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[1] A physiographical space-based kriging method is proposed for regional flood
frequency estimation. The methodology relies on the construction of a continuous
physiographical space using physiographical and meteorological characteristics of
gauging stations and the use of multivariate analysis techniques. Two multivariate analysis
methods were tested: canonical correlation analysis (CCA) and principal components
analysis. Ordinary kriging, a geostatistical technique, was then used to interpolate flow
quantiles through the physiographical space. Data from 151 gauging stations across the
southern part of the province of Quebec, Canada, were used to illustrate this approach. In
order to evaluate the performance of the proposed method, two validation techniques,
cross validation and split-sample validation, were applied to estimate flood quantiles
corresponding to the 10, 50, and 100 year return periods. Results of the proposed method
were compared to those produced by a traditional regional estimation method using the
canonical correlation analysis. The proposed method yielded satisfactory results. It
allowed, for instance, for estimating the 10 year return period specific flow with a
coefficient of determination of up to 0.78. However, this performance decreases with the
increase in the quantile return period. Results also showed that the proposed method works
better when the physiographical space is defined using canonical correlation analysis. It is

shown that kriging in the CCA physiographical space yields results as precise as the
traditional estimation method, with a fraction of the effort and the computation

time.
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1. Introduction

[2] Streamflow data are essential for optimal surface
water resource management. Normally, information
about this resource is derived from flow gauging stations.
However, in many parts of the world, hydrometric networks
are characterized by their low density and their inconvenient
spatial distribution. Also, even when hydrometric networks
are well developed historical hydrological data are not
always available at the site of interest. Consequently,
regional frequency analysis is commonly used for the
estimation of flow characteristics at sites where little or no
data are available. Numerous regional estimation proce-
dures and techniques were proposed and applied in various
areas over the world [Dalrymple, 1960; Burns, 1990;
Rosbjerg and Madsen, 1994; GREHYS, 1996a, 1996b;
Ouarda et al., 1999; Pandey and Nguyen, 1999; Daviau
et al., 2000; Ouarda et al., 2001; Grover et al., 2002; Mic et
al., 2002]. Moreover, there is a large consensus that regional
frequency analysis yields much more reliable flood quantile
estimators than does the at-site approach (local frequency
analysis) when only short records are available [Durrans
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and Tomic, 1996]. Indeed, spatial information is used to
make up for the paucity of temporal information.

[3] In regional flood frequency analysis, the two main
steps are the identification of groups of hydrologically
homogeneous basins and the application of a regional
estimation method within each delineated region to estimate
flood characteristics at the site of interest [GREHYS, 1996a].
The delineation of homogeneous regions aims to identify
sites which show a similar hydrological behavior. In fact,
variation in flow characteristics is closely related to the
variation in regional physiographical and climatic factors
[Pandey and Nguyen, 1999]. Physiographic and meteoro-
logical characteristics can then be used to produce estimates
of flow statistics at ungauged sites or at sites where records
are short.

[4] Homogeneous regions can be defined as geographi-
cally contiguous regions, geographically noncontiguous
regions, or as hydrological neighborhoods. The use of
geographically defined homogeneous regions is convenient
for practical purposes. However, geographical proximity is
not a guarantee of hydrological similarity [Reed et al., 1999;
Ouarda et al., 2001]. GREHYS [1996b] clearly indicated
that the neighborhood approach is superior to the fixed
region approach. In the neighborhood approach each target
site is assumed to have its own homogeneous region. The
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neighborhood is composed of a set of gauged sites for
which the proximity to the target site is represented by a
distance within a multidimensional space defined by the
hydrological, physiographical and meteorological character-
istics of gauged catchments. Two main neighborhood meth-
ods were proposed: the region of influence [Burns, 1990];
and canonical correlation analysis [Cavadias, 1990; Ribeiro-
Corréa et al., 1995; Ouarda et al., 2000]. Several estimation
methods such as the index flood approach [Dalrymple, 1960;
GREHYS, 1996a, 1996b] and linear, nonlinear or nonpara-
metric regression [Gingras and Adamowski, 1992; Pandey
and Nguyen, 1999; Grover et al., 2002] may be used
to estimate flood frequencies in combination with one
homogeneous regions delineation method.

[s] The application of the neighborhood concept in its
classical way is laborious and time consuming. For instance,
neighborhood delimitation methods, such as canonical cor-
relation analysis, need elaborated statistics for the definition
of a neighborhood ellipse [Ribeiro-Corréa et al., 1995;
Ouarda et al., 2001]. Furthermore, this neighborhood
definition is a compromise between the quantity of infor-
mation (number of stations within the neighborhood) to
consider in the regional analysis and the hydrological
homogeneity of the group of neighbors [Ouarda et al.,
1999].

[6] On the other hand, despite the reserves raised against
the use of the geographical proximity in regional flood
frequency estimation, several authors assumed that flow
characteristics can be regarded as continuous variables in
the geographical space and still apply interpolation tech-
niques such as kriging to flow regionalization [Delhomme,
1978; Villeneuve et al., 1979; Gottschalk, 1993a, 1993b;
Huang and Yang, 1998; Daviau et al., 2000; Haberlandt et
al., 2001; Eaton et al., 2002; Grover et al., 2002]. However,
hydrological variables are rather discrete variables in the
geographical space. They may change dramatically over
adjacent catchments since flood generation mechanisms are
specific to each basin. Consequently, the direct application
of interpolation methods in the geographical space runs up
against a serious problem [Sauquet, 2000].

[7] Flood quantiles at a given site represent the hydro-
logical response to the prevailing climate and reflect the
signature of the basin physical and geomorphological char-
acteristics. Therefore an appropriate interpolation technique
over the physiographical space (a multidimensional space
defined by the physiographical and meteorological charac-
teristics of the gauged basins) may have a real potential for
the regionalization of hydrological variables. Indeed, while
they are discontinues in the geographical space, quantiles
can be regarded as continuous variables in the physiograph-
ical space. In other terms, one can estimate flow quantiles at
an ungauged site, knowing flow quantiles at ““neighboring”
gauged sites, and by using an appropriate interpolation
technique.

[8] In the present study, we present the results of two
models for the regional estimation of flood quantiles over
the physiographical space. These methods are based on the
use of a geostatisical technique, namely ordinary kriging,
for the interpolation of flood quantiles over the physio-
graphical space. Two approaches for defining the physio-
graphical space were tested and compared: canonical
correlation analysis and principal component analysis. The
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physiographical space-based kriging results were also com-
pared to those produced by the traditional canonical corre-
lation analysis regional estimation method [Ouarda et al.,
2001]. The proposed regional estimation procedure was
applied to data from the hydrometric station network of
the province of Quebec (Canada) to estimate flood quantiles
corresponding to the 10, 50 and 100 year return periods.

2. Proposed Approach

[o] The proposed approach is based on the use of the
basins coordinates in the physiographical space rather than
the geographical space to interpolate the hydrological var-
iables of interest over the physiographical domain. There
are several ways which may be used to construct the
physiographical space. In this work, we choose to apply
the canonical correlation analysis and the principal compo-
nent analysis techniques in order to characterize the inter-
polation space.

[10] The canonical correlation analysis (CCA) method is
a statistical multivariate analysis tool which permits to
describe the relationship of dependence existing between
two sets of random variables [Muirhead, 1982]. It allows
determining pairs of linear combinations of each set of
variables, named the canonical variables, in such way that
the correlation between the canonical variables of a pair is
maximized and the correlation between the variables of
different pairs is null. One thus obtains a set of canonical
variables for the two sets of random variables. It is then
possible to find the canonical variables of one set knowing
the canonical variables of the other set. One can also
calculate a distance between two canonical scores. This
property is actually used as mentioned earlier to determine
hydrologic neighborhoods.

[11] Given a set of hydrological variables, X, (streamflow
quantiles in our case) and a set of physiographic and
climatic variables, Y, characterizing the basins of interest,
CCA aims to link the two sets using vectors of canonical
variables: V for the physiographic/climatic variables and W
for the hydrological variables. Vand W are defined as linear
combinations of X and Y. The linear combinations coeffi-
cients are estimated by maximizing the correlation between
the random variables V" and W. An interesting property of
canonical variables is that the correlation coefficient be-
tween each pair of elements of either vector V or W is null.
Thus both canonical variable vectors ' and W may consti-
tute an orthogonal basis for a physiographical and hydro-
logical space, respectively. Knowing the linear combination
coefficients vectors, one can precisely locate each available
gauged basin within one or the other space. For complete
description of the mathematical background of this ap-
proach and the use of CCA in regional flood frequency
analysis, the reader is referred to Ouarda et al. [2001].

[12] Principal component analysis (PCA) is an exploratory
multivariate statistical method for simplifying complex data
sets [Jackson, 1991; Basilevsky, 1994]. Given an original set
of variables, for instance, basin physiographic and climatic
characteristics, PCA is used to generate a new set of
variables, called principal components. Each principal com-
ponent is a linear combination of the original variables.
PCA consists of a transformation (rotation) of the original
axis of the multidimensional physiographic/climatic space,
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where axis are defined along each physiographic variable, to
a new axis system defined along the principal components.
The data variance along each axis is then maximized. All
principal components are orthogonal (they are uncorrelated)
so there is no redundant information. Thus principal
components as a whole form an orthogonal basis for the
data space.

[13] Since the physiographical and climatic character-
istics of ungauged basins are known, one can place these
basins in a CCA or a PCA physiographic/climatic space.
Assuming the hydrological variable is a continuous variable
over the transformed physiographical space, it is therefore
possible to estimate its value for the ungauged basin of
interest using its position in the transformed physiograph-
ical space and the information of the surrounding basins for
which the hydrological variable values are already known.

[14] Geostatistics are powerful statistical techniques
designed to study spatially autocorrelated variables [Isaaks
and Srivistava, 1989; Rossi et al., 1992]. They permit
estimating the local value of a variable using sparse local
measurements. These techniques take into account the
spatial structure and distribution of the variables through
tools known as structure functions such as variograms,
covariograms or correlograms. These structure functions
express the covariance between the observed points
according to the distance which separates them. They
describe the intensity and the pattern of the variable spatial
autocorrelation.

[15] Ordinary kriging, the most popular geostatistical
technique, produces an unbiased and optimal linear estima-
tion of the unknown values. Thus it provides the best
possible estimate using neighborhood information. The
estimate is obtained by weighting each neighboring value.
With respect to the spatial structure, the closest values
receive higher weights because they are more likely to be
similar to the unknown value being estimated. The unbi-
asedness is ensured by the “universal condition” where the
sum of the weighting coefficients is equal to 1. The kriging
estimation can be expressed as follows:

Z* (x0) =Y wiZ(x;)
i=1

" ; (1)
ZW,’ =1
i=1

where Z is the continuous variable of interest, Z*(x,) its
value being estimated at the unsampled position x¢, Z(x;) its
known values at the n sampled locations x; and w; are the
corresponding weighting coefficients.

[16] The exact weighting coefficients are calculated by
modeling the spatial autocorrelation expressed in the struc-
ture function. The experimental (observed) structure func-
tion cannot be used directly in the calculation of the weights
w;, since it represents a discrete estimate of the spatial
autocorrelation. Consequently, and in order to ensure the
positive definiteness of the covariance matrix in the kriging
system, a theoretical model selected among a limited set of
authorized models is fitted to the observed structure func-
tion [Isaaks and Srivistava, 1989; Arnaud and Emery,
2000]. The choice of the model is the most crucial step
and most difficult in the kriging application, since estima-
tion quality depends on it. It must also be based on the real
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knowledge of the phenomenon rather than on the accuracy
of the mathematical adjustment only. The model is used to
calculate the coefficients w,.

[17] It should be noted here that ordinary kriging relies on
the basic assumption that the variable being estimated
should be second-order stationary over the interpolation
domain; that is, the variable values fluctuate around a
constant value in space and these fluctuations have the
same dispersion over all the whole space [Arnaud and
Emery, 2000].

3. Case Study
3.1. Data

[18] The proposed approach was applied to southern
Quebec’s (Canada) hydrometric station network. Data of
151 hydrometric stations managed by the ministry of the
environment of Quebec (MENVIQ) services were used. The
selected stations were identified according to certain crite-
ria. First, the gauged river should present a natural flow
regime or, at least, influenced just on a daily scale. The
station should present a historical record period longer than
15 years. The gauged basin area is superior to 200 km? but
less than 100000 km?. Finally, the selected stations must be
located at the inhabited region of Quebec (between 45°N
and 55°N). 90 out of 151 stations are still active. Figure 1
illustrates the location of these hydrometric stations.

[19] An at-site flood frequency analysis was carried out at
each station of the database [Kouider et al., 2002]. Data
were tested for homogeneity and stationarity, and appropri-
ate statistical distributions were fitted to data in order to
estimate local flood quantiles corresponding to several
return periods. In this study, we focused on spring flood
quantiles corresponding to 10, 50 and 100 year return
periods. Eaton et al. [2002] indicated that, in order to
investigate the underlying physical behavior of drainage
systems, scale effects must be eliminated from data.
Consequently, we used specific quantiles (flood quantiles
standardized by the basin area), noted ¢10, ¢50 and ¢100, in
order to account for the scale effect.

[20] Initially, several physiographical and meteorological
variables were available for each station. They were
extracted from a spatial database gathered and implemented
within the ArcView software [Gignac et al., 2002]. Basins
boundary, area, slope and land occupation as well as the
drainage network were extracted from the MENVIQ hydro-
logical database (BDH) and from the topographic digital
maps of Quebec. Meteorological variables were calculated
using interpolated historical data observed on the MENVIQ
meteorological network across the province of Quebec. For
each gauging station, the meteorological variables were
estimated by an area weighted average of the variable of
interest across the whole catchment.

[21] Only four variables were considered in the present
study; two physiographical variables: basin mean slope
(PMBYV) and the fraction of the basin area covered with
lakes (PLAC); and two meteorological variables: annual
mean total precipitations (PTMA) and annual mean degree-
days over 0°C (DJBZ). Table 1 lists the hydrological,
physiographical and meteorological variables used herein
as well as their descriptive statistics. The selected physio-
graphical and meteorological variables appear to be the
most relevant for the study at hand according to their
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Figure 1. Localization of hydrometric stations across the province of Quebec (Canada).

correlation degree with the specific flood quantiles. Figure 2
shows the hydrological, physiographical and meteorological
variable histograms in addition to their correlation coeffi-
cients and their interrelations.

[22] According to Figure 2 and Table 1, the selected
physiographical and meteorological variables as well as
the hydrological variables show an evident asymmetry.
However, since CCA requires variable normality, the vari-
ables should be transformed prior to analysis. Thus a
logarithmic transformation was applied to the specific flood
quantiles, PMBYV, PTMA and DJBZ. As for PLAC, a root
transformation appeared to be more adequate. Even if the
PCA does not require variable normality, the transformed
variables were nevertheless used to calculate the principal
components. Indeed, the first components explain more
total variance when the variables are transformed than if
they are not. As well, in order to account for scaling effects,
all variables were standardized prior to CCA and PCA
analysis.

3.2. Results

[23] Figure 3 presents the spatial distribution of the
specific quantiles of the gauging stations through the

CCA and PCA physiographical spaces. For the CCA, the
space axes are made up of the two first canonical physio-
graphical variables (V1 and V2). As for the PCA, the space
axes consist of the two first principal components (CP1 and
CP2). It should be noted that CP1 and CP2 explain 82.2%
of the total variance (58.4% and 23.8%, respectively). Thus
the specific quantiles exhibit an evident spatial pattern in
both physiographical spaces. Nevertheless, the spatial pat-
terns are different from one space to another. While they are
more scattered over the PCA space, the gauging stations are
grouped around the origin in the case of the CCA space.
However, in the latter case, some gauging stations are
located apart from the rest of the group: in the lower left
and upper right corners. This may result in a higher risk of
extrapolation within the CCA physiographical space. In
both spaces, specific quantiles values vary inversely to
the first axis of the space: CP1 for the PCA and V1 for
the CCA. However, this variation is less marked along the
second axes (CP2 and V2).

[24] In order to identify and measure the spatial structure
within the hydrological variables at hand, the isotropic
experimental variograms were calculated over both spaces
(Figure 4). All variables demonstrate an obvious spatial

Table 1. Descriptive Statistics of Hydrological, Physiographical, and Meteorological Variables

Variable Unit Notation Mean Median Max Min SD Skewness Kurtosis
100 year specific flood m?/s.km? 100 0.31 0.26 0.94 0.03 0.20 0.76 2.99
50 year specific flood m’/s.km? q50 0.28 0.24 0.77 0.03 0.18 0.64 2.65
10 year specific flood m*/s.km’ q10 0.22 0.21 0.53 0.03  0.13 0.41 2.17
Basin mean slope % PMBV 2.43 2.14 6.81 0.96 0.99 1.17 5.10
Percentage of the basin occupied by lakes % PLAC 7.72 5.00 47.00 0.00 7.99 1.94 8.23
Annual mean total precipitation mm PTMA 988 996 1534 646 154 0.72 5.31
Annual mean degree-days over 0°C degree-day DIBZ 16,346 14,390 29,631 8589 5385 0.90 2.77
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Figure 2. Variable histograms, correlation coefficients, and interrelations.

structure (spatial autocorrelation). Indeed, the experimental
variograms show a small variance at short distance. For
CCA, the variance then increases rapidly according to the
separation distance before reaching a plateau, which indi-
cates the disappearance of the spatial correlation. This
variance level, commonly called the sill, is reached at a
distance, known as the range, about 5, in the case of the
CCA space. As for the PCA space, the experimental vario-
grams show no sill, at least, at the scale of the observed
sample. We assumed therefore that the hydrological varia-
bles reach their sills, in the PCA physiographical space, at a
range located beyond the extent of the observed sample.
This means that their spatial autocorrelation is prolonged
beyond the observed sample range. In fact, one should not
forget that this space was designed using observed combi-
nations of basins physiographical and meteorological char-
acteristics, which do not cover inevitably all the possible
combinations of physiographical and meteorological varia-
bles. Consequently, the sample of gauging stations does not
cover all the extent of the PCA physiographical space.
However, the absence of sill in the PCA space variograms
could be also explained by the fact that the specific
quantiles would not stationary in this space. This means
that there might be a gradual trend in variable values; that is,
the variable values doest not fluctuate around a constant
value in space but they vary according to space coordinates.

[25] Results also indicate that, for both spaces, 100
shows sills higher than ¢50 and ¢10. This is due to the fact
that the ¢100 values are in turn higher than ¢50 which are
higher than ¢10. Their respective sills are consequently
ordered.

[26] The Gaussian model was fitted to all experimental
variograms (Figure 4). Table 2 presents the characteristics of

the theoretical models. The models were selected according
to the pattern of the spatial structure shown by the exper-
imental variograms. The Gaussian model is a transition
model, which reaches its sill asymptotically and exhibits a
parabolic behavior near the origin [Isaaks and Srivistava,
1989; Arnaud and Emery, 2000]. The latter property repre-
sents the distinguishing feature of the Gaussian model. It is
used to model continuous phenomena like the one at hand.
In fact, all experimental variograms show a slow progres-
sion of the variance at a short separation distance, indicating
that the variables of interest are quite continuous over both
spaces. This spatial continuity is the most pronounced for
q10 and the least pronounced for ¢100 in both cases of the
PCA space and the CCA space.

[27] In addition, a nugget effect was added to the Gaussian
model. This parameter is used to model the discontinuity
at the origin observed in the experimental variograms
(Figure 4). The discontinuity is due to several factors related
mainly to local estimation, sampling and/or localization
errors. Indeed, the local quantiles used herein are estimated
with a level of uncertainty, which increases with the return
period. This appears clearly in the values of the estimated
nugget effect (Table 2). Thus in both spaces, ¢10 presents a
nugget effect value that is lower than that of ¢50 which in
turn is lower than that of ¢100. One should note here that, as
expected, the ranges of the theoretical models in the PCA
space are larger than the observed sample extent (Table 2).

[28] The spatial autocorrelation models thus adjusted can
be used for the estimation of specific quantiles using the
kriging technique, at any point of the CCA and PCA
physiographical space. It should be noted here that the
estimation is carried out with an optimal neighborhood
structure. Ideally, this is represented by a searching circle
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Figure 3. Flood quantiles across the CCA and PCA physiographical space: (a) ¢10, (b) ¢50, and
() ¢100.

or ellipse (in the case of anisotropic spatial autocorrelation)
that is divided into several sectors (at least four sectors)
with an optimal number of observations by sector. The
subdivision of the neighborhood structure aims to minimize
the clustering effect as well as to limit the occurrence of
extrapolation in the regions where there are few observa-
tions. However, the geostatistical software [Gamma Design
Software, 2000], used in the present study does not allow
the design of such structure. Consequently, we used a
neighborhood structure with one sector and a searching
radius of the same size as the extent of the observed sample.
The use of such searching radius is a reasonable choice,
since, as demonstrated by the variograms where ranges

exceed the sample spatial coverage, the hydrological vari-
ables are very continuous over both spaces. Within this
neighborhood structure, a maximum number of 64 obser-
vations were used in the estimation.

[29] In order to evaluate the performances of the kriging
technique over both spaces and compare their results to the
traditional approach, we conducted two types of valida-
tion: a cross validation (jackknife) and a split-sample
validation. In the first validation technique, the value of
a given station is temporarily removed from the sample.
The value for this observation is then estimated using the
remaining stations. This operation is repeated for the
whole station set. Then, the estimated values are compared
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Figure 4. Isotropic theoretical (solid line) and experimental (squares) variograms of the flood quantiles

through the CCA and PCA physiographical space: (a) ¢10, (b) ¢50, and (c) ¢100.

with the true one. As for the split-sample validation,
30 gauging stations were randomly selected and removed
from the whole observed sample to serve as a validation
group. The remaining 121 gauging stations were used as
calibration group. In the case of the proposed approach,
the physiographical spaces were designed using the data of
the remaining 121 gauging stations. The spatial structure
of the hydrological variables of the latter group of stations
was used to calibrate the kriging system. The physiograph-
ical and meteorological characteristics of the validation
group were employed therefore to calculate their coordi-
nates within both spaces. Through the spatial location of
each station and the neighborhood information using the
spatial structure of the hydrological variables identified
and quantified by the variogram model, their hydrological
variables were estimated and then compared to the local
estimates.

[30] To assess the performance of the estimation methods,
we considered a certain number of evaluation indices. In
addition to the coefficient of determination (R?), these
include the Nash criterion (NASH), the root mean square
error (RMSE), the relative root mean square error (RMSEr),

Table 2. Characteristics of the Theoretical Models Fitted to the
Variables” Experimental Isotropic Variograms

Physiographical
Space Variable Model Nugget Sill Range Fitting 12

CCA q10  Gaussian 0.003 0.045 6.72 0.990
q50 Gaussian  0.007  0.092 5.49 0.992
100  Gaussian 0.010 0.112 523 0.991

PCA 10 Gaussian 0.002 0.086 12.70  0.984
q50 Gaussian  0.009 0.228 13.15 0.980
100  Gaussian 0.013 0262 12.56  0.977
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Table 3. Cross-Validation Results
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Kriging in the CCA

Kriging in the PCA Traditional CCA Regional

Variables Physiographical Space Physiographical Space Estimation Method
R? q10 0.78 0.76 0.78
450 0.73 0.70 0.72
q100 0.70 0.67 0.69
NASH q10 0.78 0.76 0.78
450 0.72 0.69 0.72
q100 0.70 0.66 0.68
RMSE, m®/s.km? q10 0.050 0.053 0.059
450 0.093 0.098 0.094
g100 0.110 0.116 0.112
RMSEr, % q10 51 66 43
450 64 82 49
g100 70 86 51
BIAS, m®/s.km? q10 —0.004 —0.006 0.001
450 —0.007 —0.008 0.005
q100 —0.008 —0.010 0.007
BIASF, % q10 -16 —20 -9
450 21 25 —11
q100 -23 —27 —11

the mean bias (BIAS) and the relative mean bias (BIASr).
They are defined as follows:

(6)

where z;, z; and z are, respectively, the local and regional
estimates at station i and the local mean value of the
hydrological variable of interest; n is the sample size.

[31] According to the jackknife method (Table 3), the
proposed estimation method produces satisfactory results
for both PCA and CCA, especially, in the case of ¢10 for
which the NASH criterion is close to 0.8. In fact, the NASH
criterion compares the estimation method performance to
the use of the observed mean value as an estimate. If it is
negative, the estimate is worse than using the mean value.
For an estimation method reproducing perfectly the ob-
served data, the NASH criterion is equal to 1. In general,
one can expect from a satisfactory estimation that the
NASH criterion value is close to 0.8. The results of the

new method are comparable to those obtained using the
traditional CCA method. CCA-space kriging is slightly
better than the traditional method, while PCA kriging is
less powerful. It must be recalled that GREHYS [1996b] has
shown that traditional CCA produced the best performances
in comparison with other methods for the delineation of
homogeneous regions.

[32] On the basis of the RMSE values, estimates produced
using kriging in the CCA space are as precise as those
produced by the traditional CCA regional estimation method
and more precise than kriging in the PCA space estimates.
However, the relative RMSE shows that estimates made by
the traditional method are on average less erroneous than
kriging in CCA space and kriging in PCA space.

[33] On the other hand, the kriging method seems to
overestimate quantile values, since the calculated mean bias
is negative, while the traditional approach seems to under-
estimate the quantiles. The estimation bias is slightly less
significant in the case of this last method.

[34] The precision of the quantiles estimated values
decreases with the increase of the return period. This
represents an expected result, since the precision of the
locally estimated quantiles decreases as the return period
increases. The local estimation error is propagated through
the estimation method. Its impact on the spatial structure of
the variables, in the case of the interpolation approach, was
discussed earlier. As for the traditional CCA regional
estimation technique, less precise locally estimated quan-
tiles lead to a weaker correlation structure between hydro-
logical and physiographical variables.

[35] The kriging technique produces better results within
the CCA physiographical space than the PCA space. Thus it
seems that the CCA technique is more capable to charac-
terize the physiographical space in relation to the estimation
of the specific quantiles. In fact, the axes of the CCA space
are calculated while maximizing the correlation between the
basins physiographical characteristics and the hydrological
variables. On the other hand, the PCA technique is limited
to maximizing the variance along the space axes. This
would cause the spatial autocorrelation of the hydrological
variables to be better defined within the CCA physiograph-
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Figure 7. Same as Figure 5, but using the traditional CCA
regional estimation method.

9 stations drain basins of area 500 km?® or less. Another
possible reason of the underestimation of small basin
quantiles lies in the fact that the surfaces of these basins
are themselves underestimated. In fact, the basin areas
recorded in the BDH database used in this study were
estimated from watershed boundaries. The latter were
obtained by sketching manually catchment limits from
course-scale printed maps. During this operation the gener-
alization of the watershed shape is inevitable. This generally
leads to an undervaluation of the drainage surfaces whose
relative importance is more significant in the case of small
watersheds.

[37] Moreover, while all estimation methods underesti-
mate specific streamflows superior to 0.55 m’/km? the
traditional CCA approach appears to produce more precise
values for lower specific streamflows (<0.15 m /km?).
Whereas, for the same range of specific streamflow, the
interpolation method in both spaces yields values with more
constant estimation error. This could explain the lower
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relative RMSE values observed in the case of the traditional
method.

[38] On the other hand, we identified a certain number of
problematic gauging stations which are responsible for a
significant part of the high observed relative mean square
error in both spaces. These suspected stations are indicated
by arrows on Figures 5¢ and 6¢c. We found that for four
stations (identification numbers: 030401, 030402, 041903
and 042607), the catchment areas were underestimated,
which caused very high relative errors. The two other
stations (080104 and 081101) were found to have, accord-
ing to DBH, basins with an overevaluated percentage of
area covered by lakes when compared to independent digital
maps. The exclusion of these six stations improved signif-
icantly the overall results. For instance, the RMSEr calcu-
lated for g100 estimated within the CCA space drops from
70% to 41% and the relative mean bias from —23% to
—16%. This means that the method developed in the present
study is rather sensitive to the quality of physiographical
and meteorological data. Unfortunately, the database used in
this study presents certain anomalies and other stations are
undoubtedly problematic.

[39] Furthermore, the observed divergence between the
locally estimated values and those estimated by the kriging
in the physiographical space can partly be attributed to
extrapolation. This one occurs on the edge of the observed
domain or in isolated regions far from the remainder of the
sample (Figure 3). In this case, the sample points are not
evenly distributed around the point of interest where an
estimate is needed. Thus instead of interpolating between
the observed points, information is extrapolated beyond the
observed domain which often leads to estimates of lesser
quality. A means to limit this problem would be to use a
neighborhood structure subdivided into several sectors with
an optimal number of observations in each sector as well as
a limit on the number of empty adjacent sectors. However,
the software used in the present study did not allow the
definition of such a structure.

[40] The split-sample validation results over both spaces
are presented in Table 4, Figures 8, Figure 9, and Figure 10.
The results are similar to those obtained by the jackknife
resampling. However, kriging in the CCA yields results as
precise as the traditional CCA-based regional estimation
method. Here again, the interpolation over the CCA phys-
iographical space produces better results than that in the
PCA space. The NASH criterion varies between 0.67 and
0.76 for kriging in the CCA space and between 0.66 and
0.73 in the PCA space. For all estimation methods, the split-
sample validation generates RMSE values comparable to
those of the jackknife. However, the relative root mean
square error values are about half those of the jackknife and
the same for the bias. This is due to the fact that most
problematic stations were not selected among the validation
group. This results also in lower estimation bias. The split-
sample validation confirms the tendency of the proposed
method to yield flood estimates for which precision
decreases with the increase in the return period.

[41] On the other hand, during the split-sample valida-
tion, 30 gauging stations were randomly excluded from the
calibration of the estimation method. The method yields
however results as good as those obtained by a calibration
sample of 151 gauging stations. It seems then that the
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Variables

Kriging in the CCA
Physiographical Space

Kriging in the PCA
Physiographical Space

Traditional CCA Regional
Estimation Method

R2

q10
450
4100

0.78
0.72
0.69

0.74
0.69
0.66

0.77
0.71
0.68

NASH ql0
450
q100
q10
450
q100
ql0 22
q50 26
q100 28
q10
450
4100
q10
450
4100

RMSE, m*/s.km’

RMSEr, %

BIAS, m?/s.km?

BIASr, %

proposed estimation method is not very sensitive to the
removal of a relatively small part of the sample especially in
the case of the CCA.

4. Conclusions and Future Work

[42] In this study, we aimed to develop and apply a new
regional flood flow estimation method. This method is
a physiographical space-based estimation technique. It
consists in the interpolation of flow quantiles over the
physiographical/meteorological space rather than the usually
employed geographical space. Hence for any ungauged
site, one has just to estimate its coordinates in the physio-
graphical space from its basin physiographical and meteoro-
logical characteristics, which are generally easily available,
and then estimate its flood quantiles by interpolation of local
quantile estimates within its physiographical neighborhood.
For this purpose, two mutltivariate analysis methods were
used to define the physiographical/meteorological space:
canonical correlation analysis and the principal component
analysis.

[43] It was demonstrated that hydrological variables can
be treated as a continuous variable over the physiographical
space. Thus geostatistical techniques can be were employed
to estimate flood flow quantiles. Variograms and kriging
were applied, respectively, to capture the spatial autocorre-
lation structure of the variables and interpolate them over the
physiographical space. Cross-validation and split-sample-
validation techniques were used to assess the performances
of the proposed estimation method. The validation reveals
that physiographical space-based kriging is effective to
estimate flood flow quantiles and yields satisfactory results
especially in the case of high-frequency quantiles. Results
indicate also that the estimation method was more success-
ful within the CCA physiographical space than in the case
of PCA physiographical space. However, some anomalies
in the physiographical data used in this study were detected
in certain gauging stations and led to high estimation errors.
This points out the importance of the data quality for the
success of the estimation method.

[44] The no sill variograms in the case of PCA space as
well as the less conclusive results of kriging in this space
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Figure 8. Split sample validation estimates using kriging
in the CCA physiographical space compared to locally
estimated quantiles: (a) ¢10, (b) ¢50, and (c) ¢100.
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Figure 9. Same as Figure §, but for the PCA physio-
graphical space.

suggest the absence of stationarity of the specific quantiles
data and the existence of a possible spatial trend within the
data. If this is the case, ordinary kriging would not be the
appropriate estimation technique. One should instead quan-
tify the trend using spatial regression (regression between
the specific quantiles and the correspondent coordinates in
PCA physiographical space) and apply afterward the ordi-
nary kriging on the regression residuals. The specific
quantile estimation at an unsampled location will be then
the sum of the quantile value estimated by spatial regression
and the kriged residual at the same location. It is as well
possible to use an adaptation of ordinary kriging known as
universal kriging that can deal with the presence of a trend
[Isaaks and Srivistava, 1989].

[45] It was demonstrated in this study that the proposed
estimation method is as powerful as the most powerful
regional estimation techniques. Indeed, when compared to
the traditional CCA-based regional estimation approach, the
physiographical space-based kriging technique yields
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equivalent performances and this by using a nonoptimal
neighborhood structure. Future developments in relation to
the estimation method proposed in the present paper could
allow its application in a more effective way. First, one may
calculate the directional variograms in order to account for
possible anisotropy in the variable spatial autocorrelation.
One should also employ a more efficient neighborhood
structure during the kriging interpolation, which was im-
possible with the geostatistics software used in this study.
This structure should be defined in relation with the spatial
distribution of the observed sample as well as with respect
to the spatial autocorrelation structure (anisotropy and
range). In addition, it may be interesting to test other space
definition techniques such as Multidimensional Scaling
[Kruskal and Wish, 1978], Factor Analysis [Lindeman et
al., 1980; Stevens, 1986] or Correspondence Analysis
[Benzecri, 1973; Greenacre, 1984] and compare their
results to those presented herein. Additionally, further effort
could be devoted to the study of the effect of the choice of
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Figure 10. Same as Figure 8, but using the traditional
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physiographical and meteorological variables on the space
definition as well as on the estimation quality.

[46] Kriging produces an unbiased optimal estimation,
commonly known as BLUE (for Best Linear Unbiased
Estimation). However, it requires a significant modeling
effort and a good knowledge of the phenomenon of interest.
It is also possible to apply to the physiographical space
common interpolation techniques such as the inverse dis-
tance for their facility of application and speed. However,
kriging provides an estimate of the error at any point of the
interpolated space, which is not possible with other classical
interpolation techniques. This information on the error is
very useful. It illustrates the reliability of the regional
estimation and could be used to assess the spatial distribu-
tion quality of the sampling points.
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