WATER RESOURCES RESEARCH, VOL. 40, W07202, doi:10.1029/2003WR002759, 2004

Catchment-scale mapping of surface grain size in gravel bed rivers
using airborne digital imagery

Patrice E. Carbonneau and Stuart N. Lane
Department of Geography, University of Durham, Durham, UK

Normand E. Bergeron

Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Sainte-Foy, Quebec, Canada
Received 9 October 2003; revised 23 March 2004; accepted 27 April 2004; published 22 July 2004.

[1] This study develops and assesses two methods for estimating median surface grain
sizes using digital image processing from centimeter-resolution airborne imagery.
Digital images with ground resolutions of 3 cm and 10 cm were combined with field
calibration measurements to establish predictive relationships for grain size as a function
of both local image texture and local image semivariance. Independently acquired grain
size data were then used to assess the algorithm performance. Results showed that for
the 3 cm imagery both local image semivariance and texture are highly sensitive to median
grain size, with semivariance being a better predictor than image texture. However, in the
case of 10 cm imagery, sensitivity of image semivariance and texture to grain size was
poor, and this scale of imagery was found to be unsuitable for grain size estimation. This
study therefore demonstrates that local image properties in very high resolution digital
imagery allow for automated grain size measurement using image processing and remote
sensing methods.  INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1899 Hydrology: General
or miscellaneous; 1815 Hydrology: Erosion and sedimentation; KEYWORDS: fluvial grain size measurement,

airborne remote sensing, digital image processing, image semivariance, image texture
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1. Introduction

[2] Grain size measurements of fluvial gravels are a
fundamental descriptor for many fields of geomorphological
research, including sediment transport [e.g., Middleton and
Southard, 1984; Wiberg and Smith, 1987] and the study of
flow resistance and the prediction of flow velocities in open
channel flow [e.g., Bray, 1982; Clifford et al., 1992]. Fur-
thermore, grain size has also been demonstrated to be an
important variable for the habitat preferences of salmonids
[e.g., Rimmer et al., 1983; Cunjak, 1988; Heggenes, 1996].
Methods for the field measurements of the grain size distri-
butions of fluvial sediment are well established and are the
subject of many studies [Wolman, 1954; Hey and Thorne,
1983; Church et al., 1987; Rice and Church, 1996; Bunte and
Abt, 2001]. Generally, these methods are labor intensive and
require a significant amount of fieldwork to implement.
Consequently, the time needed to acquire grain size measure-
ments may limit the size of the area that can be sampled.

[3] However, there has been growing interest in the
development of methods which could potentially reduce
the field effort associated with grain size data collection and
so increase the area that may be sampled. These methods
typically rely on photographs of the bed. Also called
photosieving, they involve taking plan view images of
gravels either in exposed areas [Adams, 1979; Ibbeken
and Schleyer, 1986; Butler et al., 2001a] or shallow sub-
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merged areas [Whitman et al., 2003]. Generally, images of
the riverbed are collected from standing position with some
form of scale information in each image. This yields images
that cover up to ~1 m? (e.g., 0.4 m? [Bunte and Abt, 2001]).
These images are then analyzed either using manual mea-
surements [e.g., Adams, 1979] or using automated image
segmentation and measurement [Butler et al., 2001a]. The
main advantage of photosieving lies in the fact that actual
measurement of the clasts does not take place in the field,
which saves field effort. However, photosieving has three
main disadvantages. First, the method is limited to mea-
surement of the visible surface of gravels. Therefore photo-
sieving is not applicable in cases where subsurface grain
sizes are required. Second, the minimal clast size that can be
analyzed is typically in the gravel range, for example,
Ibbeken and Schleyer [1986] only considered particles
coarser than 20 mm, and Butler et al. [2001a] followed
the recommendations of Wolman [1954], designed for
manual grain size measurements, and set the lower thresh-
old of measurable size to 8 mm. These thresholds are
directly related to image scale. Provided that sufficient
image texture is present, higher-resolution imagery should
allow for the detection of sand and silt particles. However,
given current imaging technology, the detection of individ-
ual sand grains would require images with extremely low
spatial coverage, of the order of a few square centimeters.
This is clearly not practical for reach of river-scale studies,
and thus photosieving is not applicable to sands, silts, and
clays and is more suitable to gravely environments. The
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third difficulty with photosieving methods involves the
use of two-dimensional imagery, which introduces a sys-
tematic underestimation of clast dimension and requires
correction [Adams, 1979]. This bias has two causes. The
first is the approximation of the actual clast dimensions in
three-dimensional space from their projection in a two-
dimensional image. Second is that the hiding effect of
neighboring, overlapping, and interlocking (i.e., armored)
clasts will cause additional bias. Ibbeken and Schleyer
[1986] have found that while photosieving does cause a
bias, this bias is acceptably small and the correction may
usually be neglected. Adams [1979] found a significant bias
and used an appropriate correction factor. However, Church
et al. [1987] note that the magnitude of this correction factor
will depend on the degree of imbrication and the angle of the
clasts within the bed fabric. Therefore generalized correction
factors are difficult to justify.

[4] The computer automation of photosieving techniques
could allow for a significant increase in the volume of grain
size information that is collected. However, even if auto-
mated methods were applied to process 0.4 m> images,
1000 images would be required to cover 400 m®. Such
techniques are therefore limited to small river reaches and
are impractical when grain size information over very large
scales (>10 km) is of interest. For example, Rice and
Church [1998] used grain size data sampled at the river
scale to show that downstream fining is not continuous
along a given river. This allowed for the development of the
concept of the sedimentary link. Furthermore, Fausch et al.
[2002] propose that fluvial habitat modeling of aquatic
species must be extended to the scale of the entire river.
Given that grain size distribution is a fundamental parameter
of aquatic habitat [Guay et al., 2000], catchment-scale grain
estimations will be necessary. Since both field measure-
ments and photosieving are not easily applicable at the river
scale, there is a need for alternative methods.

[s] Airborne multispectral remote sensing techniques
have already been successfully applied to large-scale geo-
morphological work in fluvial environments [Winterbottom
and Gilvear, 1997; Wright et al., 2000; Zhang, 2000;
Legleiter et al., 2002]. These authors demonstrated that it
is possible to classify morphological units in fluvial envi-
ronments such as pools, riffles, and rapids from multispec-
tral imagery with resolutions ranging from 0.25 to 3 m.
Furthermore, an empirical method of automated grain size
measurement using a combination of centimeter-resolution
airborne digital color imagery and close range millimeter
resolution imagery has been proposed by Verdu et al [2003].
These authors used one-dimensional semivariance measure-
ments combined with data acquired using close range
imagery to determine grain size measurements from high-
resolution airborne digital imagery. They report an R* value
of 0.86 between predicted and observed values for grain
sizes.

[6] The work presented here is part of a larger research
project, GEOSALAR, which aims to apply geomatics and
remote sensing techniques to river-scale mapping of the
physical habitat of Atlantic salmon (Sa/mo salar L.). The
specific objective of this work is to obtain an automated
method of grain size estimation capable of yielding reliable
values for the median diameter (Ds) of dry exposed surface
gravels, with a spatial resolution of the order of 1 m. This
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study first considers both image texture and two-dimen-
sional semivariance as theoretical bases for the estimation of
grain sizes from airborne imagery. These tools are tested on
two sets of digital imagery with ground resolutions of 3 and
10 cm. Ground truth grain size data were correlated to local
image properties in order to establish predictive relation-
ships. Subsequently, independent validation of the predic-
tive relationships was carried out with manually collected
field data. The validation results show that the observed
correlation between local image texture and grain size is less
reliable than the correlation relationship between grain size
and local semivariance. Therefore local image semivariance
was used to develop a new method for fully automated grain
size measurement from high-resolution digital airborne
imagery.

2. Mapping Grain Size From Airborne
Imagery: Theoretical Considerations

[7] This section presents the currently known image
processing theory and established methods that could allow
for the development of automated grain size mapping. In
order to develop automated grain size mapping, quantitative
image properties which can be used to predict the size of
gravels in an image must be found. These properties can
then be used to predict grain sizes in either a physical
modeling approach or an empirical modeling approach.

[8] Physical modeling involves the use of known physical
properties of the gravel patches under a given illumination to
predict the radiometric and reflective characteristics of the
gravels as a function of their grain size. Such approaches
have been applied with success in the field of canopy
reflectance modeling [Baret et al., 1994; Borel and Gerstl,
1994]. In the case of fluvial gravels, the main image
characteristic is the presence of light-dark contact zones
created by gravels and their shadow. It is reasonable to
assume that these light-dark contact zones will be affected
by grain size since larger particles will have larger light
areas and will also produce larger shadows. Therefore
predicting the radiometric and reflective characteristics of
gravels would require physical models for the reflection
and dispersion of light and the statistical spatial distribu-
tion of shaded areas as a function of surface roughness,
gravel lithology, and illumination. While some progress
has been made in the field of modeling the roughness of
gravels [Robert, 1991; Bergeron, 1998; Butler et al.,
2001b], the modeling of the spatial distributions of shaded
areas and the prediction of gravel image texture as a
function of lighting conditions and particle size remains
an extremely complex and difficult problem. This difficul-
ty is reflected in the absence of published work describing
methods of grain size estimation based on the physical
prediction of their image texture.

[o9] The empirical approach is a black box method that
seeks to establish a statistical relationship between local
image properties and ground truth data. This approach is
conceptually simpler and, if properly applied, could allow
for a characterization of the complex image textures asso-
ciated with fluvial gravels. However, appropriate image
properties that are highly sensitive to image texture must
be identified. Furthermore, calibration data are required in
order to establish an empirical predictive relationship be-
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tween an image property and grain size. Examination of the
available literature reveals two image properties that could
potentially be used for grain size mapping: image texture
and semivariance.

[10] Image texture, as defined by the cooccurrence
matrix, was among the first local image properties to be
developed capable of segmenting image areas that appear
visually distinct to a human observer [Haralick et al., 1973;
Haralick, 1979; Conners et al., 1984]. It is therefore
reasonable to hypothesize that image texture may allow
for grain size determination since patches of different grain
sizes appear distinct to a human observer provided image
resolution is sufficient. Semivariance is also frequently
employed in digital image processing [Wulder and Boots,
1998]. For example, Miranda and Carr [1994] have shown
that semivariance can distinguish between different species
of vegetation when applied to spaceborne imaging radar-B
(SIR-B) imagery, and Verdu et al. [2003] have successfully
used semivariance to predict grain sizes. Image semivar-
iance and texture were therefore tested as possible image
properties capable of deriving grain size from airborne
digital imagery.

[11] Image texture is defined as an attribute representing
the spatial arrangement of the gray levels of the pixels in a
region [Institute of Electrical and Electronics Engineers
(IEEE), 1990]. Texture-based analysis operates by trans-
forming a raw image into a textural image, where regional
texture information is represented as gray levels. Image
texture is evaluated with the cooccurrence matrix. The
cooccurrence matrix is constructed by comparing all image
pixels separated by a distance D at direction d. The i, jth
element of the cooccurrence matrix P for an image is the
number of times that gray levels i and j occur in two pixels
separated by distance D and direction d divided by the total
number of pixel pairs [Castleman, 1996]. Therefore cooc-
currence can quantify how many pixels of similar gray
levels are neighbors. The cooccurrence matrix is of size
(L, L), where L is the number of gray levels in the image
(256 for 8 bit gray scale images). However, calculation of a
256 x 256 cooccurrence matrix remains computationally
demanding even with current desktop computers. To make
computation times manageable, images are typically
resampled to 8, 16, or 32 gray levels. Once the cooccurrence
matrix is calculated, textural features may be derived to
reduce the information in the cooccurrence matrix to a
single value [Haralick et al., 1973; Conners et al., 1984;
Castleman, 1996]. Among these textural inertia is of par-
ticular interest in this case. Textural inertia is a dimension-
less parameter defined as [Conners et al., 1984]

L—1 L—1
I =

S (i —)j7Py, (1)
i=0 j=0

where [/ is the textural inertia and i and j are the brightness
levels in the cooccurrence matrix P of size (L, L). The form
of equation (1) justifies its potential interest for the present
application. The term (i — /) has the effect of eliminating
the contribution of diagonal terms in the cooccurrence
matrix where / = j. Furthermore, the exponent in the term
has the effect of exaggerating the contribution of values in
the cooccurrence matrix where i greatly differs from j.
Therefore textural inertia hides areas where equal brightness
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levels are in contact, and it highlights areas where different
brightness levels are in contact. This should be well suited
to images of gravel beds characterized by light-dark contact
areas between uniform colored clasts and shaded zones.
[12] The second property under consideration is local
semivariance. Verdu et al. [2003] used one-dimensional
semivariance estimates originally developed for the analysis
of one-dimensional data. However, one-dimensional semi-
variance is defined for one-dimensional, time series—type
data. It is therefore not capable of processing data arranged
in a raster format such as a digital image. It is thercfore
necessary to extend one-dimensional semivariance to two
dimensions if the information content of digital images is to
be fully exploited. Two-dimensional semivariance can be
defined by the following [Carbonneau et al., 2003]:

NJPW
1 )
WD) =TT 22,
Z [Z(l+p7j+q)—Z(l7 j)]27 (2)

j=1+2

where p and ¢ are the lags in the x and y directions, M and N
are the dimensions of the surface in the x and y directions,
and Z(i, j) is the variable of interest, in this case brightness
level, at point (7, j). The two-dimensional semivariogram is
therefore a raster of values giving half the variance for every
combination of lags p and ¢. Semivariance has units that are
the square of the units of Z. For images, brightness values
are dimensionless. Therefore image semivariance is dimen-
sionless and will be referred to without units throughout this
article.

[13] The semivariance recognizes that the variance in
brightness levels between pixels separated by a certain
distance will be a function of that distance. For the case
of a raster image with a checkerboard pattern (i.e., alternat-
ing white and black pixels in a raster) the maximum semi-
variance will be reached for a lag of 1. If the checkerboard
is made of alternating 2 pixel x 2 pixel areas, the maximum
semivariance will be reached for a lag of 2. Hence there
should be a relationship between the grain size of an image
patch and the lag at which the maximum semivariance (the
sill) is reached. However, this does not take into account the
discretization effects encountered when sampling real con-
tinuous phenomena with discreet pixels of finite size. If the
grains are smaller than the pixel size (also called pixel
ground footprint), then one pixel will sample several grains
and their associated shadow areas. Therefore the brightness
level of the pixel will have a mixed spectral signature, and
its brightness will be an averaged value. The semivariance
sill for a raster of such pixels cannot be clearly related to the
grain size. However, the semivariance value of the sill
should be reduced due to the averaging effect of the
sampling which reduces the difference between maximum
and minimum brightness values. As particles in the image
get coarser, there is an increased probability that pixels will
cover more homogeneous zones of light or shadow. There-
fore the pixel brightness values will more closely represent
the actual continuous illumination variations of the surface
and less averaging will occur. Thus the maximum difference
between light and dark areas will be increased, and the
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Figure 1. Examples of two-dimensional semivariograms

illustrating both sill plane presence and absence. (a) Two-
dimennsional semivariogram for a 33 x 33 pixel image.
(b) Two-dimensional semivariogram for a 20 pixel X
20 pixel image.

semivariance sill value will also be of higher magnitude. It
can therefore be hypothesized that grain size can be corre-
lated with the sill value of local image semivariance.
Figure 1 shows an example of two semivariograms and
illustrates that the sill plane is sensitive to image size. The
disappearance of the sill plane is symptomatic of nonstatio-
narity caused by a trend in the image data [Rossi et al.,
1992]. Trends in image data are caused by objects of uniform
color that are of comparable scale to the image. In such
cases, the semivariogram will display a strong anisotropy
which will reflect the orientation of the large object in the
original image. The use of the semivariogram sill in image
processing is therefore limited to cases where the objects in
an image are much smaller than the total image dimensions.

3. Methods
3.1.

[14] Field work for the study was carried out on the
80 km long main branch of the Sainte-Marguerite River in
Quebec, Canada. In August 2002, two helicopter surveys
were carried out during the summer period of low flow. The
XEOS™ system, developed by GENIVAR Inc., was used to
obtain plan view digital imagery of the entire 80 km study
area. The helicopter surveys were carried out at heights

Airborne Digital Imagery Acquisition
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above the bed of 450 m and 155 m in order to obtain digital
imagery with ground resolutions of 10 cm (1:1200 scale)
and 3 cm (1:350 scale), respectively. Image format was
3008 pixels x 1960 pixels in the standard visible bands of
red, green, and blue. Images were collected at 60% overlap
to allow for photogrammetric work to be carried out in the
future. Two days were required to complete the surveys
yielding 1600 ten-centimeter-resolution images and 5600
three-centimeter-resolution images. Flights were carried out
between 10:00 A.M. and 3:00 P.M. with weather conditions
being generally cloudy and dry with infrequent sunny
spells. Figure 2 shows examples of images for both avail-
able resolutions.

3.2. Photocontrol and Image Georeferencing

[15] Photocontrol points were collected with a Leica RTK
GPS 500 system capable of centimeter-scale accuracy.
Identifiable natural features such as logs and large clasts
or man-made features such as roadside guard railings were
used as targets for photocontrol. Additionally, ~600 artifi-
cial targets were placed along the river prior to the flight and
were subsequently surveyed. This survey required ~3 weeks
of field work to complete. Image georeferencing was
undertaken using the georeferencing tool in ArcMap (ESRI

Figure 2. Examples of high-resolution airborne imagery
from the Sainte-Marguerite River located at 48.38°N,
70.20°W: (a) 3 cm image; (b) 10 cm image.
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Inc., Redlands, California). This tool allows the user to
associate image points with their geographic coordinates. At
least two points are required to perform the affine transfor-
mation that determines the orientation and scale of an
image. When additional points are added, a least squares
regression algorithm was applied to determine optimal
georeferencing results. The quality of the georeferencing
process was examined with the total RMS error output by
ArcMap (ESRI Inc., Redlands, California). In this case, the
mean RMS error for all 3 cm images was +27.8 cm, and it
was £120 cm for 10 cm images.

3.3. Ground Truth Grain Size Data

[16] Grain sizes along the river range from coarse sand to
boulder. In order to obtain a similar size range over a small
reach, a midchannel bar covered by 10 images was selected as
a pilot study site. This particular bar was selected because it
presented the full range of grain sizes present along the river,
thus allowing for reliable calibration of the methodology.
Grain size calibration data were obtained with a close range
photosieving technique selected to reduce the field time
required to obtain ground truth data. Furthermore, by using
plan view images as ground truth data, bias due to particle
imbrication should be similar in both the ground truth images
and the airborne images. Seventy plan view digital images
were taken along the midchannel bar with a commercial
digital camera. Image format was 1600 pixels x 1200 pixels.
For each image, which covered about 1.2 m x 0.9 m
(1.08 m?), a ruler was placed in the top of the frame to
establish scale. The center of the ruler was surveyed with
the Leica RTK GPS 500 to establish the position of the
close range images on the airborne photos. In anticipation
of potential georeferencing errors, close range images
were taken in the middle of uniform patches whose area
exceeded 1 m?.

[17] Grain sizes for these close range images were deter-
mined with a graphic user interface programmed in the
MATLAB environment (The Mathworks Inc., Natik, Mas-
sachusetts). A 5 x 10 grid was first superimposed on the
images. The user then manually identified with the mouse
the ¢ and b axis of clasts which were at the 50 grid
intersections, and the program output the D5, for the image.
A value of 0 mm was assigned to sand surfaces.

34.

[18] Image processing was first applied to perform a
classification of the dry bed areas using MATLAB (The
Mathworks Inc., Natik, Massachusetts). Dry bed areas in the
images were identified with histogram segmentation of
the intensity band in hue-saturation-intensity (HSI) color
format. HSI is an alternative color format to the widespread
red-blue-green (RGB) format. Instead of representing color
with three orthogonal components, as in the RGB format,
the HSI format represents color in a spherical coordinate
format where the hue and the saturation values are equiv-
alent to the azimuthal and polar angles, respectively, and the
intensity is equivalent to distance from the origin. In the
intensity band, dry exposed gravels have a higher brightness
value and are well suited to automated thresholding meth-
ods. In this case, Otsu’s method [Otsu, 1979] was applied to
isolate the dry exposed gravels from the rest of the image.
This histogram-based method is designed to produce a
segmentation threshold that minimizes the variance within

Image Classification
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B Dry exposed
bed area

Figure 3. Binary image showing automatically detected
dry bed areas in Figure la.

the two resulting classes in the histogram. The performance
of the classification algorithm was verified by selecting
10 images and manually tracing contours of the dry bed
areas and comparing surface dimensions of manual and
automated classification as a percentage. For dry bed areas
the mean difference is 3.1%, and the standard deviation of
the difference is 4.2%. Figure 3 presents a binary classifi-
cation with dry bed areas in black.

3.5.

[19] The classification results were used to correct the
images before grain size estimation procedures. For each
grain size estimation method discussed in section 2, local
image texture correlation, and local two-dimensional semi-
variance correlation a different correction was applied,
irrespective of image resolution. Image texture was found
to be sensitive to illumination changes in the imagery that
can be caused by variations in daylight or camera exposure
times. Therefore the brightness of the images was corrected
to compensate for illumination changes during the air
survey. It was found that conventional histogram equaliza-
tion or histogram stretches saturated the brightness levels in
large areas and thus gave poor results. Therefore a simple
histogram shift was applied to give dry gravel patches an
equal mean brightness level of 150. Semivariance methods,
which operate on the basis of differences in brightness
levels, are insensitive to histogram shifts. However, semi-
variance methods would predictably be very sensitive in
edge areas where the dark colored wetted perimeter pixels
are in contact with lighter dry bed pixels. Therefore the
classification results were used to reset the brightness levels
of all pixels in the wetted and vegetated areas (the “not” dry
area in the Boolean logic sense) of the image to the mean dry
bed pixel value. This resulted in a reduced contrast along the
edges of the dry bed area.

Image Corrections

3.6. Mapping Local Image Properties: The Sampling
Window Method

[20] The image properties described in section 2 are
typically calculated for entire images. However, if the entire
image is reduced to single semivariance sill plane or textural
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inertia value, spatial location of texture and semivariance
information are lost. It is therefore necessary to adopt a
sampling window mapping approach. Instead of calculating
texture and semivariance for the entire image, these prop-
erties are calculated for a small subsample of the image, the
sampling window. By displacing the sampling window over
the image it is possible to map local image properties and
thus retain spatial information about the variation of local
image properties. The resulting property map will hereafter
be termed the property image. Thus the semivariogram or
cooccurrence is calculated for each window of size (W, W)
in the original (M, N) image. Semivariance is then reduced
to a single value by taking the mean value of the sill plane,
and cooccurrence is expressed by the inertia value. The
resulting image has dimensions (M/W, N/W). Therefore, in
the property image the i, jth pixel is the local property value
in the region [i:i + W — 1;j;j + W — 1] of the original image.
These property images can be used to test for correlation
between local image properties and grain size in airborne
digital imagery.

3.7. Optimal Window Size Selection

[21] The sampling window method requires the selection
of a suitable window size. Since no theoretical guidelines
exist for the optimal determination of window sizes, several
window sizes were tested in order to assess the sensitivity of
varying window sizes and to produce guidelines for optimal
window size selection. The study objective of producing
grain size maps with a spatial resolution of 1 m was used to
obtain starting values of window size. This corresponds to
33 pixels x 33 pixels in the 3-cm-resolution imagery and
10 pixels x 10 pixels in the 10 cm imagery. The range of
window sizes, selected to include these values, was there-
fore setto 5 x 5, 10 x 10, 20 x 20, 33 x 33, and 50 x 50.
Property images for semivariance and texture were calcu-
lated for all window sizes and for both image resolutions.
This yielded 20 distinct grain size data sets that will require
calibration and validation.

3.8. Predictive Model Calibration

[22] Once the 20 property images were calculated, the
values of semivariance or texture were extracted at
the locations where ground truth data was available. The
position of the ground truth grain size data was found by
interpolating the property image to the same resolution as
the original RGB image. A new false color image was then
created by substituting the blue band with the property
image. In order for this operation to work the property data
must be rescaled, with a linear function, to the range [0 255].
This false color image was then automatically georefer-
enced by applying the same ground control point file as for
the original RGB image. Thus the value of the false blue
band, the property band, was read at the coordinates of the
ground truth data and retransformed to the original property
values with the scaling relationship. The ground truth b axis
grain sizes were then plotted against the extracted local
image properties for each given location. The relationships
thus obtained, if any, could then be applied to estimate grain
sizes in areas where no ground truth data was available.

3.9. Model Validation

[23] In order to validate the predictive relationships estab-
lished between image properties and grain sizes, independent
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data was obtained (C. Davey, personal communication,
2003). This data set consists of 15 manual bulk sampling
measurements of the b axis Ds( of the dry bed armor layer.
The D5 of the armor (i.e., surface) layer was selected because
it corresponds to the visible portion of the bed material.
Furthermore, since bulk sampling involves the removal and
measurement of all the particle of the armor layer, irrespec-
tive of their size, this method removes any photosieving-type
errors associated with the hiding effect of overlapping clasts
and the minimal clast size restrictions. The data collection
sites were scattered along a 10 km stretch of the Sainte-
Marguerite River. Therefore each data point could be found
on a single image, none of which have been used in the
correlation model. Grain size maps were therefore calculated
for these 15 images. Data point locations were provided with
aprecision estimated at +1 m. Therefore predicted grain sizes
for each validation point location were extracted from the
grain size maps by taking the mean grain size calculated in a
I m x 1 m window centered on the point location. Predicted
grain sizes versus observed grain sizes were then plotted to
establish model validity. Furthermore, the mean and standard
deviation of the differences between predicted and observed
points were calculated to obtain quality assessment. These
results are expressed both as absolute values, in centimeters,
and in normalized form, as a percentage of the local Ds,.

4. Calibration and Validation Results

[24] Table 1 gives the results of the model calibration
relationships according to the size of the window that was
used (both in pixel units and in centimeters), the resolution
of the images, and the image property that was applied. In
Table 1 the NS entry signifies that semivariograms for a
given window size did not have a sill plane and thus that the
method is inapplicable.

[25] It was decided that only models where the majority
of the variability was explained (i.e., with an R* > 0.5)
would be studied further and validated. R* values in Table 1
range from 0.27 to 0.8. Acceptable levels of explanation are
only found in the case of 3 cm imagery. In total, five models
were validated. For the local image texture method, 20 x 20
windows, 33 x 33 windows, and 50 x 50 windows
applications were validated. For the local semivariance
method, only the 33 x 33 window and the 50 x 50 window
were considered. Table 2 presents the results of the model
validation carried out with the independent data. While the
R?* values indicate good linear relationships between ob-
served and predicted data, slope values for the regressions
show many cases where predicted values are underesti-
mated. Furthermore, high bias values (intercepts) can be
observed in most cases. However, in the case of the 33 x 33
window used with local semivariance, validation results are
excellent. This model was therefore selected as the optimal
method for this study. Figure 4 shows the regression plots
for calibration and validation of this selected method. The
error for the method was examined further with the mean
and standard deviation of the differences between observed
and predicted values. The mean difference was —0.28 cm
with a standard deviation of 1.39 cm. If normalized by the
overall D5, this is a bias (systematic error) of —1.4% and a
precision of £15.4%. Once validated, the regression equa-
tion for the 33 x 33 sampling window applied to 3 cm
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Table 1. Complete Results of Model Calibration Attempts®
Window Size, pixels Pixel Size, cm Actual Window Size, cm Method Slope Intercept R?
5x5 3 15 x 15 T 35.26 27.78 0.33
10 x 10 3 30 x 30 T 47.00 18.54 0.44
20 x 20 3 60 x 60 T 96.94 5.97 0.65
33 x 33 3 99 x 99 T 117.19 10.90 0.70
50 x 50 3 150 x 150 T 83.97 0.65 0.58
5x5 3 15 x 15 NY% NS NS NS
10 x 10 3 30 x 30 NY% NS NS NS
20 x 20 3 60 x 60 SV NS NS NS
33 x 33 3 99 x 99 SV 0.34 10.12 0.80
50 x 50 3 150 x 150 SV 0.29 12.40 0.72
5x5 10 50 x 50 T 82.97 31.36 0.39
10 x 10 10 100 x 100 T 78.19 —-5.97 0.38
20 x 20 10 200 x 200 T 57.27 34.69 0.34
33 x 33 10 330 x 330 T 53.47 31.05 0.36
50 x 50 10 500 x 500 T 55.01 NS 0.39
5x5 10 50 x 50 NY% NS NS NS
10 x 10 10 100 x 100 NY% NS NS NS
20 x 20 10 200 x 200 NY% NS NS NS
33 x 33 10 330 x 330 SV 0.11 41.62 0.27
50 x 50 10 500 x 500 NY% 0.11 39.96 0.27

“Bold entries indicate models that were studied further at the validation stage. T, texture; SV, semivariance; NS, “not suitable”

data.

imagery can be used to predict grain sizes from semi-
variance property images (Figure 5).

5. Discussion

5.1. Guidelines for Successful Implementation of Grain
Size Estimation Models

[26] On the basis of our results, six important parameters
can be identified for successful implementation of grain size
mapping: sampling window size (#), image resolution (i.e.,
pixel ground footprint) (R), scale of ground truth data (GT),
scale of uniform gravel patches (GP), median particle size
(Dsp), and the minimum number of pixels required for a
two-dimensional semivariogram to present a sill plane (SS).
For grain size estimation to be successful the required
relationship between these parameters can be inferred from
our experimental results and expressed by the following
equations:

W >SS, 3)
WR < GP, (4)
WR ~ GT, (5)
Dso > R. (6)

[27] Equation (3) states that the sampling window must
be of sufficient extent to ensure the presence of a sill plane
in the semivariogram. As discussed in section 2, the absence
of a sill plane renders the semivariance method unusable. In
this particular case, if the sampling window is too small, it
becomes possible for a few individual clasts to occupy a
large part of the window. This will cause trend and lead to
the disappearance of the sill plane. Table 1 and Figure 1
support this analysis by showing that for smaller window
sizes, sill planes were not present.

[28] Equation (4) states that the ground footprint of the
sampling window (i.e., the actual size of the window in real
space), WR, should be smaller than the scale of uniform
gravel patches in the study area. The semivariance and
texture methods both implicitly assume that the area within
the sampling window consists of a uniform gravel patch.
Careful examination of the imagery used to calibrate the
method (Figure 2a) and manual measurements of individual
patches show that patch sizes range from 0.9 to 10 m?.
Therefore, in the cases where the ground footprint of the
sampling window is greater than ~1 m?, the sampling
window will frequently be straddling two or more uniform
gravel patches. The effect of having multiple patches in a
given sampling window was examined further by taking
three image samples of 33 x 33 pixels at a resolution of
3 cm. The first consisted of uniform fine gravels. The area
of the second sample was half covered by fine gravels with
the other half covered by cobbles. Finally, the third con-
sisted of uniform cobbles. The semivariograms and inertia
values were then calculated and examined for these three
samples. For the first sample, semivariance sill plane value
was 284, and textural inertia was 1.2. For the second
sample, semivariance sill plane value was 78, and textural
inertia was 0.6. Finally, for the third sample, semivariance
sill plane value was 42, and textural inertia was 0.08. The
mean value of the sill plane for the mixed sample was
therefore intermediate to those of the fine gravel and cobble
samples. A similar result was obtained with the textural
inertia values with the inertia of the mixed surface being
between the inertias for fine gravels and cobbles. This

Table 2. Model Validation Results

Window Size Method Slope Intercept R?
20 x 20 T 0.46 39.65 0.80
33 x 33 T 0.63 25.93 0.81
50 x 50 T 0.34 37.47 0.52
33 x 33 Y% 1.03 0.57 0.96
50 x 50 Y% 0.67 15.03 0.89
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Figure 4. Regression plots showing the calibration and
validation results of the semivariance method with a
33 pixel x 33 pixel window applied to 3 cm resolution
imagery. (a) Calibration relationship of median diameter
(Dso) versus semivariance. (b) Validation relationship of
predicted versus observed median grain sizes (Dsg)
obtained from an independent data set.

means that if a sampling window straddles two (or more)
patches, the local image property values will reflect an
averaging of both patches. This is not a problem if the
patch scale is greater than the sampling window. In such a
case, contact areas between patches will yield a grain size
gradient, but the central area of the patches will have
semivariance and inertia values that reflect the grain size
of the patch. However, if the patch scale is smaller than the
sampling window, it will not be possible to interpret the
inertia and semivariance sill values as being associated with
a single grain size. Therefore, as window size increases, the
statistical benefits gained by the larger sample size (i.e.,
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larger window size) are offset by more than one grain size
distribution appearing in the sample population, thus lead-
ing to a loss of model quality when window size is larger
than the patch scale (equation (4)). This effect is clear in
Tables 1 and 2, where a strong dependency on sampling
window size can be seen. For both the textural and semi-
variance methods, validation quality degrades when com-
paring 33 x 33 and 50 x 50 windows. As indicated in
Table 1, the ground footprint of 33 x 33 windows in 3 cm
imagery is 99 cm x 99 cm. This corresponds almost exactly
to the 1 m x 1 m scale of the ground truth imagery. In the
case of the 50 x 50 windows, the ground footprint increases
to 150 cm x 150 cm. Table 1 therefore shows that as the
ground footprint departs from the 1 m? scale of the ground
truth data, model quality degrades.

[29] A similar issue arises when considering the scale at
which the ground truth data are collected. Equation (5)
states that when establishing a correlation model between
local image properties and ground truth grain size data, the
area over which the ground truth grain sizes were measured
should be comparable to the ground footprint sampling
window size. If this is not the case and the sampling
window is too large, when local image properties for the
ground truth data area are evaluated, they will be affected by
particles not measured in the ground truth data. This is
likely to be one of the major factors contributing to the
failure of grain size estimation in 10 cm imagery. Table 1
shows that in all attempts made with 10 cm imagery, results
were poor. However, it is possible that if ground truth data
were collected at the proper scale, useful grain size infor-
mation could be collected from 10 cm airborne digital
imagery.

[30] The final consideration is the image resolution with
respect to particle size. Equation (6) states an idealized
condition where the pixel size of the image is smaller than
all particles in the image. Given that current airborne
imaging technology is capable of centimeter-scale resolu-
tions, the condition in equation (6) cannot be met for clays,
silts, sands, and fine gravels. It is therefore necessary to

150
100
50
| —
20m
0
Dy, [mm]

Figure 5. Example of a grain size map calculated with the
optimal method, local semivariance, and 33 pixel x 33
pixel (i.e., 99 cm x 99 cm) sampling window, applied to the
image in Figure la.
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consider the possible effects of having particles sizes
smaller than pixel ground footprint size. As discussed in
section 2, the main source of brightness variations in gravel
images is the clast-shadow contact areas whose size scales
with the particle size. Therefore, in areas where the image
pixel ground footprint is significantly greater than particle
size, both clast and shadow contact areas will be contained
within any given pixel. This will average out the brightness,
and the variation will be lost, which could be expected to
lead to a failure of grain size estimation methods for particle
sizes smaller than the pixel ground footprint sizes. However,
error assessment results for grain size estimates derived
from 3 cm imagery using local semivariance calculated over
33 pixels x 33 pixel sampling windows show that mean
error was —0.28 cm with a standard deviation of 1.39 cm.
Both these results are well below the pixel size which
demonstrates the subpixel sensitivity of the method. How-
ever, examination of Figure 4a shows a departure from
linearity at small sizes. This loss of quality at small scale
can partially be attributed to particle size being smaller than
median grain size. Furthermore, a size-dependent noise
effect is present. Examination of Figure 4a reveals a series
of points near the origin with a grain size of 0 mm (sand)
and semivariance values ranging from 5 to 50. Close
examination of the photosieving images and the airborne
images shows the presence of small woody debris and
shrubs. The color of the debris and shrubs is often in
contrast to the color of neighboring pixels. Therefore this
can have an effect on image texture and semivariance. In the
case of coarse clasts, where the pixel size is smaller than the
particle size, the texture and semivariance values associated
to the clasts themselves are high, and the debris has little
effect on the correlation relationship. In the case of clasts
smaller than the pixel size, the pixel values represent
averaged values of light-dark contact areas. Therefore
associated semivariance and texture values are small, and
the debris, which is often larger than the pixel size, can
significantly increase the total observed texture and semi-
variance values and therefore cause a size-dependent depar-
ture from linear behavior. Hence loss of quality can be
expected in areas where the particle size is significantly
smaller than the pixel size. The failure of grain size
estimation from 10 cm resolution imagery can partially be
attributed to pixel size versus particle size effects. In the
grain size map shown in Figure 5, only 4% of clasts (by
surface) were larger than 10 cm (i.e., 100 mm). However,
woody debris and small bushes frequently exceed 10 cm in
diameter. Therefore it should be expected that attempts at
grain size estimation from 10 cm resolution imagery may
fail since most particles are smaller than the pixel size and
debris is frequently larger than the pixel size.

5.2. Performance of Texture Versus Performance
of Semivariance

[31] After model validation, local image semivariance
gives better results then local image texture and was selected
as the best method for grain size mapping (Figure 5).
Despite the fact that the local image texture model had a
comparable quality, image texture failed at the validation
stage. The likely explanation for this is that image texture
remains sensitive to illumination changes that can occur as a
result of changes in daylight or camera exposure times. The
images used for model calibration were taken consecutively,
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while those used for validation, scattered over 10 km, were
taken over a greater time span during which lighting con-
ditions could have changed slightly. These changes in
illumination could potentially alter the predictive relation-
ship between texture and grain size and cause the failure of
the texture model at the validation stage. It is therefore
possible that a better illumination correction procedure
would improve this situation. Another possible explanation
for the failure of the texture method lies in the resampling of
the colors in the original image. As stated previously, during
the calculation of the cooccurrence matrix, images were
resampled to 32 gray levels in order to reduce processing
time to manageable levels. This resampling reduces the
information content in the image by smoothing small differ-
ences in gray levels. Since image semivariance uses bright-
ness differences in the raw 8 bit gray level image, maximum
image information is preserved and the semivariance method
can be expected to be more sensitive to small changes in
color patterns. Therefore semivariance was selected as the
method used for gain size estimation.

5.3. Grain Size Data Quality

[32] The quality of the semivariance-based grain size
estimations can be quantified from mean error estimates
and their standard deviation. The mean error of —1.4%
obtained during validation can be interpreted as a bias, and
the standard deviation of 15.4% can be interpreted as a
precision of +£15.4% for the method. This error is high
compared to field methods which can have precisions below
+10% [Bunte and Abt, 2001]. However, the automation of
the process and the surfaces that can be covered make this
error acceptable. Given that the validation data consisted of
bulk samples and that the calibration data consisted in
photosieving grain size data, a bias was expected during
validation. The obtained bias of —1.4% therefore seems to
support the findings of Ibbeken and Schleyer [1986], who
found that the bias associated to photosieving was suffi-
ciently small to neglect correction factors. Furthermore, the
small reported bias confirms field observations that clasts in
the study river are generally weakly imbricated.

[33] The most likely sources of error affecting the model
calibration can be associated to lighting conditions. While
the semivariogram is not sensitive to lighting intensity
since it operates on absolute differences, it may be
sensitive to changes in lighting direction. This may affect
the size of clast shadows and can therefore change both
image texture and semivariance. For this reason, imagery
was not collected in early morning or evening.

5.4. Comparison to Other Methods of Grain
Size Estimation From Airborne Images

[34] With an R? of 0.96, these results surpass those of
Verdu et al. [2003]. The most likely explanation for this
improved performance is the use of two-dimensional semi-
variance as opposed to one-dimensional semivariance.
Images are by definition two-dimensional. Therefore the
use of two-dimensional semivariance makes more efficient
use of the information content in the imagery and improves
the estimation of the sill value.

5.5. Future Research

[35] The first important aspect requiring further research
is the measurement of grain sizes in submerged areas. The
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dry bed areas typically represent a small fraction of the total
river channel area. The conventional solution to this prob-
lem is to fly the airborne survey in periods of low flow.
However, this solution still provides a partial view of the
riverbed. Therefore a method to measure grain sizes within
the wetted perimeter from airborne imagery would be
highly useful. Examination of air photos taken in fluvial
environments shows that for shallow areas, some texture is
visible on the riverbed. It is therefore possible that methods
similar to those presented in this article could yield usable
estimates of grain sizes for greater areas of the wetted
perimeter. The major question that remains is the quality
that can be achieved since the presence of a water interface
will severely degrade image quality even if turbidity is low.
It can therefore be expected that the quality of the grain
sizes estimates will be much lesser than those presented
here. However, even if of lesser quality, these estimates
could still be of use in many fields of research.

[36] Further investigation is also required to assess the
universality of the grain size mapping method presented
here. This two-dimensional semivariance-based Ds, map-
ping method relies on image properties that exist in any
image, and therefore it is reasonable to hypothesize that the
method is transferable to other river systems. However,
several issues need to be investigated. The effect of varying
river lithologies on the precision of the method and on the
calibration relationship for the empirical model should be
studied in order to demonstrate that the method is applicable
on any river. Additionally, a better understanding of the
effect of the illumination angle during image collection on
the model calibration could potentially improve the result-
ing data quality.

6. Conclusion

[37] It has been demonstrated that reliable grain size
estimations of the exposed dry bed areas of a river channel
can be obtained from digital airborne imagery, provided that
image resolution, sampling window size, and ground truth
grain size scale are adjusted with respect to particle size and
uniform gravel patch scale following equations (3)—(6). If
properly calibrated and adjusted, the methods presented in
this study allow for fully automated mapping of grain size
with an error of £15.4% at a spatial resolution of 99 cm. Such
methods, combined with appropriate data management, will
therefore allow for studies and modeling of processes on a
scale which has been difficult to work with in the past.

Notation
D distance separating two image pixels, in pixels.
d direction between two image pixels, degrees.
P cooccurrence matrix, dimensionless.
L number of rows and columns in the cooccurrence

matrix.

textural inertia, dimensionless.

semivariance, square of the units of the variable of
interest.

spatial variable of interest used in semivariance
calculations, any unit.

image dimensions, in pixels.

lag value in the x direction used in semivariance
calculations, in pixels.

S
=32 N < -
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q lag values in the y direction used in semivariance
calculations, in pixels.
W number of rows and columns in sampling window
methods.
Dsy  median grain size, mm.
SS  Minimum widow size to achieve a stable semi-
variance sill plane.
Size of a uniform gravel patch, cm.
Size of the sampling area for ground truth data,
cm.
R Image resolution, cm.

GP
GT

[38] Acknowledgments. The authors would like to thank Chad
Davey for supplying the unpublished grain size data that were used as
validation data. The GEOSALAR project is funded by the GEOIDE
networks of centers of excellence. This work receives additional funding
from the NATEQ postdoctoral scholarship program. This is a contribution
to the program of the Centre Interuniversitaire de Recherche sur le saumon
atlantique (CIRSA).

References

Adams, J. (1979), Gravel size analysis from photographs, J. Hydraul. Div.
Am. Soc. Civ. Eng., 105(HY10), 1247—1255.

Baret, F., V. C. Vanderbilt, M. D. Steven, and S. Jacquemoud (1994), Use of
spectral analogy to evaluate canopy reflectance sensitivity to leaf optical
properties, Remote Sens. Environ., 48, 253—260.

Bergeron, N. E. (1998), Scale-space analysis of stream-bed roughness in
coarse gravel-bed streams, Math. Geol., 28(5), 537—561.

Borel, C. C., and S. A. W. Gerstl (1994), Nonlinear spectral mixing
models for vegetative and soil surfaces, Remote Sens. Environ., 47,
403—-416.

Bray, D. I. (1982), Flow resistance in gravel-bed rivers, in Gravel-Bed
Rivers, edited by R. D. Hey, J. C. Bathurst, and C. R. Thorne, pp. 109—
138, John Wiley, Hoboken, N. J.

Bunte, K., and S. R. Abt (2001), Sampling surface and subsurface particle-
size distributions in wadable gravel-and cobble-bed streams for analyses
in sediment transport, hydraulics and streambed monitoring, Gen. Tech.
Rep. U. S. Dep. Agric., RMRS-GTR-74.

Butler, J. B., S. N. Lane, and J. H. Chandler (2001a), Automated extraction
of grain-size data from gravel surfaces using digital image processing,
J. Hydraul. Res., 39(5), 1-11.

Butler, J. B., S. N. Lane, and J. H. Chandler (2001b), Characterisation of
the structures of river-bed gravels using two-dimensional fractal analysis,
Math. Geol., 333, 301-330.

Carbonneau, P. E., S. N. Lane, and N. E. Bergeron (2003), Cost-effec-
tive non-metric close-range digital photogrammetry and its application
to a study of coarse gravel river beds, Int. J. Remote Sens., 24, 2837—
2854.

Castleman, K. R. (1996), Digital Image Processing, 666 pp., Prentice-Hall,
Old Tappan, N. J.

Church, M. A., D. G. Mclean, and J. F. Wolcott (1987), River bed gravels:
Sampling and analysis, in Sediment Transport in Gravel-Bed Rivers,
edited by C. R. Thorne, J. C. Bathurst, and R. D. Hey, John Wiley,
Hoboken, N. J.

Clifford, N. J., A. Robert, and K. S. Richards (1992), Estimation of flow
resistance in gravel-bed rivers: A physical explanation of the multi-
plier of roughness length, Earth Surf. Processes Landforms, 17, 529—
534.

Conners, R. W., M. M. Trivedi, and C. A. Harlow (1984), Segmentation of
a high resolution urban scene using texture operators, Comput. Vision
Graphics Image Processing, 25, 273—310.

Cunjak, R. A. (1988), Behaviour and microhabitat of young Atlantic sal-
mon (Salmo salar) during winter, Can. J. Fish. Aquat. Sci., 45, 2156—
2160.

Fausch, K. D., C. E. Torgerson, C. V. Baxter, and H. W. Li (2002), Land-
scapes to riverscapes: Bridging the gap between research and conserva-
tion of stream fishes, BioScience, 52(6), 483—498.

Guay, J. C., D. Boisclair, D. Rioux, M. Leclerc, M. Lapointe, and
P. Legendre (2000), Development and validation of numerical habitat
models for juveniles of Atlantic salmon (Salmo salar), Can J. Fish
Aquat. Sci., 57, 2065-2075.

Haralick, R. M. (1979), Statistical and structural approaches to texture,
Proc. IEEE, 67(5), 786—804.

10 of 11



W07202

Haralick, R. M., K. Shanmugan, and 1. Dinstein (1973), Textural features
for image classification, /EEE Trans. Syst. Man Cybern., 3(6), 610—
621.

Heggenes, J. (1996), Habitat selection by brown trout (Salmo trutta) and
young Atlantic salmon (S. salar) in streams: Static and dynamic hydrau-
lic modelling, Reg. Rivers Res. Manage., 12, 155—169.

Hey, R. D., and C. R. Thorne (1983), Accuracy of surface samples from
gravel bed material, J. Hydraul. Eng., 109(6), 842—851.

Ibbeken, H., and R. Schleyer (1986), Photo sieving: A method for grainsize
analysis of coarse-grained, unconsolidated bedding surfaces, Earth Surf-
Processes Landforms, 11, 59—77.

Institute of Electrical and Electronics Engineers (IEEE) (1990), /EEE Stan-
dard Glossary on Image Processing and Pattern Recognition Terminol-
0gy, 610. 4, IEEE Press, Piscataway, N. J.

Legleiter, C. J., W. A. Marcus, and R. L. Lawrence (2002), Effects of sensor
resolution on mapping in-stream habitats, Photogramm. Eng. Remote
Sens., 68(8), 801-807.

Middleton, G. V., and J. B. Southard (1984), Mechanics of Sediment Move-
ment, SEPM Short Course, 3, 401 pp.

Miranda, F., and J. Carr (1994), Application of the semivariogram textural
classifier for vegetation discrimination using SIR-B data of Borneo, /nt.
J. Remote Sens., 13, 2349-2354.

Otsu, N. (1979), A threshold selection method from gray-level histograms,
IEEE Trans. Syst. Man Cybern., 9(1), 62—66.

Rice, S., and M. Church (1996), Sampling superficial fluvial gravels: The
precision of size distribution percentile estimates, J. Sediment. Res.,
66(3), 654—665.

Rice, S., and M. Church (1998), Grain size along two gravel-bed rivers:
Statistical variations, spatial patterns and sedimentary links, Earth Surf.
Processes Landforms, 23, 345—-363.

Rimmer, D. M., U. Paim, and R. L. Saunders (1983), Changes in the
selection of microhabitat by juvenile Atlantic salmon (Salmo salar) at
the summer-autumn transition in a small river, Can. J. Fish. Aquat. Sci.,
41, 469—-475.

Robert, A. (1991), Fractal properties of simulated bed profiles in coarse-
grained channels, Math. Geol., 23(3), 367-382.

CARBONNEAU ET AL.: MAPPING GRAIN SIZE IN GRAVEL BED RIVERS

W07202

Rossi, R. E., D. J. Mulla, A. G. Journel, and E. H. Franz (1992), Geosta-
tistical tools for modeling and interpreting ecological spatial dependence,
Ecol. Monogr., 62, 277-314.

Verdu, J. M., R. J. Batalla, and J. A. Martinex-Cassasnovas (2003), Esti-
mating grain size distributions of a gravel riverbed at reach scale from
detailed aerial photos, geostatistics and digital image processing (Isabena
River, Spain), paper presented at the Braided Rivers Conference, Br.
Geomorphol. Res. Group, London, April.

Whitman, S. M., E. H. Moran, and R. T. Ourso (2003), Photographic
techniques for characterizing streambed particle sizes, Trans. Am. Fish.
Soc., 132, 605-610.

Wiberg, P. L., and J. D. Smith (1987), Calculations of the critical shear
stress for motion of uniform and heterogeneous sediments, Water Resour.
Res., 23, 1471—1480.

Winterbottom, S. J., and D. J. Gilvear (1997), Quantification of channel bed
morphology in gravel-bed rivers using airborne multispectral imagery
and aerial photography, Regul. Rivers, 13(6), 489—499.

Wolman, M. G. (1954), A method of sampling coarse bed material, Eos
Trans. AGU, 35, 951-956.

Wright, A., W. A. Marcus, and R. Aspinall (2000), Evaluation of multi-
spectral, fine scale digital imagery as a tool for mapping stream morphol-
ogy, Geomorphology, 33(2), 107—120.

Waulder, M., and B. Boots (1998), Local spatial autocorrelation character-
istics of remotely sensed imagery assessed with the Getis statistic, /nt. J.
Remote Sens., 19, 2223 -2231.

Zhang, Y. (2000), A method for continuous extraction of multispectraly
classified urban rivers, Photogramm. Eng. Remote Sens., 66(8), 991—
999.

N. E. Bergeron, Centre Eau, Terre et Environnement, Institut National de
la Recherche Scientifique, 2600 boul Laurier, suite 640, Sainte-Foy,
Quebec, Canada G1V 4C7.

P. E. Carbonneau and S. N. Lane, Department of Geography, University
of Durham, Durham DH1 3HP, UK. (p.carbonneau@geog.leeds.ac.uk)

11 of 11



