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[1] The impact of input errors in the calibration of watershed models is a recurrent theme
in the water science literature. It is now acknowledged that hydrological models are
sensitive to errors in the measures of precipitation and that those errors bias the model
parameters estimated via the standard least squares (SLS) approach. This paper presents a
Bayesian uncertainty framework allowing one to account for input, output, and structural
(model) uncertainties in the calibration of a model. Using this framework, we study
the impact of input uncertainty on the parameters of the hydrological model ‘‘abc.’’
Mostly of academic interest, the ‘‘abc’’ model has a response linear to its input, allowing
the closed form integration of nuisance variables under proper assumptions. Using those
analytical solutions to compute the posterior density of the model parameters, some
interesting observations can be made about their sensitivity to input errors. We provide an
explanation for the bias identified in the SLS approach and show that in the input error
context the prior on the input ‘‘true’’ value has a significant influence on the parameters’
posterior density. Overall, the parameters obtained from the Bayesian method are more
accurate, and the uncertainty over them is more realistic than with SLS. This method,
however, is specific to linear models, while most hydrological models display strong
nonlinearities. Further research is thus needed to demonstrate the applicability of the
uncertainty framework to commonly used hydrological models.
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1. Introduction

[2] Gupta et al. [2003] identify two important issues that
need to be addressed in order to improve the calibration of
hydrological models: accounting for all sources of uncer-
tainty (input, state, structural, parameter and output uncer-
tainties), and basing model calibration on multiple
noncommensurable measures of model performance. This
article tackles the first issue using Bayesian analysis. We
propose a theoretical framework in which all sources of
uncertainty are accounted for. Using this framework ensures
that the calibration of the model and its predictions remain
coherent despite the underlying uncertainties. This article
does not, however, present a general algorithm to use this
framework. Indeed, the resolution method we use is tailor-
made for the chosen application and would be inadequate
for the vast majority of hydrological models. It allows,
however, a deeper look into the obstacles that any such
algorithm will have to face.
[3] Section 2 introduces the backbone of the method, the

Bayesian uncertainty framework. We discuss the different
sources of uncertainties occurring in hydrological models
and describe how they fit into this framework. The standard
Bayesian approach to calibration is then presented, and we

show how it can be modified to take various sources of
uncertainties into account. Familiarity of the reader with
Bayesian analysis is assumed. Note that although input,
output, model and state uncertainties can be treated in the
proposed framework, the paper focuses on input uncertainty.
[4] Section 3 applies the method to the seminal problem

of fitting a straight line to a data set. This topic has been
discussed extensively and provides a computationally sim-
ple benchmark for our method. Importantly, it allows a
simple and intuitive interpretation of the issues related to
input uncertainties.
[5] Section 4 details the application of the uncertainty

framework to ‘‘abc,’’ a pedagogical hydrological model.
Chosen for its analytical properties, ‘‘abc’’ is linear with
respect to its input, while exhibiting a behavior similar to
that of more complex hydrological models. Section 5
proceeds with the calibration of the ‘‘abc’’ model in
different settings using numerical simulations. The analysis
of these results relies in part on those from the straight line
model. Section 6 summarizes the most interesting observa-
tions about the treatment of input errors. Finally, section 7
discusses the simplifications made in the paper and the
issues that will have to be tackled in the future.

2. Calibration, Uncertainties, and Bayesian
Analysis

[6] In order to use any model, whether it describes
physical, biological or hydrological processes, its parame-
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ters must be specified. Indeed, models almost always rely
on some set of parameters, allowing the user to tune themodel
to a particular setting. Ultimately, the objective is to find the
‘‘best’’ set of parameters. What best means is quite subjective
and relative to the situation, andwe use it heremeaning the set
of parameters leading to the most accurate predictions possi-
ble given the data at hand. Uncertainties in the estimation of
parameters arise from data errors and modeling errors. Note
the distinction between an error, a difference between true
values andmeasurements, and the uncertainty, the incomplete
state of knowledge about the true values.

2.1. Challenge of Calibration

[7] The estimation of a model’s parameters, the calibra-
tion, goes from deceptively simple to highly complex
depending on the problem at hand and the user’s require-
ments. A typical calibration involves two broad steps:
defining a function measuring the agreement of model
output with the data, and finding the parameters that
maximize this function. In most applications, the agreement
is described by e�S, with S �

P
(yi � ~yi)

2, the sum of the
squared differences between model output and measure-
ments. Since in the common usage we are only interested in
the best fitting parameters, the extreme value of the func-
tion, there is no harm in taking the logarithm and minimiz-
ing S instead of maximizing the exponential. This approach
is called the standard least squares (SLS) approach, and has
been applied with success over the years. There are other
measures of agreement, a review of some used in hydrology
is given by Gupta et al. [1998]. The second step, finding the
maximum of the function, is relatively easy in one dimen-
sion, but can become a daunting task for high-dimensional
cases due to the presence of local maxima. Novel algo-
rithms exploit stochastic methods to explore the parameter
space while avoiding staying trapped into local maxima.
While there is no guarantee that the global maximum is
found, Vrugt et al. [2003] report reliable results using an
efficient Markov chain Monte Carlo sampler.
[8] In general, the SLS approach provides sound esti-

mates as long as the input data is precisely known. How-
ever, if significant input errors are present and if the model
is sensitive to those errors, the parameter estimates are
biased and the confidence intervals are much too optimistic
[Kavetski et al., 2002]. In the last thirty years or so, a
number of studies have highlighted the sensitivity of hy-
drological models to input errors [Troutman, 1982;
Andreassian et al., 2001; Oudin et al., 2005], as well as
their sensitivity to model errors [Engeland et al., 2005] (see
Mein and Brown [1978] for a dated but interesting review).
Yet, despite these warnings, few calibration methods directly
address the issue of input uncertainty. Known exceptions
are the generalized likelihood uncertainty estimation
(GLUE) methodology [Beven and Binley, 1992], Bayesian
total error analysis (BATEA) [Kavetski et al., 2002], particle
filters [Moradkhani et al., 2005], simultaneous optimization
and data assimilation (SODA) [Vrugt et al., 2005], and
Gaussian processes [Kennedy and O’Hagan, 2001]. While
these methods provide seducing solutions to the treatment
of input uncertainty (and model uncertainty for some), their
concern for numerical efficiency and practicality overshad-
ows important theoretical issues. Our aim in this paper is to
temporarily lay aside practical considerations and address
the fundamental issues related to uncertainties. To do this,

the first step is to define an uncertainty framework linking
the different sources of uncertainties to the data and model.
[9] The most promising avenue to include all types of

uncertainties in the calibration process is certainly Bayesian
analysis. Bayesian analysis consists in the manipulation of
probability statements about hypotheses via two logical
rules, the sum rule and the product rule [Jaynes and
Bretthorst, 2003]. It is worthwhile mentioning that in this
context, a probability has the usual common sense meaning
of a degree of confidence. This contrasts with the usual
statistical probability, defined as a frequency of occurrence.
The thriving literature feeding the feud between Bayesians
and ‘‘frequentists’’ [Efron, 1986; Clark, 2005] will no doubt
be of interest to fans of passionate debates. On a more
serious note, reference textbooks usually cited are those of
Bernardo and Smith [1994] and Gelman et al. [1995].

2.2. Uncertainty Framework

[10] The first step to design a method able to account for
uncertainties is to lay down an uncertainty framework. This
framework describes how errors occur and propagate
through the physical model. It is based on an idealization
of the sampling and modeling processes. Hence it should be
viewed as an approximation of how ‘‘real’’ errors influence
data and modeling.
[11] Although not identical, the framework we propose is

very similar to the one implicitly used by Vrugt et al. [2005]
in the SODA method, based on ensemble Kalman filters.
Their focus, however, was not the theoretical issues related
to input errors but rather the implementation of a practical
algorithm to consider different sources of errors.
2.2.1. Error Models
[12] The framework we propose (see Figure 1) assumes

the existence of true variables and a true process. It further
assumes that, with the knowledge of the true inputs and the
true process, it is theoretically possible to determine exactly
the true outputs. However, as P.-S. Laplace noted, such
determinism is only theoretical. In practice, we only have
access to a finite number of imperfect measurements, data,
and a more or less naive understanding of nature’s behavior:
the model. Indeed, models typically work at scales very
different from the natural scales, simulate only aggregated
input and output variables, account for a handful of effects,
neglect all exterior influences too difficult to measure or
simulate and are limited by our understanding of the
physical laws and our computing power. Models are nev-
ertheless useful to validate new physical laws, understand
phenomena, predict events and give decision makers real-
istic scenarios to compare projects or costs. The idea behind
our strategy is to give those models a boost by coupling
them to comprehensive error models.
[13] We will consider three different types of errors that

affect the modeling process: input, output and structural
errors. It is worthwhile to define the nature and origin of
these errors since they are at the core of the method. Input
errors are defined as the difference between the input data
and the true inputs. They originate from the inherent
imprecision of measurements, as well as from their imper-
fect representativeness. For example, a lumped hydrological
model may take as true input the total amount of precipi-
tation over the watershed during the last month. A pluvi-
ometer, however, only averages rainfall over a few square
centimeters, and rainfall over the whole catchment must be
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extrapolated. Thus even with an infinitely precise pluviom-
eter, there would still be a difference between the pluvi-
ometer readings and the theoretical input. This difference is
what we call the input error.
[14] Output errors are defined analogously as the differ-

ence between true outputs and output measurements. Again,
both the imprecision of measurements and the representa-
tiveness of the measures are sources of errors. In hydrolog-
ical modeling, the output variable is typically the
streamflow at the basin outlet. Extrapolated from the water
height and a rating curve, streamflow measurements tend to
lose accuracy as the flow increases.
[15] Structural errors are defined here as the difference

between the true outputs and the model output using true
inputs and true parameters. Structural errors can arise from
incorrect modeling hypotheses or unmodeled processes
[Sorooshian and Dracup, 1980]. They are stochastic by
nature, due to the intrinsic variability of natural processes,
but may nonetheless display distinct biases. For example,
some hydrological models underestimate peak flow or
overestimate base flow. Hence, in those cases, the distribu-
tion of structural errors is a function of the input variable.
[16] The errors affecting the data and model will be

described by an error model, containing three elements:
the input error model, the output error model and the
structural error model. These three error models relate,
probabilistically, the data taken to the true values. Denoting
the input, output and structural errors by d, e and z
respectively, the error models describe fd(d), fe(e) and fz(z),
the error probability density functions (pdf).
[17] The two most obvious ways to relate errors and data

are additively and multiplicatively. To allow the use of
Gaussian distributions, we will work with additive errors:

Input ~x ¼ xþ d
Structural y ¼ M x; qð Þ þ z ð1Þ
Output ~y ¼ yþ e;

where x, y, q stand for the vectors of true inputs, true outputs
and true parameters respectively. Here and in the following,

measurements are differentiated from true values by a tilde.
Note that the structural error is defined by the difference
between the true output and the model simulation using the
true input x and true parameters q.
2.2.2. Generalized Output Error Model
[18] Inspection of equation (1) suggests that the output

error model can be made to include the structural error
model

~y ¼ M x; qð Þ þ eþ z:

Thus it is possible to replace the output error model and the
structural error model by a ‘‘generalized’’ output error
model, combining both errors. For the time being, however,
we keep the two models apart since they are qualitatively
and quantitatively different. Indeed, output errors are
generally assumed to be unbiased, with homoskedastic or
heteroskedastic variance. On the other hand, structural error
are known to exhibit biases, due to incorrect or incomplete
modeling of the underlying processes. Moreover, the
magnitude and direction of this bias may be a function of
the input variable.
2.2.3. Note on Parameter Uncertainty
[19] Our framework assumes the existence of input,

output and structural uncertainties, but we have yet made
no mention of the parameter uncertainty. The reason for this
is that from our point of view, parameter errors are included
in structural errors. Having a method that takes care of
model errors, parameter errors lose their interest. We will,
however, use the expression parameter uncertainty to
describe our incomplete state of knowledge about the true
parameters. Thus once the calibration is completed, there
remains a parameter uncertainty owed to structural errors
and limited supply of inexact data. By following the rules of
probability, the resulting parameter uncertainty should in-
corporate the uncertainties about the model, inputs and
outputs. Predictions can then be carried out by using not
only the most probable parameter set, but the entire distri-
bution. It is precisely the use of the whole parameter
distribution that allows us to compute realistic confidence
intervals about the predictions, incorporating the different
sources of uncertainties.

2.3. Parameter Inference

2.3.1. Probability Inversion
[20] As stated earlier, the input, output and structural

models define the probability of observing an error d, e
and z. Yet, since the errors cannot be observed, it is more
convenient to write the error models in terms of measured
and true values:

Input p dð Þ , p ~xjxð Þ

Structural p zð Þ , p yjx; q;Mð Þ

Output p eð Þ , p ~yjyð Þ:

ð2Þ

The notation of probabilistic statements in this paper
follows the general usage, in which p stands for the
probability density. It should be remembered, however, that
using the laws of probability on such expressions is a
shortcut and that it can, in some cases, lead to paradoxes
[Jaynes and Bretthorst, 2003].

Figure 1. Idealized uncertainty framework.
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[21] The next step is to combine the error models into a
unified equation describing p(qj~x, ~y, M). To do so, we
introduce x and y as nuisance variables and inverse the
probability using Bayes’ theorem:

p qj~x; ~y;Mð Þ ¼
ZZ

p q; x; yj~x; ~y;Mð Þ dx dy

¼
ZZ

p ~x; ~yjx; y; q;Mð Þ


 p x; y; qjMð Þ dx dy 
 1

p ~x; ~yjMð Þ

¼
ZZ

p ~x; ~yjx; yð Þp yjx; q;Mð Þp x; qjMð Þ


 dx dy 
 1

p ~x; ~yð Þ

¼
ZZ

p ~xjxð Þ 
 p ~yjyð Þp yjx; q;Mð Þp xð Þ dx dy 
 p qð Þ
p ~x; ~yð Þ

ð3Þ

Equation (3) encloses the three error models, as well as a
prior on the parameters p(q), and a prior on the true input
variable p(x). We stress that this prior appears from the
inversion of p(xj~x) to p(~xjx), the input error model defined
above. As we will soon see, failure to distinguish both
expressions leads to serious shortcomings in the estimation
of parameters. Note that we used the simplifying assump-
tion p(~x, ~yjx, y) = p(~yjy)p(~xjx), that is, we supposed that the
errors d and e were conditionally independent. While this is
not mandatory, it simplifies the computations. Finally, the
denominator p(~x, ~y) is simply a normalization constant,
provided the integral in the numerator converges.
[22] Since this approach is derived from that of Kavetski

et al. [2002], it is worthwhile to highlight the main
difference between the two. In the work of Kavetski et al.
[2002], the structural errors are not defined. Also, the
nuisance variables x are not integrated but rather estimated,
on the same footing as the model parameters. This approach
makes sense since in their application, the number of
nuisance variables is considerably lower than the sample
size. In the case where there is one nuisance variable for
each measurement, however, their approach would suffer
from overparametrization.
2.3.2. Standard Shortcuts
[23] In Bayesian analysis as in standard least squares

schemes, we implicitly assume that the input variables are
exact, that is p(~xjx) = d(~x � x). Integrating equation (3) over
x under this assumption, we obtain:

p qj~x; ~y;Mð Þ ¼
Z

p ~yjyð Þp yj~x; q;Mð Þ dy 
 p qð Þ
p ~yj~xð Þ

¼ p ~yj~x; q;Mð Þp qð Þ
p ~yj~xÞð

the usual result of Bayes’ theorem. Further assuming that
the likelihood p(~yj~x, q, M) is Gaussian and that the prior
p(q) is uniform, we obtain the SLS solution.
[24] It is worthwhile to stress that in this derivation of the

usual Bayesian or SLS solution, there is no assumption
about the form of the structural error model. Indeed, the
likelihood p(~yj~x, q, M) is rather a generalized likelihood,

combining the output error model and the structural error
model via the convolution of both distributions:

p ~yj~x; q;Mð Þ ¼
Z

p ~yjyð Þp yj~x; q;Mð Þ dy: ð4Þ

Hence once an output error model and a structural error
model are specified, the minimization of equation (4) with
respect to q leads to an optimal solution, taking structural
and output uncertainties into account. While apparently
simple, this treatment of structural uncertainties hides a
formidable challenge, namely, the adequate characterization
of the structural error model.
[25] Our prime interest in this paper, however, lies not

with structural errors but with the input errors and their
impact on the parameters. Our focus on this subject stems
from two realizations. The first one is that falsely assuming
exact input causes parameter estimates to be biased. This
bias is observed for hydrological models [Kavetski et al.,
2002] as well as for basic linear regressions [York, 1966],
and can have a significant impact on the reliability of
hydrological predictions. The second one is that despite a
growing number of publications on this subject, the pro-
cesses by which input errors affect model parameters are
still obscure. Therefore this article focuses on basic issues
related to input errors using simple, academic models and
error models. These simplifications allow us to concentrate
on the essential problems, instead of diverting our attention
to technical and numerical issues.

3. First Application: The Straight Line Model

[26] Despite its apparent simplicity, the straight line
model ‘‘when both variables are subject to error’’ hides
complex difficulties and has been the focus of a large
number of publications from various research areas: statis-
tics [Lindley and El-Sayyad, 1968; Kendall and Stuart,
1983; Fuller, 1987; Cheng and Ness, 1994], econometrics
[Zellner, 1971; Erickson, 1989], physics [York, 1966; Reed,
1989; Gull, 1989], and image reconstruction [Werman and
Keren, 2001]. In the following, we will review the standard
least squares approach (also called ordinary least squares)
and its inherent bias in presence of input errors. We will
then apply the Bayesian uncertainty framework to better
understand the origin of this bias on the slope. Finally, we
will study the impact that priors have on the results.

3.1. Standard Least Squares

[27] The standard least squares (SLS) solution to an
optimization problem dates back from Gauss, who invented
the method to identify the orbit of Ceres. SLS works under
the assumption that the independent variable is known
exactly. The optimal parameters are then simply the ones
that make the sum of the squared errors as small as possible.
Stated otherwise, the SLS parameters are those maximizing
the probability of ‘‘drawing’’ the errors from a Gaussian
distribution with zero mean. The wide success enjoyed by
SLS has since been linked to the exceptional mathematical
properties of the Gaussian distribution: the product of two
Gaussian distributions is an unnormalized Gaussian distri-
bution, the convolution of two Gaussians is another Gauss-
ian, it is the only distribution whose maximum likelihood
estimate is also the arithmetic mean, it is the maximum

;
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entropy distribution for fixed mean and variance and the
limiting distribution of additive errors from any distribution.
In contrast with its huge success, SLS fails when errors
affect both dependent and independent variables [York,
1966].
[28] Let’s assume that our model is a straight line passing

through the origin y = qx. Different measurements are taken,
denoted by ~xi, ~yi. To simplify the example, we will suppose
that there is no output error, that is, ~yi = yi. Now, if we
assume, correctly, that the output data is exact, and that
errors are only on the input data, the SLS method provides
the following estimate for q:

bq ¼ P
~y2iP
~xi~yi

:

This solution is correct, in the sense that it converges toward
the true value as the sample size increases. However, if we
falsely assume that the errors are on the output variable and
the inputs are exact, we find instead

bq ¼P~xi~yiP
~x2i

�
P

~xi~yiP
x2i þ s2

: ð5Þ

Of course, if s2 = 0, there is no uncertainty and both
solutions are equal. However, as the error variance s2

increases, the slope gets underestimated. Moreover, this bias
does not decrease as the number of samples increases.
[29] In most real life situations, input and output data

contain errors, and the slope will systematically be under or
overestimated depending on which variable we choose to be
the independent one. Some authors have chosen to compute
both slopes, and then take the average. Far more ingenuous
algorithms have since been devised [York, 1966], based on
the individual weighting of each data. Our objective,
however, is not to review the various solutions to the
straight line model but to understand the origin of the bias.

3.2. Density Mapping Effect

[30] For the sake of simplicity and pedagogy, we will
consider a simple situation.
[31] 1. The model M is a straight line with intercept at

zero, i.e., y = qx, with q = 3.
[32] 2. There are no output nor structural error, p(~yjx, q,

M) = d(~y � qx).
[33] 3. The input error is Gaussian p(~xjx) = N (~xjx, s = 1).
[34] 4. The prior on q is uniform on the interval [qa = 0,

qb = 5].
[35] 5. The prior on the true value p(x) is uniform on the

interval [xa = 0, xb = 10].
[36] Let’s imagine we have a single input measurement at

~x = 2. Knowing that the true value of x lies around the
measurement, with a Gaussian probability

p xj~xð Þ / p ~xjxð Þp xð Þ

/ N xj~x; sð Þ x 2 xa; xb½ �;

we want to compute the probability that ~y is the true value
knowing the slope q. After a short analysis, we obtain

p ~yj~x; q;Mð Þ / 1

q
N ~y=qj~x; sð Þ ~y 2 qxa; qxb½ �: ð6Þ

Figure 2 plots equation (6) for ~x = 2 and three values of q: 2,
2.5 and 3. For small slopes, the y distribution is sharper than
for bigger slopes. If we interpret function (6) as a mapping
of the x elements onto the ~y space, the values of ~y are
mapped more closely together with smaller slopes. Hence
the pdf for ~y = 6 is higher with q = 2.5 than with q = 3, even
though our intuitive guess, and the SLS estimate, would
rather be 6/~x = 3.
[37] Suppose we now want to estimate the slope using

measurements (~x = 2, ~y = 6). Bayesian analysis tells us that

p qj~x;~y;Mð Þ / p ~yj~x; q;Mð Þp qð Þ; ð7Þ

but since p(q) = U(qa, qb), the probability for q given ~y is
simply proportional to the probability of ~y given q. Thus,
judging from Figure 2, q = 2.5 should be more probable than
q = 3. Indeed, if we plot equation (7), we find that the most
probable slope is around 2.5 (Figure 3).
[38] Figure 3 shows quite clearly how the uncertainty

about x is asymmetrically mapped onto an uncertainty about
q. Of course, this asymmetry disappears as the uncertainty
over x decreases. We will call the mapping of the input
uncertainty onto the parameter uncertainty, the ‘‘density
mapping’’ effect.

3.3. Straight Line Fitting

[39] A key question is whether or not this density
mapping effect vanishes as the sample size increases.
Unfortunately, it is difficult to find a simple answer based
on analytical calculations. Hence we resort to numerical
simulations to gain an insight into the problem. In this
demonstration we use the first four assumptions of section
3.2. The only difference with the previous example is the
number of samples and the prior on the true values, that will
be modified to understand its impact on the parameter
posterior pdf.
3.3.1. Synthetic Data
[40] We first generate a synthetic sample consisting of

500 couples (~xi, ~yi), shown in Figure 4. The true inputs xi are
randomly generated from a Gamma distribution, x� G(3, 1).
The input measurements are synthesized by adding a
Gaussian error to the true inputs: ~xi � N (xi, s = 1). The
output measurements are simply equal to the true outputs
which are computed via the model and the true inputs: ~yi =
yi = qxi with q = 3.

Figure 2. Probability density p(yj~x, q, s) with ~x = 2, q = 2,
2.5, and 3, and s = 1.
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3.3.2. Error Models and Prior Hypotheses
[41] The parameter density is computed by recursively

applying equation (3). That is, measurements are analyzed
sequentially and update the posterior probability distribu-
tion p(qij~x1. . .i, ~y1. . .i, M). The input and generalized output
error models are chosen correctly, that is, they correspond
exactly to how the errors were applied to the true values:

p ~xjxð Þ ¼ N ~xjx; sð Þ

for the input error model and

p ~yjx; qð Þ ¼ d ~y� qxð Þ

for the generalized output error model. The only remaining
hypothesis concerns the prior for the true input values p(x).
To understand its impact on the calibration of q, we look at

three distinct cases, (1) Gamma, p(x) = G(xj3, 1);
(2) Gaussian, p(x) = N (3,

ffiffiffi
3

p
); and (3) uniform, p(x) =

U/(0, 10), and compute the posterior pdf for the slope q for
each of these cases. We also compute the slope and the 90%
confidence intervals using SLS.
3.3.3. Results
[42] The results are shown in Figure 5. Slope estimates

from the Gamma and Gaussian priors are very near to the
true value, q = 3, whereas those of SLS and the uniform prior
are significantly underestimated. The similarity between
SLS results and the uniform prior is not a coincidence.
Indeed, the parameter maximizing the posterior density
using a uniform prior over the real domain is identical to
the ‘‘major axis,’’ a close cousin of SLS. That is, the slope
for which the perpendicular distance from the points to the
line is a minimum. Note that at this sample size, 500, the
results do not vary much for different simulations.
[43] The most surprising observation about these results

is that contrary to the Bayesian motto ‘‘the effect of the prior
weakens with increasing sample size,’’ the prior plays here a
significant role even with a sample of 500 observations.
Indeed, there is a significant difference between the poste-
rior pdf using a uniform prior and a Gamma or Gaussian
prior. Also note that the choice of the distribution param-
eters is also significant. A Gamma distribution with crude
parameters may lead to worst results than a Gaussian with
sensible ones.
3.3.4. Analysis
[44] The drastic effect of the prior can be explained as

follows. For each input measurement, there is an unknown
true input, whose value is inferred from the data using the
error model and the prior on the true inputs. If the error
model assumes a very small error, the effect of the prior is
weak, whereas when the error model has a large variance,
the prior plays an important role in the inference of the true
input. Thus the effect of the prior does not weaken since
with each new sample, another prior is added to infer the
input true value. Moreover, if the prior is incorrect, each
inference about the true value is flawed and the estimation
of the parameters will not ‘‘converge’’ to the parameter’s
true value, even with an infinitely large sample.

Figure 4. Synthetic data used to study the calibration of a
straight line. The inputs ~x are computed using draws from a
Gamma distribution to which a Gaussian noise is added.
The outputs are given by ~yi = 3xi.

Figure 5. Probability density p(qj~x, ~y, s) computed over a
sample of 500 points using equation (3) with three different
priors on the true values: Gamma (solid line), Gaussian
(dash-dotted line), and uniform (dashed line). The cross
indicates the SLS result as well as the 90% confidence
interval. The true value of q is 3.

Figure 3. Probability densities p(qj~x, ~y, s) and p(xj~x) for
~x = 2, ~y = 6, and s = 1. The hyperbola shows the relation
between the slope and the true input for a given output ~y.
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[45] The importance of the prior on the results changes
our perception of priors and how to choose them. There
exists a wide variety of priors to choose from, an exhaustive
review is given by Kass and Wasserman [1996]. In the light
of the preceding results, we would recommend to avoid
ignorance priors and rather look for additional evidence that
would describe adequately the distribution of the true
inputs. If a similar data set is available (other than the one
under study), one solution is to fit a distribution to the data
and use it as the prior. In the case where no such data sets
exist, but where some descriptors such as the mean or
variance are known (or can ge guessed), maximum entropy
methods can be used to find the distribution with the highest
entropy given those descriptors [Jaynes, 1983].

3.4. Highlights

[46] Before we go to the next section and begin our study
of the hydrological model ‘‘abc,’’ it is worthwhile to recall
the highlights of this section: (1) The mapping of input
uncertainties over the parameter space, the mapping density
effect, is responsible for the ‘‘bias’’ observed in the param-
eter posterior density. (2) The influence of the mapping
density effect decreases as data accumulate, but only as long
as the prior on the true inputs allows reliable inference. That
is, the estimated slope will only converge toward the true
slope if the prior reflects the true input distribution.

4. Application to Hydrological Model ‘‘abc’’

[47] We will now apply the Bayesian uncertainty frame-
work to a simple hydrological model, the ‘‘abc’’ model. The
‘‘abc’’ model has been devised by Harold A. Thomas and
introduced as a pedagogical tool by Fiering [1967]. Since
then, it has been used as a benchmark for various compu-
tational methods [Vogel and Sankarasubramanian, 2003].
Its main advantages are that (1) it is linear with respect to
the inputs, (2) it has only three parameters and one bound-
ary condition, and (3) despite its simplicity, its calibration
displays pathologies similar to more complex hydrological
models.
[48] In the following, we first describe the ‘‘abc’’ model

and how it can be written in a convenient form using linear
algebra. Then, we describe the data set and justify the use of
synthetic discharges in our numerical simulations. The next
and last paragraphs discuss the error models chosen along
with the prior distribution for the parameters and true
values.

4.1. Description

[49] The ‘‘abc’’ model comprises two equations, one for
the discharge Qt and the other for water storage St, where t
denotes time steps (annual or monthly). The model has three
parameters (a, b, c) (hence the name) and a state parameter,
St, the storage. The model is driven by the rainfall rt:

Qt ¼ 1� a� bð Þrt þ cSt

Stþ1 ¼ 1� cð ÞSt þ art

ð8Þ

Each parameter has a pseudophysical signification: a stands
for the proportion of rainfall entering the storage, b is the
proportion of rainfall lost to evapotranspiration and c is the

percentage of water seeping from the storage to the basin
outlet. All parameters take values in the interval [0, 1], and
the conservation of water imposes an additional constraint
on a and b, namely a + b � 1.

4.2. Matrix Formulation

[50] The main advantage of ‘‘abc’’ is that it can also be
written elegantly in matrix form. To do so, we use induction
to write the storage at the nth time step in terms of the initial
storage and the rainfall history:

Sn ¼ 1� cð Þn�1
S1 þ a

Xn�1

k¼1

1� cð Þn�k�1
rk ; n > 1 ð9Þ

By defining the following vectors

x ¼ r1; r2; . . . ; rn½ �t

y ¼ Q1;Q2; . . . ;Qn½ �t

t ¼ c; c 1� cð Þ; c 1� cð Þ2; . . . ; c 1� cð Þn�1
h it

;

and plugging equation (9) into (8), the model output y can
be expressed in a convenient matrix formulation:

y ¼ Axþ S1t;

where matrix A is defined as

A ¼

1� a� bð Þ 0 0 
 
 
 0

ac 1� a� bð Þ 0 0

ac 1� cð Þ ac 1� a� bð Þ 0

..

. . .
. ..

.

ac 1� cð Þn�2
ac 1� cð Þn�3

ac 1� cð Þn�4 
 
 
 1� a� bð Þ

2666664

3777775

4.3. Error Models Selection

[51] The selection of error models is restricted by a
formidable requirement: closed form integrability. Indeed,
equation (3) contains an integral over 2n variables. Standard
numerical integration algorithms are not efficient with more
than ten dimensions, and Markov chain Monte Carlo
integration would take a huge amount of computing power
to integrate over a mere 50 dimensions. Fortunately, Gauss-
ian multivariate functions are readily integrable for any
number of dimensions and are generally considered a valid
depiction of a random error probability from an inferential
point of view [Jaynes and Bretthorst, 2003]. For the
particular context of ‘‘abc,’’ we will thus limit our error
models to multivariate Gaussian distributions in order to
retain closed form integrability:

p ~xjxð Þ ¼ N ~xjx;Sdð Þ ð10Þ

p ~yjyð Þ ¼ N ~yjy;Seð Þ ð11Þ

p yjx; q;Mð Þ ¼ N yjAxþ S1t;Sz
� �

; ð12Þ

where x and y are positively defined. Note that there are no
constraints on the covariance matrices Sd, Se and Sz. That
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is, correlated and heteroskedastic errors can be assumed by
assigning nonzero off diagonal terms and variances
dependent on the input data. See Sorooshian and Dracup
[1980] for examples of such matrices.
[52] At this point, we are ready to integrate equation (3)

over y, effectively convoluting the structural and output
error model into a generalized output error model:Z

p ~yjyð Þp yjx; q;Mð Þ dy ¼ p ~yjx; q;Mð Þ ð13Þ

Substituting functions (11) and (12) in (13) and integrating
over the real domain, we find

p ~yjx; q;Mð Þ ¼ N ~yjAxþ S1t;S�ð Þ; ð14Þ

where S� = Se + Sz. Note that since discharge is a purely
positive quantity, the integral in equation (13) should only
span the positive orthant. The integration over the real
domain is an approximation, acceptable only if the means of
Ax + S1t are three or four standard deviations away from 0.
The same comment applies to the integration over x. Before
we can proceed with the integration over the input variable,
the prior p(x) must first be defined.

4.4. Prior on the True Rainfall

[53] We choose to define the prior on the true rainfall as a
historical prior, that is, p(x) will reflect the distribution of
monthly rainfall in the region. Details about how this is
done are given in section 5.2. For now, it suffices to say that
the prior is described by a sum of three Gaussian distribu-
tions with different means and variances. It is therefore
possible to describe distributions very different in shape
from a unique Gaussian, while respecting the requirement
that all error models are to be Gaussian.

p xð Þ ¼
X3
j¼1

fjN xjRj;SRj

� �
; ð15Þ

where
P

fj = 1, Rj = Rj [1, 1, . . ., 1]
t and SRj = sRj

2 I, I
standing for the n � n identity matrix.

4.5. Integration of the Input Nuisance Variables

[54] The integral

p ~yj~x; q;Mð Þ ¼
Z
IR

p ~yjx; q;Mð Þp ~xjxð Þp xð Þ dx ð16Þ

can now be solved using the identity:

K ¼
Z
IR

Yn
i¼1

N xjmi;Sið Þ dx

¼ 2pð Þ
n
2jeSj12Q

i 2pð Þ
n
2jSij

1
2

exp
1

2
emteS�1em�Xn

i¼1

mtiS
�1
i mi

 !( )
: ð17Þ

where

eS ¼
Xn
i¼1

S�1
i

 !�1

em ¼ eS Xn
i¼1

S�1
i mi

 !
:

[55] Putting equations (10), (14) and (15) into (16), we
find using the identity (17):

p ~yj~x; q;Mð Þ ¼
X3
j¼1

fjKj; ð18Þ

using covariance and means

eSj ¼ AtS�1
� Aþ S�1

d þ S�1
Rjemj ¼ eSj AtS�1

� ~y� S1tð Þ þ S�1
d ~xþ S�1

Rj Rj

h i
:

The calculations are detailed explicitly in Appendix A.

4.6. Prior on the Parameters

[56] The prior on the parameters a, b and c remains to be
defined. The prior density should reflect our degree of
confidence in the value of the parameters. Since the param-
eters take values between 0 and 1, we will use the Beta
distribution for the sake of generality

B xjr; sð Þ ¼ 1

b r; sð Þ x
r�1 1� xð Þs�1

0 � x � 1;

where (r, s) > 0. The prior on c will thus be p(c) =
B(xjrc, sc). The prior on a and b is a little bit more involved
due to the constraint a + b � 1. Indeed, this constraint
suggests a bivariate distribution. To define p(a, b), we
impose a dummy prior B(qjrab, sab) on the direct runoff q =
1 � a � b, and using variable substitution, we compute the
corresponding prior on (a, b):

p a; bð Þ ¼ B 1� a� bjrab; sabð Þ
aþ bð Þ :

The prior for the parameters is then completely specified by

p qð Þ ¼ p a; bð Þp cð Þ:

[57] Now that all the ingredients are assembled, we are
ready for numerical computations. The following section
presents various results that highlight the impact of input
errors on the parameters and the workings of the Bayesian
uncertainty framework.

5. Results From ‘‘abc’’

[58] The results from ‘‘abc’’ share traits similar to those of
the straight line: influence of the density mapping and
sensitivity to the prior p(x). Other properties are also
observed, such as model filtering and parameter averaging.
Each one of these observations will be discussed in the
following paragraphs. As we will see, the ‘‘abc’’ model is
more complex than the straight line, due to the fact that it
has more parameters and a memory of past events, via water
storage. Hence past uncertainties propagate to blur the
actual state of the system, regardless of the initial state
uncertainty.
[59] The effective display of results is a troublesome

issue; there seems to be no perfect way to visualize a 3-D
parameter space at a glance. The solution adopted was to cut

R
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orthogonal slices in the parameter mesh at the posterior
density’s maximum (amax, bmax, cmax). Figures will thus
contain three plots, one for each slice. The color bar uses
white to indicate a null probability and black for the
maximum probability reached by the pdf.

5.1. Density Mapping Effect

[60] To demonstrate the effect of the density mapping on
the parameters, we isolate this effect from other influences.
We eliminate the effect of random noise by using exact data,
specifying an input error model with a large variance, an
output error model with a very small variance, a uniform
prior on the true values and vague priors on the model
parameters.
5.1.1. Data
[61] The true inputs x consist of monthly rainfall meas-

urements from a station on the Famine River in the Beauce
region, located south of Québec city. The true outputs y are
the discharges simulated using the ‘‘true’’ rainfall and the
‘‘abc’’ model with parameters a = 0.6, b = 0.15 and c = 0.2
(the same parameters used by Kavetski et al. [2002]). The
use of synthetic discharges allows us to check the consis-
tency of the method and analyze the results more easily, that
is, compare estimates to the ‘‘true parameters.’’
[62] In the following simulation, the sample (~x, ~y) con-

sists of 30 months of rainfall and stream flow. The data
contain no errors (sx = sy = 0), thus (~x, ~y) = (x, y) and the
data fit perfectly the ‘‘abc’’ model with parameters q = (0.6,
0.15, 0.2). Figure 6 shows a plot of the rainfall and stream
flow used in this simulation.
5.1.2. Error Models and Prior Hypotheses
[63] Following are the modeling hypotheses, designed to

bring out the density mapping effect and reduce other poten-
tial influences on the parameters posterior distribution:
(1) homoskedastic input error model with a large standard
error Sd = 252Imm2 (almost 30% of the mean precipitation),
(2) homoskedastic output error model with a negligible
variance (S� = 1I mm2), (3) uniform prior over the true
rainfall (p(x) / 1), and (4) vague prior for q, that is, the prior
described in section 4.5 with parameters rab = sab = 1 and rc =
sc = 1.
5.1.3. Results and Analysis
[64] Computation of the parameters posterior density

reveals a displacement of the cloud from the true parameters

indicated by a cross (see Figure 7). This displacement
amplifies as the assumed input uncertainty increases. Since
all other influences have been curbed, we relate the pdf
displacement from the true values to the density mapping
effect. In ‘‘abc’’, its consequence is to displace the pdf
density toward higher values of evapotranspiration b and
infiltration a. In other words, the calibrated model has a
lower percentage of direct runoff (1 � a � b) than the
‘‘real’’ model.
[65] The underestimation of the direct runoff can be

explained using an analogy with the straight line model.
We have seen in Figure 2 how smaller slopes map the
outputs more densely than larger ones, with the consequence
that the slope probability distribution has its maximum
below the intuitive slope ~y/~x. In the ‘‘abc’’ model, the direct
runoff is akin to the slope: it specifies the instantaneous
response of the model to the input. Models with high direct
runoff display a great variability of discharges, and the
output distribution is stretched over a wider range. Models
with a low direct runoff, where storage plays the dominant
part, exhibit more steady discharges, and the output distri-
bution is more concentrated. Therefore, with a given dis-
charge and an input uncertainty, we expect the most probable
model to display a lower direct runoff than the ‘‘true’’ model.
[66] Now, one must realize that the density mapping

effect is not an artifact of the Bayesian uncertainty frame-
work but a very common phenomenon. When the input
error is not accounted for, as in SLS for example, the effect
is still present, biasing the results in an apparently uncon-
trollable way. The Bayesian framework merely provides the
means to identify the effect, and as data accumulate, to
reduce its effect on the parameters’ pdf. The fact that the
method accounts for the input uncertainties makes sure that
the pdf is consistent with the data and reflects the input
uncertainties’ impact on calibration.

5.2. Prior p(x) Impact

[67] As shown in section 3, the prior on the input true
values plays a significant role in the estimation of the

Figure 6. Inputs (~x) and outputs (~y) used in this study. The
inputs are rainfall readings from a meteorological station on
the Famine River. The outputs (discharges) were generated
using the ‘‘abc’’ model with parameters a = 0.6, b = 0.15,
and c = 0.2.

Figure 7. Density mapping effect on the parameters’
posterior distribution. The slices are taken at the parameters
most likely value [a, b, c] = [0.61, 0.16, 0.2]. True
parameter values are indicated by crosses.
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parameters. In the last example, we used a uniform prior
over the true rainfall to isolate the density mapping effect.
We now use the same data and assumptions, except for a
more realistic prior on the true inputs, an historical prior.
[68] To build this historical prior, we select a meteoro-

logical station (St-Ephrem) located near the watershed
under study and plot an histogram of the monthly rainfall
from 1929 to 2003. The best fitting distributions are
Gamma, Weibull, and lognormal. However, if we choose
to use any one of these distributions, the integral over x in
equation (3) has no closed form solution. The trick is to fit
the rainfall distribution by a sum of three Gaussian distri-
butions (equation (15)), whose parameters are given in
Figure 8.
[69] Although crude, this prior is adequate for our didac-

tic purposes. In a real case study, however, it would be best
to take seasonality into account. That is, specify a distinct
prior for each month of the year. In the case where there is
only one station on the watershed, the prior could also try to
include the effect of spatially averaging the point rainfall
input. The more relevant information that can be added to
the prior, the better the calibration.
[70] The probability distribution of the parameters esti-

mated using the historical prior is shown in Figure 9.
Comparison with Figure 7 allows us to measure the differ-
ence made by the prior. The main change is in the storage
parameter a, displaced to the left and achieving better
agreement with the true parameters.

5.3. Model Filtering and Rainfall Smoothing

[71] An interesting observation from ‘‘abc’’ is that the
model exhibits a form of filtering. By channeling rainfall in
a storage compartment, the model is able to filter some of
the noise imposed to the input data. That is, due to the time
spent in storage, input errors are absorbed and averaged.
This filtering makes the model relatively robust to non-
biased input errors. Indeed, the noise imposed to the

precipitation must be considerable before its effect becomes
apparent. Following this line of thought, a watershed with a
very fast response (small size, flash floods) should be more
sensitive to input errors than a large watershed with a long
response time.
[72] Our last observation concerns the averaging of

parameters due to the historical prior. When a historical
prior is chosen for the true values of precipitation, and the
input error model has a large variance, the prior plays an
important role in determining the distribution of probable
true rainfall. Indeed, as the variance of the input error model
increases, the distribution of the true rainfall approaches the
prior distribution. In other words, the intrinsic variability of
rainfall embodied by measurements is discarded in favor of
the historical knowledge about its distribution. By this
process, the data are ‘‘smoothed’’ toward the prior’s mode,
reflecting more and more the average rainfall, and thus the
average behavior of the model. Since the parameters a
and c have, on average, no influence (they affect only the
timing of discharges), they become increasingly difficult to
estimate.

5.4. Comparison With SLS

[73] As can be seen, there are some pitfalls to avoid when
using the Bayesian uncertainty framework, and the question
is whether or not the quality of the calibration is worth the
extra effort. To answer that question, we compare results
obtained by our method assuming input and output uncer-
tainties, with those obtained assuming only output uncer-
tainties (this is effectively SLS grafted with priors on
parameters).
5.4.1. Data
[74] The data is a series of 100 monthly rainfall measure-

ments from the Famine River and the synthetic discharge
computed using the ‘‘abc’’ model. In this case, a Gaussian
noise is added both on the input and output data. The noise
is homoskedastic and devoid of autocorrelation, with stan-
dard variations of sx = 25 mm and sy = 15 mm for the input
and output variables respectively.

Figure 8. Histogram of St-Ephrem monthly rainfall based
on data collected from 1929 to 2003. Superimposed (dashed
lines) are the three Gaussian distributions whose sum (solid
line) fits the histogram best and constitutes the historical
prior p(x) over the true rainfall.

Figure 9. Impact of the prior for the true inputs. The slices
are taken at the parameters most likely value [a, b, c] =
[0.59, 0.16, 0.2]. The only difference with Figure 7 is the
prior p(x), now a historical prior instead of a uniform prior.
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5.4.2. Error Models and Prior Hypotheses
[75] The Bayesian method uses Gaussian error models

with the correct covariance matrices (Sd = 252I mm2 and
S� = 152I mm2). Although the ‘‘SLS’’ method treats only
the output error model, it is possible to include, partially, the
effect of input errors on the parameters by defining an
effective variance [Orear, 1982; Lybanon, 1984]. This
effective variance is the sum of the output variance with
the input variance multiplied by the model response: sSLS

2 =
sd
2(1 � b)2+ s�. Here 1 � b is the average response of the

model, so that using b = 0.15, we obtain SSLS = 262I mm2.
[76] The prior on the true inputs is the historical prior

defined in section 5.2. The prior on the parameters (defined

in section 4.5) is identical for the Bayesian and SLS
calibrations.
5.4.3. Results and Analysis
[77] The results are displayed in Figures 10 and 11. For

this particular realization, the results obtained by the Bayes-
ian method seem more accurate than those of SLS. Other
simulations (not shown for lack of space) offer different
pictures of the situation, but overall, the Bayesian density
almost always presents superior results. What really matters,
however, is not the parameters themselves but their predic-
tion capability.
[78] To make predictions, we use as input 20 monthly

rainfall values following the series used to calibrate the
model. We uniformly sample the posterior density around
3000 times and simulate the discharge. Each discharge
series is weighted by the probability of the parameter set,
and a histogram of the discharge is computed. The results
are linearly interpolated and displayed in Figure 12, where
they can be compared to the true synthetic discharge
(dashed line). The Bayesian predictions are closer to the
synthetic discharge than those of SLS.
[79] The reader must be aware that these results constitute

only one realization of a random Gaussian noise. The
authors have conducted similar simulations where results
are not so clear cut. In fact, when the noise is smaller, or
when the data set is around n = 30, the predictions of SLS
and of the Bayesian method are often very similar. Overall,
it seems that Bayesian results are almost always better than
those of SLS, the difference, however, may be negligible.
[80] Hence the decision of using the Bayesian method to

account for input uncertainty depends upon two factors: (1)
the impact of estimated input errors on model outputs and
(2) the requirements of the end user. Since the difference
between SLS and Bayesian estimates is directly related to
the sensitivity of the model to input errors, the first step to
assess the pertinence of a full Bayesian analysis is
to evaluate the magnitude of input errors and their impact

Figure 10. Parameters’ posterior density, computed using
only an output error model, thereby simulating a modified
SLS algorithm. The slices are taken at the parameters most
likely value [a, b, c] = [0.68, 0.07, 0.16].

Figure 11. Parameters’ posterior density, computed using
an input and an output error model. The slices are taken at
the parameters most likely value [a, b, c] = [0.59, 0.12,
0.18].

Figure 12. Comparison of predictions from two cases:
(top) assuming only output errors and (bottom) assuming
both input and output errors. The dashed line indicates the
true synthetic discharge, and the solid line (SLS) indicates
the discharge computed from the likeliest parameters.
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on model predictions. If the impact is not significant with
respect to output errors, then there is no need to include
input uncertainties in the calibration process. If the impact is
significant, the decision to use a Bayesian method relies on
the needs of the end user. If the user only needs crude
parameter estimates, there is no need to get fancy and a
simple SLS will do. However, if the issue is sensitive and
the reliable assessment of uncertainties plays a crucial role
in the decision making process, using a method that con-
siders input uncertainties would be preferable.

5.5. Comparison With Kavetski et al. [2002]

[81] Our study of the impact of input uncertainty was
motivated in part by the article of Kavetski et al. [2002], on
which we want to comment. The article presents a Bayesian
method, BATEA, Bayesian Total Error Analysis, to account
for input uncertainties. BATEA is applied to ‘‘abc’’, and the
performances of BATEA and SLS are compared. The
conclusion is that in the presence of input errors, SLS
provides precisely wrong parameter estimates while
BATEA gives probably right estimates. Indeed, the poste-
rior pdf computed using BATEA are dead centered on the
parameter’s true values, a performance we could not repli-
cate. We think this can be explained by the differences
between the error models. In their case, the ‘‘abc’’ model is
used with hourly time steps, where errors are likely to be
highly correlated. Hence, instead of corrupting individual
measurements, Kavetski et al. [2002] divide the rainfall
history into storms, and multiply all the precipitations in a
given storm by the same random factor. For example, for a
time series of 1000 hourly precipitation, there may be five
storm multipliers. These storm multipliers are then treated
as parameters and estimated, rather than integrated, via a
Bayesian analysis using MCMC algorithms.
[82] The method of Kavetski et al. [2002] is effective with

large data sets and a relatively low number of nuisance
variables. The method presented in this article deals with
small data sets where each measurement has its own
nuisance variable (the true value). In a sense, the two
methods apply to different situations and cannot be easily
compared in terms of performance or accuracy.

6. Summary

[83] The article describes a Bayesian framework to ac-
count for input, output and structural uncertainties in the
calibration of models. The method is applied to two models:
a simple straight line passing through the origin and the
hydrological model ‘‘abc.’’ In both cases, the main object of
study is the impact of input uncertainties on the estimation
of the model parameters. The analysis of those models has
led us to some interesting observations concerning the
calibration of models in the presence of input uncertainty.
[84] 1. The prior on the true inputs plays a major role.

Contrary to the usual belief that the influence of the prior
vanishes as data accumulate, the prior on the true inputs has
a significative influence on the parameters estimation even
for large samples. This is due to the fact that every datum
added to the set comes with an additional prior, contributing
to the shape of the posterior distribution.
[85] 2. Error models need to be carefully specified. The

error models should be as realistic as possible, since under-
estimating the input error can bias the results, while over-

estimating the input error leads to the smoothing of inputs,
averaging of the model behavior and difficulties in param-
eter estimation.
[86] 3. Biases are meaningful. The uncertainty on the

parameter combines the output uncertainty and the input
uncertainty via the model structure. Hence a bias on the
parameter posterior density does not necessarily mean that
the calibration is flawed, but rather that the ‘‘true’’ param-
eters are not those for which the measured outputs are the
most probable. This displacement of the parameter posterior
from the true values is related to how the model maps
uncertain inputs onto outputs. In classical statistics, such
displacements of the parameter’s density maximum are
called biases and regarded with suspicion. In the Bayesian
framework, the origin of this bias is understandable, and we
see no motivation to make corrections in order to obtain an
‘‘unbiased’’ estimator.
[87] 4. The entire posterior is significant. The fact that

biases are commonplace in input error context underlines
the importance of using the whole posterior distribution to
make predictions, and not only the maximum of the
distribution. By sampling the parameter’s posterior to make
predictions, we insure that the prediction uncertainty is
faithful to the parameter uncertainty, and reflects the data
and structural uncertainty.

7. Conclusion

[88] The uncertainty framework presented in the paper is
general and theoretically, can be applied to any problem.
The application to the ‘‘abc’’ model, however, made use of
the fact that the model is linear in its input and that equation
(3) could be integrated analytically. In general, hydrological
models are nonlinear in their inputs, and such direct
integration is impossible. The resolution method used here
is thus inadequate for virtually all commonly used hydro-
logical models. The usefulness of the uncertainty frame-
work in applied hydrology is hence questionable until an
algorithm is developed to apply it to nonlinear models. This
is the subject of the authors’ current research.
[89] The article bypasses the entire question of the hyper-

parameters. Indeed, in all simulations, we posed as known
the error model parameters (noise variance, mean and
correlation). In real cases, those hyperparameters must be
estimated, or integrated as nuisance variable. The treatment
of hyperparameters, computationally difficult, would have
overshadowed the focus of the paper, treatment of input
uncertainty. It is clear, however, that realistic applications of
the method will have to tackle this issue.
[90] Another simplification concerns the state uncertain-

ties. In the case of ‘‘abc’’, the model state is embodied by
S1, the initial storage. In our simulations, we took the initial
storage as known, in order to simplify an already lengthy
equation. A brief inspection, however, will convince the
reader that it is relatively easy to integrate equation (18)
with respect to S1. Thus, for a uniform prior on the initial
storage, an analytical formula for the parameters posterior
density can be derived. The effect of our ignorance of the
initial storage is then included into the uncertainty on the
parameters.
[91] If the uncertainty framework can be successfully

applied to nonlinear models, two issues will have to be
addressed to make full use of its potential. The first one is
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the specification of a rigorous structural error model. This is
already a recognized open problem in hydrology. The
second issue is the description of a detailed prior on the
true values, taking scaling effects, seasonality and correla-
tion into account. While these effects have been studied
separately, their integration into a unique prior remains to be
done.
[92] We hope by this article to promote the realistic

assessment of uncertainties and their integration into model
calibration methods. It is important to acknowledge the
complexity of the calibration process and its importance
for reliable predictions. The credibility of science is not
built upon its vast knowledge, but upon its honesty in front
of ignorance and uncertainty.

Appendix A: Calculations

[93] Here we detail the derivation of the posterior pdf for
the parameters q of the ‘‘abc’’ model. Starting with
equation (16) and plugging the input and output error
models along with the historical prior, we find

p ~yj~x; q;Mð Þ ¼
Z
IR

N ~yjAxþ S1t;S�ð ÞN ~xjx;Sdð Þ



X3
j¼1

fjN xjRj;SRj

� �" #
dx ðA1Þ

In order to apply the identity (17), we need to express the
Gaussians as functions of x:

N ~yjAxþ S1t;S�ð Þ ¼ N xjA�1 ~y� S1tð Þ;A�1S�A
�1t

� �
N ~xjx;Sdð Þ ¼ N xj~x;Sdð Þ

Substituting those last expressions into equation (A1) and
writing it as the sum of a product of Gaussian, we can apply
the identity for each element of the sum

p ~yj~x; q;Mð Þ ¼
X3
j¼1

fj

Z
IR

N xjm1;S1ð Þ


 N xjm2;S2ð ÞN xjm3j;S3j

� �
dx;

where

m1 ¼ A�1 ~y� S1tð Þ S1 ¼ A�1S�A
�1t

m2 ¼ ~x S2 ¼ Sd

m3j ¼ Rj S3j ¼ SRj:
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