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Abstract/Résumé 

Vector formats for Internet, such as Flash and Scalable Vector Graphics (SVG), 
represent good solutions to deploy rapidly interactive and dynamic maps on Internet. 
However, without a good level of generalization, the size of vector web-maps can be 
too large. To remedy this situation, we present, in this paper, a software utility called 
SVG converter which converts and generalizes vector maps (ESRI shapefiles) into SVG 
format. The conversion process is based on the combination of modified Douglas-
Peuker and dictionary based compression algorithms, and keeps the topology of 
reduced geographical features. The high rates of compression obtained with the SVG 
converter tool demonstrate that this software utility produces compact and high quality 
web-maps in SVG format. Consequently, the SVG converter application could easily be 
integrated into cartographic web-applications to generate “on-the-fly” medium and 
small sizes maps. 

Key words: cartography, interactive cartography, map generalization, Douglas-Peucker 
algorithm, web-maps, web cartography.  

*     *     * 

Les formats vectoriels pour Internet tels que le Flash et le Scalable Vector Graphics 
(SVG) permettent de produire rapidement des cartes interactives et dynamiques sur 
Internet. Cependant, en l’absence d’un niveau de généralisation de la carte suffisant, la 
taille des cartes vectorielles demeure trop grande pour une diffusion sur Internet. Pour 
remédier à cette situation, nous présentons ici une application dénommée SVG 
converter qui convertit et généralise les fichiers géographiques Shapefile (ESRI) au 
format SVG tout en conservant la topologie des entités spatiales. Le processus de 
conversion et de généralisation est basé sur une combinaison des algorithmes de 
Douglas-Peucker et du dictionary based compression. Les taux de compression élevés 
obtenus avec l’utilitaire SVG converter démontrent que cette application produit des 
cartes pour le web compactes et de haute qualité au format SVG. Par conséquent, cette 
application pourrait être facilement intégrée au sein d’applications cartographiques sur 
Internet pour générer à la volée des cartes de taille réduite ou moyenne. 

Mots-clés: cartographie, cartographie interactive, cartes sur Internet, généralisation 
cartographique, algorithme de Douglas-Peucker. 

.





 

For the last ten years, two elements have largely contributed to increase the number of 
cartographic applications on Internet: the recent developments in interactive and 
dynamic cartography and the development of Internet technologies such as DHTML, 
Internet mapping technologies and vector formats for Internet. 

The use of GIS and cartographic applications on the web and on smart mobile devices 
requires map transmission over relatively low-bandwidth and latency media. In this 
context the problem of transforming maps to a compact form emerges. Raster image 
compression algorithms are well known (Li & Gray, 2000; Nelson & Gailly, 1995; 
Redd, 2004; Vasudev & Konstantinos, 1997): however the development of interactive 
and animated mapping functions is very limited within raster mode.  

Scalable Vector Graphics (SVG) is a XML-based standard format elaborated by the 
World Wide Web Consortium1, which allows the creation of interactive vector maps for 
use on the web or on a variety of smart wireless devices. SVG interactivity includes 
transformation of coordinate systems, panning and zooming, object selection and 
clipping, animation and event handling, etc. Recently, Danzart et al. (2003) compared 
three solutions for creating dynamic and interactive web-maps i.e. Scalable Vector 
Graphics (SVG), Flash and MPEG-4. They conclude that SVG is the best solution for 
the deployment of cartographic applications on the Internet. However, generally, the 
conversion of geographic files into SVG without compression generates too large files. 
This has led us to develop a software utility which converts and generalizes vector maps 
(ESRI shapefiles) into a compact and high quality SVG format.  

The aim of this paper is to present this application called SVG converter. First, we 
describe the combination of compression and modified generalization algorithms that 
produce high quality maps in SVG format. Next, we analyze the compression results 
obtained with our SVG converter tool. 

                                                 
1  http://www.w3.org/Graphics/SVG/

http://www.w3.org/Graphics/SVG/




 

1. OVERVIEW 

The primary goal of the SVG converter is to produce high quality scalable maps in a 
compact form. This application can be downloaded free of charge from the Spatial 
Analysis and Regional Economics Laboratory website of INRS Urbanisation, Culture et 
Société (SAREL, or LASER2). 

All source vector maps are represented by a set of polylines or a set of polygons which 
could have a large number of points. Mathematically, the problem of reducing the size 
of polygonal lines is equivalent to the problem of piecewise linear curve approximation. 
This is a classic problem in computational geometry and compression.  

In cartography, vector maps are usually simplified according to some geometric 
tolerance, based on cartographic map scale (Weibel & Jones, 1998). This compression 
technique is known as map generalization (Monmonier, 1991). Two generalization 
algorithms are well known in the domain of cartography: vertex reduction (Hershberger 
& Snoeyink, 1992), having O(n) complexity, and Douglas-Peucker (DP) (Douglas & 
Peucker, 1973), having O(n2) complexity, where n is the number of points in the 
polyline or polygon. The principal aim of these algorithms is to produce the same visual 
representation of a map with a reduced number of polygonal points. According to this 
perceptual criterion, the DP method produces better quality maps vertex reduction, 
which gives fast, but coarser, results. However, due to web latency and to the O(n2) 
complexity of the DP algorithm, its direct implementation cannot be used for “on-the-
fly” map generalization. 

Another approach is to map compression is to reduce the size of maps by lossless 
compression algorithms. Usually this is possible because of global redundancies such as 
repeated chains of coordinates. However, this technique typically compresses source 
maps by 60 to70 % which is not enough for fast visualization of detailed web-maps. 

Thus, for high speed and high quality interactive web cartography it is necessary to use 
a combination of generalization and lossless compression. 

 

                                                 
2  http://www.ucs.inrs.ca/default.asp?p=grlaser. Note that LASER is the French acronym for the laboratory 

(Laboratoire d’analyse spatiale et d’économie urbaine). 

http://www.ucs.inrs.ca/default.asp?p=grlaser




 

2. DESCRIPTION OF THE SVG CONVERTER APPLICATION 

The SVG Converter application was developed in C#, a language that works with the 
Microsoft.Net platform. The development of this application followed four steps which 
will be discussed in detail below:  

− Quantization: polygonal lines or polygon coordinates are transformed to the integer 
Cartesian coordinate system; 

− Preliminary reduction: elimination of small segments by fast vertex reduction 
algorithm. 

− Generalization: vertex elimination by Convex Hull Speed-Up of DP algorithm 
(Hershberger & Snoeyink, 1992), having O(n log n) complexity in the worst case; 

− Compression: use of lossless general-purpose LZ77 dictionary-based compression 
algorithm (Nelson & Gailly, 1995). 

2.1 Quantization 

Depending on hardware and web specific factors, there are several possibilities for map 
size reduction. Usually, each vertex of a polygon is represented by two floating point 
numbers as coordinates, but monitor screens, printers and plotters are all based on 
integer resolution. This is why, in a web environment, one must use an integer 
coordinate system to reduce map size up to sizeof(float)/sizeof(int). For most operational 
systems this ratio is 2. This simplification is easy to implement during SVG conversion 
as shown in the following pseudo-code: 

Scale = (int)Min(Display.Width / (Polygon.BoundBox.maxX - Polygon.BoundBox.minX),  
                          Display.Height / (Polygon.BoundBox.maxY - Polygon.BoundBox.minY)); 
 
for (i = 0; i < Polygon.numberOfPoints; i++) 
{ 
       OutPoints[i].X = (int)((Polygon.Point[i].X - Polygon.BoundBox.minX) * Scale); 
       OutPoints[i].Y = (int)(( Polygon.BoundBox.maxY - Point[i].Y) * Scale)); 
} 

2.2 Preliminary reduction 

Often, segments of a polyline are too close together and successive vertices may be 
displayed by the same screen pixel. Thus, vertices that are clustered on one pixel in web 
resolution may be reduced to a single vertex. We eliminate such vertices by fast O(n) 
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vertex reduction algorithm and then we use slower, but high-quality, Douglas-Peucker 
generalization.  

Vertex reduction is a brute force algorithm for polyline simplification. For this 
algorithm, we choose an initial vertex. All vertices which are located close to the initial 
vertex at less than the minimum tolerance ε are eliminated. The next, not eliminated, 
vertex becomes the new initial vertex for further simplification of the polyline. We 
repeat elimination until we reach the end vertex of the polyline (see figure 1): 

i = 0; 
OutPoints[i++] = Polygon.Points[0]; // Copy the first point 
currentPoint = Polygon.Points[0]; 
for (j = 1; j < Polygon.numberOfPoints-1; j++) 
{ 
 // implemented comparing squares of distances with the squared tolerance  
             // to avoid expensive square root calculations 
 if (currentPoint.DistanceTo(Polygon.Points[j]) > Eps)   
 { 
  OutPoints[i++] = Polygon.Points[j]; 
  currentPoint = Polygon.Points[j]; 

}  
} 
OutPoints[i] = Polygon.Points[Polygon.numberOfPoints-1]; // Copy the end point 
 

 

Figure 1 - Preliminary vertex reduction 
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2.3 Generalization 

The principal goal of generalization is to produce the same visual representation of a 
map with a reduced number of polygonal points. Douglas-Peuker and vertex reduction 
algorithms work well for polyline reduction; however they can’t be used directly for 
polygon reduction. The problems of polygons generalization consists in:  

− The requirement to keep start and end points within a shared border (see figure 2) 
notwithstanding generalization tolerance. 

− The requirement to have the same direction of generalization for polygons sharing a 
border (see figure 3). 

 
Figure 2 - The problem of contiguous polygons during the generalization process 

 

 
Figure 3 - The problem of different direction of polygon during the generalization process 
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To avoid the first problem we have to split polygons into chains of polygonal lines. 
Every polygon is split at start and end common points with every adjacent polygon (see 
pseudo-code below) (Weibel and Jones, 1998).  

The second problem may be solved by using the same orientation for each polygon. In 
this case, generalization will give us the same results for adjacent polygons. 

for (int i = 0, k = 0; i < ShapeFile.numRecords; i++) 
{ 
   for (int j = i+1; j < ShapeFile.numRecords; j++) 
   { 
      if (ShapeFile.ConnectivityMatrix[i,j] == true) 
      { 
    FromToTable[k++] =  
            GetStartAndEndCommonPoints(ShapeFile.Records[i], ShapeFile.Records[j]); 
      } 
   } 
} 
 
We can now generalize polygons in the same manner as polylines. According to the 
perceptual criteria, the DP method produces better quality maps than the vertex 
reduction algorithm. The DP method uses the proximity of a vertex to an edge. The DP 
algorithm starts with a crude initial guess at a simplified polyline - a single edge joining 
the first and last vertices of the polyline (see figure 4). Then the remaining vertices are 
tested for closeness to that edge. If there are vertices further than a specified tolerance, 
then the vertex furthest from it is added in the simplification. This creates a new guess 
for the simplified polyline. Using recursion, this process continues for each edge of the 
current guess until all vertices of the original polyline are within tolerance of the 
simplification (see figure 4 and pseudo-code below). 

In the worst case the time taken by the DP algorithm is O(nm), with an expected time of 
O(n log m), where m is the size of the simplified polyline. This is acceptable for a 
stand-alone converter, but for “on-the-fly” conversion on the web it is too slow. 
Fortunately, there is the Convex Hull Speed-Up version of DP (Douglas & Peucker, 
1973) which has an O(n log n) complexity in the worst case. The improvement is 
achieved by speeding up selection of the farthest intermediate vertex from the current 
segment. Because the farthest vertex must be on the convex hull of the polyline chain 
between current segment nodes, we can compute this hull in O(n) time using Melkman's 
algorithm (Laszlo, 1996) and find the farthest vertex using an O(log n) binary search on 
the hull vertices. The Convex Hull Speed-Up version of DP only works for simple 2D 
planar polylines, but for maps it is sufficient. C++ implementation of this accelerated 
DP algorithm is described in detail in Sunday (2005). 
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Figure 4 - Douglas-Peuker algorithm 
 
 
void DouglassPeucker(int Start, int End, double Eps, ref BitArray keptPoints) 
{ 
 keptPoints.Set(Start, true); // keep the first point 
 keptPoints.Set(End, true);   // keep the last point 
 
 maxDistance = double.MinValue; 
 int MaxPosition = Start; // initial index for furthest vertex from [StartPoint, EndPoint] segment 
 StartPoint = Polygon.Points[Start];  
 EndPoint = Polygon.Points[End];  
 

for (int i = Start + 1; i < End; i++) // find the furthest vertex from [StartPoint, EndPoint] 
segment 

 { 
  Distance = Polygon.Points[i].DistanceToSegment(StartPoint, EndPoint); 
  if (Distance > maxDistance) 
  { 
   MaxPosition = i; 
   maxDistance = Distance; 
  } 
 }  
 
 if (maxDistance > Eps) 
 { 
  DouglassPeucker(Start, MaxPosition, Eps, ref restedPoints); 
  DouglassPeucker(iMaxPos, End, Eps, ref restedPoints); 
 } 
} 
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At the end of the generalization process we have to assemble the generalized polygonal 
lines back into polygons: 
 
for (i = 0; i < ShapeFile.numRecords; i++) 
{ 
    StartEndPositions = GetStartEndPositions(FromToTable, i); 
    ShapeFile.Records[i].Generalize(StartEndPositions, Eps); 
    SVGWriter.Write(ShapeFile.Records[i]); 
} 

2.4 Compression 

After these simplifications have taken place, there may still be a lot of room for map 
size reduction. Simplification could be achieved by using relative instead of absolute 
coordinates (see pseudo-code below).  
for (i = 1; i < Polygon.numberOfPoints; i++) 
{ 
       Polygon.Point[i].X -= Polygon.Point[i-1].X; 
       Polygon.Point[i].Y -= Polygon.Point[i-1].Y; 
} 
 

Usually, this produces many redundancies such as repeated chains of relative 
coordinates, which allows high efficiency use of lossless dictionary-based compression 
algorithms, such as LZ77 (Ziv & Limpel, 1977) or LZW (Nelson & Gailly, 1995). 

Fortunately, SVG documents automatically support all SVG interactivity features for 
zipped SVG files. To compress SVG files we use the open source Gzip compression 
utility3 which is designed to be a free, general-purpose, legally unencumbered (not 
covered by any patents), lossless data-compression utility for use on virtually any 
computer hardware and operating system. 

Gzip uses the LZ77 which is the "sliding window" compression algorithm also used in 
ZIP and PKZIP. The LZ77 algorithm works by keeping a history window of the most 
recently seen data and comparing the current data being encoded with the data in the 
history window. What is actually placed into the compressed stream are references to 
the position in the history window, and the length of the match. If a match cannot be 
found in the character itself, it is simply encoded into the stream after being flagged as a 
literal3.  

The compression ratio of LZ77 depends on the distribution of repeated chains of 
relative coordinates. In our experience, generalized maps may be reduced an additional 
5 to10 times. The compression ratio of LZ77 is generally much better than that achieved 
by LZW, Huffman coding, or adaptive Huffman coding (Nelson & Gailly, 1995). 

 
3  http://www.gzip.org/

http://www.gzip.org/


 

3. RESULTS 

To give an idea of the results which can be obtained with the SVG converter tool, we 
use it to convert and generalize a map of Canadian census divisions from ESRI 
shapefile format (ESRI, 1998) into SVG. Input map size is 4989 K and contains 507 
polygonal regions. The application interface which is available in English and French is 
shown on figure 5. It is worth noting that the Color Ramp can be used to color the 
output map according to values in selected data fields and that the clear small features 
option is used to eliminate small regions that haven’t a common border with other 
regions (islands, lakes, etc). 

 

 

Figure 5 - Interface of SVG converter application 
 
 
 
The quantization step (use of integer coordinate system) produces 2557 K of output 
SVG map (1.951 compression ratio). Preliminary generalization by vertex reduction 
gives 490 K of SVG file (10.182 compression ratio). The stage of DP generalization 
depends on selected geometric tolerance expressed in number of screen points. The 
results of DP generalization followed by LZ77 compression are shown in table 1 and on 
figure 6. 
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Table 1 - Results using combination of modified Douglas-Peuker and gzip algorithms 
Tolerance  
in points 

Output size 
(Kb) 

Compression 
ratio 

Output size  
after gzip (Kb) 

Compression ratio  
after gzip 

1 289 17.263 43 116.023 
2 260 19.188 33 151.182 
3 251 19.876 29 172.034 
4 247 20.198 28 178.179 
5 244 20.447 27 184.778 
6 243 20.531 26 191.885 
7 242 20.616 25 199.560 
8 241 20.701 25 199.560 
9 241 20.701 25 199.560 

10 240 20.788 25 199.560 
15 239 20.874 24 207.875 
20 239 20.874 24 207.875 
30 239 20.874 24 207.875 
40 239 20.874 24 207.875 
50 239 20.874 24 207.875 

 
 
 

 

Figure 6 - Results using combination of modified Douglas-Peuker and gzip algorithms 
 
 
Figure 6, shows that after a certain level of tolerance it is impossible to increase 
compression ratio, because map generalization can’t remove points without breaking the 
map’s topology. Also, high levels of tolerance lead to map disproportion in 
archipelagos. This happens because there are no limits for point reduction in 
archipelagos; however points of continental areas can’t be removed because they are 
maintaining map topology. With fixed tolerance, the quality of the compressed map 
depends on the initial map’s topology, but for most maps a tolerance of 4-8 points is 
recommended. 
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Initial map of canadian division regions (ESRI’s shapefile, 4,989 K size) 

 
Generalized map of Canadian division regions using combinaison 

of modified Douglas-Peucker and gzip algorithms (SVG file, 28 K size) 

 

Map 1 - An example of Esri’s map conversion using the SVG converter tool 
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For example, the initial map of Canada (size of 4989 K) is depicted on the upper map of 
map 1 and the SVG generalized output with the modified Douglas-Peucker algorithm (4 
points in tolerance) and compressed using gzip is shown below it. This output map has a 
size of 28 K: the compression ratio is 178, yet it looks very similar to the initial map. 

CONCLUSION 

Vector formats, such as Flash and Scalable Vector Graphics, are good solutions for 
deploying rapidly interactive and dynamic maps on the Internet. However, without a 
good level of generalization, the size of vector web-maps can be too large. The SVG 
converter application, described in this paper, enables the conversion and generalisation 
of ESRI shapefile maps into SVG format. The conversion process is based on the 
combination of modified Douglas-Peuker and gzip algorithms and maintains the 
topology of the reduced geographical features. Concretely, it contains four steps: 
quantization, preliminary reduction, generalization and compression. 

The high rates of compression obtained with the SVG converter tool demonstrate that 
this software utility produces compact and high quality web-maps in SVG format. In 
fact, this utility is useful as a stand alone application and can be used for “on-the-fly” 
generation of medium and small sizes maps. Consequently, we hope that this open 
software will be useful for the cartographic research community in the deployment and 
development of web-cartographic applications. 
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