, and 2f Similar
histograms are provided for the second and third regional
data sets are provided in Figures 3 and 4, respectively.
Note that none of these histograms represent a normal
distribution because of the logarithmic transformation in
equations (18) and (19).

[47] The two values of a (0.1 and 0.5) are consistent with
observed values of the regional model error variance in
Quebec hydrographic regions. For instance, the regional
model error variance for the region 05 of Quebec was
0.0584 for q;q, 0.0814 for q o0 and 0.1108 for q;q0. If we
consider the set of all the hydrographic regions, the regional
model error variance ranges from 0.0176 to 0.0951 for qq,
from 0.0361 to 0.1231 for qg0, and from 0.0534 to 0.2368
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the third generated data set (Tables 2 and 3 and Figures 6¢
and 7c).

6.2. Effects on Quantile Estimation

[53] The RMSE of the M, Md and Mo quantile estimators
are compared in Figures 9 through 11 to the RMSE of the
local, empirical Bayes and regional estimators for the three
regional data sets. The RMSE, bias and standard deviations
of these estimators are presented in Tables 5-7.

[s4] Figure 9 and Table 5 show that overall, the best
estimator (in terms of RMSE and standard deviation) for ¢;¢
on the first generated data set is Md, closely followed by M
and Mo. Next comes EB, and then R or L depending of the
length of the local data series. R is the worst estimator when
the length of the local data series is larger than 10, but it is
better than L when /= 5 and / = 10. Depending on [, M or
Md take the first place when estimating g4 on the second
generated data set, followed by L, EB and R. The
improvement due to the use of the parametric Bayesian
method instead of the local estimation method is smaller
than in the case of the first generated data set. Finally, the L
estimator turns to be the best with regard to all performance
measures on the third data set.

[s5] Similar conclusions can be drawn for the estimation
of quantile g, (Figure 10 and Table 6). The ranking of the
different estimators remains the same but the parametric
Bayesian approach scems to be more competitive than in the
case of ¢o. The improvement over L is larger (Figure 9b
versus Figure 10b) for the second data set, and L hardly
beats M, Mo and Md when estimating ¢,o, on the third
generated data set (Figure 10c). The parametric Bayesian
estimators become the bests for all data set when used to
estimate ¢9g0 (Figure 10 and Table 6). Results indicate that
the proposed method becomes more and more efficient as
the return period increases. This property makes it very
attractive for design purposes where high return period
quantiles are of interest.

[s6] The reason for which the proposed approach performs
better than the EB approach is that the latter does not account
for the distribution of the local data series. EB makes the
simplifying and often unverified assumption that the proba-
bility distributions of both regional and local quantile esti-
mators are normal, which is not the case. This is true neither
for the regional model (only the logarithm of the quantile is
normal), nor for the local quantile estimator. The parametric
Bayesian estimator does not make such limiting assumptions
and the fact if leads to better result it is not surprising.

6.3. Effect of Longer Local Data Series

[57] Itcan be seen in Figures 6—11 as well as in Tables 2—
7 that when the length of the local data series increases, the
RMSE and the standard deviation of all quantile estimators
but the regional one decrease. The bias decreases almost
consistently, although a few cases arose were the bias
increased. For instance, the reduction of the RMSE of
quantile estimators on all data sets ranges from 29% to
41% for the local estimator (mean reduction: 34%), from
6% to 41% for the empirical Bayes estimator (mean
reduction: 20%), and from 13% to 40% for the parametric
Bayesian cstimators (mean reduction: 19%) when the length
of data series increases from 20 to 40 years.

[s8] The reduction of RMSE due to the proposed Bayesian
combination method is compared in Table 8 to the reduction
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Table 7. RMSE, Bias, and Standard Deviation of the Estimators of ¢4

Second Generated Data Set Third Generated Data Set

First Generated Data Set

EB

Mo

Md

M

EB

Mo

Md

M

EB

Md Mo

M

12265 769.44 25818 23042 15471 14659 137.67" 52648 281.60 232.76
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*Smallest value for a given data set and a given length of the local data series.
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of RMSE due to the use of the 40-year data series instead of
the 20-year data series. It can be seen that, for the first data set,
the use of the Md quantile estimator always leads to a higher
average reduction of the RMSE than the use of the 40-year
data series instead of the 20-year data series. The same
conclusion can be drawn for the second data set, but only
for g0 and ¢je00- An interesting remark is that the
parametric Bayesian method is helpful when estimating
G1000 on the third data set, but not as much as doubling the
length of the local data series. It means that the Bayesian
method for combining at-site and regional information
cannot and should not be considered as a substitute to a
sustained intensive hydrological monitoring program. Quite
the opposite: the application of the proposed Bayesian
information combination method is only possible because of
the availability of a reasonably good and dense regional
network of stations with a good record of information. In
fact, this result points out the importance of maintaining a
good hydrometeorological network, as the available record
can be used not only for at site frequency analysis but also
for the estimation at other sites, even ungauged or shortly
gauged ones.

6.4. Sensitivity to Regional Information

[59] As pointed out in section 6.1, the ability of the
proposed methodology to correctly estimate the location
and scale parameter decreases when a nonnull relative bias is
introduced in the regional model. This relative bias does
not seem to affect its ability to correctly estimate the shape
parameter. The reason for this is that the relative bias
introduced through b, affects all three quantiles in the same
proportions. It is shown in Appendix A that the shape
parameter is function of a ratio of quantile differences and
thus should not be affected by b,. Whether this constraint in
the generation scheme is reasonable or not is a matter of
judgment. The authors” experience has shown that when
using the log linear regional regression model, quantiles of
different return periods tend to be biased in the same
direction (downward or upward) and the magnitude of their
biases are comparable.

[s6] A sirnple sensitivity analysis of the method to differ-
ences in the relative biases for different return periods was
performed. Equation (19) was slightly modified to affect
different relatives biases (b,1, b,2, b,3) in the regional model
of quantiles (¢71, g7, qr3). For illustration purposes, we
considered b, = b,, = 0 and allowed b,; to vary form 0 to 1
with increments of 0.1; For each value of (b, b,2, b,3), 2
regional data set was generated following the procedure
described in section 4 and the following quantities were
computed: (1) the mean difference Ap between location
parameter at target sites and location parameter at nontarget
sites, (2) the mean difference Ao between scale parameter
at target sites and scale parameter at nontarget sites, (3) the
mean difference A& between shape parameter at target sites
and shape parameter at nontarget sites, and (4) estimations
of ¢10, qro0 and gieo using the Md estimator. Ay is
computed as follows:

[#-

M
] 4

>

i=l

?M ) xMU &v (24)

J=h j#
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Table 8. Percentage of Reduction of RMSE due to the Change in the Length of Data Series (From 20 years to 40 years) or the

Application of Bayesian Combination Methods

First Generated Data Set

Second Generated Data Set

Third Generated Data Set

M Md Mo st M Md Mo s* M Md Mo st
Q10 3923%  39.58% 36.38% 29.34%  8.94% 8.35% 401%  34.09% -113.57% -105.95% -97.15% 29.81%
Q100 67.06% 67.26%  64.93%  29.72% 53.47%  53.06% 47.79% 4121%  -25.57% -20.96%  —15.73% 33.37%
Q1000  81.03%  81.26% 80.50% 3573% 71.01% 71.31% 66.50% 38.48% 29.53% 32.22% 35.59% 39.42%

S = Switching from [ = 20 to [ = 40.

Ac and A€ are computed using the same procedure. Given
a regional data set, Ay, Ag and A& are measures of how
the parameters at target sites differ from the parameters in
their respective regions.

[61] The results are plotted in Figure 12 and allow to
draw the following conclusions.

[62] 1. As expected, regional heterogeneity increases
as b,3 becomes very different from b, and b,, (i.e., Ay,

80

Ao and A€ become significantly different from zero). Ap
and A increase, while Ao decrease.

[63] 2. As b,3 (and thus regional heterogeneity) increases,
the RMSE of the Md estimator of ¢q00 increases, which
means that the proposed method becomes less efficient for
this particular quantile. The RMSE of the estimator of g,
and g19¢ do not seem to be affected. The best performance
corresponds to b, = b, = b,3 = 0.

60
13 40
20

8
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br3
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Figure 12. Sensibility analysis of the statistical parameters of the generated samples and the
performances of the proposed methodology to the bias parameter b, ( by = b2 =0 ): () A, (b) Ag,

© A¢,

and (d) RMSE of the Md estimator of g0, g100, and g;o00-
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[64] Indeed, this sensitivity analysis does not cover all the
range of possible configurations of b,,, b,,, b,3, and further
investigation is desirable. However, the results strongly
suggest that the methodology may be counterproductive at
sites that are very different from the regional mean. This
potential problem should be circumvented by a careful
choice of the neighborhood delineation method.

6.5. Generalization to Other Extreme Value
Distributions

fss] In the specification of the prior, only the Jacobian J
(equation (15)) depends of the distribution. Thus its
application to other extreme value distributions is straight-
forward if an expression of J can be derived for the new
distribution. The MCMC algorithm will also need to be
adapted to the target distribution. Other analytical expres-
sions for Agp may also be used provided that the
expression of J does not take null values in the parameter
space.

7. Conclusions

[66] A parametric Bayesian methodology to combine local
and regional information in order to improve the estimation
of flood quantiles is presented. The methodology is validated
on three simulated data sets representing different levels of
regional homogeneity. In this method, the prior information
is specified using multiple regression on quantiles and
quantile differences. The developments are made with the
generalized extreme value distribution but guidelines are
provided for its extension to other distributions. The pro-
posed method relaxes the assumption of the local quantile
probability distribution and can be applied to very short data
series. It stabilizes the estimation of the GEV shape parameter
and improves significantly the estimation of the parameters
and the quantiles when relatively short series are used. The
method was shown to be superior in terms of RMSE to the
local and regional estimators, and to the empirical Bayesian
estimator used by Kuczera [1982]. On two out of the three
simulated data sets, it was shown that the improvement
in quantile estimation due to the use of the parametric
Bayesian approach is at least equivalent to that obtained
with the use of at-site series that are twice as long. The
method presented in this paper is thus a promising
approach for the estimation of quantiles at sites with
short to medium length flood records.

Appendix A: Computation of u, o, and & From
4715 A12 and qn

[67] These equations allow to compute 4, o, and £ given
Agry, Agry and Agpy. From equations (8) and (9) we have

Mgry _grs—qn (=18l = ps))“~(=log(1 ~p1)) ¥)

Anar=ar ((log(1 — pa)) ~(~log(l - p1)) )
= g7, 12, T3)

(A1)
If g is 2 monotonic function of £, g™" exists and we have:

€ =g Y qri.qr2, 43|71, T2, T3) (A2)
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a

£
=g + (~log(l - p1)) EE

_ &7 ar,qr,gnlTh, T, T (grs — qn)
(= tog(1 = pa)) ™~ (= log(1 —p1))¢)

(A3)

(A4)

A simple plot of g versus £ allows to confirm that g is
monotonic for 7y = 10, T, = 100 and 73 = 1000.

Notation

2w »

]l
Q

b,

b, (resp. b,y, b3)
Ax
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parameters that allows to tune the
precision of the regional model.

matrix of regression coefficients.

ith row of 3.

mean difference between location
parameter at target sites and location
parameter at nontarget sites.

mean difference between scale
parameter at target sites and location
parameter at nontarget sites.

mean difference between shape
parameter at target sites and shape
parameter at nontarget sites.

common bias parameter for
q11; 9125 473-

bias parameter for g (resp. g, g13)-

value of the kth physiographic or
meteorological variable at the site
of interest.

empirical Bayes estimator.

likelihood of the observations.

local estimator.

mean of the quantile or parameter
posterior probability density.

median of the quantile or parameter
posterior probability density.

mode of the quantile or parameter
posterior probability deusity.

location parameter of the GEV
distribution.

sample size.

number of samples.

exceedance probability.

prior probability density of the
parameters.

posterior probability density of the
parameters given the data.

T-year flood.

T,-year flood.

difference between the Ti-year flood
and the T;_-year flood.

local estimation of the T-year flood.

regional estimation of the T-year
flood.

regional estimator.

variance-covariance matrix.

standard deviation of the local
estimation of the T-year flood.
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or standard deviation of the regional
estimation of the T-year flood.

return period.

parameters vector.

ith estimation of the parameters vector.

vector of observed data.

shape parameter of the GEV
distribution.
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