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[1] A recent trend in regional frequency analysis is to consider floating regions where
only basins that are sufficiently similar to the design site are considered for information
transfer. Similarity is measured in some suitable metric of catchment characteristics. This
paper discusses the analogy between this idea and nonparametric regression. Some of the
techniques developed recently in the area of nonparametric regression are employed to
develop improved regional flood estimators. The additive model used here to a large
extent overcomes the curse of dimensionality often associated with nonparametric
regression on multivariate predictor space. The application of the proposed methodology
to selected areas of the United States suggests that there can be substantial gains over the
traditional log linear models currently employed. INDEX TERMS: 1821 Hydrology: Floods;

1860 Hydrology: Runoff and streamflow; 1869 Hydrology: Stochastic processes; KEYWORDS: regionalization,

floods, nonlinear, nonparametric, regression, frequency analysis

1. Introduction

[2] Regional flood frequency analysis is commonly used
to obtain estimates of design flows at ungauged sites.
Statistical methods for regional frequency analysis have been
employed for several decades and have evolved from rudi-
mentary methods involving simple area ratio scaling to
advanced methods that attempt to capture the complex
relationship between catchment characteristics and the dis-
tribution of peak runoff. Two methods have been particularly
favored by practitioners, the index flood method and the
quantile regression method. Dalrymple’s [1960] index flood
method is based on the assumption that within hydrological
regions the distribution of annual floods is the same at all sites
except for a scaling factor related primarily to the size of the
basin. This hypothesis is equivalent to assuming that moment
ratios such as the coefficients of variation and skewness are
constant throughout the region. This has often been termed
regional homogeneity. Hence, when delineating hydrologic
regions for use in the index flood method, a primary concern
is to ensure that sites within each region have approximately
the same coefficients of variation and skewness of annual
floods, with differences no larger than what can be attributed
to sampling variability. This may be difficult to achieve
within geographical regions because moment ratios generally
depend on basin area. For that reason, several countries have
adopted quantile regression procedures as standard for
national agencies. This is the case for example in the United
States where regression relationships relating flood quantiles

to catchment characteristics have been developed for each
state and each hydrologic region [Jennings et al., 1994].
Regional quantile regression involves less restrictive
assumptions regarding the homogeneity of regions than the
index floodmethod. Regions have typically be determined by
fitting a regression function to a large data set and then
identifying subregions where regression residuals have sim-
ilar sign and magnitude. It is generally required that regions
must be homogeneous in terms of catchment characteristics
that are not included as explanatory variables in the regres-
sion equations. For example, climatic factors such as mean
annual precipitation and/or mean snow accumulation are
expected to have an influence on peak runoff. Hence one
should either include these variables in the regression model
or use regions where they can be considered constant.
[3] A recent trend has been to consider regions that are

not geographically contiguous. Tasker [1982] identified
homogeneous regions based on cluster analysis of water-
shed characteristics and used discriminant analysis to deter-
mine the probability of an ungauged site belonging to a
particular cluster of stations. This concept of region appears
useful and overcomes some of the problems associated with
geographical regions. However, fixed regions, whether geo-
graphical or noncontiguous, suffer from the lack of con-
tinuity over region boundaries.
[4] Acreman and Wiltshire [1987, 1989] proposed what

has become known as the ‘‘region-of-influence’’ approach,
a term owed to Burn [1990a, 1990b]. This approach
dispenses with the traditional concept of regions by associ-
ating an individual set of stations with each ungauged site.
The selection of stations for inclusion in the region of
influence of an ungauged site can be based on the Euclidean
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distance in some suitable space of watershed characteristics.
Burn [1990a, 1990b] and Zrinji and Burn [1994] employed
the region of influence in conjunction with the index flood
method. In a recent study, Tasker et al. [1996] compared
five regression methods for regional estimation of 50-year
floods in Arkansas. The methods differed in the way regions
were determined. Three methods involved traditional geo-
graphical regions with different subdivisions (state divided
into one, two, and four regions), one method was based on
the cluster/discriminant analysis technique developed by
Tasker [1982], and one method involved a new approach
based on the region-of-influence concept. To implement the
last method, a distance metric based on catchment charac-
teristics was defined. Tasker et al. [1996] specifically
defined the distance dij between sites i and j as

dij ¼
XK
k¼1

Ck;i � Ck; j

std Ckð Þ

� �2
" #1=2

; ð1Þ

where Ck,i denotes the value of the kth watershed
characteristic for site i, K is the number of attributes con-
sidered, Ck is the vector of values of the kth characteristic
for all sites, and std(Ck) is the standard deviation of the
elements of Ck. To estimate a regression model for a
particular site, Tasker et al. [1996] considered the 34
stations closest to the site according to the above distance
metric. A conventional log linear model was then estimated.
In the split sample experiment conducted by Tasker et al.
[1996], the region-of-influence (ROI) approach performed
better than the other models. Tasker et al. argued that the
ROI is intuitively appealing because the estimation involves
only stations whose characteristics are close to that of the
ungauged site and that extrapolation errors therefore are
largely avoided. Moreover, problems of nonlinearity are
likely to be reduced with the ROI approach.
[5] It is argued here that there is a clear analogy between

the region-of-influence approach and nonparametric regres-
sion. It would seem reasonable then to take advantage of
some of the powerful modeling tools developed in recent
years in the area of nonparametric regression to improve
regional flood estimation procedures. In particular, current
applications of the ROI approach employ some often
arbitrary choices of parameters. The nonparametric frame-
work eliminates the need for arbitrary choices by optimizing
model parameters in a formal way.
[6] The paper is organized as follows. In section 2, we

review different aspects of nonparametric regression for a
single explanatory variable and discuss the link between the
region-of-influence approach and nonparametric regression.
In section 3, we consider the case of multidimensional
explanatory variables and describe a procedure to deal with
the curse of dimensionality often attributed to multivariate
nonparametric regression. In section 4, the proposed
approach is illustrated with an application to two regions
in the US. Finally, section 5 provides a discussion of the
potential of the proposed method.

2. Nonparametric Regression With One
Independent Variable

[7] Nonparametric regression is a way to circumvent
some of the problems that occasionally arise in conventional

linear regression. In particular, nonparametric regression
does not impose a particular functional form on the relation-
ship between the dependent and independent variables. It
can handle fairly easily possible heteroscedasticity of resid-
uals and can be fine tuned in an objective way to particular
situations. In cases where the basic hypotheses of linear
regression are verified, nonparametric regression often per-
forms almost as well as its parametric counterpart.
[8] There exists a number of nonparametric regression

procedures, some of which have been used in hydrology.
Several textbooks provide overview of nonparametric reg-
ression procedures, for example, Härdle [1990], Wand and
Jones [1995], Green and Silverman [1994], and Loader
[1999]. Here we adopt the so-called local polynomial
regression approach which is a generalization of Tasker
et al.’s [1996] region-of-influence regression procedure.
The method is based on the well-known kernel method.
This section presents local polynomial regression for the
case where there is only one independent variable, although
it can be generalized to the multivariate case. As described
in section 3, our approach to handling the case of multiple
explanatory variables is based on the additive model which
involves fitting a number of univariate regression relation-
ships.

2.1. Local Polynomial Regression

[9] Consider the observation of a set of data (xi, yi), i =
1, . . . , n. It is assumed that the data have been organized so
that the x variable occurs in ascending order, i.e., x1 � x2 �
. . . � xn and that the observations are independent of each
other. As in conventional linear regression, the objective of
nonparametric regression is to determine the mean value
function

f xð Þ ¼ E Y j X ¼ x½ �: ð2Þ

The mean value function provides the best (in the sense of
mean square error) estimate of y associated with the point x.
Linear regression is based on the hypothesis that f is a linear
function of x. In contrast, nonparametric regression requires
no prior assumption regarding the form of f (x).
[10] All nonparametric regression methods share the

common feature that estimation of f at a point x0 is based
on observations whose x values are in the vicinity of x0. In
the kernel method, a weight function (the kernel) is used to
assign weights to the observations so that the closer they are
to x0, the more weight they receive. The kernels K consid-
ered here are continuous, positive, symmetric functions that
integrate to 1; that is

Z
K uð Þdu ¼ 1: ð3Þ

Examples of some frequently used kernels are given in
Table 1. The kernel defines the sequence of weights wi(x0),
i = 1,. . .,n that will be associated with each of the n
observations for estimation of the mean value function at x0.
More specifically, the weights are defined as

wi x0ð Þ ¼ Kh xi � x0ð ÞPn
j¼1 Kh xj � x0

� 	 ; ð4Þ

where Kh(u) = h�1K(u/h). The denominator in the above
expression ensures that the sequence of weights sum to 1.
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Note that for most of the kernels given in Table 1, the
weight assigned to observation i will be zero if |xi � x0| 	 h.
The estimation of f (x0) is given by

f̂ x0ð Þ ¼
Xn
i¼1

wi x0ð Þyi: ð5Þ

Two factors determine how smooth the mean value function
will be when evaluated over a range of x values: the type of
kernel K and the smoothing parameter h. It is generally
recognized that the choice of kernel is relatively unim-
portant compared to the choice of smoothing parameter.
[11] As described above, the kernel method involves

estimation of a zero-degree polynomial, i.e., a constant,
based on the data in the vicinity of x0. A natural extension is
to consider the fitting of a p-degree polynomial

b0 þ b1 x� x0ð Þ þ b2 x� x0ð Þ2þ � � � þ bp x� x0ð Þp ð6Þ

to the data close to x0. The parameters B = (b0, b1, . . . , bp)
T

may be determined by minimizing the weighted sum of
squared deviations

Xn
i¼1

wi x0ð Þ yi�b0�b1 x� x0ð Þ�b2 x�x0ð Þ2� � � � � bp x� x0ð Þp
h i2

;

ð7Þ

where the weights are obtained from the kernel. Depending
on the type of kernel, some weights may be zero, implying
that some data are not considered in the fitting of the
polynomial. Defining Y = ( y1,y2,. . .,yn)

T,Wx0= diag[w1(x0),
w2(x0), . . . , wn(x0)], and

Xx0 ¼
1 x1 � x0 � � � x1 � x0ð Þp

..

. ..
. . .

. ..
.

1 xn � x0 � � � xn � x0ð Þp

0
B@

1
CA;

the classical weighted least squares estimator of b can be
expressed as

B̂ ¼ XT
x0
Wx0Xx0

� ��1

XT
x0
Wx0Y: ð8Þ

Because the polynomial is centered on x0, the intercept b̂0
constitutes the estimate of f at x0:

f̂ x0ð Þ ¼ b̂0 ¼ eT1 B̂; ð9Þ

where e1 = (1, 0, . . . , 0)T is a ( p + 1) unit vector. It should
be emphasized that the assumption of a p-degree poly-
nomial in the neighborhood of x0 in no way implies that the
regression function f (x) will have a polynomial form. The
adoption of a p-degree polynomial in the vicinity of x0

serves only to obtain a robust estimate of f (x0). As one
proceeds to another point x0

0 , the regression parameters will
change because the kernel weights used in the estimation
change and the function f (x) will take a form consistent with
the data. The fitting of a p-degree polynomial rather than a
constant has several advantages, notably increased robust-
ness near the end points of the data. If the data exhibit a
nonzero slope near an end point, the simple kernel
regression will invariably be biased in this region because
data will be clustered on one side of the estimation point. By
fitting a p-degree polynomial this bias is largely avoided.
[12] The degree of the polynomial should be chosen

reasonably low in order to avoid overfitting and ensure a
robust estimate of b. Experience has shown that polyno-
mials of order one to three typically will do a satisfactory
job.
[13] The local polynomial regression is robust to hetero-

scedasticity. Because only data in the vicinity of x0 are used
to fit the polynomial, any systematic dependence between
the residual variance and the independent variable can for
most practical purposes be ignored. In many cases the y
observations represent estimated quantities, for example,
flood quantiles. If the estimation variance is known, this
information can be readily introduced in the nonparametric
regression. If V = diag(1/s1

2, 1/s2
2, . . . , 1/sn

2) represent the
diagonal matrix with the inverse estimation variance of
the ny values on the diagonal, then the only modification
to the above described procedure is to replace the weight
matrix Wx0 with the product Wx0V. Cleveland [1979]
proposed a method, known as the LOWESS method, that
is robust to outliers.

2.2. Relationship Between Local Polynomial
Regression and the Region-of-Influence Method

[14] From the above discussion the analogy between
nonparametric regression and Tasker et al.’s [1996] region-
of-influence approach should be clear. Their approach with
one explanatory variable is equivalent to fitting a first-
degree polynomial (a straight line) to the data surrounding
x0 using a rectangular kernel, i.e., equal weight is given to
the data included in the neighborhood. Tasker et al.’s
procedure involves a variable-size neighborhood because
in their specific application, 34 stations were systematically
used at all estimation points. This corresponds to the so-
called k nearest neighbors method which is an alternative to
the fixed kernel approach.
[15] Treating regional quantile regression more formally

as a problem of nonparametric regression offers potential
advantages over the region-of-influence method. Tasker
et al.’s [1996] choice of a variable-sized neighborhood of
34 stations was made somewhat arbitrarily. Although good
results were obtained, one would expect that through careful
application of nonparametric estimation procedures, even
better results could be achieved. The tapering of weights
and the use of higher-order polynomials would be expected
to yield more robust regression estimates and to reduce or
eliminate the abrupt changes in the regression function
associated with a uniform kernel.

2.3. Linear Nonparametric Smoothers

[16] An issue of practical concern in nonparametric
regression is the degree of freedom of the model. Models

Table 1. Common Kernel Functions

Name K(u) Support

Rectangular 1 |u| < 1
Triangular 1 � |u| |u| < 1
Epanechnikov 3

4
ð1� u2Þ |u| < 1

Biweight 15
16
ð1� u2Þ2 |u| < 1

Tricube 7
20
ð1� juj3Þ3 |u| < 1

Triweight 35
32
ð1� u2Þ3 |u| < 1

Normal 1ffiffiffiffi
2p

p expð�u2=2Þ u 2 R
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with a large degree of freedom provide a good description
of the data but may be unsuitable for prediction. In order
to assess the degree of freedom of a nonparametric
regression the concept of a linear smoother can be
employed. A nonparametric regression function is called
a linear smoother if it is a linear function of the observa-
tions yi, i = 1, . . . , n, that is, if the regression function
can be written as

f̂ x0ð Þ ¼
Xn
i¼1

li x0ð Þyi ¼ LT
x0
Y; ð10Þ

where Lx0 = [l1(x0), l2(x0), . . . , ln(x0)] is a weight sequence
that does not depend on the y observations. From equations
(8) and (9) it can be seen that the local polynomial
regression is a linear smoother with

LT
x0
¼ eT1 XT

x0
Wx0Xx0

� ��1

XT
x0
Wx0 ð11Þ

The vector f̂ of fitted values at the observations x1, x2, . . . , xn
is given by

f̂ ¼

f̂ x1ð Þ
f̂ x2ð Þ
..
.

f̂ xnð Þ

2
6664

3
7775 ¼

LT
x1

LT
x2

..

.

LT
xn

2
66664

3
77775

y1
y2

..

.

yn

2
6664

3
7775 ¼ S�Y; ð12Þ

where S� =[Lx1 , Lx2 , . . . , Lxn ]
T is called the smoother

matrix. In general, this matrix depends on a set of smoothing
parameters �.
[17] The smoother matrix is useful for determining the

effective degree of freedom of a nonparametric regression
function and the associated noise. To put things in per-
spective, consider the case of a classical linear regression
of a variable y on p � 1 explanatory variables, with
coefficients estimated by ordinary least squares. The
smoother matrix is given by S� = X (XTX)�1XT, where
X is the design matrix with dimension n � p (including
intercept). Since there are p parameters, S� projects the y
observations onto a p-dimensional space. Hence the rank
of S� or, equivalently, the trace of S� equals p, the model
degree of freedom. Correspondingly, the degree of free-
dom for estimating the noise is tr(I � S�) = n � p. For the
nonparametric regression function, we may define the
model degree of freedom in a similar way. Buja et al.
[1989] suggested the following definition of the model
degree of freedom for a nonparametric regression function:

n ¼ Tr S�ð Þ: ð13Þ

The degree of freedom is useful for comparing different
models and will be discussed further in section 4.

2.4. Selection of Smoothing Parameters

[18] Three factors influence the degree of smoothing of a
nonparametric function estimated by local polynomial
regression: the kernel type (K ), the smoothing parameter h
that determines the spread of the kernel, and the degree p of
the local polynomial. The degree of smoothing is a tradeoff
between bias and variance. A highly fluctuating function

represents a case of low bias and large variance, whereas a
smooth function represents low variance and possibly high
bias. The mean square error of residuals is a frequently used
measure of precision that combines bias and variance. The
vector of smoothing parameters � = (h, p, K ) may be
determined by minimizing the following quantity, called the
generalized cross validation (GVC) mean square error:

GCV �ð Þ ¼ 1

n

Xn
i¼1

yi � f̂ � xið Þ
1� tr Sð Þ=n

" #2

: ð14Þ

The rationale for this objective function is outlined in
Appendix A.
[19] As mentioned previously, the choice of kernel type

has relatively little influence on the degree of smoothing.
For that reason, it seems acceptable to make a prior choice
of an appropriate kernel. Furthermore, the degree of the
local polynomial can for most purposes also be preselected,
and estimation effort can be concentrated on the smoothing
parameter. The rectangular kernel should be avoided
because it tends to yield a rugged regression function, but
any other kernel given in Table 1 would be acceptable.
[20] The parameter h has a strong impact on the degree of

smoothing. For kernels with finite support, only observa-
tions with |xi � x0| < h are included in the estimation of
f (x0). As h increases, more and more observations will be
included in the estimation of f (x0) and observations will
tend to get increasingly similar weights. As h approaches
infinity, all observations will be included and with equal
weight. The regression function is not defined at x0 if the
denominator in equation (4) is zero. Hence, for the regres-
sion function to be defined over the entire range of
observations [x1; xn], we must have h > max(xi+1 � xi)
when a kernel with finite support is used.

3. Nonparametric Regression With Several
Independent Variables

[21] In regional flood frequency analyses one will typi-
cally be interested in including several explanatory variables
in the regression model. It is not uncommon to find three to
five catchment characteristics that are statistically signifi-
cant in linear regression models of quantiles. In the context
of nonparametric regression, we are interested in finding a
function f such that

f xð Þ ¼ E Y j x1; x2; . . . ; xd½ � ¼ f x1; x2; . . . ; xdð Þ; ð15Þ

where x = (x1,x2,. . .,xd) is a vector of explanatory variables
and d is the dimension of the predictor space. (In the
following, whenever we refer to xi, we mean the ith
predictor, not the ith observation.)
[22] Local polynomial regression with kernel weights has

a natural extension to the multivariate case [Härdle, 1990].
The kernels are then multidimensional and so are the local
regression surface. However, kernel regression in high-
dimensional predictor space suffers from the curse of
dimensionality, resulting in slow rate of convergence. To
handle the multivariate case, it is, in practice, necessary to
impose some constraints on the regression surface. A logical
simplification is to assume that the contribution from each
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of the independent variables to the regression function is
additive [Hastie and Tibshirani, 1990]:

f xð Þ ¼ E Y jx1; x2; . . . ; xd½ � ¼ f1 x1ð Þþ f2 x2ð Þ þ � � � þ fd xdð Þ; ð16Þ

where fi represent a univariate nonparametric smoother
associated with the dependent variable xi. This model does
not suffer from the problem of dimensionality and has the
additional advantage of allowing visualization of the
relationship between the regression function and each
independent variable, something that is not possible with
the multivariate kernel method. This can be quite useful, for
example, to assess possible linearity between the response
variable and certain independent variables. A detailed study
of the applicability of nonparametric additive regression
models to regional flood estimation was conducted by
Latraverse [2000].

3.1. Estimation of Additive Models

[23] The estimation of the additive model in equation (16)
involves the determination of d univariate functions fi, i =
1, . . . , d. The problem is not just to find optimal smoothing
parameters for each fi but also to determine how much each
fi should contribute to f. The so-called back fitting algorithm
is an efficient technique to determine the contribution of
each fi for a fixed set of smoother matrices.
[24] Assume that a set of observations (x1, j, x2, j, . . . ,

xd, j, yj), j = 1, . . . , n is available. The relationship between the
dependent and independent variables may be expressed as

yj ¼ m y þ f1 x1; j
� 	

þ f2 x2; j
� 	

þ � � � þ fd xd; j
� 	

þ �j: ð17Þ

The unconditional expectation of Y, my, is included explicitly
in the model, so that we can assume E[ fi] = 0. In this way,
floating constants are eliminated from the fi values.
Residuals are assumed to have zero mean and variance
sj
2. In matrix form the fitted values at the observation points

are given by

f̂ ¼ �yþ f̂1 þ f̂2 þ � � � þ f̂d : ð18Þ

We will assume that each fi is a linear smoother with
parameter �i, i.e., f̂ i is of the form given in equation (12).
[25] The back fitting algorithm involves the following

steps.
1. Initialize fi, i = 1, . . . , d. For example, set them equal

to linear regression estimates.
2. For i = 1, . . . , d, determine the vector

f i ¼ Si y� �y�
Xd
k¼1
k 6¼i

fk

0
B@

1
CA;

where Si(u) is the smooth of u on variable xi. In the
summation, use the most recent value of fk.
3. Repeat step 2 until there is no more change in the fi

values over subsequent cycles.
[26] The motivation for the back fitting procedure is

easily appreciated. Here (y � �y � �k 6¼i fk) represents the
residuals when xi is not included in the model. In step 2 we
try to explain as much as possible of the variation of these

residuals using xi as explanatory variable. This is done in
turn for each independent variable. The whole sequence is
repeated until the fi values become stable. Buja et al. [1989]
examined conditions for convergence of the back fitting
algorithm and concluded that in most cases of practical
interest the algorithm will converge rapidly.
[27] Because the additive regression function f is a sum of

linear smoothers, it is itself a linear smoother. Hastie and
Tibshirani [1990] suggest using the following expression to
calculate the approximate degree of freedom of the model:

n ’ 1þ
Xd
i¼1

tr Sið Þ � 1½ �; ð19Þ

which is an extension of equation (13).
[28] Fitting an additive model involves finding the set of

parameters� = (�1, �2, . . . , �d). This can be accomplished
using a performance measure such as the generalized cross
validation mean square error. A reasonable approximation
to the GCV for the additive model is

GCV �ð Þ ¼ 1

n

Xn
j¼1

yj � �y�
Pd

i¼1 f̂ i;�i
xi; j
� 	h i2

1� 1
n

1þ
Pd

i¼1 tr S�i
ð Þ � 1f g

� �h i2 : ð20Þ

Because of the dimension of the problem it may be difficult
to enumerate and compare all parameter combinations. A
rational search algorithm is therefore needed.
[29] Before addressing the problem of finding an optimal

parameter set, we note that quite often the traditional log
linear regression model performs satisfactorily in regional
frequency analyses. It is therefore of interest to be able to
include linear terms in the additive model if the relationship
between the dependent variable and some of the independent
variables exhibit distinct linearity. For practical implemen-
tation the selection must be based on objective consider-
ations. This problem is closely related to that of estimating
the smoothing parameters for the individual smoothers in the
additive model. The linear regression term bj xj may be seen
as one candidate among all possible smoothers fj(xj). In the
following, we outline a procedure for estimating the com-
ponents of the additive model including possible linear
terms. The method is similar in nature to the method of
stepwise selection of variables in linear regression models
and significantly reduces estimation time compared to the
case of complete enumeration.
[30] The vector of fitted values at the observation points

may be written

f̂ x1; x2; . . . ; xnð Þ ¼ �yþ S�1
Yþ S�2

Yþ � � � þ S�d
Y; ð21Þ

where S�i
is the smoother matrix associated with variable i

and �i = (hi, pi, Ki) is a vector containing the parameters of
the ith smooth, that is, the size of smoothing window, the
degree of the local polynomial, and the kernel type,
respectively. We shall assume that the kernel type has been
fixed in advance and also that the degree of the local
polynomial has been fixed to one. These assumptions are
not very restrictive and should not have any significant
implications for the performance of the method for reasons
already discussed. The only parameters to be determined are
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the size of the smoothing window for each individual
variable. Rather than using a fixed kernel, we use a variable-
sized neighborhood based on the k nearest neighbors, where
k now is the smoothing parameter to be determined. The
parameter vector is thus given by �i = (ki, 1, K ). Since ki
must be between 1 and n, there is a total of n possible
models. In addition, we consider the option of including a
strictly linear term in the model and not including the ith
variable at all for a total of n + 2 models. The model
candidates for the smoothing of the ith variable can be
enumerated as follows:

h
�

1ð Þ
i ;�

2ð Þ
i ; . . . ;�

nð Þ
i ;�

nþ1ð Þ
i ;�

nþ2ð Þ
i

i
¼ 1; 1;Kð Þ; 2; 1;Kð Þ; . . . ; n; 1;Kð Þ; n; 1; rectð Þ; 0; 1;Kð Þ½ �: ð22Þ

The first n models are nonparametric fits based on different
numbers of nearest neighbors (1 to n). Model n + 1, i.e.,
�i

(n+1) = (n, 1, rect), uses all n observations and a
rectangular kernel to fit a first order polynomial. This
corresponds to including a linear term in the model. Model
n + 2 uses no observations at all and corresponds to
omitting the ith variable from the regression. The models
appear in order of decreasing degrees of freedom. The first
model has n degrees of freedom (reproduces the observa-
tions exactly), the degrees of freedom for the following
models decrease with increasing k, the linear term has one
degree of freedom, and the omission of the ith variable
corresponds to the case of zero degrees of freedom.
[31] To estimate the parameters of the additive model,

� ¼ �
k1ð Þ
1 ;�

k2ð Þ
2 ; . . . ;�

kdð Þ
d

h i
, where ki represent the number of the

model associated with the ith variable, we suggest the
following procedure. Start with a reasonable initial guess,
for example, based on multiple linear regression. Then
consider the 2d models arising by decreasing and increas-
ing each ki by 1, i.e., consider models �

k1�1ð Þ
1 ;�

k2ð Þ
2 ; . . . ;�

kdð Þ
d

h i
,

�
k1þ1ð Þ
1 ;�

k2ð Þ
2 ; . . . ;�

kdð Þ
d

h i
, �

k1ð Þ
1 ;�

k2�1ð Þ
2 ; . . . ;�

kdð Þ
d

h i
, . . ., �

k1ð Þ
1 ;�

k2ð Þ
2 ; . . . ;

h
�

kdþ1ð Þ
d

i
,

each one estimated using the back fitting algorithm.
These models may be compared with the initial model
using the GCV criterion. The best model becomes the
new initial model. The search continues until there is no
further improvement in the model fit.
[32] It is possible to evaluate the significance of model

improvement using test techniques similar to those em-

ployed in conventional regression analyses. For example,
we may test the null hypothesis that the true model is �0

versus the alternative �1 by computing the F statistic:

F ¼ SSE �0ð Þ � SSE �1ð Þ½ �= n0 � n1ð Þ
SSE �1ð Þ= n� noð Þ ; ð23Þ

where SSE denotes the sum of squared errors and n0 and n1
denote the degree of freedom of the two models.

4. Application

4.1. Data

[33] The performance of the proposed method in compar-
ison with traditional log linear regression methods and the
region-of-influence approach by Tasker et al. [1996] is
investigated through an application to selected regions of
the United States. Our comparison serves only as illustration
as we do not believe it is possible to prove the general
superiority of one method of regression over another. The
performance of different methods depends on the under-
lying data and the measures used for comparison. Therefore
comparisons will invariably be local in nature.
[34] A critical factor affecting the relative performance of

different methods is the linearity between the dependent and
independent variables (or their log transforms). Figure 1
shows the 21 hydrological regions defined in the Hydro-
climatic Data Network of U.S. Geological Survey (USGS)
described by Slack et al. [1993]. There is a total of 1659
stations included in the network. Flow data are largely
unregulated and presumably of good quality. To get a
preliminary idea of the linearity of flow quantiles and
explanatory variables, we considered the regression of log
Q50 on log A. Q50 was estimated from annual peak flows
using the GEV distribution and the method of probability
weighted moments [Hosking et al., 1985]. The GEV
distribution was chosen somewhat arbitrarily; being a
three-parameter distribution, it is relatively flexible and
should not introduce any significant bias in the estimation
of quantiles with return periods <50 years. The catchment
area A is by far the most important explanatory variable
and occurs in all published regression relationships. The
hypothesis of linearity between log Q50 on log A may be
confronted with the alternative of a nonlinear relationship,
estimated using nonparametric regression as described in
section 2. The p value of the F test of linearity versus
nonlinearity is given in Table 2 for each of the 21 regions.
Values significant at the 5% level are indicated in bold. As
it can be seen from Table 2, several regions did not pass
the F test, suggesting that significant nonlinearities may be
present.
[35] In the following, we further investigate regions 11

and 12. The Texas-Gulf of Mexico region represents a case
of possible nonlinearities, whereas the Arkansas region
represents a case with apparent linearity, at least between
log Q50 and log A. The Arkansas region was also used in
Tasker et al.’s [1996] study, which further motivates its
inclusion here. In fact, we employed exactly the same data
as Tasker et al. in order to allow a fair comparison with their
study.
[36] It should be noted that the application of the proposed

methodology within two geographical regions involves a

Figure 1. Hydrologic regions of the United States [after
Slack et al., 1993].
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first level of (geographical) regionalization. This is not
strictly needed in the proposed method; however, for com-
parison with current practice, the analysis was limited to data
from established hydrologic regions.

4.2. Description of Models and Their Implementation

[37] All models considered here requires the selection of
explanatory variables to be included in the regression. For
the three models described in the following, we use the
jackknife RMSE as criterion to select the optimal subspace
of explanatory variables:

RMSE ¼ 1

N

X
i

logQT ;i � logQ̂
�i

T ;i

� �2

" #1=2

: ð24Þ

Here QT,i represents the value of QT for site i as estimated
from observed annual maximum flood data, and Q̂T,i

�i is the
regression estimate of QT ignoring flow information at site i.
For the Texas region we used the GEV/probability weighted
moments (PWM) method to quantile estimation, whereas
for the Arkansas region we used the quantiles already
calculated by Tasker et al. [1996]. The above summation is
taken over all stations in the appropriate region. The
logarithms of quantiles are considered in order to give
approximately equal weight to small and large drainage
basins. From an initial set of explanatory variables, we
select the subset that minimizes the RMSE.
4.2.1. Log linear model
[38] The log linear models considered in the comparison

are estimated by the method of least squares. Because the
dependent variables QT are estimated from records of
different length, a weighted least squares scheme is used
in which each site is weighted with its record length. The

combination of explanatory variables that minimizes the
RMSE in equation (24) is retained for comparison with the
other models.
4.2.2. ROI model
[39] The ROI approach involves the application of the

traditional log linear model described above to a subset of
stations in the region. There is an interaction between the
number of explanatory variables and the size of the
neighborhood. To determine the optimal combination,
we proceed in two steps. In the first step the results for
the ordinary log linear model are used to determine the
best subset of d = 1, 2, . . . , 5 explanatory variables from
an initial array of five candidate variables. That is, we
retain the best model considering one variable, the best
model considering two variables, and so forth. Again the
predictive RMSE is employed as comparison criterion.
Next, for the models with d = 1, 2, . . . , 5 explanatory
variables, we vary the number k of stations in the
neighborhood from 1 to N, the total number of stations
in the region. The distance between two stations i and j is
defined as

dij ¼ xi � x j
� 	T

��1 xi � x j
� 	

; ð25Þ

where xi is the vector of explanatory variables at site i and �
is the covariance matrix of the explanatory variables. The
combination of d and k that yields the smallest RMSE is
retained as the best model.
4.2.3. Additive model
[40] Finally, we employ the proposed additive model.

Assuming a first-order local polynomial and a tricube kernel
function (see Table 1), the estimation problem reduces to
that of finding the optimal size of a neighborhood in five
dimensions, K = (k1, k2, . . . , k5). For the practical im-
plementation, we consider the span parameter H defined
as H = (h1, h2, . . . , h5), where hi = ki/N, rather than K. Here
hi is the fraction of the total number of stations included in
the neighborhood when regressing on the ith variable, and it
takes values between zero and one.
[41] Initially, H is set to [0.5, 0.5, . . . , 0.5]; that is, 50%

of stations are included in each of the five univariate
smooths. The search algorithm is then employed by, in
turn, modifying each element of H by ±0.1 and chancing the
parameter that leads to the smallest RMSE. When hi = 1, a
rectangular kernel is used, so that hi = 1 corresponds to
including the linear term bi x i in the model. When hi = 0, the
variable xi is not considered in the model. Hence, at the
outset, all explanatory variables are included in the model,
but some may be eliminated during optimization.
[42] Our experimentation showed that the step size

affected the convergence of the algorithm. The value 0.1
was found to be a reasonable choice. The search ends when
there is no further model improvement according to the
GCV criterion. The estimation of additive models was
accomplished using the gam and locfit functions in S-Plus.

4.3. Texas Region

[43] In the case study, regression models were developed
and compared for quantiles of return period T = 2, 5, 10, 25,
and 50. By restricting the study to low-return periods the
uncertainty involved in estimating quantiles from local data
is reduced, and attention can be focused on regression

Table 2. Preliminary Analysis of the Log Linearity of Q50 Versus

Catchment Areaa

Region
Number Region n p value

1 New England 71 0.29
2 mid-Atlantic 167 0.04
3 South Atlantic-Gulf of Mexico 193 0.01
4 Great Lakes 57 0.75
5 Ohio 108 0.00
6 Tennessee 44 0.23
7 upper Mississippi 127 0.06
8 lower Mississippi 23 0.76
9 Souris-red-rainy 39 0.25
10 Missouri 144 0.02
11 Arkansas-white-red 87 0.24
12 Texas-Gulf of Mexico 90 0.02
13 Rio Grande 22 0.08
14 upper Colorado 44 0.33
15 lower Colorado 17 0.06
16 Great Basin 32 0.29
17 Pacific Northwest 191 0.00
18 California 115 0.72
19 Alaska 31 0.02
20 Hawaii 42 0.95
21 Caribbean 15 0.12

aThe p value of the F test is for the null hypothesis of log linearity versus
the alternative of a nonlinear relationship. Values significant at the 5% level
are indicated in bold.
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model errors. Quantiles were estimated from observed
records of annual floods using the GEV/PWM model as
described by Hosking et al. [1985].
[44] Table 3 shows the explanatory variables considered

by USGS for Texas. There are 90 sites in the region;
however, because of missing data, only 69 sites are consid-
ered in this study. The RMSE criterion described above was
used to choose the best combination of variables for the log
linear model. The results are given in Table 4. For example,
in the case of 50-year flood, minimum RMSE was obtained
when considering the four variables A, S, P, and E, and the
estimated model is

logQ50 ¼ 2:01þ 0:59 logAþ 0:35 log S þ 0:70 logP

�0:21 logE: ð26Þ

[45] The ROI model for the Texas data was estimated as
described in section 4.2.2. For each of the considered
quantiles the combination of variables and number of
stations that minimizes the predictive RMSE is given in
Table 5.
[46] The estimation of the additive model proceeded

according to the procedure described in section 4.2.3,
resulting in the span parameters given in Table 6. Figure 2
shows the smooth of log Q50 on each of the explanatory
variables.
[47] The predictive RMSE values obtained with the three

models are summarized in Table 7. The additive model
systematically outperforms the other models for all quan-
tiles considered. The relative gain in RMSE of the additive
models over the other models appears to increase with
increasing return period. The gain over the log linear model
is of the order of 20–25% for the largest quantiles, whereas
the gain over the ROI model is relatively modest, on the
order of 10–15% for the largest quantiles.

4.4. Arkansas Region

[48] The Arkansas region represents a case where the log
linear model is expected to perform relatively well since

linearity of log A and log Q50 was not rejected (Table 2).
Results for this region are included here to illustrate the
performance of the additive model when the conditions for
the classical log linear model, at least at a first glance,
appear to be good.
[49] In order to reproduce the results of Tasker et al.’s

[1996] study, we employed their basin shape factor defined
as basin area divided by the square of the length of the main
channel. This explanatory variable replaced main channel
length.
[50] The results are summarized in Table 8. Again, the

additive model outperforms the other two models in terms
of predictive RMSE, with the ROI method a close second.
The log linear model does significantly worse than the other
two models. The additive model improves the RMSE of
�20–25% over the log linear model. A closer inspection of
the relationship between dependent and independent varia-
bles reveals a distinct nonlinearity between log Q50 and
channel slope which is most likely the cause of the poor
performance of the log linear model.

5. Conclusions

[51] The log linear model is widely used in regional
frequency analyses. Its simplicity has made it the preferred
technique in many countries, including the United States,
for estimating flood quantiles at ungauged sites. It is well
suited for institutional implementation because regression
equations for each state or hydrologic region can be
developed and published. Application of such published
relationships to a particular site is straightforward and only
requires knowledge of the explanatory variables involved in
the equation.
[52] It can be argued that the simplicity of the tradi-

tional log linear model is also its primary shortcoming.
Assumed linearities may not always be present, and abrupt
discontinuities across region boundaries may have little
hydrologic justification. The ROI approach developed by
Tasker et al. [1996] overcomes some of the limitations of
conventional regression models. While preserving the

Table 4. Parameters of Log Linear Models for Texas

T b0 bA bS bP bE bL

2 0.053 0.548 0.294 1.339 �0.263 0.262
5 0.862 0.531 0.321 1.051 �0.236 0.211
10 1.265 0.535 0.340 0.919 �0.230 0.172
25 1.675 0.594 0.317 0.817 �0.194 –
50 2.013 0.587 0.352 0.697 �0.205 –

Table 5. Optimal ROI Models for Texas

T Variables Number of Stations k

2 A, S, P, E 62
5 A, P, S, E, L 64
10 A, P, S, E, L 62
25 A, P, S, E, L 60
50 A, P, S, E, L 60

Table 3. Physiographic and Climatological Data for Texas

Variable Symbol Description

Area A area of drainage basin (km2)
Slope S slope of main channel (m/km)
Annual precipitation P basin mean annual precipitation (cm)
Elevation E mean elevation of drainage basin

over MSL (m)
Channel length L length of main channel from divide to

gauge (km)

Table 6. Parameters of Additive Models for Texas

Quantile

Span Parameter

A S P E L

Q2 1.0 1.0 0.5 0.5 0.9
Q5 1.0 0.6 0.7 0.3 0.7
Q10 1.0 0.4 0.8 0.3 0.6
Q25 0.4 1.0 0.9 0.3 0.6
Q50 0.4 1.0 1.0 0.4 0.5
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simplicity of the log linear model, it avoids the problem of
discontinuities across region boundaries and, to some
degree, also circumvents the problems of nonlinearities
over the range of explanatory variables. As described in
this paper, the parameters of the model can be estimated
in a rational and objective way. It should be noted that our
application of the approach does not give full credit to the
method since we employed it within confined regions

(Texas and Arkansas). This may still yield some disconti-
nuities over boundaries of the greater regions. Ideally,
there should be no region boundaries, and the method
should be allowed to select automatically (according to the
proximity criterion) the stations to be included in the
region of influence.
[53] A potential further improvement in regional flood

estimation is the additive nonparametric regression model

Figure 2. Additive nonparametric regression of Q50 on five basin characteristics (Texas region).
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presented in detail in this paper. It builds on the ROI
principle in the sense that only basins that are similar to
the ungauged basin are considered in the estimation.
However, it adds increased flexibility in several ways.
First, it does not impose linearity or log linearity between
dependent and independent variables. Secondly, the prox-
imity criterion inherent in the nonparametric regression
model has a more rational foundation than the one used in
the ROI approach (equation (1)). For example, equation (1)
does not discriminate between important and unimportant
variables. A potentially useful station may be excluded
from the ROI based on differences in an unimportant
explanatory variable (of course, a sensible use of equation
(1) would involve a careful selection of variables). In
contrast to this, the additive model weights the importance
of each variable. The extent of the region is defined
individually for each explanatory variable. For example,
to determine the contribution of drainage area to the
quantile, it may turn out to be advantageous to consider
all stations in the greater region, while another variable,
say the channel slope, would involve only half of the
stations. In addition to this, the kernel method used to
estimate the univariate contributions to the regression
function provides robustness by tapering the weights so
that sites are weighted according to their similarity to the
ungauged site.
[54] Our application and comparison of the log linear

model and the additive model suggest that the latter may
have significant advantages in terms of predictive ability.
For the particular cases studied here, improvements in
RMSE on the order of 20–25% over the traditional log
linear model were observed. The additive model also
performed better than the ROI approach, although the
differences were less pronounced. For several reasons,
we avoid making any general conclusions about the
relative performance of the methods. The performance of
the models depends on the particularities of the data and
the degree to which various assumptions are verified.
Furthermore, the choice of comparison figures is always
subject to questioning. However, we do believe the poten-
tial gain by the additive nonparametric regression model
fully justifies its increased complexity compared with the
traditional log linear model and its incorporation into
hydrological practice.

Appendix A: Generalized Cross Validation Mean
Square Error

[55] To select the best smoothing parameter, one could
envision minimizing the mean square error (MSE) of the

residuals. This quantity can be estimated from the observa-
tions as

MSE �ð Þ ¼ 1

n

Xn
i¼1

yi � f̂ � xið Þ
h i2

; ðA1Þ

where � = (h, p, K ) are the smoothing parameters. The
above estimator is, however, an overly optimistic goodness
of fit measure because yi is used to estimate f (xi). In fact,
MSE(�) can be made equal to zero by selecting a vector of
smoothing parameters that interpolates the observations. A
more practical measure is the cross validation mean square
error (CVMSE) which is given by

CVMSE �ð Þ ¼ 1

n

Xn
i¼1

yi � f̂
�i

� xið Þ
h i2

; ðA2Þ

where f̂ �
�i(xi) is the estimate of f�(xi) obtained by ignoring

the observation (xi,yi). The parameters � may be deter-
mined in an objective way by minimizing the CVMSE. An
inconvenience associated with equation (A2) is the need to
perform n nonparametric regressions. Fortunately, this can
be avoided. From equation (4) it can be seen that the weight
sequence wj (xi) = Sij, j = 1,. . . , n for estimating f�(xi) sum
to 1. The jackknifed estimate f̂ �

�i(xi) corresponds to setting
Sii equal to zero and adjusting the remaining weights so that
they sum to one. Therefore we have

f̂
�i

� xið Þ ¼
Xn
j¼1
j 6¼i

Sij

1� Sii
yj: ðA3Þ

A few manipulations allow us to rewrite this expression as

yi � f̂
�i

� xið Þ ¼ yi � f̂ � xið Þ
1� Sii

; ðA4Þ

which upon insertion in equation (A2) yields

CVMSE �ð Þ ¼ 1

n

Xn
i¼1

yi � f̂ � xið Þ
1� Sii

" #2

: ðA5Þ

The generalized cross validation mean square error is
obtained by replacing Sii by its average value tr(S)/n:

GCV �ð Þ ¼ 1

n

Xn
i¼1

yi � f̂ � xið Þ
1� tr Sð Þ=n

" #2

: ðA6Þ

Table 8. Comparison of Predictive RMSE for Arkansas

Quantile

Predictive RMSE

Log Linear ROI Additive

Q2 0.234 0.190 0.189
Q5 0.209 0.176 0.156
Q10 0.207 0.160 0.158
Q25 0.213 0.178 0.164
Q50 0.219 0.185 0.172

Table 7. Comparison of Predictive RMSE for Texas

Quantile

Predictive RMSE

Log Linear ROI Additive

Q2 0.178 0.166 0.165
Q5 0.173 0.150 0.146
Q10 0.179 0.149 0.144
Q25 0.197 0.162 0.143
Q50 0.216 0.182 0.160
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