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[1] In hydraulic groundwater theory the parameter drainable porosity f (a storage
coefficient that accounts for the effect of the unsaturated zone on water table dynamics)
is usually treated as a constant. For shallow unconfined aquifers the value of this
parameter, however, depends on the depth to the water table and the water retention
characteristics of the soil. In this study an analytical expression for f as a function of
water table depth is derived under the assumption of quasi-steady state hydraulic
equilibrium, in this way accounting, in part, for the effects of the unsaturated zone on
groundwater dynamics. The derived expression is implemented in the nonlinear
hillslope-storage Boussinesq (HSB) model (Troch et al., 2003) to simulate the drainage
response of complex hillslopes. The model’s behavior is analyzed by comparison to
(1) the HSB model with a constant value for f and (2) measurements of water tables and
outflow hydrographs on a 6.0 � 2.5 � 0.5 m laboratory hillslope experiment. The
comparison is conducted for a pure drainage case on two different hillslope shapes
(linearly convergent and divergent) and for three different slope inclinations (5%, 10%,
and 15%). Comparison 1 is run in an uncalibrated and a fully calibrated mode, and it
enables us to evaluate the effect of a dynamic, state-dependent value for f on model
output. Comparison 2 allows us to test the HSB model on several hillslope
configurations and to analyze whether the concept of a storage-dependent f enhances the
model performance. The comparison of the HSB models to the measurements from the
laboratory hillslopes shows that it is possible to capture the general features of the
outflow hydrograph during a drainage experiment using either one of the HSB
models. Overall, the original (constant f) HSB model, with one fitting parameter more
than the revised HSB model, shows a slightly better fit on the hydrographs when
compared to the revised (variable f) HSB model. However, the peak outflow values (the
first few minutes after initiation of the experiments) are better captured by the
revised HSB model. The revised HSB model’s performance in simulating water table
movements is much more accurate than that of the original HSB model. The improved
match of the revised HSB model to piezometric measurements is worth stressing because
the ability to model water tables is a key attribute of the model, making it possible
to investigate phenomena such as saturation excess runoff. Also noteworthy is the good
match between the revised HSB model and the outflow measurements, without any
calibration, for the divergent slopes. The changing values of the calibrated drainable
porosity parameter for the original HSB model as different configurations are simulated
(slope angle, plan shape, initial conditions), together with the ability of the revised HSB
model to more accurately simulate water table dynamics, clearly demonstrates the
importance of regarding drainable porosity as a dynamic, storage-dependent parameter.
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1. Introduction

[2] Within its range of validity, Richards’ equation
[Richards, 1931] provides the most accurate description of
flow processes through variably saturated porous media.
However, in catchment and hillslope hydrological modeling
practices, the application of Richards’ equation is generally
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cumbersome due to difficulties in the parameterization of
the equation, and due to the typically large computational
time that is required for solving the equation. For this reason
much research has been devoted to investigating the possi-
bility of using simpler models (analytical and numerical)
that still reflect the true physical behavior of a catchment or
a part thereof [e.g., Beven, 1981; Stagnitti et al., 1986;
Zecharias and Brutsaert, 1988; Duffy, 1996; Woods et al.,
1997; Fan and Bras, 1998; Hogarth et al., 1999; Ogden and
Watts, 2000; Parlange et al., 2001; Troch et al., 2002, 2003,
2004; Paniconi et al., 2003; Hilberts et al., 2004]. The
drainable porosity parameter (also in some cases referred to
as specific yield) is introduced in hydraulic groundwater
equations for the purpose of mass conservation, i.e., match-
ing the modelled outflow volumes to groundwater table
dynamics, thereby accounting in some way for capillarity
and unsaturated zone effects. It is generally treated as a
parameter with a constant value. However, studies carried
out under nearly saturated conditions [e.g., Gillham, 1984;
Abdul and Gillham, 1989], and preliminary results from our
recent experimental work on a laboratory hillslope suggest
that this parameter varies in time and space, which indicates
the influence of storage dynamics in the unsaturated zone on
the hydraulic groundwater model. Moreover, Paniconi et al.
[2003] and Hilberts et al. [2004] (who make comparisons
with a three-dimensional Richards based model) show that
the water table dynamics and outflow rates are sensitive to
this parameter value. The preliminary experimental results
mentioned above, and the conclusions from the comparison
to a three-dimensional Richards equation based model in the
papers motivate us to search for an appropriate (analytical)
expression that links the drainable porosity to the state of
the (unconfined) aquifer. Our intention is to investigate the
possibility of capturing some of the unsaturated zone’s
influence on groundwater movement by introducing a
physically based description of the drainable porosity
parameter.
[3] In the literature we find two slightly different defi-

nitions of drainable porosity or specific yield for unconfined
aquifers. Johnson [1967] and Bear [1972] define specific
yield as the ratio of the volume of water that a saturated rock
or soil will yield by gravity to the total volume of the rock
or soil (definition 1). These authors consider the yield
starting from complete saturation to complete gravitational
drainage, and it is thus regarded as an aquifer property.
Luthin [1966], Freeze and Cherry [1979], Neuman [1987],
and Dingman [2002], however, define specific yield as the
volume of stored groundwater released per unit area per unit
decline of water table (definition 2). This definition implies
a parameter that is dependent on the state (water table
position) of the system. Bear [1972] summarizes by noting
that the parameter as under definition 2 is the drainable
porosity and is sometimes used to denote the ‘‘instanta-
neous’’ specific yield. In this paper, Bear’s definition for
drainable porosity as in definition 2 is adopted, and it can
therefore be expressed as

f ¼ v

4h0
ð1Þ

where v is the amount of water drained (i.e., drainage
volume per unit surface area) [L], and h0 is the water table
elevation above an arbitrary horizontal datum [L]. The

vertical water table height is indicated with a prime because
the coordinate system will in this paper be changed to water
tables measured perpendicular to the bedrock. Although
often treated as such, drainable porosity is not a static soil
characteristic: it typically changes during the course of a
rainfall or drainage event [e.g., Tritscher et al., 2000;
Moench, 2003; Weiler and McDonnell, 2004; Szilagyi,
2004]. It has been reported that the drainable porosity is a
function of soil moisture conditions in the unsaturated zone
above the water table [Luthin, 1966; Bear, 1972; Hillel,
1980]. More specifically, Kim and Bierkens [1995] (in reply
to Su [1994]) suggested to regard the drainable porosity
parameter that was used in a Boussinesq-type model as a
function of the groundwater level under the assumption of
hydraulic equilibrium conditions in the unsaturated zone.
Bierkens [1998] linked drainable porosity directly to the
depth to the water table for the case of horizontal bedrock.
Nachabe [2002] put forward the concept that for shallow
unconfined aquifers the drainable porosity (i.e., transient or
instantaneous specific yield) can be significantly influenced
by capillarity effects, especially in early stages of drainage
experiments. Other studies that have examined capillary
fringe effects on subsurface dynamics, both theoretically
and experimentally, include those by Parlange and
Brutsaert [1987], Parlange et al. [1990], Fink et al.
[2001], Walter et al. [2000], and Nielsen and Perrochet
[2000]. Nachabe [2002] describes a relationship between
drainable porosity and depth to the water table, including
effects of delayed drainage for rapidly moving water tables
using a Brooks-Corey parameterization for the unsaturated
zone. Except for Bierkens [1998] and Nachabe [2002], the
literature provides little theoretical work that quantitatively
links drainable porosity to moisture content, suction head,
or water table height. Moreover, the classical techniques and
methods to determine drainable porosity experimentally
are a topic of discussion. Different methods often lead to
results that differ by as much as an order of magnitude in
the early stages of drawdown experiments [Neuman, 1987;
Nwankwor et al., 1992; Moench, 1994; Heidari and
Moench, 1997].
[4] Tritscher et al. [2000] showed the dependency of

drainable porosity on the degree of saturation under a
variety of conditions. Both this study and that of Nachabe
[2002] draw the conclusion that the drainable porosity can
be strongly influenced by water table depth. Tritscher et al.
[2000] report differences as high as a factor 100 between the
drainable porosity values for the deepest versus the shal-
lowest water tables. In view of these previous studies, the
question arises as to how varying values of drainable
porosity affect the (modelled) water table movements and
outflow patterns.
[5] In this paper we first derive an analytical expression

for drainable porosity as a function of water table depth. By
assuming a vertical hydrostatic soil water pressure distribu-
tion in the unsaturated zone, we express drainable porosity
as a storage-dependent variable (that is, as a function of
water table depth and the hydraulic parameters of the soil)
for horizontal and sloping bedrock types. The derived
expression is then implemented in the physically based
nonlinear ‘‘hillslope-storage Boussinesq’’ (HSB) model as
developed by Troch et al. [2003], Paniconi et al. [2003],
and Hilberts et al. [2004]. This implementation enables us
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to test the validity of the derived equation and also allows
for an analysis of the effect of variability in the drainable
porosity value on the dynamic hydrological behavior of a
physically based model. The model results are evaluated by
comparing them to (1) the results of the original (constant f)
nonlinear HSB model to explicitly assess the effect of
storage-dependent drainable porosity and (2) to measure-
ments of water tables and outflow rates on a scaled hillslope
laboratory experiment of 6.0 � 2.5 � 0.5 m. By comparison
to laboratory measurements we are able to assess whether
the HSB model is capable of reproducing water table
movements and outflow patterns, and if the concept of
storage-dependent drainable porosity offers any advantages
in terms of accuracy when compared to the original HSB
model.

2. Drainable Porosity and Groundwater Storage

2.1. Storage in the Saturated and Unsaturated
Zone for a Horizontal Bedrock

[6] In an unconfined aquifer a drainage event causes the
water table to move downward, thereby decreasing the size
of the saturated zone and enlarging the unsaturated zone.
Consequently, drainage of groundwater can result in a
decrease in groundwater level directly and in changes in
storage in the unsaturated zone. Assuming there is no
recharge, we can define the drainable porosity as the change
in total storage with respect to a unit change in water table
depth. However, the choice of the length of a ‘‘unit change’’
is undefined and arbitrary. A clearer definition is obtained
when taking the limit case in equation (1) of f for Dh0 ! 0,
from which we obtain the expression

f y; h0ð Þ ¼ ds

dh0
ð2Þ

where y = y(z) is pressure head [L], t is time [T], and s =
s(y, h0) is the total storage of soil moisture [L] (see Figure 1)
which can be expressed as:

s y; h0ð Þ ¼ s1 yð Þ þ s2 h0ð Þ ð3Þ

where s1(y) is the total available storage of soil moisture
above the water table [L] and s2(h

0) is the total available
storage of water in the saturated zone [L]. The available soil
moisture storage above the water table can be expressed as

s1 yð Þ ¼
Z Z

h0
q yð Þ 	 qrð Þdz ð4Þ

where q(y) is the soil water content (dimensionless), z is the
vertical coordinate (positive upward) [L], Z is the location of
the ground surface above a horizontal datum, and qr is the
residual soil moisture content (dimensionless). The integra-
tion of (4) is taken over (Z 	 h0) which corresponds to the
depth of the unsaturated zone above the water table. The
storage of groundwater in the saturated zone is given by:

s2 h0ð Þ ¼ qs 	 qrð Þ h0 	 z0ð Þ ð5Þ

where z0 is the height of the bedrock above a given
horizontal datum [L] and qs is the moisture content at
saturation. Note that we implicitly assume that water that is

released as a result of compressibility of the groundwater
and the porous matrix is negligible compared to the water
that is released as a result of the emptying of the pore space
(i.e., specific storage coefficient is equal to 0).

2.2. Integration of Soil Moisture Curves for a
Horizontal Bedrock

[7] To solve (4) we require a relationship between soil
moisture content q and suction head y, and a relationship
between y and z. To solve (2) we need an expression for
storage s1 in terms of water table depth h0. Under the
assumption of zero vertical flux, and that the suction head
profile changes from one steady state situation to another
over the time it takes to impose dh0 (quasi-steady state
assumption), the relationship between y and z is that of
hydraulic equilibrium:

y ¼ h0 	 z ð6Þ

This assumption is valid either when the movement of the
water table is relatively slow, so that an equilibrium state
can be reached above the water table [Luthin, 1966], or for
shallow systems where redistribution of soil moisture is
rapid [Bierkens, 1998]. The constitutive relationship
between q and y used in this study is the van Genuchten
function [van Genuchten, 1980]:

q yð Þ ¼ qr þ qs 	 qrð Þ 1

1þ ayð Þn
� �m

ð7Þ

Figure 1. Sketch of hypothetical soil moisture profiles and
corresponding changes in saturated and unsaturated storage,
in relation to water table depth h0 at two time instances
(t and t + dt).
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where a [L	1], n (>0) (dimensionless), and m (dimension-
less) are van Genuchten parameters. Combining (6) and (7)
we obtain

q h0ð Þ ¼ qr þ qs 	 qrð Þ 1

1þ a h0 	 zð Þð Þn
� �m

ð8Þ

Troch [1992] found that for the q(y) relationship it is
possible to assume that the relationship between m and n is
given by

m ¼ 1þ 1=n ð9Þ

instead of the more common definition m = 1 	 1/n [e.g.,
van Genuchten, 1980], without losing the ability to aptly fit
the soil moisture retention data for a wide range of soil
types. Using (8) and (9) in (4), we obtain a simple
mathematical expression for the unsaturated zone storage s1,
given the position of the water table h0:

s1 h0ð Þ ¼
Z Z

h0
qs 	 qrf g 1

1þ a h0 	 zð Þð Þn
� �m

dz

¼ Z 	 h0ð Þ qs 	 qrð Þ 1þ a h0 	 Zð Þð Þn
� � 	1=nð Þ ð10Þ

The total storage can now be expressed as

s h0ð Þ ¼ s1 h0ð Þ þ s2 h0ð Þ

¼ Z 	 h0ð Þ qs 	 qrð Þ 1þ a h0 	 Zð Þð Þn
� � 	1=nð Þ

þ qs 	 qrð Þ h0 	 z0ð Þ ð11Þ

2.3. Drainable Porosity for a Horizontal Bedrock

[8] The first-order derivative of s with respect to h0 yields
the drainable porosity (see (2)):

f h0ð Þ ¼ qs 	 qrð Þ 1	 1þ a h0 	 Zð Þð Þn
� �	 nþ1

nð Þn o
ð12Þ

[9] Equation (12) is an analytical expression that relates
drainable porosity to local water table depth and is depen-
dent on the soil moisture retention characterization through
the van Genuchten parameters. An analogous expression
was also derived by Bierkens [1998] based on the integra-
tion described by Troch [1992]. Note that the derived
expression assumes zero vertical flux. Generalizing to
nonzero fluxes is possible [e.g., Rockhold et al., 1997],
although in this case we would not obtain closed form
solutions for the storage-dependent drainable porosity.

2.4. Drainable Porosity for a Sloping Bedrock

[10] To implement the derived expression for drainable
porosity for horizontal bedrock into Boussinesq-type hill-
slope models [e.g., Boussinesq, 1877; Troch et al., 2003],
the coordinate system has to be modified such that the water
table depth is taken perpendicular to the bedrock. This can
be done by substituting

h0 	 z0 ¼
h

cos ið Þ ð13Þ

Z 	 h0 ¼ D	 h

cos ið Þ ð14Þ

into (11), where D [L] and h(x, t) [L] are the soil depth and
the water table height measured perpendicular to the
bedrock and i = i(x) (dimensionless) is the bedrock slope

at coordinate x [L] parallel to the bedrock (see Figure 2).
From (13) we obtain

f hð Þ ¼ ds

dh
¼ ds

dh0
� dh

0

dh
¼ f h0ð Þ

cos ið Þ ð15Þ

Substitution of (12), (13), and (14) into (15) yields the
expression for drainable porosity that will be implemented
into the HSB model:

f hð Þ ¼ qs 	 qrð Þ 1	 1þ a
h	 D

cos ið Þ

� 	� 	n� 		 nþ1
nð Þ( )

ð16Þ

[11] By choosing this coordinate system we thus assume
that the saturated zone fluxes are parallel to the bedrock (the
extended Dupuit-Forchheimer assumption [Childs, 1971]),
and that the relationship between outflow and water table
fluctuations is characterized by drainable porosity, which in
turn is dependent on the water table height and the soil
water retention characteristics.

2.5. Interpretation

[12] Under the assumption that leads to (16) (i.e., no
recharge and hydrostatic pressure distribution in the unsat-
urated zone), we can analyze the behavior of this expres-
sion. To interpret it let us first analyze the limit values of the
function. For shallow unconfined aquifers under humid
conditions (i.e., relatively high water tables), h will ap-
proach D. This limit case yields:

lim
h"D

f hð Þ ¼ 0

For very deep aquifers with deep groundwater tables, D
approaches 1 and therefore:

lim
D!1

f hð Þ ¼ qs 	 qr

The drainable porosity for completely saturated soils is very
close to 0 because an infinitesimal change in water table
location will not result in any outflow, due to the binding of

Figure 2. Sketch of a sloping unconfined aquifer with
bedrock slope (i), water table elevation h0, soil surface
elevation Z, and bedrock elevation z0, together with water
table height h, depth to water table (D 	 h), hillslope length
(L), and soil depth (D) defined with respect to a reference
frame perpendicular to the bedrock and parallel to
coordinate x.
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water in the capillary fringe. As the water table drops, the
marginal effect of capillarity decreases and as a result
drainable porosity values initially increase. This was also
noted by Kim and Bierkens [1995] and Nachabe [2002].
When water tables are deep, a drop in water table will result
in a downward shift of the soil moisture profile without a
significant change of shape of the profile. Consequently the
change in unsaturated storage (ds1/dh) will then approach 0,
and the drainable porosity converges to ds2/dh = qs 	 qr. In
Figure 3 the drainable porosity from equation (16) for a
characteristic sand, loam, and clay soil is plotted as a
function of the depth to the water table. The van Genuchten
parameters used to produce these results are given in Table 1.
Figure 3 shows that for nearly saturated conditions drainable
porosity for all soil types goes to zero. For deep groundwater
tables, the drainable porosity converges asymptotically to
qs 	 qr. Because sandy soil has a low retention capacity,
and consequently the range in which capillarity has a
significant effect on storage is small, the maximum of f is
reached relatively quickly (in terms of depth to the water
table) in comparison to loam and clay soils.

3. Implementation of Storage-Dependent
Drainable Porosity Into the HSB Model

[13] The mass balance equation for a three-dimensional
hillslope reads:

@S

@t
¼ 	 @ wqf g

@x
þ Nw ð17Þ

where w = w(x) [L] is the hillslope width at x, N is the
recharge to the groundwater table [LT	1], q = q(h) [L2T	1]
is the Darcy flux, and S = S(x, t) [L2] is the total storage in a
hillslope at time t and position x along the slope. The Darcy
flux reads

q ¼ 	kh
@h

@x
cos i xð Þ þ sin i xð Þ

� 	
ð18Þ

where k [LT	1] is the hydraulic conductivity. The storage S
is defined as [Fan and Bras, 1998; Troch et al., 2003]

S ¼ gwh ð19Þ

where g = g(x, t) (dimensionless) can be regarded as the
specific yield according to the definition of Bear [1972] and
is defined as

g ¼ 1

h

Z h

h¼0

f dh ð20Þ

which by using (15) can also be expressed as:

g ¼ 1

h

Z h

h¼0

ds ¼ s hð Þ 	 s 0ð Þ
h

ð21Þ

Note that in the given context the term specific yield (g)
represents a porosity, whereas drainable porosity is actually
a storage coefficient. Note also that for a constant drainable
porosity, f and g have the same value. Substitution of (19),
(20), and (21) into (17) yields

wf
@h

@t
¼ 	 @ wqf g

@x
þ Nw ð22Þ

or

@h

@t
¼ 	 1

wf

@ wqf g
@x

þ N

f
ð23Þ

which is the governing equation for the HSB model [Troch
et al., 2003]. Note that the parameter f is now a function of
h. Equation (23) may be expanded, using (18), into
[Hilberts et al., 2004]

@ wqð Þ
@x

¼	 kw
@h

@x
þ kh

@w

@x

� �
@h

@x
cos i xð Þ þ sin i xð Þ

� �

	 kwh
@2h

@x2
cos i xð Þ 	 @h

@x

@i xð Þ
@x

�
sin i xð Þ þ @i xð Þ

@x
cos i xð Þ

�
ð24Þ

Figure 3. The relation between drainable porosity f and
the depth to the water table under the assumption of
hydrostatic pressure head conditions for four different soil
types. The corresponding parameter values are given in
Table 1.

Table 1. Van Genuchten Parameters (Regular and Modified) for

Sand, Loam, Clay, and the Laboratory Sand

Parameter Sand Loam Clay Laboratory Sand

Regulara

qs 0.26 0.37 0.47 0.32

qr 0.01 0.05 0.16 0.05

a, 1/cm 	0.0324 	0.0161 	0.0066 	0.0630
n 6.6600 2.6632 1.8601 4.4545

Modifiedb

qs 0.26 0.38 0.48 0.32

qr 0.01 0.06 0.19 0.05

a, 1/cm 	0.0301 	0.0090 	0.0020 	0.0532
n 5.9940 1.7608 1.1830 3.7708

aFor regular, m = 1 	 1/n.
bFor modified, m = 1 + 1/n.
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Upon substitution of (16) and (24) in (23) we obtain an
expression for @h/@t that is explicit in h and that reads

@h

@t
¼ 1

qs 	 qrð Þ 1	 1þ a
h	 D

cos ið Þ

� 	� 	n� 		 nþ1
nð Þ( )

� N þ 1

w
kw

@h

@x
þ kh

@w

@x

� �
@h

@x
cos i xð Þ þ sin i xð Þ

� �� �� �

þ 1

qs 	 qrð Þ 1	 1þ a
h	 D

cos ið Þ

� 	� 	n� 		 nþ1
nð Þ( )

� kh
@2h

@x2
cos i xð Þ 	 @h

@x

@i xð Þ
@x

sin i xð Þ þ @i xð Þ
@x

cos i xð Þ
� �� �

ð25Þ

The outflow from the hillslope is calculated using the mass
conservative scheme:

Q tð Þ ¼
Z L

x¼0

	wf
@h

@t
þ Nw

� 	
dx ð26Þ

4. Experimental Setup

4.1. Laboratory Hillslopes and the Drainage
Experiment

[14] The concept of storage-dependent drainable porosity
is analyzed by comparing the results of the HSB model to
measurements of water tables and outflow rates from a
drainage experiment in a laboratory setup. The experiments
are conducted for two distinct hillslope configurations:
linear convergent and linear divergent. A constant and
uniform rainfall rate is applied by a rainfall generator to
both the convergent and divergent hillslope, until a steady
state water table is reached. Then the rainfall generator is
stopped and from this steady state initial condition the
drainage experiment is started. For each hillslope shape
we investigate the hydrological response for 5%, 10%, and
15% bedrock slope. The two hillslopes, their dimensions,
and the location of the piezometers on the slopes are shown
in Figure 4. Two versions of the HSB model will be
evaluated: the original HSB model, where drainable poros-
ity and conductivity are constant, and the revised, more
general HSB model where drainable porosity is a state-
dependent parameter, calculated according to (16).
[15] Both HSB models are first run in an uncalibrated

mode with the hydraulic conductivity k set to the value that
was measured on a core sample in the laboratory, and for the
original HSB model the drainable porosity is set to qs 	 qr.
In the second experiment the two models are run in a fully
calibrated mode. The methods used to determine the
parameter values for the two models are described in
Sections 4.3 and 4.4.

4.2. Boundary Conditions

[16] All sides of the hillslope, except the outlet and the
soil surface, are made impermeable by means of plastic
sheets. At the outlet a highly permeable filter is placed at
0.05 m above the ‘‘bedrock,’’ for a total height of 0.20 m.
The outlet is thus subject to a Dirichlet-type boundary
condition, with the pressure head set to 0.05 m.

[17] Every 24 seconds automated water table readings are
obtained from the piezometers. All piezometers are
connected to a Campbell data logger with a multiplexer.
Outflow rates are measured every minute using a calibrated
vessel with a floating device. To reduce the noise in the
signals, the water table readings are averaged over 2-min
intervals and the outflow rates over 10-min intervals.

4.3. Parameterization of the Revised HSB Model

[18] For the revised HSB model, the drainable porosity is
calculated using (16), which is parameterized using the
relationship m = 1 + 1/n to determine the van Genuchten
parameter values for the coarse sand used in the laboratory
experiment. We will hereafter refer to these parameters as
the modified van Genuchten parameters, whereas the
parameters that are optimized using the regular relationship
m = 1 	 1/n will be referred to as the regular van Genuchten
parameters. They are given in Table 1. The retention curves
fitted to the measurements are plotted in Figure 5. The soil
depth (D) was measured separately for each hillslope shape
and is given in Table 2. Because the laboratory bedrock has
a negligible leakage and vertical fluxes in the unsaturated
zone are assumed to be 0, the sink/source term N is set to 0
for all simulations.
[19] In the uncalibrated runs the hydraulic conductivity k

is set to 40 m/d, which is the value that was measured on a
laboratory core sample. In the calibrated runs the conduc-
tivity is the only fitting parameter in this version of the
model, and it is optimized by minimizing the summed
absolute difference between measured and modelled out-
flow rates (i.e., the 1-norm). The calibrated value is given in
Table 2.

4.4. Parameterization of the Original HSB Model

[20] In the uncalibrated runs the hydraulic conductivity k
is set to 40 m/d as above. The value for drainable porosity is
set to (qs 	 qr), which seems the most suitable value for an a

Figure 4. Plan view of the convergent and divergent
laboratory slopes and the position of the piezometers
(indicated by small circles).
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priori estimate, since we expect the aquifer to reach full
gravitational drainage under the assumptions of Dupuit-
Forchheimer. In the calibrated runs the parameters of the
original HSB model are both regarded as fitting parameters.
The drainable porosity is calculated as [Paniconi et al.,
2003]

g0 ¼ Vc

Vi

ð27Þ

where Vc is the cumulative outflow from the laboratory
drainage experiment, and Vi is the volume of soil (pore space
plus solid matrix) occupied by the water in the saturated zone
at time zero. Note that based on the definitions given in
Section 1, g

0 is better described as the specific yield
[Johnson, 1967; Bear, 1972] of the aquifer under study, and
it can be regarded as an estimate for g as given in (20). Note
also that for a constant value for f (as was assumed by Troch
et al. [2003], Paniconi et al. [2003], and Hilberts et al.
[2004]) the three parameters collapse into the same value:
g
0 = g = f. The calculated specific yield values are given in

Table 2. The optimal value for conductivity is then found by
minimizing the 1-norm of the difference between measured
and modelled outflow rates. The optimal parameter values
are also given in Table 2.

4.5. Parameter Interpretation

[21] The revised HSB model has four additional unsatu-
rated zone parameters: qs, qr, a, and n compared to one (g0)

in the original HSB model. These four modified van
Genuchten parameters are all determined a priori on the
basis of soil water retention characteristics (which can be
derived for most soil types using pedotransfer functions or
are otherwise relatively easy to estimate from soil core
samples). The original HSB model involves the parameter
specific yield (g0), which can be calculated a posteriori on
the basis of hydrographs and initial groundwater storage. As
stated in the introduction of this paper, the value of drain-
able porosity (or specific yield in the case of the original
HSB model) is not unique for a given soil or hillslope. As is
apparent from Table 2, it will vary with slope angle and plan
shape of the hillslope, and with other factors as well (profile
shape, initial water table level and moisture status, etc.).
Using the modified van Genuchten parameterization to
describe the drainable porosity removes a parameter from
the model that has a poor physical basis (g0), and replaces
it with a storage-dependent parameter that is clearly
physically defined (f) and that does not need to be
calibrated on outflow data and piezometric measurements,
but instead can be calculated based on the soil water
retention characteristics (measured a priori) and the simu-
lated depth to the water table. Thus our approach has
potential for hydrological analysis in ungauged basins.

5. Results

5.1. Uncalibrated Models

[22] The outflow of the original HSB model, the revised
HSB model, and laboratory measurements are shown in
Figure 6. Note that the y axis is scaled differently for the
different bedrock slope angles. Figure 6 shows that the
convergent hillslopes drain more slowly than the divergent
ones, which is primarily caused by a smaller outlet width
[Troch et al., 2003]. Furthermore we notice that for the 5%
slopes the fluxes for the original HSB model are clearly
overestimated, especially for the convergent slope. The
revised HSB model shows a much better fit. For the 10%
convergent hillslope we notice that the original HSB model
has an almost perfect fit, whereas the revised HSB model
slightly underestimates the fluxes at early times and over-
estimates for large times. For the 10% divergent slope both
models show a good fit to the data. For the 15% convergent
slope the revised HSB model again underestimates the
fluxes at early times and slightly overestimates for large
times. The original HSB model displays the same pattern,
although the underestimation at early times is smaller and
the overestimation for large times is larger. For the 15%
divergent slope, both models show slightly underestimated
fluxes.
[23] In Figure 7 the water table profiles are plotted for

the six hillslope configurations at times 0, 60, 120, and

Table 2. Calibrated Conductivity Values k (m/d) for the Original and Revised HSB Model, Specific Yield (g0)

Values, and Soil Depth D (m) for All Six Hillslope Configurations

Original HSB Revised HSB

All HSB Dk 5% k 10% k 15% g
0 5% g

0 10% g
0 15% k 5% k 10% k 15%

Convergent 35 40 43 0.12 0.18 0.23 44 49 56 0.48
Divergent 30 29 31 0.18 0.26 0.31 32 34 31 0.44

Figure 5. The retention curve of the sandy soil used in the
laboratory experiments. Circles indicate measurements, the
solid line depicts the regular van Genuchten curve, and
the dashed line depicts the modified van Genuchten curve.
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300 min. The initial conditions (which are steady state
profiles as a result of the applied rainfall) show higher
saturation degrees on the upper parts of the three convergent
slopes when compared to the divergent ones, due to the
difference in outflow width. We notice that the original HSB
model systematically overestimates the water table height
for all slope shapes and all bedrock slope angles, especially
at early times. The revised HSB model is clearly more
accurate, even though it still overestimates the water table
values. The improvement of the revised HSB model is most
evident at early times, when a low value for the drainable
porosity in the revised HSB model causes the water tables to
drop relatively quickly. For large times the simulated water
table profiles for the two models converge.

5.2. Calibrated Models

[24] Table 2 gives the optimized conductivity values for
both models and the calibrated specific yield values for the
original HSB model. Figure 8 shows the outflow of the
original HSB model, the revised HSB model, and laboratory
measurements. Figure 9 shows the evolution of the space-
averaged drainable porosity value as function of time for the
revised model.

[25] The specific yield value increases for steeper slopes,
as expected since less water is retained in the unsaturated
zone on steep hillslopes, due to increased gravitational
drainage. The relatively low values for the 5% hillslopes
explain the large overestimation of the uncalibrated original
HSB model on these hillslopes in Figure 6. Noteworthy is
that the specific yield value for the 15% divergent slope
(g0 = 0.31) exceeds the value (qs 	 qr) = 0.29. This indicates
that more water has drained than is estimated based on the
initial saturated storage (Vi), from which we can conclude
that also water from the initial unsaturated zone has drained.
[26] With regard to the optimized conductivity values, we

notice that the values are slightly higher for the convergent
slopes and lower for the divergent slopes when compared to
the laboratory determined value of 40 m/d. This may be
caused by the higher initial water table values for the
convergent slopes when compared to the divergent slopes,
thereby increasing the average conductivity for these slopes.
[27] Overall, we notice that compared to the hydrographs

in Figure 6, the fit of both models has improved (not greatly
though), as expected. The overall fit of the revised HSB
model is slightly poorer compared to the original HSB
model. However, at early times when the impact of capil-

Figure 6. Outflow rates for the uncalibrated HSB models for the six hillslope configurations. Measured
values are shown as circles, the original HSB model is the shaded line, and the revised HSB model is the
solid line.
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larity on storage and flow is highest due to high saturation
degree, the fit has improved. For the 5% convergent slope
we see that the match is good at the beginning of the
drainage experiment, but is overestimated at large times. An
improvement in the fitting of the tail part of the hydrograph
is achieved at the expense of the goodness of fit at early
times: the drop of the flux rate is then too sharp. The fact
that this sharp decrease in modelled fluxes is not reflected in
the measurements may indicate that there is some recharge
from the unsaturated zone during the early stages of
drainage, due to the applied rainfall just before the exper-
iment. For the 10% slope the fit to the data is very good for
small times and the overestimation for large time is small.
For the 15% slope the fit to the data is good for small times,
but there is underestimation of flux for large times. The 5%
divergent slope shows an almost perfect fit. For the 10%
and the 15% divergent slopes, the fluxes initially drop too
quickly, but for larger times the fit improves. The space-
averaged drainable porosity in Figure 9 shows a quick
convergence toward qs 	 qr for the hillslopes that drain
quickly (i.e., divergent and steep slopes), and show slow

convergence for slowly draining slopes. When convergence
is reached, the advantages of the revised HSB model vanish,
because effectively f then remains constant.
[28] It is noteworthy in this context that although the time

and space averaged value of f may in some cases be
(almost) equal to the value of g0, the modelled states and
fluxes can be very different for the two models. A low value
of f at early times causes the water tables to drop quickly
(and fastest where the water tables are closest to the
surface), thereby changing the water table profiles funda-
mentally from the original HSB model. Even when the
values of f and g

0 are equal afterward, the outflow behavior
and water table dynamics remain different for the two
models. The opposite effect can also be noticed: the
averaged value of f and the value of g0 can in some cases
be different, whereas the modelled outflow for both models
can be almost indistinguishable. This effect can for example
be seen in Figure 8 for the 5% divergent slope, where the
time and space averaged value of drainable porosity is equal
to f = 0.25, and for the original HSB model g0 = 0.18,
whereas the modelled outflow is very much alike.

Figure 7. Water table profiles for the uncalibrated HSB models at time 0 (black), at 60 min (blue), at
120 min (green) and at 300 min (red) for the six hillslope configurations. The measured values are the
circles, the original HSB model is represented by the dashed lines, and the revised HSB model is
represented by the solid lines.
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Figure 8. Outflow rates for the calibrated HSB models for the six hillslope configurations. Measured
values are shown as circles, the original HSB model is the shaded line, and the revised HSB model is the
solid line.

Figure 9. Space-averaged drainable porosity values for the calibrated revised HSB models for the six
hillslope configurations. The dashed line indicates the value (qs 	 qr).
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[29] In Figure 10 the water table profiles are plotted for
the six hillslope configurations at times 0, 60, 120, and
300 min. As in Figure 6, we notice that both models
overestimate the water table values. Once again the revised
HSB model is clearly more accurate. However, due to the
calibration of the original HSB model (i.e., the lower
values of specific yield), the differences between both
models have decreased slightly although the differences
between the original and revised HSB models for early
times still range up to 0.10 m.

6. Discussion and Conclusions

[30] In this paper we have presented, for horizontal and
sloping bedrock aquifers, an analytical expression for
storage-dependent drainable porosity (for horizontal and
sloping bedrock), thereby incorporating some of the effects
of the unsaturated zone on groundwater storage and fluxes.
The assumption underlying the derivation is that during
drainage the pressure head in the unsaturated zone is
permanently in vertical hydraulic equilibrium. The derived
expressions (i.e., (12) and (16)) link drainable porosity

directly to the depth to the water table, thereby transforming
it from a fitting parameter into a state-dependent parameter.
The derived expression is then incorporated into the HSB
model and compared (in terms of water table height and
outflow values) to the results of the original (constant f )
HSB model and to a series of laboratory measurements. The
validation of the model is conducted on a convergent and a
divergent hillslope, for 5%, 10%, and 15% bedrock slope
inclination (i.e., 6 different hillslope configurations). Two
simulation settings were analyzed: an uncalibrated model
run, where the model parameters were determined based on
conductivity and water retention measurements on soil
cores; and a fully calibrated run, where the optimized
parameter values (i.e., specific yield and conductivity in
the case of the original HSB and only conductivity in the
case of the revised HSB) were used.
[31] The comparison of the HSB models to the measure-

ments from the laboratory hillslopes shows that it is possible
to capture the general features of a drainage experiment
using either one of the HSB models. Overall the original
HSB model (having one fitting parameter more than the
revised HSB model) shows a slightly better fit on the

Figure 10. Water table profiles for the calibrated HSB models at time 0 (black), at 60 min (blue), at
120 min (green), and at 300 min (red) for the six hillslope configurations. The measured values are the
circles, the original HSB model is represented by the dashed lines, and the revised HSB model is
represented by the solid lines.
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hydrographs when compared to the revised HSB model.
The peak outflow values however (the first few minutes
after initiation of the experiments) are better captured by the
revised HSB model. The revised HSB model’s performance
in simulating water table movements is much more accurate
than that of the original HSB model. The improved match of
the revised HSB model to piezometric measurements is
worth stressing because the ability to model water tables is a
key attribute of the model, making it possible to investigate
phenomena such as saturation excess runoff.
[32] The difference between the original and the revised

HSB model performance on outflow results is most clearly
visible for the uncalibrated model runs on gentle slopes: the
large overestimation of fluxes by the original HSB model
here clearly advocates the calculation of f as a storage-
dependent parameter. Also remarkable is the good match
between the revised HSB model and outflow measurements
without any calibration for the divergent slopes. The fact
that the performance of the original HSB model is not
independent of slope inclination and initial conditions,
together with the ability of the revised model to more
accurately simulate water table dynamics, clearly demon-
strates the importance of regarding drainable porosity as a
function of storage.
[33] A further comment on the storage-dependent drain-

able porosity concept worth mentioning is that even when
the time and space averaged value of f is equal to the
calibrated value of g0, the dynamic behavior of both models
can be significantly different. A low value of f at early times
can change the water table profiles such that the hydro-
graphs for both models remain different thereafter. The
opposite also holds: even when the averaged value of f
and the value of g0 differ significantly, the outflow behavior
may be almost identical.
[34] In relation to the hydrographs we notice that for

some drainage experiments the fluxes as modelled with the
revised HSB model drop too quickly at early times during
drainage, although the cumulative modelled outflow is
generally in accordance with the measurements. Since
changing the van Genuchten parameters would influence
the cumulative volumes, one can conclude that for the
revised HSB model it is not possible to obtain a better fit
for the hydrographs by tuning these parameters. This leads
to the conclusion that in the early stages of our drainage
experiments, the assumptions underlying the drainable
porosity expression might not be completely valid. Since
the experiment is started right after a rainfall event, it is
probable that there is still some vertical downward flux in
the unsaturated zone, violating our assumption of zero
recharge and hydraulic equilibrium in the unsaturated zone.
[35] Vachaud and Vauclin [1975] concluded that the

capillary fringe plays an important role in the flow of water.
Incorporating the capillary fringe as an integral part of the
Boussinesq aquifer (i.e., substituting h by h + yc, where yc is
the capillary fringe) will not affect the outflow behavior of
the HSB model, but will improve the simulated water
tables. The substitution effectively implies changing from the
assumption that transport only occurs below the water table
(underlying Boussinesq-type models) into the assumption
that transport only takes place in the saturated zone.
[36] Ongoing work is aimed at generalizing the expres-

sion for drainable porosity such that it can be calculated as a

storage-dependent parameter in case of nonzero steady state
fluxes in the unsaturated zone. Analytical integration of the
corresponding soil moisture profiles is then not possible, but
semianalytical solutions may be derived by means of
piecewise integration of the soil hydraulic characteristics
[see Rockhold et al., 1997]. In the case of nonzero recharge
we may also have to consider hysteresis phenomena in the
soil water retention characteristic. It is expected that a more
general expression would improve the revised HSB model’s
performance, especially just after initiation of the drainage
experiments. Moreover, it would enable us to extend the
analysis of the concept of storage-dependent drainable
porosity to recharge scenarios, rendering the revised HSB
model suitable for rainfall-runoff simulations in poorly
gauged catchments. Future work will also evaluate these
concepts by comparison to a three-dimensional Richards
equation based model and to field data.
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