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[1] This article presents the modeling of multivariate extreme values using copulas. Our
approach allows us to model the dependence structure independently of the marginal
distributions, which is not possible with standard classical methods. The methodology has
been applied on two different problems in hydrology. The first application is concerned
with the combined risk in the framework of frequency analysis. Four copulas have been
tested on peak flows from the watershed of Peribonka in Québec, Canada. The second
application relates to the joint modeling of peak flows and volumes. Three copulas have
been applied to the watershed of the Rimouski River in Québec, Canada. This approach
using copulas is promising since it allows us to take into account a wide range of
correlation which can happen in hydrology. INDEX TERMS: 1821 Hydrology: Floods; 1860
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1. Introduction

[2] In many applied statistical fields, such as hydrology,
the analysis of multivariate events is of particular interest. For
instance, design of hydropower dam requires the evaluation
of the risk associated with peak discharges at the future dam
site. In many cases, these peak discharges are the result of a
combination of the rivers tributaries discharges upstream the
location of interest. In such a case, the dependencies between
all the quantities, which define the peak discharges should be
taken into account. This necessarily involves a multivariate
approach. Using a simple univariate approach could lead to
severe underestimation of the risk associated to a given event
[Raynal-Villasenor and Salas, 1987; Bruneau et al., 1994].
Complex hydrological events such as floods and storms
always appear to be multivariate events that are characterized
by a few correlated random variables (peak, volume, dura-
tion, etc.). Therefore single-variable hydrological frequency
analysis can only provide limited assessment of these events
[Yue et al., 2001].
[3] A large range of techniques has been developed and

applied in hydrology to perform univariate analyses of
extreme events [see, e.g., Stedinger et al., 1993]. However,
multivariate analysis of such random variables is rarely
performed, in part because the very limited number of
multivariate models available are not well suited to repre-
sent extreme values. The normal model has long dominated
the statistical study of multivariate distributions. For exam-
ple, leading studies on multivariate analysis, such as those
of Anderson [1958] and Johnson and Wichern [1988], focus
exclusively on the multivariate normal and related distribu-

tions that can be derived from normal distributions, includ-
ing multivariate extensions of Student’s t and Fischer’s
F distributions. Multivariate normal distributions are ap-
pealing because both the conditional and the marginal
distributions are also normal. More recent texts on multi-
variate analysis, such as that by Krzanowski [1988], have
begun to recognize the need for examining alternatives to
the normal distribution setup. An extensive literature in
statistics deals with nonnormal multivariate distributions
[see, e.g., Johnson and Kotz, 1972; Johnson et al., 1997].
However, many multivariate distributions have been devel-
oped as immediate extensions of univariate distributions,
examples being the bivariate Pareto, bivariate gamma, etc.
The drawbacks of these types of distributions are that (1) the
same family is needed for each marginal distribution,
(2) extensions to more than just the bivariate case are not
clear, and (3) parameters of the marginal distributions are
also used to model the dependence between the random
variables. In hydrology the most used multivariate distribu-
tions are the multivariate normal, bivariate exponential
[Favre et al., 2002], bivariate gamma [Yue et al., 2001],
and bivariate extreme value distributions [Adamson et al.,
1999]. In the case of the multivariate normal the measure of
dependence is summarized in the correlation matrix. In most
cases, the use of a multivariate normal distribution is not
appropriate to model maximum discharges because
marginal distributions are asymmetric and have a heavy
tail. Also, the dependence structure is generally different
from the Gaussian case described by Pearson’s correlation
coefficient. Furthermore, in the case of more complex
marginal distributions, such as finite mixtures of distribu-
tions, which are now widely used in practical modeling to
represent heterogeneous phenomena [Titterington et al.,
1985; West, 1992; Robert, 1996] it is not possible to use
standard multivariate distributions. In the first case study
treated herein, we faced this type of problem since one of
the samples involved in the analysis contains observations
generated from two distinct processes.
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[4] A construction of multivariate distributions that does
not suffer from the drawbacks mentioned above is based on
the notion of copulas [Sklar, 1959]. A copula is very useful
to implement efficient algorithms for simulating joint dis-
tributions in a more realistic way. In fact, copulas are able to
model the dependence structure independently of the mar-
gin distributions. It is then possible to build multidimen-
sional distributions with different margins, the structure of
dependence being mathematically formalized through the
copula. The crucial step in the modeling process is the
choice and the adjustment of the copula function which
best fits the data. Copulas have been widely used in the
financial domain in order to determine the value at risk [see,
e.g., Embrechts et al., 2002, 2003; Bouyé et al., 2000].
Other fields of applications involve lifetime data analysis
[Bagdonavicius et al., 1999] and actuarial science [Frees
and Valdez, 1998]. However the use of copulas in the
hydrologic domain is still a marginal phenomenon. A few
authors use a particular bivariate distribution, the Farlie-
Gumbel-Morgenstern distribution, but without referring to
copulas [Singh and Singh, 1991; Long and Krzysztofowicz,
1992]. De Michele and Salvadori [2003] model different
combinations of rainfall depth and duration using copulas.
In their case the random variables show negative depen-
dence. Wang [2001] proposes a Bayesian estimation for the
parameters of copula of extreme values but without doing a
complete application.
[5] In this paper we present two applications in hydrol-

ogy using copulas. The first application concerns a study
about the combined risk in Peribonka. In this case, copulas
are the only realistic way to handle the problem since the
involved marginals are different and non standard. The
second application deals with the bivariate analysis of
the volume and flow in Rimouski. Here again the involved
marginals are different and a classical approach can not be
used.
[6] The next section is devoted to the general theory about

copulas as these types of multivariate distributions are not
familiar in hydrological literature. We present the definition
of copulas and their main properties (section 2.1), the main
types of copulas (section 2.2), the parameters estimation
(section 2.3), and the simulation of copulas (section 2.4).
Section 3 deals with the first application, namely, the
problem definition (section 3.1), the modeling (section 3.2),
and the obtained results (section 3.3). Section 4 shows the
second application. Section 5 is devoted to the conclusions
and prospects for further research.

2. General Theory About Copulas

[7] The theory about copulas can be found in general
textbooks such as those of Nelsen [1999] and Joe [1997].
This section offers an overview of the main concepts.

2.1. Properties of Copulas

[8] To define a copula, consider p uniform U(0,1) random
variables U1,. . .,Up. Unlike many applications we do not
assume that U1,. . .,Up are independent; to the contrary they
are assumed to be related. The relationship between these
random variables is described through their joint distribu-
tion function as

Cðu1; � � � ; upÞ ¼ PrðU1 � u1; � � � ;Up � upÞ:

Here, we call the function C a copula. To complete the
construction, we select arbitrary marginal distribution
functions F1(x1),. . ., Fp(xp). Then the function

CðF1ðx1Þ; � � � ;FpðxpÞÞ ¼ Fðx1; � � � ; xpÞ ð1Þ

defines a multivariate distribution function, evaluated at
x1,. . ., xp. Figure 1 represents schematically the notion of
copula.
[9] In the copula model defined in equation (1) we can

integrate different families of probability distributions for
each outcome. This is the main advantage of this approach
compared to standard multivariate models used in practice.
It is easy to check from the construction in equation (1) that
F is a multivariate distribution. Sklar [1959] established the
converse. He showed that any multivariate distribution
function F can be written in the form of equation (1), that
is using a copula representation. Sklar also showed that if
the marginal distributions are continuous, then there is a
unique copula representation. From Sklar’s theorem, we see
that for continuous multivariate distribution functions the
univariate margins and the multivariate dependence struc-
ture can be separated, and the dependence structure can be
represented by a copula. In the remaining of the article we
limit the discussion to the bivariate case for simplicity
reasons.
[10] Schweizer and Wolff [1981] established that the

copula accounts for all the dependence between two random
variables, X1 and X2, in the following sense. Consider g1 and
g2, two strictly increasing functions (but otherwise arbitrary)
over the range of X1 and X2. Then the transformed variables
g1(X1) and g2(X2) have the same copula as X1 and X2. Thus,
as stated by Frees and Valdez [1998], the manner in which
X1 and X2 ‘‘move together’’ is captured by the copula,
regardless of the scale in which each variable is measured.
[11] Schweizer and Wolff also showed that two standard

nonparametric correlation measures could be expressed
solely in terms of the copula function. These are Spearman’s
correlation coefficient, defined by

rs ¼ rðF1ðx1Þ;F2ðx2ÞÞ

¼ 12

Z Z
F1ðx1ÞF2ðx2ÞdFðx1; x2Þ � 3

¼ 12

Z Z
uvdCðu; vÞ � 3 ð2Þ

Figure 1. Representation of a copula.
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and Kendall’s correlation coefficient, defined by

t ¼ PrððX1 � X 1*ÞðX2 � X 2*Þ > 0Þ

� PrððX1 � X 1*ÞðX2 � X 2*Þ < 0Þ

¼ 2PrððX1 � X 1*ÞðX2 � X 2*Þ > 0Þ � 1

¼ 4

Z
FdF � 1

¼ 4

Z
CdC � 1:

ð3Þ

For these expressions, we assume that X1 and X2 have a
jointly continuous distribution function. Further, the defini-
tion of Kendall’s t uses an independent copy of (X1, X2)
namely (X 1*, X 2*) to define the measure of concordance.
These two important properties can be used to estimate
parameters of several copulas. The widely used Pearson
correlation coefficient, Cov(X1, X2)/(Var(X1) Var(X2))

1/2

depends not only on the copula but also on the marginal
distributions. Thus this measure is affected by nonlinear
changes of scale. Moreover it is not invariant to monotonic
transformations contrary to Spearman’s and Kendall’s
measures.
[12] Note that Blest [2000] recently proposed a new

nonparametric measure of the dependence between two
random variables. This coefficient gives more weight to
observed difference in the first ranks. A detailed study of
this coefficient is given by Genest and Plante [2003].
[13] It is worth to notice that each copula is bounded by

the so-called Frchet-Hoeffding bounds, so that

maxðF1ðx1Þ þ � � � þ FpðxpÞ � 1; 0Þ � Fðx1; � � � ; xpÞ

� minðF1ðx1Þ; � � � ;FpðxpÞÞ:

These bounds correspond to the situations where the two
random variables are almost surely monotone increasing
and decreasing functions of one another. The proof of this
theorem is given by Nelsen [1999, theorem 2.2.3 p. 8].

2.2. Types of Copulas

2.2.1. Elliptical Copulas
[14] Copulas related to elliptical distributions are very

useful in practical applications since they have several
properties of the multivariate normal distribution. The most
well known elliptical copulas are the multivariate gaussian
copula and the multivariate Student copula.

Definition 2.1. Let r be a symmetric, positive definite
matrix with diagr = 1 and fr the standardized multivariate
normal distribution with correlation matrix r. The multi-
variate gaussian copula is then defined as follows

Cðu1; � � � ; up; rÞ ¼ fr f�1ðu1Þ; � � � ;f�1ðupÞ
� �

Definition 2.2. Let r be a symmetric, positive definite
matrix with diagr = 1 and Tr,n the standardized multivariate
Student’s distribution with n degrees of freedom and
correlation matrix r. The multivariate Student’s copula is
then defined as follows:

Cðu1; � � � ; up; r; nÞ ¼ Tr;n t�1
n ðu1Þ; � � � ; t�1

n ðupÞ
� �

where tv
�1 is the inverse of the univariate Student’s

distribution.
[15] Note that a generalization of Definitions 2.1 and 2.2

is possible introducing an asymmetry by indexing the
copula by a matrix of dependence parameters [Joe, 1997].
There are few works that focus on elliptical copulas.
However, they could be very attractive. Jorgensen [1997]
and Song [2000] proposed a multivariate extension of
dispersion models with the Gaussian copulas.
2.2.2. Archimedean Copulas
[16] Archimedean copulas originally appeared not in

statistics, but rather in the study of probabilistic metric
spaces, where they were studied as part of the development
of a probabilistic version of the triangle inequality [see
Schweizer, 1991]. Genest and MacKay [1986a] define
Archimedean copulas as the following:

C u1; � � � ; up
� �

¼
nj�1 j u1ð Þ þ � � � þ j up

� �� �
if
Pp

j¼1 j uj
� �

� j 0ð Þ
0 otherwise

:

where j(u) a C2 function with j(1) = 0, j0(u) < 0 (j is
decreasing), j00(u) > 0 (j is convex) for all 0 � u � 1 and
the first p derivatives of j are of alternating signs. j(u) is
called the generator of the copula. Archimedean copulas
play an important role because they present several desired
properties (C is symmetric, associative,. . .). Moreover, in
Archimedean copulas the computation of measures of
dependence is simplified. For example, equation (3) for
Kendall’s tau reduces to

t ¼ 1þ 4

Z 1

0

j uð Þ
j 0 uð Þ du:

Note that a limitation of Archimedean copulas is that they
are symmetric in their arguments. Extensions are possible in
which this symmetry condition is evacuated [see Joe, 1997].
[17] Table 1 shows that different choices of generator

yield several important bivariate families of copulas. A
generator uniquely determines (up to a scalar multiple) an
Archimedean copula.
[18] Note that throughout the article, the copulas number

2 and 4 will be related to Clayton and Frank copulas
respectively. We can also cite the copulas of Ali et al.

Table 1. Bivariate Archimedean Copulas and Their Generators

Family Generator j(t) Parameter a Bivariate Copula Cj(u1, u2)

Independence �ln t – u1u2
Clayton [1978], Cook and Johnson [1981], and Oakes [1982] t�a � 1 a > 0 (u1

�a + u2
�a � 1)�1/a

Gumbel [1960] and Hougaard [1986] (�ln t)a a � 1 exp{�[(�ln u1)
a + (�ln u2)

a]1/a}
Frank [1979], Nelsen [1986], and Genest [1987] ln eat�1

ea�1

� �
a 6¼ 0 1

a ln 1þ ðeau1�1Þðeau2�1Þ
ea�1

� �

W01101 FAVRE ET AL.: MULTIVARIATE FREQUENCY ANALYSIS USING COPULAS

3 of 12

W01101



[1978], Cuadras and Augé [1981], Galambos [1975],
Hüsler and Reiss [1989], and Genest and Ghoudi [1994],
which also belong to the class of Archimedean copulas.
2.2.3. Copulas With Quadratic Section
[19] The Farlie-Gumbel-Morgenstern family of copulas

belong to the class of copulas with quadratic section. In the
bivariate case this copula is defined as

Cðu1; u2Þ ¼ u1u2 þ au1u2ð1� u1Þð1� u2Þ

with a2 [�1,1]. The family was discussed by Morgenstern
[1956], Gumbel [1958], and Farlie [1960]. However it
seems that the earliest publication is that of Eyraud [1938].
Because of their simple analytical form, Farlie-Gumbel-
Morgenstern distributions have been widely used in
modeling. Note that Farlie-Gumbel-Morgenstern copula
does not belong to the family of Archimedean copulas since
they are not associative.

2.3. Parameter Estimation

[20] Let q be the K � 1 vector of parameters (comprising
the dependence parameters and also the marginal distribu-
tions parameters) to be estimated and � the parameter
space. The log likelihood for observation i is denoted
li(q). Given n independent observations, we get

lðqÞ ¼
Xn
i¼1

liðqÞ:

Applied to equation (1), the expression of the log likelihood
becomes in the case of copulas

lðqÞ ¼
Xn
i¼1

ln cðF1ðxi1Þ; � � � ;FpðxipÞÞ þ
Xn
i¼1

Xp
j¼1

ln fjðxijÞ:

q̂ML the maximum likelihood estimator satisfies

lðq̂MLÞ � lðqÞ 8q 2 �:

The previous method, which is called the exact maximum
likelihood method (EML) could be computational intensive
in the case of high dimensional distribution, because it
requires to jointly estimate the parameters of the margins
and the parameters of the dependence structure. However,
the copula representation splits the parameters into specific
parameters for marginal distributions and common param-
eters for the dependence structure. The log likelihood could
then be written as

lðqÞ ¼
Xn
i¼1

ln cðF1ðxi1; q1Þ; � � � ;Fpðxip; qpÞ;aÞ þ
Xn
i¼1

Xp
j¼1

ln fjðxij; qjÞ

with q = (q1,. . .,qp,a). We can also perform the estimation of
the univariate marginal distributions in a first step

q̂j ¼ argmax
Xn
i¼1

ln fjðxij; qjÞ

and then estimate a given the previous estimates

â ¼ argmax
Xn
i¼1

ln cðF1ðxi1; q̂1Þ; � � � ;Fpðxip; q̂pÞ;aÞ:

This two-step method is called the method of inference
functions for margins (IFM) method.
[21] Note that following the definition of empirical cop-

ulas introduced by Deheuvels [1979], Genest and Rivest
[1993] have developed a nonparametric method to identify
the copula in the Archimedean case. This method has been
further improved by Barbe et al. [1996].

2.4. Simulation of Copulas

[22] Genest and MacKay [1986b] proposed a general
algorithm to simulate a copula of the Archimedean family.
They introduced the idea of simulating the full distribution
of (X1,. . ., Xp) by recursively simulating the conditional
distribution of Xj given X1. The algorithm is summarized by
Lee [1993] as the following.
[23] 1. Generate U1,. . ., Up independent U(0,1) random

numbers.
[24] 2. Set X1 = F1

�1(U1) and c0 = 0.
[25] 3. For j = 2,. . ., p recursively calculate Xj as the

solution of

Uj ¼ FjðXjjx1; � � � ; xj�1Þ ¼
j�1ðj�1Þfcj�1 þ j½FjðxjÞ�g

j�1ðj�1Þðcj�1Þ

where cj = j[F1(x1)] + . . . + j[Fj(xj)].

3. Application: Flow Combination

3.1. Problem Definition

[26] The watershed of the Peribonka river is located in the
Canadian province of Quebec in the hydrographical region
06 between latitudes 48� 450 and 52� North and longitudes
70� and 72�W. The hydroelectrical works actually under
study by Hydro-Quebec are located on the Peribonka river,
151.8 km upstream from the outflow in the St-Jean Lake.
Hydro-Québec is a public company that produces, transmits
and distributes electricity throughout the province of
Québec. A rock fill dam is built about 200 m upstream
from the confluence of the Manouane river. Figure 2 shows
the localization of the watershed.
[27] The planned hydroelectrical works (site PER-3D)

consists of a run-of-river power station. The watershed area
at the power station is 19 450 km2 while the intermediate
watershed has an area of 3 133 km2. The design of the
hydroelectrical works is planned in order not to influence
the management of the existing dams of Alcan Inc., an
international company providing aluminum, on the Peri-
bonka river.
[28] The peak flows at Peribonka (site PER-3D) are the

combination of the outflows from the upstream site Chute-
des-Passes and the peak flows from the intermediate water-
shed (area of 3 133 km2). The resulting peak flow can be
written as Z = X + Y, where X is the random variable
representing the flow at Chute-des-Passes and Y at the
intermediate watershed. Figure 3 illustrates the problem.
[29] The aim is to estimate the annual peak flow of a

given return period taking into account the dependence
between the flows in order to design the hydroelectrical
works (PER-3D).

3.2. Modeling

[30] The available data are the annual maximum peak
flow at Chute-des-Passes from 1960 to 2001 and the annual
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maximum peak flow at the intermediate watershed from
1979 to 2002. Figure 4 illustrates the time series outflow
from Chute-des-Passes.
[31] Two flow regimes can be distinguished: high flows

corresponding to wet years and moderate flows corres-
ponding to dry years. High flows result from spillovers.
Figure 5 shows the empirical cumulative distribution at
Chute-des-Passes which clearly exhibits a heterogeneity.
[32] The spillovers can not be explained only by meteo-

rological reasons but specialists from Hydro-Québec think
that such kind of spillovers can happen again in the future.

Therefore we must take into account such additional uncer-
tainty in the analysis. To do so we chose to model this data
with a mixture of two univariate normal proability distribu-
tion. Such model is especially designed to represent hetero-

Figure 2. Watershed map.

Figure 3. Problem of combined risk at Peribonka.
Figure 4. Time series of annual peak flow at Chute-des-
Passes.
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geneous observations [Robert, 1996]. The probability den-
sity function of such a mixture is expressed as follows:

X � pNðm1; s1Þ þ ð1� pÞN ðm2; s2Þ;

where N (m, s) stands for the normal density function and p
is the mixture proportion which represents the relative
frequency of occurrence of process 1 (a normal distribution
with mean m1 and standard deviation s1). The parameters
have been estimated using a Bayesian approach (see
Perreault [2003] for more details). Gibbs sampling was
used to approximate the posterior density of each parameter.
The expected values of these posterior distributions have
been considered as estimates for the parameters. We
obtained the following values:

p̂ ¼ 0:48; m̂1 ¼ 546 m3=s; ŝ1 ¼ 25 m3=s; m̂2 ¼ 1039 m3=s;

ŝ2 ¼ 314 m3=s:

Figure 6 shows the histogram with the superposed estimated
density of the mixture model.
[33] The annual maximum peak flows at the intermediate

watershed have been modelled using the Gamma distribu-
tion. Thus the density can be expressed as:

Gðy; b;lÞ ¼ b expð�byÞðbyÞl�1

�ðlÞ

where y � 0 and b, l > 0.

[34] The parameters have been estimated using the method
of maximum likelihood. The estimates obtained for each
parameter are b̂ = 16, l̂ = 20. Figure 7 shows the histogram
and the obtained density. The plot in Figure 8 illustrates the
nonexceedence probability with the corresponding asymp-
totic 95% confidence interval.
[35] The next step in our study is to define the bivariate

distribution in order to take into account the dependence
between the two flow series. Figure 9 shows a scatter plot of
the pairs (Ri/(n + 1), Si/(n + 1)), where Ri and Si are
respectively the rank of the flows at Serpent and Chute-
des-Passes.
[36] This plot corresponds to the bivariate probability

function associated with Deheuvels’ empirical copula
[Deheuvels, 1979]. We obtained the following values for
the classical measures of dependence: r = 0.2, rS = 0.14, t =
0.16. Standard bivariate distributions used in hydrology can
not be applied in our case due to the complexity of one of
the marginal distribution (in this case a mixture of distribu-
tions). The only possible method to deal with this problem
in a formal way is to use copulas. We considered several
types of copulas: the independence case, Farlie-Gumbel-

Figure 5. Empirical cumulated distribution at Chute-des-
Passes.

Figure 6. Histogram of the annual flow at Chute-des-
Passes with the bivariate normal density.

Figure 7. Histogram of the annual flow at Serpent with
the gamma density.

Figure 8. Observed and estimated flows with 95%
confidence intervals for the intermediate watershed.
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Morgenstern copula already used in hydrology [Singh and
Singh, 1991], Frank and Clayton copulas. Their analytical
expressions are given in Table 2.
[37] The last two copulas have been chosen for their

simplicity (only one parameter to be estimated) and flexi-
bility (they are able to model continuously a whole range of
dependence between the lower Fréchet-Hoeffding bound
copula, the independent copula and the upper Fréchet-
Hoeffding bound copula). In our case, equation (1) can be
rewritten as

Fðx; yÞ ¼ CðF1ðxÞ;F2ðyÞÞ;

with F1 � 0:48Nð546; 25Þ þ 0:52Nð1039; 314Þ

F2 � Gð16; 20Þ:

In the case of Farlie-Gumbel-Morgenstern and Clayton
copulas, a very simple formula links the parameter of
dependence (a) to Kendall’s tau (t) measure of dependence.
We have that aFGM = 9

2
t and aC = 2t

1�t [see, e.g., Nelsen,
1999]. We use these relations to estimate the corresponding
parameters. For Frank copula, the method of inference
functions for margins (IFM, see section 2.3) has been used.
Figure 10 shows that the maximum of the log likelihood is
well defined.
[38] We obtain the following values for a: aF = 1.73,

aC = 0.39, aFGM = 0.73.

3.3. Results

[39] For all copulas defined in Table 2 a simulation of
size 15 000 has been realized. Frank and Clayton copulas

have been simulated using the general procedure described
in section 2.5. For Farlie-Gumbel-Morgenstern’s copula the
method defined by Johnson [1987] has been adopted.
Figure 11 shows the observations along with the simulated
values.
[40] In each case the observations are situated in the

scatter diagram of simulated values. A statistical test
[Genest and Rivest, 1993] has been applied to choose
between Frank and Clayton copulas. The coefficients of
determination obtained are respectively of 97.2% and
96.3%, which shows that Frank copula seems to have a
slightly better behavior. Figure 12 illustrates the joint
distribution obtained in the case of Frank copula.
[41] With the simulated values, total discharges (X + Y )

of a given return period have been determined using the
empirical cumulative distribution. Figure 13 shows the plot
of the obtained empirical cumulative distribution with the
four models. Results are summarized in Table 3.
[42] In general no huge differences can be shown from a

copula to another. The mean range is about 4%. Farlie-
Gumbel-Morgenstern and Frank copulas show the highest
similarity. For return periods between 20 and 1000 years,
Frank copula gives the largest values. Even though the
correlation is small, for more than a 2-years return period,
the independence copula gives systematically smaller quan-
tile values than the three other copulas. The highest range is
obtained for 60 years with a magnitude of 5.5%. Therefore
not taking into account the dependence may lead to under
designing the hydroelectrical works, which increases the
hydrological risk.

4. Application: Bivariate Frequency Analysis

4.1. Problem Definition

[43] Many hydrological engineering planning, design and
management problems require a detailed knowledge of
flood event characteristics, such as flood peak, volume
and duration. Flood frequency analysis often focuses on
flood peak values and hence provides a limited assessment
of flood events. This second application concerns the
bivariate frequency analysis of peak flow and volume of
the Rimouski river. The watershed is situated in the south

Figure 9. Bivariate probability function associated with
Deheuvels’ empirical copula.

Figure 10. Log likelihood for Frank copula.

Table 2. Type of Copulas Chosen for the Application

Name C(u1,u2)

Independence u1u2
Farlie-Gumbel-Morgenstern u1u2 + aFGMu1u2(1 � u1)(1 � u2)

Frank 1
aF

ln
�
1þ ðexpðaFu1Þ�1ÞðexpðaF u2Þ�1Þ

expðaF Þ�1

�
Clayton (u1

�aC + u2
�aC � 1)�1/aC
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Figure 11. Observations versus simulations for the four types of copulas.

Figure 12. Joint distribution in the case of Frank copula.

Figure 13. Empirical cumulative distribution in the cases
of independence, Farlie-Gumbel-Morgenstern, Clayton, and
Frank copulas.
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shore of the St. Laurent River. Its size is 1 610 km2. The
underlying data are the annual peak flows and volumes
from 1963 to 1997. Figure 14 shows the flows and volumes
as time series.
[44] Obviously, the two quantities are strongly correlated.

Pearson’s correlation coefficient is 0.76.

4.2. Modeling

[45] Several authors have considered the joint modeling
of flows and volumes [see, e.g., Singh and Singh, 1991;
Adamson et al., 1999; Yue et al., 2001]. In these studies, the
considered marginal distributions for both random variables
involved in the analysis were always identical (exponential,
Gumbel, or gamma). However, the marginal distributions of
flows and volumes often differ. This is the case in the
application presented below.
[46] The annual maximum flows Q were best fitted by a

Gumbel distribution (extreme value type I (EVI)). The
parameters were estimated using the maximum likelihood
method. We obtained Q � EVI(223, 70). Figure 15 shows
the results on a nonexceedance probability plot with the
related 95% asymptotic confidence interval.
[47] For the annual maximum volumes V a gamma

distribution was considered. This distribution is frequently
used in hydrology for volumes [Yue et al., 2001]. The
parameters were estimated with the maximum likelihood
method. We obtained V � G(16,32). Figure 16 shows the

results on a nonexceedance probability plot with the related
95% asymptotic confidence interval.
[48] In a second step we modeled the link between the

two random variables. Note that the correlation coefficients
of Spearman and Kendall are respectively of rS = 0.32 and
t = 0.64. We considered the same copulas as in section 3
except for Farlie-Gumbel-Morgenstern. The FGM copula
can only model a restricted type of dependence: t 2 [�2/9,
2/9]. As stated by Joe [1997], this limits the usefulness of
this family for modeling purposes. Thus we retained for this
application the independence, Clayton and Frank copulas.
We estimated the parameters with the same method as in
section 3.2. In the case of the Clayton copula, the parameter
of dependence was estimated using Kendall’s tau coeffi-
cient. We obtained âC ¼ 2t

1�t = 3.55. For the Frank copula
the method of inference functions for margins (IFM) was
used, leading to âF = 9.10.

4.3. Results

[49] For all considered copulas, a simulation of size 15
000 has been realized using the same technique as in section
3.3. Results are shown in Figure 17.
[50] Again a statistical test has been applied to choose

between Frank and Clayton copulas. The coefficients of
determination obtained are respectively of 0.97 and 0.96,
which shows that Frank copulas seem to have a slightly
better behavior. One information of particular interest for
hydrologists and water resources managers is the conditional

Table 3. Flows of a Given Return Period for the Four Tested

Models

Return Period
T, years Independence FGM Clayton Frank

2 1497 1494 1510 1487
10 1918 1989 1974 1986
20 2038 2114 2101 2116
40 2114 2220 2208 2225
60 2165 2276 2260 2283
100 2243 2342 2330 2350
1000 2545 2630 2595 2635
10000 2706 2791 2756 2766

Figure 14. Time series of annual flow and volumes. The
upper curve represents annual volumes.

Figure 15. Observed and estimated flows with 95%
confidence interval.

Figure 16. Observed and estimated volumes with 95%
confidence interval.
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probability of the volume given a specific flow value, say
the 100-years return period flow. We are interested in
Pr(V � v|500 � Q � 600). Figures 18, 19, and 20 illustrate
the conditional distribution Pr(V � v|500 � Q � 600) for
the three models.
[51] Note that the interval [500, 600] corresponds to the

95% asymptotic confidence interval of the 100-years return
period flow. Each plot presents the marginal and the
conditional distributions. In the case of the independent

copula (Figure 18) the difference between the marginal and
the conditional distribution should be null if we had
considered more simulations. Figures 19 and 20 show that
the conditional estimation is more precise since the obtained
variance is smaller.
[52] The conditional exceedance probability of a volume,

given the value of an extreme flood (100 or 1000 year return
period for example), is of major importance for the man-
agement of a reservoir. Comparing the conditional density

Figure 17. Observations versus simulations for the three types of copulas.

Figure 18. Conditional distribution of the volume given
the flow for the independent case.

Figure 19. Conditional distribution of the volume given
the flow for Frank copula.
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obtained for the independent case with the ones obtained
with the two other copulas, it is clear that such exceedance
probability would differ substantially. The decisions stem-
ming from this analysis would therefore be different.

5. Conclusions

[53] In this paper we proposed an approach based on
copulas applied to bivariate frequency analysis. To our
knowledge, such an approach has not been used in hydrol-
ogy. The model was applied to two different problems in
hydrology: flow combination and joint modeling of flow
and volume. In the first case the measures of correlation are
low and even in this case the difference between the
independence case and the Frank copula is of 5.5%. If the
correlation would be higher we believe that the difference
would be significantly increased. Differences between the
copulas should increase as well. The second application
emphasizes on the conditional return probability of the flow
given the volume. The obtained bivariate probabilities are
more precise, which is a serious gain for water resources
managers.
[54] The present approach using copulas is promising

since it allows to take into account a wide range of
correlation, frequently observed in hydrology. In fact the
classical multivariate models can not reproduce all type of
correlations. Moreover, the standard models are limited,
especially because the choice of the marginal distributions is
restricted.
[55] The crucial step in the modeling process is the choice

of the copula function, which best fits the data. Further work
is needed to choose the best copulas able to reproduce the
dependence structure of multivariate hydrological variables.
We are considering the use of copulas with two or more
parameters, for example the Archimax copulas [Capéraà et
al., 2000], which encompass the Archimedean copulas and
extreme value distributions as special cases. We also propose
to estimate the parameters using a Bayesian approach. This
method is more suitable than the maximum likelihood when
the sample size is small as it is usually the case in hydrology.

In the prior distribution we could for example relate
Kendall’s tau or Spearman’s rho with physiographic data
(like watershed area, slope. . .), which are always available in
practical cases. The trivariate modeling of flow, volume and
duration is also of great interest for hydrologists.

[56] Acknowledgments. The authors acknowledge the financial sup-
port of Hydro-Qubec for this project. We are also grateful to Alcan for the
use of the data at Chute-des-Passes.
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Capéraà, P., A. L. Fougères, and C. Genest (2000), Bivariate distributions
with given extreme value attractor, J. Multivariate Anal., 72, 30–49.

Clayton, D. G. (1978), A model for association in bivariate life tables and
its application in epidemiological studies of familial tendency in chronic
disease incidence, Biometrika, 65, 141–151.

Cook, D. R., and M. E. Johnson (1981), A family of distributions for
modeling non-elliptically symmetric multivariate data, J. R. Stat. Soc.
London, Ser. B, 43, 210–218.
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