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1 INTR ODUC TION 

This report presents the initial findings of a project led by INRS-ETE and members of the Centre 

Interuniversitaire de Recherche sur le saumon Atlantique (CIRSA) on the regional analysis of 

some water temperature metrics deemed relevant for Atlantic salmon habitat. It is a well-known 

fact that of all abiotic habitat variables, water temperature is fundamental for stenotherm fish such 

as salmon. The river thermal regime has important impacts on the growth of juvenile Atlantic 

salmon (e.g. Nicieza et al., 1997; Elliott and Elliott, 2010; Sundt-Hansen et al., 2018). Thermal 

stresses are known to have detrimental impacts on juvenile salmon (Corey et al., 2017) and high 

temperatures may lead to important fish movement as they seek thermal refugia (Dugdale et al., 

2017). These refugia are likely to become key habitat components in the context of climate 

change (Jeong et al., 2013; Daigle et al., 2015). 

Although the temperature monitoring effort is on the rise in Eastern Canada (Boyer et al., 2016), 

there is still a relative paucity of thermal data on many Atlantic salmon rivers. In this context, the 

development of modelling and analysis tools that allow to estimate relevant water temperature 

metrics (i.e. descriptive statistics deemed important for Atlantic salmon) in rivers where there is 

little or no data is of the utmost importance.  

To achieve this, the approach used in hydrology for Regional Frequency Analysis (RFA) for flood 

or low flow quantile estimation was adapted to water temperature. With the objective of 

estimating high or low flow extremes at ungauged sites, RFA includes two main steps: 1) Defining 

groups (regions, neighborhoods) of rivers with relatively homogenous hydrological behaviour; and 

2) transferring the information from gauged sites to the target ungauged location in order to 

estimate flow quantiles of interest at this site. The same two main steps are developed in the 

present project, with the exception that flow quantiles are replaced by temperature metrics, as 

described in the following section. 

2 ME THODS  

The first methodological step consists in defining groups of rivers that are characterized by a 

relatively similar thermal behaviour. In RFA, a number of methods have been used to establish 

these homogenous groups of rivers. One simple approach could be to define geographic groups 

of contiguous drainage basins with similar temperature regimes. An alternative to this approach is 

to define groups based on similarities other than location, using different climatic and 

physiographic characteristics of the drainage basins. This approach was used in the present 

study and potentially non-contiguous regions were constructed using Hierarchical Clustering 
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Analysis (HCA), which groups rivers based on calculating a statistical (Euclidian) distance in the 

multidimensional space defined by selected climatic and physiographic descriptors. HCA 

minimizes within-group differences and maximizes between-group differences. It can be done in 

ascending (i.e. starting with all stations in separate groups and coalescing them) or descending 

order, i.e. starting with one group including all stations and separating them (Johnson, 1967). The 

latter method was used. The choice of the number of classes is generally made visually from the 

dendrogram, which is a tree diagram of possible groupings as a function of Euclidean distance. A 

brief description of the HCA technique is presented in Appendix B.  

As an alternative to the definition of contiguous or non-contiguous regions, the Region of 

Influence (ROI, Burn, 1990) approach was also tested. ROI allows to define, for each target 

station, the potentially unique set of stations to be used in the estimation of the thermal metrics at 

the target sites. A brief description of the ROI approach is presented in Appendix C of the present 

report.  

Once homogenous groups of stations have been established, temperature metrics can be 

estimated using independent variables known to influence water temperature. For each 

temperature metrics of interest, a statistical model is built to establish the link between the 

temperature metric and independent variables at gauged sites within the group or ROI. Two 

statistical models were tested in the present study: Multiple Linear Regression (MLR) and the 

Generalized Additive Model (GAM). 

MLR is a parametric linear model and probably represents the simplest method that can be used 

for information transfer to the target site.  It can be expressed as: 

𝑇𝑤(𝑡) = 𝛽0 +  ∑ 𝛽𝑖𝑥𝑖(𝑡)𝑛
𝑖=1 + 𝜀        (1) 

where Tw (t) is the temperature metric of interest, β are coefficients to be adjusted, xi: xn are the 

independent variables (or predictors) and ε is an error term. In the present work, the selection of 

predictors was performed using a forward stepwise procedure. 

The GAM, is an extension of the linear model (McCullagh & Nelder, 1989). It assumes no specific 

form of dependency between predictand and predictor and hence, the relationship is not 

necessarily linear. GAM is defined by: 

 𝑔(𝐸(𝑇𝑤)  = 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯+ 𝑓𝑝�𝑥𝑝�+  𝜀  (2) 
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where g is the link function, E(Tw) is the expected value of the predictand (in our case, a 

temperature metric), xj is the jth predictor and fj is the associated smooth nonlinear function (often 

combination of cubic splines). A more detailed introduction to the method is presented in 

Appendix D of the present report.  

As a first attempt to implement RFA for water temperature metrics in Eastern Canada, six 

different models were compared: 1) MLR and GAM when all stations are used with no subdivision 

into groups of rivers or ROI; 2) MLR and GAM applied to distinct groups of rivers identified using 

hierarchical clustering analysis; 3) MLR and GAM implemented using the ROI approach. 

Model performances were compared using a leave-one-out cross validation approach. This is 

done by estimating the parameters of the model using all stations but one in the region. Using the 

fitted model, the water temperature metric is estimated for the station that was left out and 

compared to the metric calculated from observations. This is repeated for each station in the 

region. Three performance metrics were used. The coefficient of determination (R2), the root-

mean-square error (RMSE) and the bias. Equations for the latter two are: 

( )∑
=

−=
n

t
tt yy

n
Bias

1

ˆ1
                                                         (3) 

( ) 







−= ∑

=

n

t
tt yy

n
RMSE

1

2ˆ1
                                                      (4) 

where n is the sample size, yt is the simulated temperature metric for the period t and 𝑦�t is the 

metric calculated from observations during the period t. 

2.1 S E L E C TION OF  W ATE R  TE MP E R AT UR E  MONITOR ING  S T ATIONS  

RivTemp is a partnership between universities, provincial and federal governments, watershed 

groups and organizations dedicated to Atlantic salmon conservation (http://rivtemp.ca; Boyer et 

al., 2016). These partners operate a network of river temperature monitoring stations. The 

http://rivtemp.ca/partners-2/?lang=en
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network also includes many stations monitored by Environment Canada in Atlantic provinces 

rivers.  

Data coming from the monitoring stations are processed in this unique centralized database. 

RivTemp contains daily water temperature metrics for 787 stations installed into 389 rivers across 

Québec and the Atlantic Provinces (Table 1). 

 

Table 1. Number of stations and rivers monitored by province (including Environment 
Canada stations).  

 # Stations # Rivers 

QC 456 161 

NB 153 81 

NL 153 124 

NS 19 17 

PE 6 6 

Total  787 389 
 

For this study, we have selected stations installed on rivers and for which at least 5 years of data 

are available. In the database, 122 stations currently meet this criterion (Figure 1).  It should be 

noted that there is a much higher density of stations in Newfoundland than in other provinces. In 

addition, some rivers are over represented, i.e. the number of thermographs deployed on these 

watercourses is higher than in other rivers (Ouelle, Ste-Marguerite, Restigouche, and Miramichi). 



8 
 

 

Figure 1. Spatial distribution of the water temperature stations used in this study. 

2.2 W ATE R  TE MP E R ATUR E  ME TR IC S  

To test the approach, a limited number of water temperature metrics known to be relevant for 

Atlantic salmon were selected.  They include:  

The annual water temperature maximum (MaxWaterTmax) and the annual maximum number of 

consecutives days (MaxNumDay) over a stressful threshold. This stressful threshold was defined 

by DFO. The water temperature conditions used to close the sport fishery in certain rivers were 

used, i.e. thresholds of daily Tmin>20°C and Tmax>25°C.  

In addition to these two metrics, three other variables were used to test the RFA approach, based 

on a study completed by Daigle et al. (2019, submitted) in which the thermal regimes of rivers in 

Québec were characterized using a Gaussian function fitted to the interannual mean daily 

temperature T, as a function of the day of the year d (= [1,365]): 

𝑇�(𝑑) = 𝑎 exp �− 1
2
�𝑑−𝑐

𝑏
�
2
� (5) 
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Where parameter a is a scale factor representing the annual maximum value, b is the standard 

deviation which is a measure of the duration of the warm period, and c is the day of occurrence of 

the maximum.  All three parameters were also used as predictands in the RFA models.  Table 2 

provides the complete list of temperature metrics and their descriptive statistics for the selected 

stations. 

 

Table 2. List of the water temperature metrics and explanatory variables with descriptive 
statistics. 

Notation Description Unit Mean Median Min Max 
MaxWaterTmax Maximum annual value of Tmax °C 23.95 23.83 16.96 29.22 

MaxNumDay Maximum number of days where 
Tmax > 25 °C and Tmin > 20 °C 

day 1.09 0.15 0.00 6.92 

Gaussian_a Parameter a of the Gaussian model 
for the interannual mean daily water 
temperature 

°C 18.93 18.95 14.08 23.64 

Gaussian_b Parameter b of the Gaussian model 
for the interannual mean daily water 
temperature 

day 56.45 56.12 40.20 80.35 

Gaussian_c Parameter c of the Gaussian model 
for the interannual mean daily water 
temperature 

day 213.27 212.60 204.94 238.39 

 

 

2.3 C L IMATIC  DAT A 

As stated previously, climatic data are used to determine groups of homogenous rivers and as 

predictors to estimate the water temperature metrics. The climatic data used for this study were 

extracted from the ANUSPLIN database (Hutchinson et al., 2009). These data are interpolated on 

a 10 km x 10 km grid derived from observations at Canadian meteorological stations (Figure 2). 

Interpolation from this network is achieved despite a non-uniform spatial distribution of stations 

(e.g. lack of representation of mountainous areas) and the fact that the northern part of the 

country is poorly covered. The uncertainty of interpolated data is therefore greater in areas where 

the number of stations is reduced (Hutchinson, 2009). The interpolated data available are daily air 

temperature maximum (AirTmax), minimum (AirTmin) and total daily precipitation (TotPrecip). 

Daily climate data were extracted using the closest ANUSPLIN grid point to each water 

temperature station. For the analysis presented in this study, the annual Tairmax (mean, 

maximum and minimum) values were calculated form daily values. 
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Figure 2. Position of Canadian weather stations used to interpolate climate data at 10 km 

resolution (Source: Lepage and Bourgeois, 2011). 

2.4 P HY S IOG R AP HIC  DAT A 

The physical variables characterizing the watersheds associated with each station of the network 

have been compiled and added to the RivTemp database. The selected physiographic data were 

chosen because they may influence water temperature at various levels and explain the spatial 

variability of this key variable. 

These data were extracted from documents accessible through provincial databases and Natural 

Resources Canada's data dissemination sites, the Geological Survey of Canada and the 

Consortium for Spatial Information (CGIAR-CSI) (Table 3). The scale of the available products 

differs from one province to the other.  We have made an effort to reduce the loss of information 

that may be induced by these differences. The largest differences were observed for the surficial 

deposits.  
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Table 3. Physiographic data compiled in the RivTemp database tables and source 
documents used. 

V AR IAB L E S  S OUR C E  DOC UME NT  

Delimitation of drainage 
area for each station 

DEM for 
Arc Hydro 
processing 

QC : (Ministère de l’environnement et de la lutte aux 
changements climatiques) 

 - Reconstituted model (25 m) for rivers in the Bas-
St-Laurent/Gaspésie and Capitale Nationale 
regions  

 - Reconstituted model (50 m) for rivers: for rivers in 
the Côte Nord region 

 
NB : Digital Elevation Model of Canada (MNEC) 
NS : Nova Scotia Department of Natural Resources  

-Reconstituted model (20 m) 
NL : Digital Elevation Model of Canada (MNEC) 
PE : Digital Elevation Model of Canada (MNEC) 
 

Drainage area for each 
station 

Elevation 
DEM Digital Elevation Model of Canada (MNEC) 50K from 

Natural Resources Canada River slope  

Drainage density  
(Σlength of rivers/area) WaterLinearFlow1 

and 
Waterbody_2 

Canvec 50K from Natural Resources Canada 
Lakes total area  

Vegetation  2010 Land Cover of North America at 30 meters (Commission for 
Environmental Cooperation (CEC)) 

Surficial deposits 

Main source of data: Geological Survey of Canada (scale varies by basin) 

QC: Geological Survey of Canada, Bas St-Laurent/Gaspésie, 
Scale: 1/250 000; other regions, scale: 1/5 000  000 

NB: Digital data were not available, the map was digitalised (map scale: 
1/500 000). Area are subject to under estimation due to the 
digitalised and polygon conversion processes. 

NS: Geosciences Atlas, Nova Scotia Department of Natural Resources, 
Scale: 1/500 000. 

NL: Geosciences Atlas, Newfoundland and Labrador Geological Survey,        
Scale: 1/500 000 for the island and 1/1 000 000 for Labrador. 

PE: Dept. of agriculture and fisheries, Scale: 1/500 000. 
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Table 4. List of the explanatory variables with descriptive statistics. 

Notation Description Unit Mean Median Min Max 

Physiographic variables 
BasinArea Catchment area km2 1652 597 1.75 41167 
Xcentroid X-axis location of the catchment 

centroid 
m 8119148 8024825 7728342 8977876 

Ycentroid Y-axis location of the catchment 
centroid 

m 1779127 1639584 1428465 2361764 

LakeArea Total lake area % 4.48 3.38 0.00 19.88 
DrainageDensity Drainage density of the 

hydrological network 
m-2 1.56 1.37 0.53 3.02 

MinElevation Minimum elevation of the 
catchment 

m 102.58 73.50 -4.04 543.84 

MaxElevation Maximum elevation of the 
catchment 

m 616.14 652.00 68.00 1125.00 

MeanElevation Mean elevation of the catchment m 356.18 346.09 37.00 775.50 
ElevationStation Elevation at the station m 105.02 76.50 1.00 544.83 
Slope River slope % 0.0103 0.0047 0.0001 0.1635 

Climatic variables 
TotPrecip Total annual precipitation over 

the catchment area 
mm 980.41 968.25 666.88 1294.26 

MeanAirTmax Annual mean of maximum air 
temperatures at the nearest grid 
point 

°C 8.37 8.78 1.93 12.49 

MaxAirTmax Annual maximum of maximum 
air temperatures at the nearest 
grid point 

°C 29.66 29.45 23.68 34.08 

MinAirTmin Annual minimum of minimum air 
temperatures at the nearest grid 
point 

°C -28.11 -29.13 -41.98 -14.70 

Land cover 
Shrubland Percentage of shrubland area % 6.64 2.53 0.00 47.76 

Grassland Percentage of grassland area % 1.96 1.33 0.00 14.42 

Wetland Percentage of wetland area % 1.84 0.80 0.00 13.42 

Forest Percentage of forest area % 80.52 88.23 5.85 99.69 

Surface deposits 

Glacial Deposits Percentage of area covered by 
glacial deposits 

% 70.16 82.84 0.00 100.00 

Rock Percentage of area covered by 
rock 

% 5.08 0.02 0.00 57.72 

Fluvio-Glacial 
Deposits 

Percentage of area covered by 
fluvio-glacial deposits 

% 3.56 0.62 0.00 34.39 
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3 R E S UL TS  

The initial delineation of regions performed using HCA was completed independently for each 

water temperature metric.  Figure 3 provides an example of a dendrogram for one of the 

temperature metrics: the a parameter of the Gaussian function. When the truncation is done at a 

Euclidian distance of 17, two homogenous regions are identified. Figure 4 shows the result of the 

same approach for each water temperature metric. For Tmax, one region includes most of the 

stations located in Labrador, Quebec North shore and Gaspé Peninsula, while the remaining 

stations are all included in the second group. MaxnumDay (Maximum number of days where 

Tmax > 25 °C and Tmin > 20 °C) also shows two groups: one group is essentially limited to 

Newfoundland and Labrador, with a few stations on the Quebec side of the Labrador border. The 

second group includes all other stations except for a few in the Gaspé Peninsula. For the 

Gaussian function parameters, the Newfoundland stations constitute one homogenous group 

(with the addition of some stations in Nova Scotia and PEI for parameters b and c). The 

remainder of the stations are all in the same second group. 

 

Figure 3. Example of a hierarchical classification tree for the parameter Gaussian_a where 
only the first 30 leaf nodes are presented.  
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Figure 4. Spatial distribution of the regions with HCA. 
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The multiple linear regression (MLR) model and GAM were used for information transfer to the 

target site in this study. Using the forward stepwise regression procedure, the first six most 

important predictors were selected from the list in Table 4. The list of the independent variables 

selected for each metric and each model is given in Table 5. As expected, air temperature (max 

or min) is selected as one of the predictors for each metric. Elevation is also a common predictor 

for most metrics. Ycentroid is a predictor selected for four of the five metrics with GAM. The 

relationships between each selected predictor and temperature metrics are shown in figures 5 to 

9. The fact that most of these relationships are non-linear already indicates that the GAM is a 

model that is better adapted to estimate the selected water temperature metrics than the MLR.  

This is confirmed in Table 6.  The two models are compared 1) when all stations are pooled in a 

single region, 2) when the regions are defined using HCA and 3) when the ROI approach is used. 

The highest performance metrics are indicated in bold in the table. As expected from the 

observation of figures 5 to 9, the GAM systematically outperforms the MLR. In addition, this initial 

study indicates that there is merit in grouping stations in sub-regions. Indeed, creating two sub-

regions using HCA provides a better performance than having a single regions or using the ROI 

approach. This result is rather novel as all studies carried out previously on hydrological variables 

(mainly flood and low flow quantiles) have shown neighborhood-based approaches (such as ROI) 

to be more flexible and to lead to better performances than fixed non-continuous regions (such as 

HCA) according to all performance criteria (see for instance Ouarda et al., 2008). Explanatory 

variables selected using the stepwise forward regression procedure.  

Table 5. Explanatory variables selected using the stepwise forward regression procedure.  

Metric Explanatory variables 

MLR       

MaxWaterTmax MeanAirTmax Forest Slope Rock Shrubland FluvioGlacial 
Deposits 

MaxNumDay MaxAirTmax Rock MeanAirTmax BasinArea TotPrecip MinElevation 

Gaussian_a 
MaxAirTmax BasinArea Rock MeanAirTmax Forest LakeArea 

Gaussian_b 
MeanElevation TotPrecip Forest BasinArea MeanAirTmax MaxAirTmax 

Gaussian_c 
Ycentroid MinElevation MaxElevation Forest MinAirTmin LakeArea 

GAM       

MaxWaterTmax MeanAirTmax BasinArea Rock TotPrecip Forest Grassland 

MaxNumDay MaxAirTmax Ycentroid BasinArea ElevationStation Rock MaxElevation 

Gaussian_a Ycentroid BasinArea Rock MinAirTmin Shrubland MinElevation 

Gaussian_b MeanElevation MinAirTmin Ycentroid Forest BasinArea Wetland 

Gaussian_c Ycentroid ElevationStation Slope Xcentroid Forest MaxElevation 
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This peculiar result may be linked to the over-representation of certain rivers in the database. 

Scatter plots of the estimated vs observed metrics are shown in Appendix A. 

 

Figure 5. Smooth functions for MaxWaterTmax. The dashed lines represent the 95% 
confidence intervals and dots are the residuals. 
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Figure 6. Smooth functions for MaxNumDay. The dashed lines represent the 95% 
confidence intervals and dots are the residuals. 
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Figure 7. Smooth functions for the Gaussian_a parameter. The dashed lines represent the 
95% confidence intervals and dots are the residuals. 
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Figure 8. Smooth functions for the Gaussian_b parameter. The dashed lines represent the 
95% confidence intervals and dots are the residuals. 
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Figure 9. Smooth functions for the Gaussian_c parameter. The dashed lines represent the 
95% confidence intervals and dots are the residuals. 
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Table 5.  Performance statistics for the different approaches using the leave-one-out 
validation. 

Metric ALL HCA ROI 

R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE 

MLR          

MaxWaterTmax 0.426 -0.015 2.012 0.448 0.146 1.973 0.479 0.185 1.917 

MaxNumDay 0.499 0.108 1.229 0.567 0.130 1.143 0.520 0.361 1.203 

Gaussian_a 0.313 0.005 1.637 0.399 0.052 1.530 0.457 0.100 1.455 

Gaussian_b 0.806 -0.014 3.125 0.853 -0.043 2.722 0.800 -0.414 3.176 

Gaussian_c 0.368 0.043 4.330 0.397 0.091 4.229 0.131 0.832 5.076 

GAM          

MaxWaterTmax 0.634 0.037 1.606 0.734 -0.022 1.371 0.579 0.121 1.723 

MaxNumDay 0.645 0.110 1.036 0.800 0.088 0.777 0.629 0.102 1.057 

Gaussian_a 0.591 0.030 1.263 0.656 0.048 1.158 0.534 0.025 1.348 

Gaussian_b 0.832 -0.049 2.907 0.842 -0.018 2.819 0.841 -0.048 2.828 

Gaussian_c 0.422 -0.026 4.141 0.442 -0.058 4.070 0.348 -0.003 4.397 

 

4 DIS C US S ION 

This first attempt at defining thermally homogenous regions in Eastern Canada was affected by 

the limits imposed by the minimum sample size prescribed. Indeed, selecting stations with at 

least five years of temperature data led to a relative over representation of Newfoundland rivers 

as well as three river systems outside of this province: the Ouelle, Ste-Marguerite and Miramichi 

rivers. Given the high density of Newfoundland stations, it is not surprising that the HCA 

segregated two thermal river groups: Newfoundland and elsewhere.  To further divide the 

remaining stations in sub-regions, a lower truncation level (i.e. selecting a lower Euclidean 

distance to define groups) could be used in the HCA.  For instance, a truncation level of 15 would 

yield three groups of stations. However, the drawback of increasing the number of homogenous 

groups is a decrease of the number of stations within each group, yielding a smaller sample size 

to establish the transfer models for water temperature metrics. An alternative that should be 

tested would be to relax the selection criterion for stations. The RivTemp database includes a 
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large number of stations that have between 1 and four years of data. Including water temperature 

stations with fewer than five years of data would increase station density outside of 

Newfoundland, thereby allowing to define a larger number of thermally homogenous regions, 

while potentially having a sufficiently large number of stations within each region to produce 

models with acceptable uncertainties. Another alternative that should be tested would be to select 

fewer stations on over-represented river systems. 

However, it is important to ensure that this would not result in the calculation of the water 

temperature metrics with too few data, as uncertainty would likely increase. In fact, Daigle et al. 

(2019) have shown that when the parameters of the Gaussian function are calculated on fewer 

than five years of data, the error on the estimation of the parameters increases significantly. 

Only two models were tested in this first study. The non-linear GAM was systematically superior 

to the simpler multiple linear regression for all five water temperature metrics. This result is 

consistent with previous hydrological studies (see for instance Ouarda et al., 2018). This result 

confirms also the non-linear nature of the water temperature dynamics and the need to 

increasingly adopt non-linear estimation methods when modeling the thermal regimes of rivers. 

Other statistical models could be used, including random forest regression models that were used 

by Maheu et al. (2015) in the U.S. to classify thermal regimes. The results of the present study 

cannot be generalised without further efforts. Additional studies need to be carried out for other 

climate characteristics, and for other conditions (including data quality and quantity conditions) in 

order to test the robustness of the proposed modeling approaches and the generality of the 

conclusions of the present work. Future work can also focus on the combination of local and 

regional information at gauged sites. This would allow improving the estimation of water 

temperature metrics in sites with measurements. Future work should also focus on applying 

multivariate regional estimation models to this problem in order to carry out the estimation of a 

number of water temperature metrics at the same time while taking into consideration the 

linkages between these metrics.  

Other water temperature metrics can also be modelled using the same approach. One key metric 

under development is the Potential Growth Thermal Index, or PGTI (Ouellet-Proulx et al., in 

prep). This index is based on known temperature ranges for which growth is initiated, becomes 

optimal and beyond which it ceases. The analyses of Ouellet-Proulx et al. have shown that the 

PGTI has the potential to explain juvenile salmon size at age at regional to continental scales. 

Multivariate reginal frequency analysis approaches can also be used to model water temperature 

metrics along with other habitat metrics and model the relationships between them.  
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5 C ONC L US ION 

A first regional analysis of water temperature metrics was completed in Eastern Canada. Using 

water temperature monitoring stations with 5 or more years of data, two relatively homogenous 

thermal regions were defined for five different thermal metrics. The generalized additive model 

outperformed multiple linear regression as a tool to estimate the thermal metrics at ungauged 

sites within each region, as demonstrated by a leave-one-out validation procedure. Initial results 

are promising but further work is required to better define the thermally homogenous regions.  
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7 AP P E NDIX A:  S C AT TE R  P L OTS  OF  OB S E R V E D VS  E S TIMATE D W ATE R  TE MP E R ATUR E  ME TR IC S  
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8 AP P E NDIX B :  HIERARCHICAL CLUSTER ANALYSIS 

The hierarchical cluster analysis method can be divided in the following three distinct steps: 

1. Quantification of the similarity between each pair of basins: This step consists in computing a given 

distance statistic (e.g. the Euclidean distance) between every pairs of basins in the space defined by a set of 

selected physiographic and/or meteorological variables. These variables are selected based on the 

knowledge of their impacts on the variable of interest. 

The distance used in this study is the standardized Euclidean distance defined by: 

𝑑2(𝑟, 𝑠) = (𝑥𝑟 − 𝑥𝑠)𝐷−1(𝑥𝑟 − 𝑥𝑠)𝑇       (1) 

where 𝑥𝑟  and 𝑥𝑠 are the vectors of coordinates in the physiographical/meteorological space for basin r and s 

respectively and D is the diagonal matrix for which the diagonal elements 𝜐𝑗2 are the variances of the 

respective variables. This statistic is similar to the Euclidean distance but where each variable is scaled by 

its variance. 

2. Grouping of stations into a hierarchical cluster tree: This step consists in grouping pairs of basins that 

are close based on the measure given by a linkage function. This function uses the distance information 

generated in step 1 to determine the proximity of basins. As the basins are paired into binary clusters, the 

newly formed clusters are grouped into larger clusters. This is repeated until only one cluster is reached. 

The result can be displayed with a cluster tree diagram. In this study, the distance between clusters are 

obtained using the Ward’s method. This method computes the following sum of squared distances: 

𝑊𝑆𝑆𝑝 = ∑ 𝑑2�𝑥𝑝𝑖 , 𝑥̅𝑝�
𝑛𝑝
𝑖=1         (2) 

where 𝑛𝑝 is the size of the cluster p and 𝑥̅𝑝 is the centroid of the cluster p. The distance between cluster p 

and q is given by: 

𝑑𝑊(𝑝, 𝑞) = 𝑊𝑆𝑆𝑝+𝑞 − �𝑊𝑆𝑆𝑝 + 𝑊𝑆𝑆𝑞� = 𝑛𝑝𝑛𝑞𝑑2�𝑥̅𝑝,𝑥̅𝑞�
𝑛𝑝+𝑛𝑞

    (3) 

3. Identification of clusters: At this step, clusters are identified using the hierarchical tree obtained in the 

previous steps. This can be achieved either by detecting natural groupings in the hierarchical tree or by 

cutting off the tree at an arbitrary level which may be determined by the targeted number of clusters. 
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9 AP P E NDIX C :  R E G ION OF  INF L UE NC E  ME THOD 

Acreman (1987) proposed a method to identify homogeneous neighbourhoods at target sites. This 

method select stations within a certain critical distance from each target site. It was later adopted by Burn 

(1990) for the regionalization of flood flows and was termed the “region of influence” method (ROI). In 

this method, the identification of a neighborhood is based on a Euclidean distance in a multidimensional 

space defined by a set of hydrological attributes of a site and/or a set of physiographical and meteorological 

attributes of the contributing basin. In the case of ungauged sites, only physiographical and meteorological 

catchment attributes are used. 

The Euclidean distance 𝐷𝑖𝑗  between stations i and j is given by the following Euclidean distance:  

𝐷𝑖𝑗 = �∑ �𝐶𝑘𝑖 − 𝐶𝑘
𝑗�𝐾

𝑘=1
2
�
1/2

        (4) 

where 𝐶𝑘𝑖  and 𝐶𝑘
𝑗 are the standardized values of attribute k for stations i and j respectively, and K is the 

number of attributes. The selection of the attributes used to define the Euclidean space are selected based 

on the knowledge of their impacts on the variable of interest. The stations to be included into the ROI for a 

given target site are all those within a given threshold distance 𝛿𝑖: 

𝑅𝑂𝐼𝑖 = {k:𝐷𝑖𝑘 ≤ 𝛿𝑖}.         (5) 

𝛿𝑖 is fixed in such a way that there is a good compromise between the number of stations in the 

neighbourhood and the hydrological homogeneity of the selected stations. Burn (1990) presents different 

options for the selection of a value of 𝛿𝑖 for the aim of regionalisation. 
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10 AP P E NDIX D:  G E NE R AL IZE D ADDITIV E  MODE L  

Generalized linear models (GLM) are a generalization of linear models in which the response 

variable can follow any distribution of the exponential family and where a link function relates the response 

variable to the linear predictor function. Generalized additive models (GAM) were introduced in Hastie and 

Tibshirani (1986) as extensions of generalized linear models (GLM) in which the linear predictor function 

is replaced by a set of smoothed functions of the explanatory variables. GAMs are thus more flexible than 

linear models by allowing a non-linear relationship between the response variable and each of the 

explanatory variables. For a response variable Y, GAMs can be expressed by: 

𝑔�𝐸(𝑌|𝐗)� = 𝛼 + ∑ 𝑓𝑗
𝑝
𝑗=1 (𝑋𝑗) ,       (10) 

where 𝑓𝑗 is a smooth function for the jth explanatory variable, X is a matrix whose columns are the set of p 

explanatory variables, 𝛼  is an intercept and g(.) is a monotonic link function. 

The smooth function 𝑓𝑗 can be defined by a linear combination of q basis functions:  

𝑓𝑗(𝑥) = ∑ 𝛽𝑗𝑖𝑏𝑗𝑖(𝑥
𝑞
𝑖=1 )         (11) 

where 𝛽𝑗𝑖  are smoothing coefficients and 𝑏𝑗𝑖(𝑥) is a basis function. Spline is a convenient basis for smooth 

functions. A spline is a curve composed of piecewise polynomial functions joined together at points called 

knots. 

A problem that arises with spline basis function is overfitting. Penalized regression spline avoids 

this problem by introducing a penalty parameter. Also, with spline basis, the location of the knots needs 

then to be chosen. However, with penalized regression splines, the exact location as well as the number of 

the knots are not as important. GAMs with penalized regression splines are usually optimized by 

maximizing the penalized log-likelihood: 

𝑙𝑝(𝛃) = 𝑙(𝛃) − 1
2
∑ 𝜆𝑗𝛃′
𝑝
𝑗=1 𝐒𝑗𝛃,       (12) 

where 𝛃 is a matrix of smoothing coefficients, 𝛃′  is the transpose of 𝛃, 𝑙(𝛃) is the log-likelihood function, 

𝜆𝑗 is the smoothing parameter of the j-th smooth function, and 𝐒𝑗 is a matrix of known coefficients (Wood, 

2008). The parameter 𝜆𝑗, ranging from 0 to 1, controls the degree of smoothness of the smooth function 

where 0 is the un-penalized case and 1 is the completely smoothed case. The optimum value of jλ  
is a 

good compromise between optimization and smoothness. λ is found iteratively according to a criterion such 

as the generalized cross validation (GCV; Wahba, 1985), unbiased risk estimator (UBRE; Craven and 

Wahba, 1978) or maximum likelihood (ML). At each step, the function lp(.) is solve for a given vector of 
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smoothing parameters λ, by the penalized iteratively reweighted least squares method (P-IRLS; Wood, 

2004).  
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