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[1] The determination of seasons of high and low probability of flood occurrence is a task
with many practical applications in contemporary hydrology and water resources
management. Flood seasons are generally identified subjectively by visually assessing the
temporal distribution of flood occurrences and, then at a regional scale, verified by
comparing the temporal distribution with distributions obtained at hydrologically similar
neighboring sites. This approach is subjective, time consuming, and potentially unreliable.
The main objective of this study is therefore to introduce a new, objective, and
systematic method for the identification of flood seasons. The proposed method tests the
significance of flood seasons by comparing the observed variability of flood occurrences
with the theoretical flood variability in a nonseasonal model. The method also addresses
the uncertainty resulting from sampling variability by quantifying the probability
associated with the identified flood seasons. The performance of the method was tested on
an extensive number of samples with different record lengths generated from several
theoretical models of flood seasonality. The proposed approach was then applied on real
data from a large set of sites with different flood regimes across Great Britain. The results
show that the method can efficiently identify flood seasons from both theoretical and
observed distributions of flood occurrence. The results were used for the determination of
the main flood seasonality types in Great Britain. INDEX TERMS: 1821 Hydrology: Floods;

1860 Hydrology: Runoff and streamflow; 1869 Hydrology: Stochastic processes; KEYWORDS: flood

seasonality, significance, sampling variability, nonparametric density, bootstrap resampling

Citation: Cunderlik, J. M., T. B. M. J. Ouarda, and B. Bobée (2004), On the objective identification of flood seasons, Water Resour.

Res., 40, W01520, doi:10.1029/2003WR002295.

1. Introduction

[2] The proper determination of flood seasons is an
important task with many practical applications in hydrol-
ogy and water resources management. The information on
flood seasonality is often used in seasonal flood frequency
analysis for separating mixed-distribution floods generated
by different atmospheric mechanisms [GREHYS, 1996;
Ouarda et al., 2001]. For instance, Ouarda et al. [2000]
separated spring floods caused by snowmelt from summer/
fall rainfall-generated floods in the province of Québec,
Canada. In regional flood frequency analysis catchments
are often grouped into regions according to the similarity
in flood seasonality [Ouarda et al., 1993; Burn, 1997;
Cunderlik and Burn, 2002a]. Flood seasonality is also used
for assessing hydrological homogeneity (or similarity) of a
group of sites [Cunderlik and Burn, 2002c]. Seasonality of
floods has important implications for the specification of
flood-duration-frequency relationships [Javelle et al., 2003].
Other applications include seasonal streamflow forecasting,
watershed flood protection management, floodplain man-
agement, and reservoir operation.
[3] During the last decade, several studies emerged

that were focused on various aspects of flood seasonality.
Hirschboeck [1991] used information on hydro-climatic

seasonality for the identification of mixed flood distributions.
Bayliss and Jones [1993] described the seasonality of floods
in Great Britain by measures based on directional statistics.
Ashkar et al. [1993] and Ouarda et al. [1993] proposed a
graphical procedure for determining flood seasons from
peaks-over-threshold data. The procedure is based on plot-
ting the mean annual number of exceedances against the time
t for increasing threshold levels. Two different forms of the
procedure were applied to gauging stations in the provinces
of Québec and New Brunswick, Canada, and allowed parti-
tion of the two provinces into regions with similar flood
seasons. Magilligan and Graber [1996] constructed contour
maps of themean day of flood occurrences and of a parameter
that describes the variance of flood occurrences. The authors
analyzed physiographic controls on flood timing using mul-
tiple regression models and suggested using the constructed
contour maps for depicting the flood regime in New England.
Black and Werritty [1997] identified geographical patterns of
flood seasonality, using a database of events exceeding
modest flood-flow thresholds at 156 gauging stations, and
sought to explain them in terms of climatologic and catch-
ment characteristics. Krasovskaia [1997] proposed a method
for the hierarchical aggregation of monthly flow series into
flow regime types by means of the minimization of an
entropy-based objective function. Burn [1997] presented a
regionalization approach that uses information related to the
timing of flood events. The approach was based on the region
of influence (ROI) pooling framework [Burn, 1990].
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[4] Robson and Reed [1999] described the effect of
urbanization on flood seasonality. Lecce [2000] used cluster
analysis on the data from 806 USGS gauging stations in the
southeastern US to investigate spatial variations in the
timing of the annual flood. Whitfield and Cannon [2000]
proposed a polar plotting technique for seasonal hydrologic
and climatic data. Cunderlik and Burn [2002a] derived and
tested a detailed descriptor of flood seasonality. The authors
explored the sensitivity of the seasonality descriptor to the
record length and to the length of overlapping period. They
have also shown that the information captured in flood
seasonality is sufficient for the effective estimation of
extreme flow quantiles from rural catchments in Great
Britain. Cunderlik and Burn [2002b] explored the linkages
between rain and flood seasonality and its applicability to
regional flood frequency estimation at ungauged sites.
Archer [2003] investigated broad characteristics of hydro-
logical regimes in the upper Indus Basin using streamflow
data from nineteen long-period stations in terms of annual
and seasonal runoff.
[5] Generally, flood seasons are identified subjectively by

visually assessing the temporal distribution of flood occur-
rences at the site of interest [see, e.g., Ouarda et al., 1993;
Black and Werritty, 1997; Lecce, 2000]. The plausibility of
such locally identified seasons is then verified at a regional
scale by comparing the at-site results with the results
obtained from hydrologically similar neighboring sites. This
approach is subjective and also highly time-consuming
when applied to a large number of sites. Furthermore, if
the seasons are not tested for significance, they may just be
a product of sampling variability.
[6] The effect of sampling variability is indeed an im-

portant issue when assessing flood seasonality particularly
from short records. Two types of errors can be made due to
this effect. First, data from a short record can produce a
pronounced seasonal flood distribution despite the true (but
unknown) nonseasonal character of floods at the site of
interest. Second, an apparently nonseasonal distribution of
floods from a short sample may hide the true flood
seasonality that is actually present at a given site.
[7] The main objective of this paper is to introduce a new,

objective method for the identification of flood seasons. The
proposed method tests the significance of seasons of high
and low probability of flood occurrence by comparing the
observed monthly variability of flood occurrences with the
theoretical monthly flood variability in a nonseasonal model.
The method also addresses the uncertainty resulting from
sampling variability by quantifying the probability associ-
ated with the identified flood seasons. The performance of
the proposed method is tested on many samples with
different record lengths generated from several theoretical
models of flood seasonality. The proposed approach is then
applied to a large set of sites with a variety of flood regimes
from different parts of Great Britain. The sites are then
pooled into groups with similar temporal distributions of
flood occurrences, representing the main flood seasonality
types in Great Britain.

2. Method for the Identification of Flood Seasons

[8] Seasonality of flood occurrences can be tested by
comparing the sampling variability of flood occurrences
observed in a given record with the theoretical sampling

variability of nonseasonal flood occurrences. A model of
nonseasonal flood occurrences (floods with no seasonal
preference) can be expressed by means of the circular
uniform distribution as:

f ðxÞ ¼ P X ¼ x½ � ¼ 1

360�
; 0� � x < 360� ð1Þ

FðxÞ ¼ P X � x½ � ¼ x

360�
; 0� � x < 360� ð2Þ

where x is the day of flood occurrence in degrees (by
converting the 365 or 366 days of the year into 360 degrees),
f (x) is the probability density function and F(x) is the
cumulative density of flood occurrences. In this uniform,
nonseasonal model a flood can occur, with the same
probability, on any given day of the year. It is convenient to
group dates of flood occurrence into months. Shorter
intervals, such as one week, are inappropriate because the
pattern of flood seasons diminishes even for long-record
gauges, and therefore could not be discerned for gauges with
typical length of records consisting of 20–30 flood
observations [Cunderlik and Burn, 2002a]. Monthly tempor-
al resolution of flood seasons is suitable for most practical
applications. When the data are grouped into months, an
adjustment must be applied when converting times into
angles. According toMardia [1972], themonthly frequencies
can be adjusted so that they correspond to 360 days with all
months having the same length. Then 1� will correspond to 1
day. The observed frequencies for 31-day months are
multiplied by 30/31 and the frequency for February by
30/28 or by 30/29 respectively. The year is then reduced to
360 days but the sum (S) of the original frequencies fi does not
equal the sum (S0) of the adjusted frequencies f 0i. To preserve
the sum S, the final adjusted frequencies are obtained by
multiplying f 0i by S/S0. The probability of the adjusted flood
frequencies in a month, assuming the uniform distribution,
will be then 1/12.
[9] Once the flood occurrences have been grouped into

months, significant flood seasons can be identified by
comparing the variability of the observed monthly proba-
bilities of flood occurrence (monthly relative frequencies)
with the theoretical sampling variability of nonseasonal
monthly probabilities of flood occurrence generated from
the uniform distribution. On one hand, if the observed
monthly relative frequencies of flood occurrence from a
sample with a record length N are within the confidence
intervals derived for the monthly relative frequencies from
records with the same record length N simulated from the
uniform distribution, then there is no evidence of significant
flood seasonality. On the other hand, if a record could not
originate from the uniform distribution, then it must have a
nonuniform (seasonal) distribution of floods that are clus-
tered into one, two or more modes. Statistical tests for
modality, such as the nonparametric smoothed-bootstrap
test given by Efron and Tibshirani [1993] can be used for
determining the number of modes presented in the data
[Cunderlik and Burn, 2002b]. Fisher [1993] describes
several other tests of randomness against nonuniform alter-
natives developed for directional data. However, such tests
do not provide any information on the temporal occurrence
and duration of flood-rich seasons (seasons of high proba-
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bility of flood occurrence), and no information on the
significance of flood-poor seasons (seasons of low proba-
bility of flood occurrence). The objective of the present
work is therefore to develop a comprehensive technique for
providing a complete picture of the distribution of flood
seasons.
[10] The confidence intervals for the monthly relative

frequencies generated from the circular uniform (nonsea-
sonal) distribution of flood occurrences can be estimated
according to the following procedure.
[11] 1. For a given record length of N observations,

a large number, NSim, of simulated records with N
flood occurrences are generated from the circular uniform
distribution.
[12] 2. Generated dates of flood occurrence are grouped

into months and monthly relative frequencies (probabilities
of flood occurrence in a given month) adjusted according
Mardia [1972] are calculated for each month. The sampling
distribution of the adjusted relative frequencies is skewed,
bounded (0 � x � 100), with the sampling mean x = 8.333.
[13] 3. From the NSim sequences of monthly relative

frequencies calculated from the simulated records of length

N, one-sided (1-a)% confidence intervals are constructed as
the ath (1-ath) empirical percentile intervals.
[14] 4. The (1-a)% one-sided confidence intervals are

used for testing the hypothesis H0, whether a given se-
quence of relative frequencies could originate from the
uniform distribution at the a% significance level, against
the alternative H1 that the sequence originated from a
nonuniform (seasonal) distribution of flood occurrences.
The one-sided test is applied separately on relative frequen-
cies above and below the uniform mean. If any monthly
relative frequency is above the upper or below the lower
confidence interval, then it is assumed at the significance
level a that such sequence of relative frequencies could not
originate from the uniform distribution. We suggest setting
the significance level a to 5%. The a = 1% level was also
considered but found too restrictive when applied on real
data with more complex seasonality patterns.
[15] 5. The relative frequencies above and below the one-

sided confidence intervals are considered to be significant
flood-rich or flood-poor seasons.
[16] Figure 1 shows the sampling variability of relative

frequencies obtained from 1000 samples with a record

Figure 1. Sampling variability of relative flood frequencies calculated from 1000 samples with the
record length of 30 observations generated from the uniform distribution. Thick shaded circles define the
upper and lower one-sided confidence intervals.
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length of 30 observations generated from the uniform
distribution. Several peaks shown in Figure 1 are outside
the upper and lower confidence intervals (shown by thick
shaded circles) calculated for N = 30 observations. Figure 2
depicts the one-sided 95% upper and lower confidence
intervals calculated from 100,000 simulated samples for
record lengths ranging from 10 to 500 observations. The
upper bound of 500 observations was set as a reasonable
limit for long peaks-over-threshold samples. The confidence
intervals for any record length from the interval h30, 500i
can be approximated by

LNU ¼ N þ 11:491

0:048N�1:131
; 30 � N � 500 ð3Þ

LNL ¼ N � 27:832

0:199N�0:964
; 30 � N � 500 ð4Þ

with R2 = 0.958 for LU
N and R2 = 0.960 for LL

N. Figure 2
suggests avoiding the assessment of flood seasonality from
records with fewer than 30 observations because of large
sampling variability. The oscillation of the data points about
the fitted curves is caused by rounding the dates of flood
occurrence to the nearest day.
[17] The one-sided confidence intervals defined above

provide the bounds outside which all relative frequencies of
flood occurrence could not, at the 5% significance level
originate from the uniform, nonseasonal flood distribution

model. By using the test outlined above, all significant
nonuniform distributions of flood occurrences are classified
as seasonal flood distributions. However, there may be cases
of significant nonuniform distributions of flood occurren-
ces, which do not necessary need to be ‘‘seasonal.’’ Also, if
the uncertainty resulting from the sampling variability of
flood occurrences was ignored, two other errors could be
possibly committed. The first error arises when the true
temporal distribution of flood occurrences is seasonal, but
because of a large sampling variability, no significant flood-
rich or flood-poor seasons are found in a sample record
generated from this distribution. The second error occurs
when the flood seasonality from a record is found signifi-
cant, but is actually not. Since the true distribution is not
known, the sampling variability (uncertainty) associated
with the probabilities obtained from the sample records
must be taken into account and estimated.
[18] In order to address the uncertainty resulting from the

sampling variability of flood occurrences a measure must be
defined to estimate the probability of whether a given
season is significant or nonsignificant. The observed data
from a sample alone provides only a limited amount of
information about the true temporal flood distribution.
Therefore we suggest using a bootstrap resampling proce-
dure to obtain a clearer picture about the sampling variabil-
ity and the uncertainty associated with the estimates of flood
frequencies. The idea is to generate NBst bootstrap samples
from the available record and, then, for each sample, assess
the significance of flood seasons using the method de-

Figure 2. Simulated and fitted one-sided confidence intervals for monthly relative frequencies of flood
occurrence as a function of record length N (based on 100,000 simulations from the uniform distribution).
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scribed above. If more than a*% of the relative frequencies
for a given season (month) are found significant, then it is
assumed at the a*% probability that the sample originated
from a parent distribution, which has a significant flood
occurrence in that season. Thus it is possible to estimate the
probability that the true (unknown) distribution really has a
significant flood-rich or flood-poor season in any given
month of the year.
[19] In order to classify the seasons of flood occurrence

objectively we suggest defining ‘‘significant flood-rich
seasons’’ comprising months having the seasonal probabil-
ity >a*% with relative frequencies exceeding the upper
confidence interval LU

N for the uniform distribution. The
category of ‘‘possibly significant flood-rich seasons’’ will
then include months that do not exceed the upper confi-
dence interval LU

N, but more than a*% of the months
obtained from the bootstrap samples did, and so there is a
real chance that the true distribution actually has a signif-
icant flood-rich season in the corresponding month at the
a*% significance level. In a similar fashion, months with
the seasonal probability >a*% and relative frequencies
below the lower confidence interval LL

N for the nonseasonal
distribution can be classified as ‘‘significant flood-poor
seasons’’, and those inside the confidence intervals, but
with more than a*% of the bootstrap months below the
lower confidence interval LL

N as ‘‘possibly significant flood-
poor seasons’’ at the a*% significance level. We suggest
setting a* to 5 or 10%.

3. Performance Evaluation

[20] The performance of the proposed method for the
identification of flood-rich and flood-poor seasons was
assessed using a large number of records with different record
lengths N simulated from several subjectively defined types
of unimodal, bimodal and trimodal temporal distributions of
flood occurrence. One scenario also involved samples gen-
erated from the uniform distribution. Distributions with four
and more significant modes were not analyzed because such
cases are very rare in the real world. Altogether, 33 different
models of temporal flood distribution (1 uniform (nonsea-
sonal model), 14 unimodal, 10 bimodal and 8 trimodal) were
defined. They roughly cover the most basic flood regimes
worldwide, including regimes with one main flood season
(such as snowmelt or monsoon induced flood seasons),
regimes with two flood seasons with equal or unequal
probabilities of flood occurrence (such as dominant snow-
melt induced season and secondary autumn rainfall induced
flood season), or complex regimes with three equal or
unequal flood seasons (such as spring snowmelt, summer
storm, and autumn frontal induced flood seasons).
[21] For each model a record with N = 10,000 observa-

tions was constructed in such way that its empirical density
function exactly corresponded to the subjectively prede-
fined temporal flood distribution. The f(x) functions were
then expressed nonparametrically using the formula pre-
sented by Cunderlik and Burn [2002b]:

f x; hð Þ ¼ 1

nh

Xn
i¼1

f
360� x� xij j

h

� �
; 8 x� xij j > 180�

f x; hð Þ ¼ 1

nh

Xn
i¼1

f
x� xi

h

� �
; 8 x� xij j � 180�

ð5Þ

where h is a bandwidth or smoothing factor, which
determines the amount of smoothing that is applied to the
data, and f(x) is the standard normal density. Figure 3
shows the probability density functions f (x) for five selected
temporal distributions of flood occurrence. The first
character in the notation used in Figure 3 describes the
type of modality (e.g., 1 for unimodal), and the last
character in the case of unimodal distributions describes the
shape of the distribution (L for light-tailed and H for heavy-
tailed), and in the case of multimodal distributions the
equality of the modes (seasons) (E for modes with equal
probability and U for unequal probability modes). The
density functions in Figure 3 are for better clarity depicted
in Cartesian coordinates. Since the proposed method is
invariant to rotation around the origin, the modes of the
distributions can occur in any other days as those shown in
Figure 3. From the fitted nonparametric density functions
(equation (5)) a large number of samples NSim with different
record lengths N were generated, and the seasonal
significance assessed according to the proposed method.
The number of simulated samples NSim was set to 1000 and
the number of bootstrap samples NBst to 500. Two types of
evaluation criteria were chosen. The first, ‘‘strict’’ evalua-
tion involved inclusion of only those simulated samples for
which all seasons that were found significant exactly
matched all significant seasons in the parent distribution.
The second, ‘‘relaxed’’ criterion took the effect of sampling
variability into account and thus also included samples for
which the true significant seasons were identified only as
possibly significant at the a* = 5% significance level.
Again, the complete pattern (all significant seasonal and
nonseasonal months) had to match in order to classify these
samples as correctly identified.
[22] The results for the five main density functions

showed in Figure 3 are summarized in Figure 4. The results
obtained from the strict evaluation are depicted by ‘‘S’’, and
those from the relaxed evaluation by ‘‘R’’. The results
confirm the expectation that the performance of the pro-
posed method strongly depends on both the distribution
type of flood occurrences and on the sample record length.
The best results were naturally obtained from samples
generated from the uniform distribution (not shown), where
40 observations were sufficient to achieve the 100% strict
performance of the method. Also, in the case of the
unimodal light-tailed distribution 1L (Figure 3) the pro-
posed method correctly identified significant flood seasons
in all samples with record lengths of 60 observations or
more. In the case of the heavy-tailed unimodal distribution
1H, the required record length increased to 150 observations.
The 100% strict performance was achieved in bimodal
samples generated from the distribution 2E, when the record
length was around 300 observations compared to the 370
observations needed for the more complex 2U type with one
main and one secondary flood season. In the samples
generated from the trimodal distribution 3E, 410 and more
observations were needed to achieve the 100% perfor-
mance. By comparing the results obtained from the 1L
and 1H, 2E and 2U distributions we can see how the
performance of the method decreases as the complexity of
the distributions increases. Rather long records are espe-
cially needed for obtaining reliable results from trimodal
records; however, such complex distributions of flood
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occurrences are rather rare in the real world. Here the use of
peaks-over-threshold samples might help to achieve better
performance of the proposed method.
[23] If we also include the results where the true signif-

icant seasons were identified only as possibly significant
(due to the effect of sampling variability), we notice a
visible improvement in the performance of the method.
Only about 40 observations are then needed to achieve
the 100% relaxed performance in samples generated from
the 1L distribution. In the case of the 1H distribution, 110
observations are needed for obtaining the 100% perfor-
mance, 200 observations are needed for the bimodal 2E
distribution, 260 observations for the bimodal 2U distribu-
tion, and 340 observations for the trimodal 3E distribution.
[24] The results obtained from the bimodal 2U distribu-

tion, which has one dominant and one secondary flood
season (see Figure 3), show that for short record lengths,
around 40 or more additional observations are needed for
this distribution to achieve the performance obtained from
the bimodal 2E distribution with two equal-probability
seasons. The less defined secondary season is more difficult
to capture, especially from samples with shorter record
lengths. However, when the sampling uncertainty is taken
into account, then the performance measure for the 2U type
(2U-R) approaches the performance obtained from the 2E
type based on the strict evaluation (2E-S in Figure 4).
[25] The effect of sampling variability can be also illus-

trated on the true parent distributions. The problem with

short samples drawn from certain distribution types (partic-
ularly heavy-tailed and multimodal with main and second-
ary peaks) is that the frequency of flood occurrences is
divided into more peaks, which may eventually fall within
the confidence intervals for the uniform distribution.
For example, less than 10 observations are needed to
identify the single mode in type 1L as significant at the
5% significance level, but at least 55 observations are
necessary for the single mode of the heavy-tailed type 1H
(see Figure 3). Similarly, only 12 or more observations
identify the two modes of the bimodal distribution type 2E
as significant, but as the distribution tail becomes heavier,
more data are needed to identify the modes (170 or more for
the type 2E2 (not shown in Figure 3), whose probability is
equal to half of the probability of the type 2E modes). The
trimodal distribution of the type 3E in Figure 3 becomes
significant when the record contains 35 or more observa-
tions, as opposed to the type 3E2 (not shown in Figure 3),
whose probability is equal to half the probability of the type
3E modes, of which at least 230 observations are needed to
identify these modes as significant. Again, if the bootstrap
resampling is included in the testing, the performance of the
method can be significantly improved (modes of the 2E2
distribution have a significant 16% probability of occur-
rence if generated from samples with 30 observations, and
modes of the 3E2 distribution have a significant 12%
probability of occurrence from the same samples with 30
observations).

Figure 3. Probability density functions of five basic flood seasonality models (unimodal (types 1L and
1H), bimodal (types 2E and 2U), and trimodal (type 3E)).
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[26] The presented results indicate that for more complex
distributions of flood occurrence, a rather large number of
observations is needed in order to achieve acceptable
performance of the proposed method. Annual maximum
records with 100 or more observations are rather rare in
most parts of the world; however, a 50-yearlong peaks-over-
threshold (POT) record can easily provide 250 observations.
Therefore, to achieve higher performance of the method and
to obtain more reliable results, we strongly recommend
using the POT data records.

4. Application

4.1. Study Area

[27] The proposed method was applied to a large number
of POT records from Great Britain (GB). The POT records
were chosen because they contain more information about
flood seasonality than the annual maximum data. A com-
prehensive review of peaks-over-threshold modeling is
presented by Lang et al. [1999]. The territory of GB was
chosen because of its variable flood seasonality, and be-
cause of the high density of its network of gauging stations.
A number of previously published studies [e.g., Bayliss and
Jones, 1993; Black and Werritty, 1997; Robson and Reed,
1999; Cunderlik and Burn, 2002b] describing flood regimes
in GB could be also used for the comparison of results.
[28] The POT data were obtained from the Flood

Estimation Handbook (FEH) flood peak data CD-ROM
[Robson and Reed, 1999]. The abstraction threshold was

chosen in the FEH to yield an average of four or more flood
peaks per year. More information about the POT extraction
is given by Bayliss and Jones [1993] and in the FEH
[Robson and Reed, 1999]. All catchments included in the
database had to be essentially rural with minimal flood
attenuation by reservoirs and lakes. From the subset of
catchments that met these criteria a common 20-yearlong
high-data density observation period from 1966 to 1985 was
identified. Sites with at least 60 POT peaks during this
period were then included in the database. There were 268
sites that fulfilled this criterion. In order to have the same
record lengths for all 268 included sites, only the highest 60
peaks from each site were included in the database. The
main reason to restrict the database to a common observa-
tion period was to eliminate the effect of climate variability
and/or trends in the timing of floods resulting from different
observation periods on the results [see, e.g., Arnell and
Reynard, 1996; Prudhomme et al., 2003]. The same number
of observations for each analyzed record was chosen to
eliminate the effect of different record lengths on the results,
in order to apply the proposed method on every record with
the same power. Both issues are considered important when
results from individual gauges will be intercompared and
used for the identification of main flood seasonality types in
the study area.

4.2. Results

[29] To illustrate the effect of sampling variability on
flood seasonality estimated from short samples, relative

Figure 4. Relative numbers of correctly identified flood seasonality types for different flood
distribution models and different sample record lengths (based on 1000 simulations). ‘‘S’’ marks strict
evaluation results, and ‘‘R’’ marks relaxed evaluation results.
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frequencies of flood occurrence calculated from different
5-yearlong nonoverlapping observation periods (with a
minimum of 20 POT peaks for each period) for the Find-
horn station at Forres (ID 7002) were plotted in Figure 5.
The thick shaded line represents the relative frequencies
from the common 1966–1985 period. We can see that the
individual temporal flood distributions change significantly
from period to period. Also, the difference in relative
frequencies of flood occurrence can reach 20% in some
months. Figure 5 clearly demonstrates the importance of
long records for reducing the effect of sampling variability,
and the importance of a common observation period for all
evaluated sites. The seasonality of floods is sensitive to the
POT threshold of interest. The POT floods used in Figure 5
were abstracted above a threshold defined in FEH for the
whole observation period. If individual thresholds defined
for each 5-yearlong period were used instead (daily records
were not available), then the sensitivity of flood seasonality
to a given period of record would likely be even more
pronounced than that seen in Figure 5.
[30] The percentage numbers of monthly relative fre-

quencies found significant in the 500 bootstrap samples
generated from the Findhorn at Forres POT record from the
common period 1966–1985 are given in Table 1. Table 1
reports that among the 500 bootstrap samples, all February
and April relative frequencies and 75% of all June frequen-
cies were classified as significant flood-poor seasons. On
the other hand 73% of December frequencies and 71%
of January frequencies were found to be significant flood-

rich seasons. The number of significant November relative
frequencies were much lower, only 42%, but this result still
highly exceeds the a* = 5% limit, thus being considered
highly significant. The significant flood-rich and flood-poor
seasons, identified by the proposed method in Findhorn at
Forres from the common observation period, are also
depicted in Figure 6. The method identified one unimodal
significant flood-rich season from November to January
and three discontinuous significant flood-poor seasons in
February, April, and June. Because of the effect of sampling
variability we can also expect potentially significant flood-
rich season in September and a potentially significant flood-
poor seasons in March, May and July, thus having a
pronounced, contiguous February to July flood-poor sea-
son. The months of August and October are nonsignificant
in terms of flood seasonality. The small inset in the upper
part of Figure 6 gives a schematized view of the flood
regime at this site, according to the significance of flood
seasons.
[31] The proposed method was then applied in a similar

fashion to the remaining 267 sites across Great Britain. The
number of bootstrap samples NBst was again set to 500 and
the significance level a* to 5%. At each site the method
identified at least one significant flood-rich and one signif-
icant flood-poor season. The majority of analyzed sites
(78%) have unimodal distribution with only one significant
flood-rich season. A total of 59 sites (22%) have significant
bimodal structure, and most of them are concentrated
along the west coast, particularly in Wales. Our criterion

Figure 5. Relative frequencies of flood occurrence from Findhorn at Forres (ID 7002) from different 5-
yearlong nonoverlapping observation periods. Thick shaded line represents relative frequencies from the
common observation period 1966–1985.
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for multimodality was that individual seasons in a multimod-
al distribution must be separated at least by one nonsignifi-
cant or possibly significant month. Almost half of all
analyzed sites (47.0%) have twomonths that can be classified
as a significant flood-rich season, 40.3% of the sites have
three significant months, 7.5% only onemonth and 5.2% four
significant flood-rich months. The results for significant
flood-poor seasons revealed that 182 sites (67.9%) have
unimodal distribution with only one significant flood-poor
season and 86 sites (32.1%) have two significant flood-poor
seasons. There is no visible geographical spatial pattern when
the sites are plotted according to modality of flood-poor
seasons. Significant flood-poor seasons are generally longer
than flood-rich seasons. A total of 35.1% of all sites have
4 months that can be classified as significant flood-poor
seasons, 21.6% have 3 months, 20.9% have 5 months, 11.2%

have 2months, 5.6% have 1month, 4.5% have 6months, and
only 1.1% have 7 months of flood-poor season.
[32] The flood-rich and flood-poor seasons objectively

identified at the 268 individual sites can be used for the
identification of groups of sites with similar flood season-
ality and for exploring any spatial patterns these groups may
possess. A cluster analysis was applied for grouping the
sites according to the similarity in their flood seasonality.
Rather than using actual relative frequencies of flood
occurrence (highly uncertain due to sampling variability),
a schematized representation of flood seasonality was used.
At each site the temporal flood distribution was described
by a set of twelve monthly values: zeros represented
nonsignificant months, the values of 0.5 (�0.5) months
with possibly significant flood-rich (flood-poor) seasons
and the values of 1 (�1) months with significant flood-rich

Figure 6. Identified flood seasons from Findhorn at Forres (ID 7002) from the common observation
period 1966–1985. Horizontal lines depict the upper and lower one-sided confidence intervals. The
smaller figure represents a schematized flood regime at this site according to the significance of monthly
relative frequencies of flood occurrence.

Table 1. Percentage Numbers of Significant Monthly Relative Frequencies Derived From 500 Bootstrap Samples Generated From the

Findhorn at Forres POT Record (ID 7002) From the Common Observation Period 1966–1985a

Season January February March April May June July August September October November December

Flood-rich 71.37 0.00 0.62 0.00 0.00 0.00 0.44 0.11 28.29 3.79 42.04 72.88
Flood-poor 0.00 100.00 6.99 100.00 36.93 75.03 7.02 4.22 0.33 0.19 0.07 0.00

aBold entries depict results significant at the a* = 5% significance level.
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(flood-poor) seasons. The twelve values describing the site’s
flood seasonality were used as the clustering attributes in a
K-means cluster analysis. The K-means clustering tech-
nique is a nonhierarchical method that partitions the obser-
vations into K mutually exclusive clusters. The method
defines groups by reallocating objects among clusters with
the objective to minimize the within-group variance and to
maximize the between-group variance. The optimal number
of clusters was determined using the silhouette plot. The
silhouette plot displays a measure of how close each point
in one cluster is to points in the neighboring clusters [The
MathWorks, 2000]. This measure ranges from +1, indicating
points that are very distant from neighboring clusters,
through 0, indicating points that can be equally assigned
to one cluster or another, to �1, indicating points that are
probably assigned to the wrong cluster. A quantitative way
to compare different cluster outputs is to look at the average
silhouette values for different numbers of clusters. In the
case of our data the best result was obtained for three
clusters that lead to well defined, separated, silhouette peaks
with no negative values (not shown). The average silhouette
value was 0.37.
[33] Figure 7 shows the identified three types of flood

seasonality on a map of Great Britain. The types have a
well-defined spatial pattern. The type 1 sites are dominant
mainly in Scotland, northwest England and north Wales.
The type 3 sites have prevailing occurrence in central
England and eastern coast of GB. Finally, the type 2 sites
are spatially concentrated in southern England, Wales, and
make a spatial transition between the types 1 and 3
elsewhere. This spatial pattern is in a good correspondence
with results published in other studies [Bayliss and Jones,
1993; Black and Werritty, 1997; Robson and Reed, 1999].
Figure 8 explains the three flood seasonality types in terms
of the average relative frequencies of flood occurrence. The
small inset in the upper part of Figure 8 summarizes the
delineated types in terms of the average significance of
flood seasons: +1 (�1) means all 268 sites have a signif-
icant flood-rich (flood-poor) season in the particular month.
In the type 1, floods occur predominantly in the autumn,
with the average maximum in November. The occurrence of
floods at the end of the winter and spring seasons is rather
low in this type. The type 1 also includes most of the 59
sites that were found bimodal in the previous step of the
analysis. This can be seen from the inset in Figure 8,
although the bimodal structure of the average significance
index was partially smoothed-out by the averaging process.
The type 3 includes sites where floods occur mainly during
the winter and spring (with the average maximum in
January) and with a low occurrence of flooding in the
summer and autumn seasons. The type 2 represents again
a transition between the types 1 and 3.
[34] Since the uncertainty related to the actual values of

relative frequencies is high, it is better to adopt a schema-
tized description of flood regime like the one shown in the
upper part of Figure 8 (or for one site as shown in the upper
part of Figure 6).

5. Conclusions

[35] In this paper we have proposed a new, objective
approach to the identification of significant flood-rich and
flood-poor seasons. The proposed method tests the signif-

icance of periods with high and low probability of flood
occurrence by comparing the observed variability of flood
occurrences with the theoretical variability in the uniform,
nonseasonal model. The method also takes into account the
uncertainty resulting from the sampling variability by quan-
tifying the significance of the identified flood seasons. The
performance of the method was tested on a large number of
samples generated from different predefined distributions of
flood seasonality assuming various sample record lengths.
The results indicated that the performance of the method
strongly depends on both the record length and the under-
lying flood distribution. The performance improves consid-
erably when the sampling variability is taken into account.
The sample record length plays a crucial role in flood
seasonality studies. We recommend using POT data for
assessing flood seasonality since they provide a greater
amount of seasonal information than the annual maximum
data records. Records with less than 30 observations should
be used only in rare cases and their results evaluated with
extreme care. Also, instead of using actual relative frequen-
cies of flood occurrence for describing flood seasonality we
suggest using a schematized alternative based on the sig-
nificance of flood seasons.
[36] The proposed approach was applied on a large set of

268 gauging sites with flood regimes representing different
parts of Great Britain. At every site the method identified at
least one significant flood-rich and one significant flood-
poor season. Using the K-means clustering algorithm, the
set of sites was then grouped into three main types of flood
seasonality in Great Britain. The delineated types are

Figure 7. Identified main flood seasonality types in Great
Britain.

10 of 12

W01520 CUNDERLIK ET AL.: OBJECTIVE IDENTIFICATION OF FLOOD SEASONS W01520



spatially well separated leading to three natural regions of
flood regime. The regions are in good correspondence with
flood regions identified in other studies. The results show
that the proposed method can efficiently identify flood
seasons from both theoretical and observed distributions
of flood occurrence. The technique can be a useful tool for
the investigation of climate and land use change effects on
flood regime.

[37] Acknowledgments. The authors would like to thank two anon-
ymous reviewers for their valuable comments, which significantly im-
proved the quality of this article.
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