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Abstract

We study the flow past a finite-length yawed 3D cylinder by a Finite Volume / Fictitious Do-

main (FV/FD) method developed in [63]. We validate our non-boundary-fitted method against

boundary-fitted numerical results for a finite-length cylinder whose axis is parallel to the streamwise

direction. Drag and lift forces exerted on the cylinder and vortex shedding onset and frequency

are carefully analysed. Satisfactory agreement with published results give strong confidence in the

numerical methodology provided the boundary layer is accurately resolved. Then, we carry out a

detailed study of the flow past a yawed cylinder of aspect ratio L/D = 3 (where L is the cylinder

length and D is the cylinder diameter) at moderate Reynolds numbers (25 6 Re 6 250). We show

that the wake pattern depends strongly on Re and the yaw angle θ with respect to the streamwise

direction. Various regimes are encountered including standing-eddy pattern, steady shedding of

one and two pairs of counter-rotating vortices, periodic shedding of two pairs of counter-rotating

vortices and unsteady shedding of hairpin shaped vortices. The standing-eddy pattern regime

shows different forms of behaviour and symmetry as function of θ. Hydrodynamic forces exerted

on the cylinder are well approximated by laws derived in the Stokes flow regime (benefitting from

the linearity of the equations), even for moderate Reynolds numbers. This result is in agreement

with recent findings of Sanjeevi and Padding [53] who studied the flow past spheroidal particles.

For the highest Reynolds numbers (Re = 150, 200, 250) we show that simple force laws can be

derived from simple geometrical assumptions. These simple laws yield a satisfactory match with

our numerical results.

Keywords: fictitious domain method, finite-length cylinder, hydrodynamic

force/torque, wake instability

2



INTRODUCTION

Fluidized beds are frequently encountered in various industrial processes such as catalysis

and biomass gasification. For computational reasons, Euler-Lagrange and Euler-Euler meth-

ods are usually preferred to direct numerical simulation to tackle this kind of problem. The

former class of methods has been applied with success to spouted beds and bubbling beds of

spherical particles [6, 7]. However the averaging procedure used to derive the Euler-Lagrange

equations yields more unknowns than equations [26]. Closure laws for the hydrodynamic

force and torque exerted on solid bodies are thus needed to solve the problem. While a

large number of studies exist in the literature on the flow past a single or multiple spherical

particles (see for instance Clift et al. [9] among many others), little is known about finite-

length cylindrical particles that are frequently used in bubbling fluidized beds. Therefore,

we investigate the flow past a single finite-length yawed cylinder using numerical simulation

to understand the hydrodynamic force and torque exerted on it as a step towards the under-

standing of the hydrodynamic force and torque exerted on many finite-length (presumably

randomly) yawed cylinders.

One of the earliest studies of the flow past a cylinder oriented perpendicularly to the

streamwise direction is due to Wieselsberger [64]. Both infinite-length and finite-length

cylinders were considered. The aspect ratio is defined as L/D , where L is the cylinder

length and D the cylinder diameter. Wieselsberger [64] covered a large range of Reynolds

numbers Re = ρDU/µ from 400 to 8 × 105 where µ, ρ and U are the dynamic viscosity,

the density and the far field inlet velocity, respectively. Wieselsberger [64] observed that

the drag coefficient decreases when decreasing L/D. Zdravkovich et al. [67] studied the

flow past a perpendicular cylinder of finite aspect ratio 1 ≤ L/D ≤ 10 at high Reynolds

numbers 6 × 104 ≤ Re ≤ 2.6 × 105. The drag coefficient was also observed to decrease

when decreasing L/D. Zdravkovich et al. [67] observed a kind of vortex shedding in the

range 2 ≤ L/D ≤ 8 and an asymmetric flow pattern for 1 ≤ L/D ≤ 3 for all values of

Re he investigated. Inoue and Sakuragi [25] performed a detailed numerical study of the

flow past a finite-length cylinder. The selected aspect ratios and Reynolds numbers were

respectively 0.5 ≤ L/D ≤ 100 and 40 ≤ Re ≤ 300. They identified five different vortex

shedding patterns depending on both aspect ratio and Reynolds number. They also showed

that the critical Reynolds number for the onset of the unsteady regime decreases with L/D.
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The flow past an infinite yawed cylinder has also been widely studied in relation to

its numerous industrial applications as, e.g., offshore risers in oil industry or strand wires

of floating offshore wind turbines. Relf and Powell [48] studied experimentally the flow

of air past strand wires at Re ≈ 10000. In this regime they observed that the normal

force exerted on the cylinder is proportional to the square of the normal component of the

velocity (the normal direction here is given by the normal vector to the cylinder surface in the

plane defined by the cylinder axis and the far field inlet velocity). Sears [54] theoretically

demonstrated, using boundary layer theory, that the flow past an infinite-length yawed

cylinder is determined by the normal component of the velocity. In other words, the force

on an infinite-length cylinder tilted by an angle θ with respect to the flow direction is identical

to the force on the same infinite-length cylinder in cross-flow with velocity U sin θ. This law

called independence principle (IP) has been widely used to predict the hydrodynamic force

exerted a yawed cylinder. However this principle suffers from limitations summarized in

Zdravkovich [68, p 955] and primarily due to simplifications inherent to its boundary layer

derivation. Moreover its application to yawed cylinders of finite aspect ratio L/D remains

an open question.

Studies of the flow past a finite-length yawed or aligned cylinder (aligned in the sense

that its symmetry axis is parallel to the streamwise direction) are more sparse compared

to the large amount of works on the flow past a cylinder perpendicular to the streamwise

direction. Auguste [2] and Auguste et al. [3] numerically studied the wake past an aligned

cylinder of small aspect ratio 0 ≤ L/D ≤ 1. The Reynolds number selected was in the range

0 ≤ Re ≤ 400. Auguste [2] observed that the critical Reynolds number for the transition to

the unsteady regime varies strongly with the aspect ratio L/D. To the authors’ knowledge,

the bifurcation scenario for L/D > 1 has not been studied so far. Recently Chrust et al.

[8] evidenced the effect of L/D on the wake past aligned spheroids. Ramberg [47] studied

experimentally the flow past free-ended yawed cylinders and yawed cylinders fitted with

endplates at Reynolds number 160 ≤ Re ≤ 1100. He showed that results were very sensitive

to the cylinder end conditions. Recently Vakil and Green [59] performed a complete analysis

based on numerical results of the flow past a yawed cylinder of aspect ratio 2 ≤ L/D ≤ 20

for moderate Reynolds number 1 ≤ Re ≤ 40. They proposed empirical relations for the

drag force and the lift force exerted on the cylinder. They also checked the validity of the

IP. Even if the range of Reynolds number studied was lower than the one required for the
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strict application of the boundary layer theory, they obtained a relatively good agreement

between the values of the drag predicted by the IP and the actual values of the drag for

large θ > 45◦.

A large number of numerical studies on the flow past a solid obstacle, regardless of its

shape and angular position, use a boundary-fitted method in order to optimally compute

the flow in the boundary layer around that obstacle [2, 25, 59]. These methods are very

accurate but not designed to efficiently handle (i) multiple angular positions of a single solid

obstacle of arbitrary shape, (ii) a large number of solid obstacles of arbitrary shape, or (ii)

a single/multiple freely moving rigid bodies. In all these 3 cases, extensive re-meshing is

required, either as a function of the solid obstacle angular position [59] or as a function of the

time dependent position of the particles [23]. For the 3 aforementioned flow configurations,

fictitious domain methods are usually preferred. Indeed, the no-slip boundary condition on

the particle surface and/or the rigid body motion inside the particle volume are imposed

on a fixed Eulerian grid using forcing terms added to the fluid momentum conservation

equation [35]. These methods have proven to be efficient for the flow past multiple rigid

obstacles and the free motion of multiple rigid particles, with a spherical, spheroidal and

angular shape (see Ardekani et al. [1], Uhlmann and Dušek [58], Wachs et al. [63] among

many others).

The investigation reported here, based on about a hundred simulations spanning incli-

nation angles θ from 0◦ to 90◦ and Reynolds numbers from 25 to 250, provides the first

description of the flow past short yawed cylinders of aspect ratio 3. The selected aspect

ratio and Reynolds number ranges are particularly relevant to many chemical engineering

applications. In fact, cylindrical pellets with an aspect ratio around 3 are frequently en-

countered in fixed and fluidized bed reactors. The paper is organized as follows. We present

the governing equations and the numerical procedures in Section . We end this section with

a careful validation of our numerical method by comparing our computed results to the

boundary-fitted results summarized in Appendix . We describe and analyze the flow past a

L/D = 3 yawed cylinder in inertial regimes in Section . A special attention is paid to the

transition between wake regimes as a function of Re and θ. In Section , we attempt to find

simple laws for the drag, lift and torque coefficients in order to provide closure laws needed

by Euler-Lagrange methods. In particular the validity of the IP as models derived in the

Stokes regimes are discussed. Main conclusions and future work are presented in Section .
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NUMERICAL PROCEDURES AND VALIDATION

Computations are performed with our Finite Volume / Fictitious Domain method imple-

mented in our parallel code PeliGRIFF [62, 63]. We have used this method and correspond-

ing code in many flow configurations, including fixed obstacles and freely-moving particles,

with spherical and non-spherical particles, and with or without heat transfer. For the sake

of completeness, we shortly summarize in this section the main features of our fictitious

domain method. The whole numerical method follows almost exactly what we described in

Dorai et al. [13]. The last subsection is dedicated to a detailed validation of the code in the

flow configuration we are interested in here, i.e., the inertial flow past a single cylinder in

an unbounded domain.

Solution algorithm

The three-dimensional unsteady incompressible Navier-Stokes equations with appropriate

initial conditions and boundary conditions subject to the rigid body motion (motionless in

the particular case of the flow problem examined in this paper) constraint in the region

occupied by the cylinder denoted P (and filled with fictitious fluid) are solved by a first-order

Marchuk-Yanenko time splitting solution algorithm. We use a simple two-step splitting: at

each discrete time, we (i) solve the incompressible Navier-Stokes equations and then (ii)

solve the fictitious domain problem to enforce the rigid body motion constraint. Problem (i)

is solved with a classical L2-projection scheme while Problem (ii) is a saddle-point problem

solved by a Uzawa/conjugate gradient algorithm [19, 63]. While the solution of Problem (i)

is second-order accurate in time, the whole solution algorithm is first-order accurate in time

only due to the first-order Marchuk-Yanenko splitting. Please note that the presence of the

explicit forcing term ±fn on the right-hand side of (1a) and (2a) significantly enhances the

coupling of the two sub-problems [63]. f is simply a smoothed equivalent of the distributed

Lagrange multiplier λn associated to the constraint u = 0 in P [63]. At each discrete time

tn+1 where n refers to the discrete time index, we know the fluid velocity un, the pressure

pn and the distributed Lagrange multiplier λn in P , and solve the following equations for

un+1, pn+1 and λn+1 as follows:

• A classical L2-projection scheme for the solution of the Navier- Stokes problem: find
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un+1/2 and pn+1 such that

ρ
ũn+1/2 − un

∆t
− µ

2
∇2ũn+1/2 = −∇pn+

µ

2
∇2un − ρ

2

(
3un · ∇un − un−1 · ∇un−1

)
− fn, (1a)

∇2ψn+1 =
ρ

∆t
∇ · ũn+1/2, (1b)

un+1/2 = ũn+1/2 − ∆t

ρ
∇ψn+1, (1c)

pn+1 = pn + ψn+1 − 1

2

µ∆t

ρ
∇2ψn+1 (1d)

where ρ denotes the fluid density, µ the viscosity and ψn+1 the auxiliary potential. In

(1a), the advection and viscous terms are discretized in time by an Adams-Bashford

scheme and a Crank-Nicholson scheme, respectively.

• A fictitious domain problem: find un+1 and λn+1 such that

ρ
un+1 − un+1/2

∆t
+ λn+1 = fn, (2a)

un+1 = 0 in P (2b)

It can easily be shown [46] that the hydrodynamic force F and torque T exerted on the

cylinder can be expressed as volume integrals over the cylinder P of the distributed Lagrange

multiplier λ as follows:

F =

∫
S

σ · ndS =

∫
P

λdV (3a)

T =

∫
S

r× σ · ndS =

∫
P

r× λdV (3b)

where σ = −pI+2µe is the Newtonian stress tensor, I the identity tensor, e = 1
2
(∇u+∇ut)

the strain-rate tensor, ∇u the velocity gradient tensor, r the position vector relative to the

solid mass center and n the unit vector normal to the cylinder surface S.

Space discretization scheme

(1a)-(1d) are solved on a cartesian grid with a Finite Volume approach. The pressure

is cell-centered while the velocity component i is located at the cell face perpendicular to

direction i. A second order central discretization scheme is employed for the diffusion term
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while the convective term is treated with a total variation diminishing (TVD) scheme and

a Superbee flux limiter. Without any immersed solid body in the flow domain, the overall

space accuracy of the fluid discretization scheme is 2nd order. However due to the presence

of the immersed boundary solid bodies, the method is not fully second order in space [63].

In order to enforce the zero velocity constraint inside the cylinder, we use a collocation

point method in which the basis functions for the distributed Lagrange multiplier are delta

Dirac functions [19, 63]. A set of Lagrangian points is distributed along the surface and inside

the cylinder. Interior points are distributed on the staggered grid at the location of velocity

points. Distributing points uniformly along the cylinder surface, called boundary points, is

much more challenging. The detailed method developed in the PeliGRIFF code is described

in Appendix . To summarize, we divide the cylinder in two main areas : its length and its two

end disks. The surface area defined along the cylinder length is mapped using a diamond-

shaped mesh while the two end disks are mapped with a specific spiral distribution. This

methodology ensures that boundary points are close to uniformly distributed. Regardless of

the body shape, the quasi uniform distribution of boundary points property has proven to

be important for the accurary of the computed solution [63]. Finally, a multi-dimensional

2nd order quadratic reconstruction operator is used to enforce the zero velocity constraint at

the Lagrangian points located on the cylinder surface. The construction of the 3D stencil of

this operator relies on the orientation of the outward normal vector to the particle boundary

and is a key ingredient of the space discretization scheme. It has also proven to significantly

improve the accuracy of the computed solution. The accuracy of our scheme with immersed

solid bodies is between first and second order, depending on the flow configuration, but the

main asset of the multi-dimensional 2nd order quadratic reconstruction operator is that it

does not require any hydrodynamic radius calibration neither for spheres nor for any other

shape [63], and can hence be safely applied to a cylinder here.

The explicit forcing term fn in (1a) and (2a) is computed using the multi-dimensional

2nd order quadratic reconstruction operator for boundary points and is smoothed out for

interior points using a simple hat function defined on a support that spans three grid points

in each direction. This simple procedure has proven to be efficient in all our previous studies

(see Dorai et al. [13], Rahmani and Wachs [46], Wachs et al. [63] among others) and shares

some similarities with the regularized Dirac delta function used by Uhlmann [57] and Kempe

and Fröhlich [29], although in these works a regularized Dirac delta function is employed
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in an IBM fashion to enforce the no-slip boundary condition on boundary points only,

leaving interior points free to flow as a fluid. In our method, since the distributed Lagrange

multipliers λn+1 that implicity enforces the zero velocity contraint in the cylinder use actual

Dirac delta functions as basis functions, the a posteriori computation of the hydrodynamic

force F and torque T exerted on the cylinder is rather straightforward. In fact, computing

F and T at time tn+1 translates into summing the distributed Lagrange multipliers as:

Fn+1 =

∫
P

λn+1dV =

Ni−1∑
j=0

λn+1
j +

Nb−1∑
k=0

λn+1
k (4a)

Tn+1 =

∫
P

r× λn+1dV =

Ni−1∑
j=0

rj × λn+1
j +

Nb−1∑
k=0

rk × λn+1
i (4b)

where Ni and Nb denote the number of interior points and number of boundary points,

respectively.

Computational domain

L

D

x

y

z

θ
U

Inlet Outlet

10De + L/2 cos θ 20De + L/2 cos θ

Lx

Lz = 20De

Ly = 20De + L sin θ
D + L/2 cos θ 6D + L/2 cos θ

Lxb

Lzb = 2D

Lyb = 2D + L sin θ

FIG. 1: Sketch of the computational domain.

The design of a computational flow domain relevant of an unbounded domain and valid in

all studied configurations (various aspect ratios and yawed angles) while keeping its size ”not

too large” is not straightforward. In the following we briefly review several computational

domains used in the past literature. Auguste [2] selected a cylindrical domain whose length
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and radius are 25D and 10D, respectively, where D is the disk diameter. The author focused

on the flow past various disks of aspect ratio varying from 0 to 1. Special attention is paid

to the distance between the disk and the outlet boundary which has to be at least 15D to

avoid errors on the computation of the hydrodynamic force. Inoue and Sakuragi [25] studied

the flow past cylinders perpendicular to the streamwise direction. In their study, the aspect

ratio varied from 0.5 to 100. Their computational domain is a box and the authors defined

five computational domains depending on the range of aspect ratio studied. In particular

the length of the domains in the streamwise direction ranges from 115D to 190D. The

height of the domains, i.e., the domain size in the direction parallel to the cylinder axis,

varies linearly with L as L + 60D. The depth of the domains, i.e., the domain size in the

direction perpendicular to both the cylinder axis and the streamwise direction, is equal to

60D and is thus fixed for all aspect ratios studied. Vakil and Green [59] studied the flow past

a yawed cylinder of variable aspect ratio ranging from 2 to 20. Their computational domain

shares some similarities with the computational domain selected by Inoue and Sakuragi [25].

Indeed both the domain length and the domain height depend on L and are set to 25L and

12L, respectively, while the domain depth is fixed and set to 50D.

In this work, we define the size of our domain using a length proportional to the equivalent

spherical diameter (the diameter of a sphere with same volume as the cylinder): De =

(LD2)1/3. This choice ensures that the domain size changes with the size of the cylinder

while remaining relatively small. This design rule remains valid at least up to L/D = 10 as

discussed later in this section.

Simulations are performed in a cuboid domain (i.e., a box) meshed with an irregular

cartesian grid. (x, y, z) coordinates are defined as follows: x is parallel to the streamwise

direction, y is perpendicular to the streamwise direction in the plane defined by the stream-

wise direction and cylinder axis, z is perpendicular to the plane defined by the streamwise

direction and cylinder axis. The box size is adapted to the cylinder diameter D, to the

cylinder length L and the angular position of the cylinder defined by the angle θ between

the cylinder axis and the streamwise direction. Indeed the length Lx, height Ly and depth

Lz of the box are respectively 30De + L cos θ, 20De + L/2 cos θ and 20De (see Fig. 1). Ly

and Lz are chosen sufficiently large to avoid wall effects for moderate Reynolds numbers.

Lz is defined in such a way that the wake can develop without being perturbed by the

outlet boundary. The domain is divided into two main regions. An inner region around the
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cylinder which is made of regular cells. The size of this subdomain (Lxb, Lyb, Lzb) is specified

in Fig. 1. Lxb is larger downstream of the cylinder to ensure that the near wake is well

captured. The outer region is made of stretched cells of growing size away from the cylinder

that smoothly match the inner region cell size.

Boundary conditions are prescribed as follows. Symmetry boundary conditions are im-

posed on the 4 lateral walls. At the inlet a uniform velocity profile is imposed as u = (U, 0, 0).

The imposition of the outlet boundary condition is not straightforward and different choices

can be found in the literature [45, p. 36]. The choice made in the PeliGRIFF code is to

impose a zero velocity gradient condition ∂u/∂n = 0 and an arbitrary reference pressure

p = pref at the outlet boundary. Such a boundary condition has been used with success by

other authors as, e.g., Kim and Elghobashi [31] to study the unsteady flow past a sphere.

In the following sections, the numerical method described above is applied to the study

of the flow past a finite-length yawed cylinder. The Reynolds number Re = ρUD/µ, the

yaw angle θ and the aspect ratio L/D fully characterize the system. Governing equations

and flow variables are non-dimensionalized by introducing the following scales: D for length,

U for velocity, D/U for time (implying that we employ a convective time scale), ρU2 for

pressure, ρU2/D for Lagrange multiplier and U/D for vorticity. The choice of the length

scale is far from straightforward. Indeed assorted definitions are used in the literature :

Sears [54] used the cylinder length, Vakil and Green [59] used the cylinder diameter and

Hölzer and Sommerfeld [22] used the equivalent diameter. The analysis to come involves

the following dimensionless output parameters:

• The Strouhal number St = fD/U when the wake and the force experienced by the

body are unsteady and periodic. St compares the vortex shedding frequency f to

the flow characteristic frequency U/D. Different ways of measuring f are found in

the literature : local measurement of the oscillation of variables in the wake [25] or

measurement of the oscillation of the lift force [2]. We use the latter definition. When

there is no ambiguity on the orientation of the lift force (i.e., when the wake exhibits

a symmetry plane), we do not specify how we measure St. Otherwise, when the wake

is fully three-dimensional and/or oscillates with multiple frequencies, we elaborate on

how St is measured.

• To characterize the hydrodynamic force and torque exerted on the cylinder, we define
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the classical drag coefficient as CD = Fx/(1/2ρU
2LD) and lift coefficients as CLi =

Fi/(1/2ρU
2LD) , i = (y, z). Those coefficients represent ratios of hydrodynamic force

components to an inertial characteristic force 1/2ρU2LD. LD is proportional to the

lateral surface area of the cylinder. It is common practice to define the drag coefficient

of a bluff body using the surface area of the projection of the body on a plane normal

to the streamwise direction [5, p 339]. Our choice to use LD as the reference surface

area for drag and lift coefficients is guided by two main reasons: (i) when L� D and

θ > 0 the projected surface area of the disk becomes negligible compared to the lateral

surface area of the cylinder, and (ii) since the reference surface area does not depend on

θ, comparison between hydrodynamic force and torque at different yaw angles is made

simpler. Accordingly, the torque coefficient CT is defined as CT = T/(1/2ρU2L2D).

• The wake is visualized using the Q criterion [24] defined as follows:

Q =
1

2
(eijeij − ωijωij) (5)

where eij = 1/2(∂ui/∂xj + ∂uj/∂xi) and ωij = 1/2(∂ui/∂xj − ∂uj/∂xi) are the com-

ponents of the strain-rate and vorticity tensors, respectively.

In all computations the dimensionless time step is set to ∆t = 1.25 × 10−2 in order to

(i) satisfy the CFL condition and (ii) make the splitting error tolerable. Each simulation

is run over a dimensionless time interval at least equal to t = 100. When the flow is

unsteady and periodic, simulations are run until the system has experienced at least six

periods of oscillation. Time-averaged quantities are denoted with an overline symbol, i.e.,

time-averaged value of x is denoted x.

In order to evaluate the influence of the domain size on the numerical results, the flow

past a (L/D = 10, θ = 90◦) cylinder at Re = 100 is computed with 2 different domain sizes:

(i) the domain as defined in Fig. 1 and (ii) a domain 1.5 larger in all directions. We keep

the same grid size in the inner region around the cylinder for the 2 domains. The selected

grid size corresponds to 32 grid points over the cylinder diameter. This space resolution

is enough at Re = 100 to capture well the viscous boundary layer that develops along the

cylinder surface. Results obtained with the two domains are compared to each other and to

those of Inoue and Sakuragi [25]. Tab. I shows that the difference between our 2 domains is

less than 1% for both the drag coefficient CD and the Strouhal number St. Our computed
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Domain CD St

Medium 3.753 0.1280

Large 3.789 0.1289

Inoue and Sakuragi [25] - 0.1235

TABLE I: Drag coefficient CD = Fx/(1/2ρU
2LD) and Strouhal number St = fD/U for

two domain sizes. The medium domain is the one shown in Fig. 1. The large domain is

1.5 larger in all directions. Data of Inoue and Sakuragi [25] are taken as reference.

St matches very well St computed by Inoue and Sakuragi [25], the relative error being about

to 3.5%. The domain size as defined in Fig. 1 is thus used for all computations presented

in this paper.

Flow past a L/D = 1 cylinder with θ = 0 : comparison with boundary fitted mesh

results

In this section we compare our results to results presented in Appendix obtained with

a boundary-fitted method implemented in the JADIM code from IMFT that enables one

to adopt an arbitrarily fine body-fitted mesh in the boundary layer around the cylinder.

The JADIM numerical solution is hence deemed to be a reference solution. A cylinder of

aspect ratio L/D = 1 aligned with the streamwise direction is considered. To demonstrate

the ability of our approach to properly describe the flow past a yawed cylinder, we select 5

Reynolds numbers Re = 25, 50, 100, 200, 360 covering both the stationary regime with axial

symmetry and the unsteady vortex shedding regime.

Tab. II shows CD and the recirculation length lr for Re = 25, 50, 100, 200 (stationary

regime) as a function of grid size. lr is measured from the downstream tip of the cylinder to

the downstream tip of the eddy. The downstream tip of the eddy is fitted with a fourth-order

polynomial. The error on CD using the coarsest grid (16 grid points per cylinder diameter)

is less than 3.5% except for Re = 200. Since the thickness of the boundary layer scales

as O(D/Re1/2), there is approximatively one grid point in the viscous boundary layer at

Re = 200. This is far from being sufficient, since even for boundary fitted mesh about 3

to 5 five grid points are necessary to accurately describe the viscous boundary layer [2].
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CD E(CD)% lr E(lr)%

Re = 25 Auguste [2] 9.2868 - 0.430

16 cells/D 9.4441 1.6933 0.453 5.35

32 cells/D 9.3591 0.77811 0.447 3.84

Re = 50 Auguste [2] 6.1591 - 0.720 -

16 cells/D 6.2668 1.7486 0.741 2.99

32 cells/D 6.2034 0.72013 0.732 1.67

Re = 100 Auguste [2] 4.2210 - 1.12 -

16 cells/D 4.3533 3.1338 1.17 4.02

32 cells/D 4.2532 0.76104 1.14 1.43

Re = 200 Auguste [2] 2.9468 - 1.630 -

16 cells/D 3.2466 10.173 1.86 14.1

32 cells/D 3.0324 2.9033 1.68 2.79

TABLE II: Comparison of the drag coefficient CD and length of standing eddy lr given by

our numerical method and the boundary-fitted method used in Appendix for

25 ≤ Re ≤ 200. The number of cells distributed along the cylinder diameter varies from 16

to 32. E(CD) and E(lr) represent the relative error on the drag coefficient and the relative

error on the length of the standing eddy, respectively.

The error on lr using the coarsest grid is larger than 3% for all Reynolds numbers. This

error decreases significantly using a twice finer grid (32 grid points per cylinder diameter).

However, we note that the error made on lr is still higher than 3% for Re = 25. The increase

of numerical errors for low Reynolds number flows is pointed out by Wachs et al. [63] [Note1]

and is often associated to the operator splitting error that scales as ∆t/Re [41].

Fig. 2 shows the vortex shedding behind the cylinder at Re = 360. The wake exhibits a

planar symmetry in the (x, y) cut plane containing the cylinder axis. Hairpin vortices are

shed periodically behind the cylinder. This type of wake is a distinctive feature of wake

instability and has been observed in the literature for the flow past a sphere [52], the flow

past a cylinder [25] and even when a sphere crosses a fluid-fluid interface [42]. The vortex

structure is single-sided, i.e., hairpin vortices always rotate in the same direction. Moreover,

vortices are all shed with the same orientation which induces an averaged non-zero lift force
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FIG. 2: Wake pattern past a L/D = 1 cylinder aligned with the streamwise direction at

Re = 360. 96 cells are distributed along the cylinder diameter. The wake is visualized

using the Q criterion. Isosurfaces of Q = 10−3 are shown and are coloured by the

horizontal vorticity ranging from −0.2 to 0.2.

on the cylinder (the direction of the lift force is defined unambiguously in that case owing

to the wake symmetry plane).

CD E(CD)% St E(St)%

Re = 360 Auguste [2] 0.578 - 0.118 -

16 cells/D 0.808 39.8 - -

32 cells/D 0.678 17.3 0.124 4.67

64 cells/D 0.609 5.44 0.118 0.113

96 cells/D 0.597 3.36 0.117 0.762

TABLE III: Comparison of the drag coefficient CD and Strouhal number St given by our

numerical method and the boundary-fitted method used in Appendix for Re = 360. The

number of cells distributed along the cylinder diameter varies from 16 to 96. E(CD) and

E(St) represent the relative error on the drag coefficient and the relative error on the

Strouhal number, respectively.

Tab. III shows CD and St for Re = 360 as a function of grid size. For the coarsest grid

(16 grid points per cylinder diameter) the error on CD is close to 40%. Moreover, vortices

are shed randomly and prevent from defining a characteristic vortex shedding frequency, and

hence St. The error on CD is less than 20% for a grid size corresponding to 32 grid points

per cylinder diameter. The wake (not shown here) consists of hairpin vortices which are not

shed periodically. Indeed a second frequency manifests in the wake (close to one fourth of

the expected frequency) and is a pure numerical artefact. It remains possible to define St

based on the highest frequency, the resulting error is less than 5%. The spurious frequency

disappears when using a grid size corresponding to 64 grid points per cylinder diameter. For
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that case, Tab. III shows that the error on CD is about 5% while the error on St is less than

1%. For the finest grid corresponding to 96 grid points per cylinder diameter, the error on

CD is less than 3.5%.

To summarize the findings of our mesh sensitivity analysis on cases representative of our

physical analysis in the rest of this paper, it is necessary to distribute at least 3-4 grid points

in the boundary layer around the cylinder (estimated as D/Re1/2) to accurately describe

the flow regimes we are interested in. When this condition is satisfied, our fictitious domain

method yields accurate results for the flow past a yawed cylinder. Thereby, for the range

of Re ∈ [25, 250] we intend to investigate in this paper, we use either 32 grid points per

cylinder diameter for the low 25 ≤ Re ≤ 100 cases, 48 grid points per cylinder diameter for

the moderate 100 < Re < 150 cases, and 64 grid points per cylinder diameter for the high

Re ≥ 150 cases. Corresponding meshes comprise between 10 to 100 millions of grid cells.

FLOW PAST A YAWED L/D = 3 CYLINDER

We now investigate the flow past a L/D = 3 cylinder for Reynolds numbers Re ∈ [25, 250]

and yaw angles θ ∈ [0◦, 90◦]. In total, more than eighty well resolved simulations are

performed.

Fig. 3 illustrates the hydrodynamic regimes observed in a (Re, θ) plane. Colour areas

delineate the regimes based on symmetry and unsteadiness. Three different temporal regimes

are encountered: steady, periodic and unsteady. The regime is called periodic when the

wake unsteadiness is predominantly governed by a unique frequency, otherwise it is called

unsteady. Three types of symmetry can also be defined: (i) x axial symmetry, (ii) (x, z)

horizontal reflectional planar symmetry, and (ii) (x, y) vertical reflectional planar symmetry.

We observe seven regimes classified by unsteadiness and symmetry properties in Fig. 3. For

θ = 0◦, due to the specific geometric configuration, the wake is steady and axisymmetric

for all Re studied. It is likely that the axisymmetry will be broken for sufficiently higher

Re > 250 as observed for the L/D = 1 cylinder (see Appendix ). For θ > 0◦ the axisymmetry

is intrinsically broken but the wake keeps a steady vertical symmetry plane. This regime

(in yellow in Fig. 3) is the most frequently observed regime for the range of Re studied.

We also would like to shortly underscore the specific symmetry observed when the cylinder

is perpendicular to the flow direction, i.e., θ = 90◦. Indeed for Re < 125 and θ = 90◦ the
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FIG. 3: Wake patterns past a L/D = 3 cylinder as function of θ and Re. Coloured areas

represent regimes by symmetry and unsteadiness. Blue : steady axisymmetric wake, yellow

: steady symmetric wake with respect to the (x, y) plane, purple : steady wake with two

symmetry planes ((x, y) and (x, z)), green : periodic wake with one symmetry plane (x, y),

red : periodic wake with one symmetry plane (x, z), brown : periodic shedding of

quasi-symmetric double-sided hairpin vortices, cyan : 3D unsteady wakes. � : steady

standing eddy or toroidal vortex, × steady shedding of one counter-rotating vortex pair, +

steady shedding of 2 counter-rotating vortex pairs, � steady shedding of 2 symmetric

counter-rotating vortex pairs, 4 periodic shedding of 2 counter-rotating vortex pairs

((x, y) symmetry plane), O periodic shedding of one counter-rotating vortex pair ((x, y)

symmetry plane), � periodic shedding of 2 counter-rotating vortex pairs ((x, z) symmetry

plane), N periodic shedding of single-sided hairpin shaped vortices, • periodic shedding of

symmetric double-sided hairpin shaped vortices ((x, z) symmetry plane), ∗ unsteady

shedding of asymmetric double-sided hairpin shaped vortices, � periodic shedding of

quasi-symmetric double-sided hairpin vortices.

wake has two symmetry planes (purple region in Fig. 3). The onset of unsteadiness for all

yaw angles is characterized by the emergence of a unique frequency, therefore those regimes

are called periodic (green, red and brown regions in Fig. 3). Except for θ = 60◦, the onset
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of periodicity as a function of Re is characterized by the appearance of one reflectional

symmetry plane. The brown region in Fig. 3 is very specific in the sense that it is periodic

but without a clear wake symmetry. It is called quasi-symmetric since each wake structure

shed is almost parallel and its centroid follows a straight line. For the highest Re and θ,

symmetry and periodicity are completely lost and three-dimensional structures manifest in

the wake (cyan region in Fig. 3).

We also found three main wake patterns: standing eddy, longitudinal vortex pairs and

hairpin shaped vortices. Hence to summarize, if we include wake pattern in the classifica-

tion of regimes, we have found 10 regimes identified as symbols in Fig. 3. These various

hydrodynamic regimes and their associated transitions are hereafter detailed and discussed.

In order to make the discussion as clear as possible, we discuss the flow regime map based

on increasing Re for decreasing ranges or specific values of θ.

θ = 90◦

FIG. 4: Two steady symmetric counter-rotating vortex pairs at (θ = 90◦, Re = 100).

Q = 0.01 isosurfaces are coloured by the longitudinal vorticity ranging from −0.1 to 0.1.

The dark lines starting at the centre of the cylinder indicate the cylinder axis and the

streamwise direction.

Two steady symmetric counter-rotating vortex pairs Up to Re ≈ 120 (Fig. 3, �), the

flow structure past the solid body oriented perpendicularly to the flow direction presents two

steady symmetric counter-rotating vortex pairs displayed in Fig. 4. The regime is steady

and symmetric with respect to the (x, y) vertical plane and (x, z) horizontal plane. The

singular symmetric nature of the four vortices induces a zero-value of the lift force in both

y and z directions. This wake pattern has been previously described by Inoue and Sakuragi

[25].

Periodic shedding of 2 counter-rotating vortex pairs From Re & 125, the flow becomes

unsteady and a periodic symmetric vortex shedding manisfests, as presented in Fig. 5. The
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FIG. 5: Periodic shedding of two symmetric counter-rotating pairs at (θ = 90◦, Re = 125).

The time interval between two frames is ∆t = 5. Q = 0.004 isosurfaces are coloured by the

longitudinal vorticity ranging from −0.2 to 0.2. The dark lines starting at the centre of the

cylinder indicate the cylinder axis and the streamwise direction.

nature of the symmetry described above for (θ = 90◦, Re < 120) is altered and the (x, y)

vertical symmetry is broken by an unsteady mode while the horizontal symmetry plane is

kept. Fig. 7a displays the force diagram for Re = 125. The lift force along z oscillates

around a near-zero mean value (CLz = 1.136 × 10−4) with a low amplitude. The unsteady

character of the solution has a weak impact on the drag force and the attractor looks like a

vertical line. The lift force along y is zero in agreement with the wake symmetry. The two

pairs of vortices are wavy and oscillate with a dimensionless frequency Stz = 0.109 given

by a Discrete Fourier Transform (DFT) analysis. The range of existence of this mode as a

function of Re is narrow (Fig. 3, �).

FIG. 6: Periodic shedding of double-sided horizontal hairpin vortices at

(θ = 90◦, Re = 150). Q = 0.008 isosurfaces are coloured by the longitudinal vorticity

ranging from −0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the

cylinder axis and the streamwise direction.

Periodic shedding of symmetric double-sided hairpin shaped vortices A transition occurs

for Re ≈ 135. The wake pattern exhibits hairpin shaped vortex shedding (Fig. 3, •). Fig. 6

shows the flow structure obtained for Re = 150. The hairpins are double-sided in the sense

that alternated vortices of opposite rotational direction but of similar intensity are shed

periodically. Our results agree well with the results of Inoue and Sakuragi [25]. In fact,
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FIG. 7: CD − CLz diagrams for the symmetric shedding of double-sided hairpin vortices at

(θ = 90◦): (a) Re = 125, (b) Re = 150, (c) Re = 175.

Inoue and Sakuragi [25] also observed two pairs of counter-rotating vortices for Re = 100

and symmetric double-sided hairpin vortex shedding for Re = 150.

The CD −CLz diagram for Re = 150 presented in Fig. 7b shows an attractor displaying

an ”eight” shape. The lift force mean value in the z direction is CLz = 2.5 ·10−4 and remains

negligibly small. This implies, as observed on the wake pattern, that the hairpin vortices

shed from both sides of the cylinder have the same intensity. The CLz oscillations amplitude

is large in comparison to the CD oscillations amplitude. Moreover, the CLz oscillations

amplitude is one order of magnitude larger than the CLz oscillations amplitude observed

for (θ = 90◦, Re = 125). The emergence of hairpin vortices is related to an increase of

the vortex intensity and is a distinguishable signature of the unsteady mode. The Strouhal

number Stz = 0.118 is close to Stz found in the regime (θ = 90◦, Re ≈ 120). The CD and

CLz oscillations are slightly out of phase since the extrema of CD occurs slightly shifted with

respect to the extrema of CLz. CD oscillates with a dimensionless frequency Stx = 0.236

equal to twice the leading dimensionless frequency in agreement with the symmetry observed

for the wake pattern. The lift force in the y direction is almost negligible in that case.

Unsteady shedding of asymmetric double-sided hairpin shaped vortices The Re = 175

force diagram shown in Fig. 7c reveals the appearance of several frequencies in the wake.

The leading dimensionless frequency along the transverse direction Stz = 0.115 is close to

Stz found in the regime (θ = 90◦, 135 . Re < 175). A low frequency Stz,low = 0.039

of smaller amplitude also emerges. The drag force DFT shows a dominant dimensionless

frequency Stx = 0.272 close to twice the leading dimensionless frequency in the transverse

z direction and a low dimensionless frequency Stx,low = 0.0264. The y lift force amplitude,
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i.e., CLy, is still weak (not shown here for the sake of conciseness) and of the order of one

hundred times lower than CLz but is nonetheless increasing with Re. The regime observed

for Re = 175 can be seen as a transitional regime separating the shedding of symmetric

hairpin vortices regime and the fully 3D wake regime.

FIG. 8: 3D unsteady regime dominated by the shedding of horizontal double-sided hairpin

vortices at (θ = 90◦, Re = 250). The time interval between two frames is ∆t = 5.

Q = 0.008 isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2.

The dark lines starting at the centre of the cylinder indicate the cylinder axis and the

streamwise direction.

For Re & 200, the force and torque diagrams reveal chaotic solutions and a clear loss of

the (x, z) reflectional planar symmetry. This wake is characterized by pseudo-chaotic flow

structures (Fig. 3, ∗) and asymmetric double-sided hairpin vortices displayed in Fig. 8.

Even if the solution becomes chaotic, the non-isotropic body geometry does not create a fully

3D behaviour of the flow in the near-wake. However the asymmetry is more pronounced as

Re increases. Finally the wake patterns for θ = 90◦ is similar to the wake pattern observed

for lower θ in the range [70◦, 90◦] as shown in the next section.
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FIG. 9: Force and torque coefficient diagrams for the 3D unsteady regime dominated by

the shedding of horizontal double-sided hairpin vortices at (θ = 90◦, Re = 250).

For Re = 250. the CD and CLz oscillations amplitudes are at least one order of magnitude

21



larger than the ones obtained for (θ = 90◦, Re = 175). The vortex shedding process is much

more energetic. The y lift force oscillation amplitude increases with Re to reach a value

close to the z lift force oscillation amplitude, in other words CLy is getting closer to CLz.

A DFT analysis of the z lift force for Re = 200 gives a dominant dimensionless frequency

Stz = 0.115 similar to the dimensionless frequency observed for lower Re. Consequently the

leading frequency is weakly dependent on Re in the range [125, 200]. For Re = 250, the more

energetic unsteady mode has a dimensionless frequency Stz = 0.152, approximatively 32%

higher than for all lower Re unsteady regimes investigated. However, due to the numerous

other frequencies appearing in the wake, the definition of St is not straightforward. The

y lift force DFT gives Sty,Re=200 = 0.045 and Sty,Re=250 = 0.046. These pseudo-dominant

dimensionless frequencies are at least twice smaller than the pseudo-dominant dimensionless

frequency in the z direction. For Re ≤ 175, the associated torque magnitude in the z

direction remains weak (not shown here for the sake of conciseness) while for Re & 200

the associated diagram presented in Fig. 9c shows a distinct and large torque. The torque

oscillations amplitude, i.e., the CTz oscillations amplitude, increases with Re and reaches a

value close to the CLy oscillations amplitude at Re = 250. These strong torque oscillations

might explain the oscillations of the inclination angle observed experimentally for a L/D = 3

cylinder falling under gravity for the same Reynolds number by Toupoint et al. [56].

70◦ ≤ θ < 90◦

Two pairs of steady counter-rotating vortices For θ ∈ [70◦, 90◦[ and for Re ∈ [25; 125]

(Fig. 3, +), we observe two steady pairs of counter-rotating vortices past the yawed

cylinder[Note2]. Unlike the θ = 90◦ cases, the horizontal symmetry is intrinsically bro-

ken by the body inclination. The bifurcation associated with this symmetry loss appears

to be regular without hysteresis. The two pairs of vortices still have an opposite rotational

direction but their intensity and shape differ as illustrated in Fig. 10a. The magnitude

of the top vortex pair is lower than the magnitude of the bottom vortex pair. In this θ

range, the difference of magnitude between the two pairs increases with decreasing θ. The

asymmetry is also identifiable in Fig. 10b. The streamlines obtained using a projected

velocity field in a plane perpendicular to the streamwise direction located a few diameters

downstream of the cylinder are shown. The rotational direction of each vortex is alternated.
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(a) (b)

FIG. 10: Two pairs of asymmetric counter-rotating vortices at (θ = 75◦, Re = 100). (a)

Q = 0.01 isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2.

The dark lines starting at the centre of the cylinder indicate the cylinder axis and the

streamwise direction. (b) Streamlines in a (y, z) plane perpendicular to the x streamwise

direction located at 5D from the x coordinate of the cylinder mass center.

The flow structure induces a non-zero value of the lift force in the y direction.

FIG. 11: Periodic shedding of two asymmetric counter-rotating vortex pairs at

(θ = 80◦, Re = 150). The time interval between two frames is ∆t = 10. Q = 0.004

isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2. The dark

lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise

direction.

Periodic shedding of two counter-rotating vortex pairs For Re > 125, a periodic solution

appears. The onset of unsteadiness with respect to Re is delayed by the horizontal symmetry

loss. Indeed, while the first unsteady regime appears for θ ≈ 90◦ at Re = 125, it only appears

at Re ≈ 160 for θ = 85◦. For smaller yaw angles θ < 85◦, the critical Reynolds number

related to the appearance of unsteadiness decreases with decreasing θ (Fig. 3).

As shown in the two snapshots in Fig. 11 for (θ = 80◦, Re = 150), the wake structure

oscillates. The top pair of vortices has a smaller magnitude than the bottom pair of vortices.

During the whole sequence, one bottom pair of vortices and one top pair of vortices are shed.

The intensity of the longitudinal vorticity oscillates and consequently the vortex filaments
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visually disappear depending on the Q criterion value. This regime is here called periodic

shedding of two counter-rotating vortex pairs (Fig. 3, 4).

FIG. 12: Periodic shedding of single-sided hairpin vortices at (θ = 75◦, Re = 150).

Q = 0.004 isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2.

The dark lines starting at the centre of the cylinder indicate the cylinder axis and the

streamwise direction.

Periodic shedding of single-sided hairpins vortices Right after the steady-periodic tran-

sition, i.e., for slightly lower θ or slightly larger Re, we observe the shedding of single-sided

hairpin vortices (Fig. 3, N). The hairpin vortices are shed in the y direction and have the

same orientation, as illustrated in Fig. 12 for (θ = 75◦, Re = 150). The vertical symmetry

is preserved. This regime is called single-sided since, contrary to the double-sided regime,

the hairpin vortices shed periodically have always the same rotational direction.

The first two unsteady regimes observed for this range of yaw angles (4 and N in Fig. 3)

are similar to the regime observed in the case of the flow past a sphere for Re ∈ [210; 300]

[52]. The periodic shedding of single-sided hairpin vortices is also observed for L/D = 1 and

(θ = 0◦, Re = 360), and described in Appendix .
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FIG. 13: Force and torque coefficient diagrams for the periodic shedding of single-sided

hairpin vortices at (θ = 75◦, Re = 150): (a) CD − CLy and (b) CD − CTz.

The CD − CLy diagram of this regime shown in Fig. 13a displays a single loop with a

pointed extremity at the left top corner. This ”pointed-like” behaviour increases with Re
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(at Re = 135, we observe a simple loop and no pointed extremity) and is observed for all

the cases of shedding of single-sided hairpin vortices. The loop travels anticlockwise. The

maximum of CLy happens slightly before the maximum of CD (not easy to see in Fig. 13a).

The CD−CTz diagram shown in Fig. 13b also reveals a single loop with a pointed extremety.

The shift in time between the maximum of CTz and the maximum of CD is more visible on

the top right corner of the loop. Force and torque are governed by a unique dimensionless

frequency Sty = 0.0478. This frequency is close to the frequency encountered for Re = 135

(Sty,Re=135 = 0.045).

Unsteady shedding of asymmetric double-sided hairpin vortices The value of Re corre-

sponding to the transition between planar symmetry regimes and fully 3D regimes does not

vary much when 70◦ ≤ θ < 90◦. Indeed, the transition always occurs around Re ≈ 175.

However, the 3D wake pattern noticeably changes with Re and θ. This 3D regime region is

characterized by the emergence of multiple frequencies in the wake. Two different cases are

chosen to illustrate the different behaviours observed: (θ = 85◦, Re = 175) which is near the

transition and (θ = 75◦, Re = 200) that exhibits a fully developed unsteady 3D wake. We

define the shedding angle as the angle between the axis belonging to the symmetry plane of

each vortex and passing through its extremity, and the horizontal axis passing through the

body center.

FIG. 14: Unsteady shedding of asymmetric double-sided hairpin vortices at

(θ = 85◦, Re = 175). The time interval between two frames is ∆t = 5. Q = 0.008

isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2. The dark

lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise

direction.

Comparing Fig. 14 and Fig. 8 highlights that the shedding angle for (θ = 85◦, Re = 175)
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is smaller than the shedding angle for (θ = 90◦, Re = 250). Vortices are thus shed more

”longitudinally” in the former case than in the latter case. Fig. 14 displays the location

and orientation of the vortex oscillations in time in the y direction. We observe that some

hairpin vortices are slightly tilted with respect to others.
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FIG. 15: Force and torque coefficient diagrams for the 3D unsteady regime dominated by

the shedding of asymmetric double-sided hairpin vortices at (θ = 85◦, Re = 175).

According to the CD − CLz force diagrams shown in Fig. 15a, the attractor looks like a

butterfly. A DFT analysis of CLz gives a leading dimensionless frequency Stz = 0.0708 and

a low dimensionless frequency Stz,low = 0.022 of smaller amplitude. The DFT analysis of CD

gives Stx = 0.0472. These three non-harmonic frequencies explain the complicated but still

identifiable modes of interaction in the CD−CLz diagram. The CD−CLy (respectively CD−

CTz) force diagram plotted in Fig. 15b (respectively c) shows a quasi-periodic attractor with

a non-zero mean value of the lift force (respectively torque). The dimensionless frequency

of the y lift force oscillations Sty = 0.0488 for (θ = 75◦, Re = 175) is really close to Sty

for (θ = 75◦, Re = 150). Moreover CD and CLy are almost in phase since the extrema

of both occur at the same time. CLz is much smaller than CLy, which indicates that the

symmetry breaking and associated frequencies do not significantly impact the dynamics in

the vertical direction. To conclude, the wake pattern and the force/torque diagrams for

(θ = 85◦, Re = 175) indicate that this regime can be summarized as a superposition of

two unsteady modes: double-sided hairpin shedding in the z direction and an asymmetric

pattern in the y direction that follows from the shedding of single-sided hairpin vortices

observed at lower Reynolds numbers.

Fig. 16 displays the wake structure for (θ = 75◦, Re = 200). In comparison to (θ =

85◦, Re = 175), vortices downstream of the body in the near wake and the far wake appear

more interlaced and chaotic. The mean shedding angle (i.e., vortex inclination) is also more
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FIG. 16: Unsteady shedding of asymmetric double-sided hairpin vortices at

(θ = 85◦, Re = 175). The time interval between two frames is ∆t = 5. Q = 0.004

isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2. The dark

lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise

direction.

pronounced.
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FIG. 17: Force and torque coefficient diagrams for the 3D unsteady regime dominated by

the shedding of asymmetric double-sided hairpin vortices at (θ = 75◦, Re = 200).

The chaotic nature of the flow is markedly visible in the force/torque diagrams presented

in Fig. 17a-c. The CD − CLz diagram plotted in Fig. 17a shows a kind of wool ball shape

while the CD − CLy and CD − CTz diagrams show a more distinct signal that looks like

a disturbed height shape. These shapes differ significantly from the shapes observed for

(θ = 85◦, Re = 175). The magnitude of the CLz and CLy coefficients are about one order of

magnitude larger than for (θ = 85◦, Re = 175). The CLz oscillations amplitude is similar to

the CLy oscillations amplitude. Therefore the (x, y) symmetry plane is distinctly broken. The

mean value of CLz approaches zero, i.e., CLz ' 0. The dimensionless frequency of the y and
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z lift force oscillations are Sty = 0.0516 and Stz = 0.1288, respectively. At least two vortices

are shed during one oscillation period in the y direction. Sty for (θ = 85◦, Re = 200) is close

to Sty for (θ = 85◦, Re ≤ 175). As for (θ = 85◦, Re = 175), and despite its apparent chaotic

nature, the case (θ = 75, Re = 200) can be seen as the superposition of two unsteady modes

: one along y and the other along z. The chaotic interaction between these perpendicular

modes is representative of the cyan coloured region in Fig. 3 called 3D unsteady regime.
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FIG. 18: Strouhal number St as a function of the yaw angle θ at Re = 150 (+), Re = 160

(×), Re = 175 (∗) , Re = 200 (�) and Re = 225 (5: (left) oscillations in the y vertical

direction, (right) oscillations in the z horizontal direction.

Evolution of the Strouhal number Figs. 18a and b present the Strouhal numbers for

65◦ ≤ θ ≤ 90◦ and 150 ≤ Re ≤ 250 [Note3], respectively. In these ranges 4 unsteady regimes

occur: periodic shedding of one or two pairs of counter-rotating vortices, periodic shedding

of single-sided hairpin vortices and unsteady asymmetric shedding of double-sided vortices.

For all Re studied, Sty exhibits a decreasing trend when θ increases as shown in Fig. 18a. A

slight increase of Sty with Re for all θ ∈ [65◦, 90◦] is also observed for 150 ≤ Re ≤ 175. Stz

decreases with the increase of θ for θ ∈ [65◦, 85◦] and slightly increases with the increase of θ

for θ ∈ [85◦, 90◦], as shown in Fig. 18b. This interesting trend is contradictory to what the

IP predicts, where Stz is supposed to behave as sin θ and hence to constantly increase [47].

The possible reason explaining this discrepancy is that L/D = 3 is not sufficiently large to

apply the IP theory. For θ ∈ [75◦, 90◦] and Re ∈ [175, 225], Stz increases strongly with Re.

Comments on the θ = 70◦ case So far, we have not discussed the case of the yaw

angle θ = 70◦. Indeed this yaw angle and its associated regimes are indeed at the transition

between regimes observed for 70◦ ≤ θ < 90◦ and 60◦ ≤ θ < 70◦. At this stage, we can say the

28



following. For θ ' 70◦, the single-sided hairpin vortex shedding regime is the first unsteady

regime encountered after the steady pair of counter-rotating vortices regime (detailed in

the next section). A more refined analysis in the range Re ∈ [125; 135] might show an

intermediate regime corresponding to the periodic shedding of one pair of counter-rotating

vortices (also detailed in the next section). Nevertheless, we have decided to classify this

specific yaw angle θ = 70◦ in the 70◦ ≤ θ < 90◦ category as most transitions observed for

70◦ ≤ θ < 90◦ do also occur for θ ' 70◦ and in particular the transition between single-sided

hairpin vortices and unsteady shedding of double-sided hairpin vortices.

60◦ ≤ θ < 70◦

Steady shedding of a pair of counter-rotating vortices For 60◦ ≤ θ < 70◦ and Re . 125,

the steady state solution with a vertical symmetry plane changes markedly as illustrated in

Fig. 3. Indeed for θ > 65◦ we preferentially found double pairs of counter-rotating vortices

while for θ ≈ 60◦ we found a single pair of counter-rotating vortices. No hysteresis is found

between these two regimes: the extra vortex pair, visualized with the Q criterion, slowly

vanishes as θ decreases. No symmetry-breaking and no loss of steadiness are associated with

this transition. Therefore this transition is not a real bifurcation (or an interaction with an

additional unstable mode) but only a continuous and smooth evolution of the wake pattern.

(a) (b)

FIG. 19: One steady counter-rotating vortex pair at (θ = 45◦, Re = 75): (a) Q = 0.004

isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2. The dark

lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise

direction. (b) Streamlines in a (y, z) plane perpendicular to the x streamwise direction

located at 5D from the x coordinate of the cylinder mass center.

The single pair of counter-rotating vortices regime is also the regime that prevails for
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Re . 125 and lower yaw angles 0◦ < θ ≤ 60◦. In fact, Fig. 19a shows a pair of counter-

rotating vortices in the wake of the cylinder for (θ = 45◦, Re = 75) that looks like the

arms of a squid. This regime has been observed for the flow past a sphere by Johnson and

Patel [28], past L/D ≥ 20 long cylinders with flat ends by Ramberg [47] and past long

pointed-end cylinders at high Reynolds numbers and small yaw angles by [17]. This pattern

is also called bifid wake by [18] in the case of the flow past a sphere. In Fig. 19a, the

region below the cylinder also presents a distinctive bulge of opposite vorticity contours.

The entire wake keeps a (x, y) reflectional planar symmetry. Fig. 19b shows the streamlines

of the projected velocity in a plane perpendicular to the streamwise direction located a

few diameters downstream of the cylinder for (θ = 45◦, Re = 75). We can clearly see two

opposite longitudinal vortices.

Onset of unsteadiness The critical Reynolds number for onset of unsteadiness increases

markedly when decreasing θ for 60◦ ≤ θ < 70◦ as depicted in Fig. 3. For Re ∈ [125; 185],

depending on θ, we observe two different transitions to unsteadiness. For θ = 65◦, we

observe a transition from steady shedding of one counter-rotating vortex pair to periodic

shedding of one counter-rotating vortex pair while for θ = 60◦ we observe a transition

from steady shedding of one counter-rotating vortex pair to quasi-symmetric shedding of

double-sided vortices. Moreover, the path to the 3D unsteady regime when increasing Re

is particularly complex for θ = 65◦. With increasing Re, we found the following succession

of regimes: periodic shedding of one pair of counter-rotating vortices, periodic shedding

of single-sided hairpin vortices and eventually quasi-symmetric shedding of double-sided

vortices. Reasoning in term of bifurcations, this region Re ∈ [125; 185] is a battlefield of at

least one steady mode and two unsteady modes. These multiple interactions and associated

bifurcations are currently unclear and we would like to point out that this (Re, θ) region

may reveal other solution types. In the following the new regimes observed in that region

are described and a very brief discussion is provided on the transition scenario.

Periodic shedding of a pair of counter-rotating vortices This regime occurs for (θ =

65◦; Re = 135) and is characterized by a vertical symmetry plane. Fig. 20 illustrates the

wake pattern observed in that case. In comparison to the steady shedding of one counter-

rotating vortex pair, the pair of vortices here twists with respect to their center line. The

dimensionless vortex shedding frequency is Sty = 0.067

When Re increases, periodic shedding of a pair of counter-rotating vortices transitions
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FIG. 20: Periodic shedding of one counter-rotating vortex pair at (θ = 65◦, Re = 135).

The time interval between two frames is ∆t = 5. Q = 0.004 isosurfaces are coloured by the

longitudinal vorticity ranging from −0.2 to 0.2. The dark lines starting at the centre of the

cylinder indicate the cylinder axis and the streamwise direction.

to shedding of single-sided hairpin vortices. This shedding of single-sided hairpin vortices

regime and the associated transition are similar to what we observed for 70◦ ≤ θ < 90◦

and have been described in details in Section . We observe another bifurcation in the range

150 ≤ Re ≤ 175 that leads to quasi-symmetric shedding of double-sided hairpin vortices.

This regime takes place after a very long transient regime characterized by the shedding of

single-sided hairpin vortices. This transition is quite unusual in the present context, since the

wake (steady for θ = 60◦ or periodic for θ = 65◦) looses entirely its vertical planar symmetry

to reach a quasi-symmetric regime characterized by a zero y lift force. This unsteady regime

prevails for 60◦ ≤ θ < 65◦ and Re > 175.

FIG. 21: The ”accordion fold” regime or periodic shedding of quasi-symmetric

double-sided hairpin vortices at (θ = 60◦, Re = 200). Q = 0.008 isosurfaces are coloured by

the longitudinal vorticity ranging from −0.2 to 0.2. The dark lines starting at the centre of

the cylinder indicate the cylinder axis and the streamwise direction.
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Periodic shedding of quasi-symmetric double-sided hairpin vortices Fig. 21 shows two

perpendicular views of the typical wake pattern observed for 60◦ ≤ θ < 65◦ and Re > 175,

i.e., in the brown region in Fig. 3. The 3D vortex structures are well organized even if

no symmetry plane can be rigorously defined. The hairpins shed from both sides of the

cylinder are parallel. Moreover the hairpin cores are alternatively transported on two parallel

longitudinal and rectilinear paths. This regime is thus called periodic shedding of quasi-

symmetric double-sided hairpin vortices.
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FIG. 22: CD − CLz diagrams for the periodic shedding of quasi-symmetric double-sided

hairpin vortices at θ = 60◦: (a) Re = 200, (b) Re = 250.

Fig. 22 shows the force diagrams for θ = 60◦ and two different Reynolds numbers Re =

200 and Re = 250. The attractor for Re = 200 shows a ”8” shape similar to the shape

observed for the (θ = 90◦, Re = 150) shedding of double-sided vortices regime. The visible

similarity with the shedding of symmetric double-sided hairpin vortices regime justifies its

”quasi-symmetric” name. The CD oscillations amplitude is much smaller than the CLz

oscillations amplitude. Figs. 22a and b show that for both Re the amplitude of oscillation

of the z lift force is similar. In this regime and for both Re, the lift force in the y direction

(not shown here) has a steady non-zero value. Therefore this regime can be seen as the

superposition of two perpendicular modes : one is a steady mode with a non-zero lift along

y and an unsteady small amplitude mode oriented along z.

In the region of periodic shedding of quasi-symmetric double-sided hairpin vortices, the

Strouhal number increases with the Reynolds number as shown in Fig. 23. The trend

followed by the computed Stz is opposite to the trend predicted by the IP. For all Re,

the computed Stz decreases slightly when increasing θ. Moreover, Stz computed in this

regime is close to Stz computed in other flow regimes where double-sided hairpin vortices
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are observed.

Finally, the wake pattern is quite unusual and is (presumably improperly) renamed the

’accordion fold’ regime due to the specific position of the hairpin vortices. In the flow map

shown in Fig. 3, the ’accordion fold’ regime is surrounded by 3D unsteady and single-sided

regimes. This raises questions about how unstable modes grow and compete with each

other. A small change of the cylinder tilt angle θ by a few degrees drastically changes the

symmetry/lack of symmetry and associated wake patterns. This question could be further

elucidated by the bifurcation theory [12, 16].

Unsteady shedding of double-sided hairpin vortices Keeping θ = 65◦ fixed and increasing

Re up to Re = 250 leads to a transition from periodic shedding of quasi-symmetric double-

sided hairpin vortices to unsteady shedding of asymmetric double-sided hairpin vortices.

This regime is not shown here as it has been shown and discussed for larger θ (see cyan

region in Fig. 3 and Fig. 16 for the wake pattern). It is characterized by CLy oscillations

of same amplitude as that of CLz oscillations. The Strouhal number of the leading mode in

the y direction and z direction is Sty = 0.07 and Stz = 0.155, respectively. Hence, Stz is

about twice larger than Sty. As emphasized before, the unsteady shedding of asymmetric

double-sided hairpin vortices regime can be basically seen as the superposition of at least

one mode along z, which in this θ range appears for lower Re, and one mode along y.

θ = 55◦

For θ = 55◦ the onset of unsteadiness is characterized by the transition from steady

shedding of two vortex pairs to shedding of single-sided hairpin vortices. We estimate that

the transition occurs around Re ≈ 230 as the case Re = 225 is still steady but very close to
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become unsteady. The transition between these two regimes has been described before and

we only make short additional comments below.

FIG. 24: Original periodic shedding of single-sided hairpin vortices at (θ = 55◦, Re = 250).

Q = 0.008 isosurfaces are coloured by the longitudinal vorticity ranging from −0.2 to 0.2.

The dark lines starting at the centre of the cylinder indicate the cylinder axis and the

streamwise direction.

Original periodic shedding of single-sided hairpin vortices Fig. 24 displays the wake

pattern for (θ = 55◦, Re = 250) and exhibits single-sided hairpin vortices with vertical

planar symmetry. However some differences are noticeable in comparison with the shedding

of single-sided hairpin vortices observed for 70◦ ≤ θ ≤ 85◦. The size of vortices is visibly

smaller in Fig. 24 than in Fig. 13. Hairpin vortices are shed not only along x but also

along y, since the vortices monotonously move away from the x axis in the cylinder wake.

We also observe a pair of counter-rotating vortices at the bottom of the cylinder that was

not present for 70◦ ≤ θ ≤ 85◦. Finally the dimensionless vortex shedding frequency is

Sty = 0.1716. This value is as least twice larger than the largest dimensionless frequency

obtained in the range 70◦ ≤ θ ≤ 85◦ and relates to the larger number of vortices observed

in Fig. 24 compared to Fig. 13. The CD −CLz diagram shows a simple closed loop of very

small amplitude (not shown here) as observed in the range 70◦ ≤ θ ≤ 85◦.

0◦ < θ < 55◦

The steady shedding of one or two pairs of counter-rotating vortices are the two wake

patterns observed for θ = 0◦ up to θ ≈ 55◦ for all Re. These regimes have been documented

in Section and Section . No periodic regime is observed and the vertical planar symmetry

is always present. As shown in Fig. 3, the one pair regime prevails for Re ≤ 150 while the

two pair regime increasingly dominates for higher Re and increasing θ.
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FIG. 25: Steady toroidal vortex downstream of a θ = 0◦ cylinder at Re = 50. Streamlines

pattern (x, y) plane perpendicular to the z transverse containing the cylinder axis are

coloured by the dimensionless axial velocity (dark blue ux = 0, red ux = 1).

θ = 0◦

Standing toroidal eddy The aligned cylinder case completes the flow map shown in

Fig. 3. Due to the specific symmetry of this configuration, the wake stays axisymmetric for

all considered Re. The wake is characterized by a steady recirculating eddy as illustrated in

Fig. 25 for (θ = 0◦, Re = 50). This is a distinguishable feature of the flow past a bluff body

at Reynolds numbers higher than 10 [5, p. 259]. When the body is angular with salient

edges, the detachment of the boundary layer usually occurs at the edge of the body [5, p.

329].

The length of the recirculation region lr increases with Re as plotted in Fig. 26. We also

plot in Fig. 26 the recirculation length as a function of Re for an aspect ratio L/D = 1.

For both aspect ratios, lr increases as
√
Re. In the case of the flow past a sphere, lr versus

Re follows a logarithmic law [55], while a linear law has been found in the case of the flow

past an infinite cylinder [10]. The mathematical form of the relationship between lr and Re

thus depends on the geometry of the obstacle.

The transition from the steady recirculating eddy regime to a periodic or unsteady vortex

shedding regime for the flow past a L/D = 3 cylinder is expected to occur for higher Reynolds

number as observed for the flow past a L/D = 1 cylinder (see Appendix ).

Additional comments on aspect ratio

The flow map shown in Fig. 3 and the analysis of the flow regimes that we have performed

so far reveal the strong dependence of the wake pattern on both Re and θ. We would like to

shortly comment here on the transition between some regimes in light of results available in
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FIG. 26: Recirculation length lr of an aligned cylinder with the flow direction with respect

to the Reynolds number. + : L/D = 3 cylinder. × : L/D = 1 cylinder (Appendix ). The

solid lines correspond to fits of our numerical results of the aRe1/2 + b form, where a and b

are the fitting parameters.

the literature. The results of Ramberg [47] for long cylinders (L/D > 20, 160 ≤ Re ≤ 1000)

(Fig. 2c in his article) are valuable data to discuss similarities and differences with our own

results presented in this work. Ramberg [47] observed two different regimes: (i) a steady

regime with one counter-rotating vortex pair for low θ and (ii) a periodic shedding of oblique

vortices for high θ (Von-Karman vortex street). The transition between these two regimes

occurs approximatively at θ = 40◦ and decreases with Re. There are two main differences

between the map drawn by Ramberg [47] and ours. Firstly, he observed oblique vortex

shedding for high θ, while we observe hairpin vortex shedding. Secondly, the transition

between the regimes observed by Ramberg [47] and the transition between our regimes does

not occur for the same Re and θ. These differences are attributed to different aspect ratios

in Ramberg [47]’s study and ours. Inoue and Sakuragi [25], when studying the flow past a

cylinder in a cross flow, also pointed out that for a fixed Reynolds number the aspect ratio

has a significant impact on the wake pattern. For instance, at Re = 150, hairpin vortex

shedding is observed for a L/D = 3 cylinder while oblique vortex shedding is observed for a

L/D = 25 cylinder.

DRAG, LIFT AND TORQUE COEFFICIENTS

In this section we suggest simple laws for the drag force, the lift force and the hydrody-

namic torque as a function of θ and Re. We first shortly review different approaches to this
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problem from the literature and then suggest simple laws for CD, CLy and CTz. We then

put the suggested laws to the test by comparing their performance to our computed results.

State of the art

FD

FL
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F⊥

Tz

U

U‖U⊥

x�
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FIG. 27: Sketch of the force and torque exerted on a yawed cylinder.

The force and torque experienced by a finite-length cylinder in a steady flow are not

known exactly even in the Stokes flow regime Re = 0. However, owing to the linearity of the

equations in this regime, the force exerted on a cylinder tilted with an angle θ (see Fig. 27)

can be related to the force exerted on the same cylinder tilted by θ = 0◦ and θ = 90◦ as:

C⊥ = C⊥θ=90◦ sin θ (6)

C‖ = C‖θ=0◦ cos θ (7)

where C⊥ and C‖ are the normal force and parallel force coefficients, respectively. The drag

and lift coefficients follow as:

CD = CDθ=0◦ cos2 θ + CDθ=90◦ sin2 θ (8)

CLy = CDθ=0◦ cos θ sin θ − CDθ=90◦ sin θ cos θ (9)

In the Stokes regime, the hydrodynamic torque on a cylinder is zero : a freely moving

cylinder keeps its initial orientation while falling under gravity. This specific property is lost

when including weak effects of inertia [11]. When Re � 1, the torque coefficient along z

varies as :

CTz ∝ sin θ cos θ (10)

For high Reynolds numbers, the IP states that the normal force on an infinitely long

yawed cylinder in a flow of velocity U is the same as the force exerted on the same cylinder
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placed in a cross flow of velocity U sin θ [54]. The normal coefficient can thus be written as

[20]:

C⊥ = C⊥θ=90◦ sin2 θ (11)

and the drag and lift coefficients as:

CD = CDθ=90◦ sin3 θ (12)

CLy = CDθ=90◦ sin2 θ cos θ (13)

In order to account for the force experienced by a cylinder aligned with the flow direction

into the drag law, Rosendahl [50] proposed the following empirical relation based on the IP:

CD = CDθ=0◦ + (CDθ=90◦ − CDθ=0◦) sin3 θ (14)

There are several other empirical and semi-empirical laws derived for the drag force

exerted on non spherical-particles as, e.g., the law suggested by [21]. In [21], the authors

proposed to use the lengthwise and crosswise sphericity (whose definition can be found in

their article) instead of using explicitly the orientation of the particle. Their correlation gives

good agreement with existing results in the literature when dealing with general complex

shape particles. Here we are interested in cylindrical particles and attempt to develop a

specific law for such a body shape.

Simple laws for the hydrodynamic force and torque

One of the drawbacks of the laws proposed above is that, for most of them, they explicitly

depend on the drag force exerted on the cylinder when it is aligned with the flow direction,

i.e., CDθ=0◦ . The flow past a cylinder perpendicular to the flow direction has been studied

extensively and a precise correlation has been proposed by Clift et al. [9, p. 154]. This is

not the case when the cylinder is aligned with the flow direction. Therefore for practical

purposes it is desirable to find a law that does not involve CDθ=0◦ explicitly. Moreover,

the validity of the laws proposed in the previous subsection as function of Re has not been

assessed for the present range of Re ∈ [25, 250]. Our intention here is to provide simple laws

by combining our own numerical results and results from the literature.

Sanjeevi and Padding [53] studied recently the flow past oblate spheroids. They observed

that (8) and (9) obtained in the Stokes regime match well numerical results even in inertial
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FIG. 28: Perpendicular and parallel force coefficients for Re = 50: ×+ numerical results,

−-− (6) and (7).

configurations (Re = 2000). Even if cylinders have a shape different from spheroids we may

expect the same behaviour for cylinders and therefore a good agreement of (8) with our nu-

merical results even in inertial regimes. This is verified in Fig. 28. The forces perpendicular

and parallel to the flow direction fit very well (6) and (7) obtained in the Stokes regime. We

note a very slight difference between (7) and our numerical results for 30◦ ≤ θ ≤ 60◦.

The problem is that (8) and (9) require CDθ=0◦ which is a priori unknown. Results

obtained using slender body theory (L � D) (see for instance Batchelor [4]) can be used

to obtain a rough estimate of CDθ=0◦ . At the lowest order in D/L the slender body theory

gives [Note4]: CDθ=0◦ ≈ 1/2CDθ=90◦ . Thus for moderate Reynolds numbers 25 ≤ Re ≤ 100

we suggest the following law for the drag:

CD ≈ CDθ=90◦

(
1

2
cos2 θ + sin2 θ

)
, (15)

and the lift :

CLy ≈ CLyθ=90◦

(
1

2
cos θ sin θ − sin θ cos θ

)
. (16)

As can be seen in Fig. 29, laws (6) and (7) derived in the Stokes regime are not able to

reproduce accurately the drag and lift forces exerted on the cylinder at the highest Reynold

number Re = 250. An important deviation is observed in the range 45◦ ≤ θ ≤ 75◦ of C⊥

and 15◦ ≤ θ ≤ 60◦ for C‖. We offer below simple geometrical arguments to modify the laws

in order to give reasonable agreement in this regime. The basic idea is to keep the behaviour

of the Stokes law when it works well (low θ for C⊥ and high θ for C‖) and change the law

when departure manifests. The normal force on the cylinder for θ = 90◦ can be written as

F⊥θ=90◦ = Cbis
⊥θ=90◦(1/2)LDρU2 where the superscript bis is used to indicate that the normal

force coefficient is obtained using the projected surface area rather than LD. The drag
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force on a yawed cylinder can also be written as F⊥θ=90◦−α = Cbis
⊥θ=90◦−αSproj1/2ρU

2 where

Sproj = πD2/4 cos θ + LD sin θ is the projected surface area of the cylinder along a plane

normal to the streamwise direction and α is a parameter which is not necessary small. The

main assumption of our model is Cbis
⊥θ=90−α ≈ Cbis

⊥θ=90◦ . This assumption is based on the

semi-empirical idea that for high Reynolds number flows hydrodynamic forces are mainly

dominated by pressure, which can be roughly estimated using the projected surface area.

Assuming that this is true, we get:

C⊥ ≈ C⊥θ=90◦

(
π

4

D

L
cos θ + sin θ

)
(17)

Using the same kind of argument, i.e., Cbis
‖θ=0+α ≈ Cbis

‖θ=0◦ , a similar relationship can be

obtained for the force coefficient parallel to the cylinder :

C‖ ≈ C‖θ=0◦ (cos θ + A sin θ) , (18)

where A is a constant which should be equal to 4
π
L
D

following the formal derivation. In order

to fit as well as possible our numerical results we use A = 0.8 instead. From our numerical

results, we note that A should be a slightly increasing function of Re but for the sake of

simplicity A is chosen constant. A key point when looking at (17) and (18) is that they

contain terms similar to the equations derived in the Stokes regime while no assumption

of this type has been made. As shown in Fig. 29, (17) and (18) match well our numerical

results for high and low yaw angles, respectively. In order to obtain a solution uniformly

valid on the whole range of θ, (17) and (18) are matched to equations (6) and (7). To this

aim we use powers of trigonometric functions in order to make some terms of (17) and (18)

negligible when the other terms approach the Stokes law and obtain:
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C⊥ ≈ C⊥θ=90◦ sin θ + C⊥θ=90◦
π

4

D

L
cos θ sin2 θ (19)

C‖ ≈ C‖θ=0◦ cos θ + 0.8C‖θ=0◦ sin θ cos2 θ (20)

Even if the above equations contained terms similar to the terms in the Stokes law, they

are different from equations obtained using a formal development in Re in the Oseen regime

[11]. This is not surprising since they have been derived using numerical simulations for

Re � 1. (19) and (20) match pretty well our numerical results, as plotted in Fig. 29.

Expressions for the drag coefficient and the lift coefficient can be obtained straightforwardly

but we still need CDθ=0◦ . Based on our numerical results we choose CDθ=0◦ = 0.4CDθ=90◦ .

The resulting equations shown below are used for the highest Reynolds number 150 ≤ Re ≤

250:

CD ≈ CDθ=90◦

[
0.4 cos θ

(
cos θ + 0.8 sin θ cos2 θ

)
+ sin θ

(
sin θ +

π

4

D

L
cos θ sin2 θ

)]
, (21)

CLy ≈ CDθ=90◦

[
0.4 sin θ

(
cos θ + 0.8 sin θ cos2 θ

)
− cos θ

(
sin θ +

π

4

D

L
cos θ sin2 θ

)]
. (22)

At this stage several comments can be made. Laws (15) and (16) obtained using linearity

of Stokes equations might be valid for other aspect ratios. Indeed the linearity of Stokes

equations remains valid for all aspect ratios and these laws have proven to be valid even for

spheroids of high aspect ratio [53]. The assumption CDθ=0◦ ≈ 1/2CDθ=90◦ is also supposed

to give more accurate results as L/D increases [4]. However (21) and (22) obtained using a

geometrical argument have no reason to be valid for other L/D.

Deriving a law for the torque (or pitching-torque since the angular velocity is zero) valid

for high Reynolds number flows and arbitrary L/D is beyond the scope of the present study.

The reader interested in that question may consult Zastawny et al. [66]. However, physical

arguments and a simple model are given in the following. The hydrodynamic torque reads

T =
∫
S

r × σ · ndS where r is the local position relative to the cylinder mass center. We

define the hydrodynamic center rhc as the point where the hydrodynamic torque vanishes.

The hydrodynamic torque can thus be written:

T = rhc × F. (23)
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In the following, straightforward assumptions are made to derive a closed expression for

the torque. We define a Cartesian coordinate system as (x‖, y⊥, z) where x‖ is the axis of

symmetry of the cylinder starting from its mass center, as illustrated in Fig. 27. Our main

motivation is to find the z component of the torque. From flow symmetry considerations,

we assume that rhc ≈ (x‖hc, 0, 0) which does not seem to be a strong assumption except in

cases when (x, y) planar symmetry is broken [Note5]. We obtain:

Tz ≈ x‖hcF⊥ (24)

From (24) and assuming that we know the normal force exerting on the cylinder, the new

unknown to derive an expression for the torque is the position of the hydrodynamic center

x‖hc. This equation supports the choice of L as the characteristic length in the expression

of CTz. x‖hc is made dimensionless by dividing by L rather than D. With the help of (24),

(10) derived for Re � 1 can be understood as follows: since to leading order in Re the

normal force varies as sin θ, the hydrodynamic center position x‖hc varies as cos θ. Two main

questions remain to be addressed (i) is this law valid for higher Reynolds numbers ? and

(ii) can we estimate the magnitude of the torque ?
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FIG. 30: Position of the hydrodynamic center normalized by the length as function of the

yaw angle: + Re = 50, ◦ Re = 100, ×+ Re = 150, � Re = 200, • Re = 250, −-− (25) for

Re = 50, --- (26) for Re = 250.

Fig. 30 aims to give some answers to these questions. It plots the variation of x‖hc

as a function of θ for different Re. The hydrodynamic center position is computed as:

x‖hc = Tz/F⊥ which becomes singular when θ → 0. We note that x‖hc stays close to the
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cylinder mass center for all the configurations studied. For Re = 50 and Re = 100, x‖hc

varies as cos θ. Thus, as for the force, the law (10) obtained in the Oseen regime remains

valid for moderate Reynolds number. Since the magnitude of x‖hc decreases linearly with

Re for θ = 45◦, we suggest the following law for the hydrodynamic center position:

x‖hc =
√

2(aRe− b) cos θ. (25)

where a = 1/6600 and b = 0.12 are parameters fitted with our numerical results. This law

is used for 25 ≤ Re ≤ 150.

For Re = 200 and Re = 250, the magnitude of x‖hc decreases with decreasing θ for

θ ≤ 45◦. (25) is not able to capture this behaviour. We thus suggest the following law:

x‖hc = 2(aRe− b) sin θ cos θ, (26)

which fits very well our numerical results for Re = 250. Once again some comments can be

made on the validity of these correlations. For Re � 1, calculations in the Oseen regime

[11] predict a linear increase of the dimensional torque with Re and a dimensional normal

force constant to leading order in Re. Thus, to leading order in Re, x‖hc increases linearly

with Re. This disagrees with (25) where the magnitude is seen to decrease with Re. This

needs further investigation. We would like to point out that (26) should be taken cautiously

since it tends to zero for Re ≈ 792, which clearly disagrees with previous observations on

the flow past a cylinder at high Reynolds number [27].

Numerical results

Moderate Re (25 ≤ Re ≤ 100) Figs. 31abde exhibit a highly satisfactory agreement

between the predictions obtained in the Stokes regime with (8) and (9) and our numerical

results for both the lift coefficient and the drag coefficient at Re = 25 and Re = 50. The semi

empirical relations based on linear laws (15) and (16) also provide a good agreement with

our numerical results. As observed by Sanjeevi and Padding [53] for spheroidal particles,

the laws derived by assuming the linearity of Stokes equations match closely numerical

results even for inertial regimes. For Re = 25 and Re = 50, the predictions of both the lift

coefficient and the drag coefficient given by the semi empirical relation of Rosendahl [50] are

less accurate than the laws based on the linearity of Stokes equations.
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FIG. 31: Drag, lift and torque coefficients for: a-c Re = 25, d-f Re = 50, g-i Re = 75, j-l

Re = 100. ×+ numerical results, − empirical relation (14) of Rosendahl [50], −-− (8) and

(9) for the force / (24) based on (25) and (6) for the torque, −--− (15) and (16).

As Re increases to 75 and 100, the drag force plotted in Fig. 31gh and Fig. 31jk, re-

spectively, slowly departs from the predictions obtained in the Stokes regime. Indeed the

drag coefficient is underestimated by (8) and (15), especially for θ ∈ [30◦, 75◦]. However

the predictions for the lift coefficient given by the laws derived by assuming the linearity of

Stokes equations still agree very well with our numerical results.
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Fig. 31c, Fig. 31f, Fig. 31i and Fig. 31l show the torque coefficient for Re = 25, Re =

50, Re = 75 and Re = 100, respectively, and compare the law (24) derived by assuming a

Oseen regime (based on (25) and (6), [11]) to our numerical results. The torque is zero for

θ = 0◦ and θ = 90◦ but the only stable configuration is θ = 90◦ as explained by Khayat

and Cox [30]. The agreement between our numerical results and (24) based on (25) and (6)

is satisfactory even if our numerical results plot is slightly shifted to higher values for high

θ when increasing Re. We also note that for Re = 25, (24) based on (25) and (6) slightly

overestimates the maximum torque. This overestimation is attributed to an overestimation

of the position of the hydrodynamic center x‖hc. For Re = 75 and Re = 100, (24) based

on (25) and (6) slightly underpredicts the maximum torque. This underestimation is here

attributed to an underprediction of the normal force F⊥.
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FIG. 32: Drag, lift and torque coefficients for: a-c Re = 150, d-f Re = 200, g-i Re = 250.

×+ numerical results, − empirical relation (14) of Rosendahl [50], −-− (8) and (9), −--−

IP, --- (21) and (22) for the force / (24) based on (26) and (19) for the torque.
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High Re (100 < Re ≤ 250) Figs. 32adg clearly evidence that the IP in its original

form given by (12) does not fit well our numerical results for the drag coefficient since the

drag coefficient when θ = 0◦, i.e., CDθ=0◦ , is not taken into account. Taking into account

CDθ=0◦ leads to (14) that exhibits a better agreement. Marked differences in the range

30◦ ≤ θ ≤ 60◦ are still noticeable though. For all θ, the linear law yields a more satisfactory

match with our numerical results than the IP and its modification due to Rosendahl [50].

The law (21) based on geometric arguments is the law that gives the best agreement for the

drag force for Re = 150, 200 and 250. In the limit of high θ, we do note a slight departure of

this law from our numerical results. For Re = 150 the drag coefficient is almost constant for

75◦ ≤ θ ≤ 90◦ while (21) predicts a slight increase of CD from 90◦ to 70◦ degrees. However,

this is a minor discrepancy.

The agreement between the IP and our numerical results is better for the lift coeffi-

cienty, as illustrated in Figs. 32beh, than for the drag coefficient. The IP gives results of

comparable accuracy to (9). The law (22) based on geometric arguments slightly underpre-

dicts the lift coefficient. This is due to the fact that (19) overpredicts the parallel force for

50◦ ≤ θ ≤ 80◦.

The torque coefficient is still well approximated by (24) based on (26) and (19) even

if we observe that the maximum of CTz is slightly underpredicted for the three values of

Re = 150, 200 and 250. This underprediction is attributed to an underprediction of the

hydrodynamic center position x‖hc.

General outcome and further comments on force and torque laws The overall picture of

force and torque laws is as follows. The laws obtained in the Stokes regime or the Oseen

regime for the drag and lift coefficients give a good agreement for Re ≤ 100. At higher

Reynolds numbers (21) and (22) based on geometric arguments should be preferred. The

torque is well approximated by (24), provided the normal force and the hydrodynamic center

position are properly modelled as function of Re. The value of θ for which the torque is

maximal increases from 45◦ to 55◦ when Re increases.

Figs. 31 and 32 also show that CDθ=90◦ and CDθ=0◦ decrease significantly as Re increases

as Re−1/2 (not shown here). This is in line with the scaling of the viscous stress in the

boundary layer approximation [5]. However the maximum lift force as a function of θ

remains approximatively constant as Re increases. This kind of behaviour has also been

observed for the lift force exerted on a sphere immersed in a linear shear flow Kurose and
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Komori [32].

CONCLUSION

We investigated the inertial flow past a 3D cylinder of aspect ratio 3 by particle-resolved

simulation. The ranges of Reynolds number Re and yaw angle θ examined are [25, 250]

and [0◦, 90◦], respectively. We analysed the wake structure and the hydrodynamic force and

torque exerted on the cylinder. Ten different regimes and corresponding wake patterns were

observed depending on θ and Re spanning standing toroidal eddy, one or two steady counter-

rotating vortex pairs, periodic shedding of single-sided hairpin vortices, quasi-symmetric

shedding of double-sided vortices nicknamed accordion folds, periodic shedding of one or

two pairs of counter-rotating vortices, and unsteady shedding of asymmetric double-sided

hairpin vortices. When the cylinder is perpendicular to the flow direction, we confirm the

transition scenario observed by Inoue and Sakuragi [25].

We plotted the hydrodynamic force and torque as a function of Re and θ and attempted to

fit these plots with force and torque correlations. This is an important result of this study as

these correlations are meant to be later used in higher scale models as, e.g., Euler/Lagrange

and Euler/Euler models, for the simulation of dilute suspensions of cylinders. The correlation

given by Rosendahl [50] based on the IP is shown to be poorly accurate to describe the drag

force exerted on a yawed cylinder. For the aspect ratio L/D = 3 studied and 25 6 Re 6 100,

a law derived in the Stokes regime seems to be better suited. We proposed simple laws

derived in the Stokes regime that do not explicitly require the drag coefficient when the

cylinder is aligned with the flow direction. These laws give reasonable agreement with

numerical results for both the drag force and the lift force. The IP is also shown to be

poorly accurate to describe the drag force on a yawed cylinder for 100 6 Re 6 200. Instead,

we derived an empirical relationship based on geometrical consideration that gives better

agreement with our numerical results. Based on a symmetry assumption, we also derived a

law for the torque that explicitly involves the normal force. For all Re examined, our torque

law matches well our numerical results as long as we can predict properly the position of the

hydrodynamic center. We showed that this can done using a fit that involves trigonometric

functions. Based on the results of Cox [11] and our numerical results, we suggested 2 different

laws in the ranges Re ∈ [25, 150] and Re ∈ [150, 250], respectively. The resulting predictions
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of these 2 laws give full satisfaction.

The range of validity of the IP as a function of L/D needs further investigation. Indeed

for very high Re and L/D, the IP supplies accurate predictions [20, 69]. We can hence redo

a similar study for higher L/D if we wish to further challenge the IP. Therefore the flow

map shown in Fig. 3 would be enriched with a third parameter, the aspect ratio L/D. This

would also give us the opportunity to compare our numerical results to the results of Ramberg

[47]. The specific configuration of the cylinder aligned with the flow also deserves further

investigation, first to provide a lower bound for the drag coefficient, second to investigate the

impact of L/D on boundary layer detachment and third to study the bifurcation scenario.

For instance, Ern et al. [14] gave a threshold value for the Reynolds number Rec associated

with the first bifurcation for a disk L/D ≤ 1 aligned with the flow. It is estimated as

Rec = 116.5(1 + L/D).

Finally, we intend to investigate the problem of a freely moving 3D cylinder as, e.g., a

heavy cylinder settling in a quiescent light fluid. We already performed such a study for

angular polyhedra in Rahmani and Wachs [46]. Our numerical method is actually better

suited to moving particles than to flows past fixed obstacles (see [15, 46, 61] among other

references), although it can be used (as here) for the flow past a single or multiple obsta-

cles [13]. While improvements to our numerical method are always suitable (higher order

schemes, enhanced parallel performance), particle-resolved simulations are computationally

demanding. The finest mesh selected in this work comprised 100 millions of grid cells. The

corresponding computation ran for several days/weeks on 512 cores. However, as shown

in this paper, inertial regimes lead to thin boundary layers around freely moving or fixed

particles that need to be captured properly. This puts some stress on the mesh size, which

consequently increases the number of cells, in particular in a constant grid size approach

as ours. An alternative would be to re-develop our Fictitious Domain method in an oc-

tree/adaptive mesh refinement [44] framework that would give us the ability to refine the

mesh wherever required and to loose it away from solid particles and/or from regions of the

flow with strong velocity gradients.
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Distributing Lagrangian points at the surface of a cylinder

Distributing points as uniformly as possible on a random surface is a complicated task

even for simple geometries. A way to solve this problem is to treat each point as a repulsive

particle and solve dynamic simulations until the system reaches a minimum of repulsive

energy [51]. While being accurate this method can be very costly when dealing with a large

number of particles. Another way to distribute points evenly on spheres is to use spiralling

distributions [51, 63]. This method is not fully rigorous but it gives a relatively uniform

distribution designed for isotropic hydrodynamic computations independent of the particle

orientation. The method presented here means to be computationally cheap and accurate.

In order to obtain an accurate hydrodynamic solution over the cylinder it is necessary to

describe the corners as precisely as possible. Nc Lagrangian points are distributed on the

circle such that Nc = bπD/lpc where bac is the floor of the real number a and lp ≈
√

3∆x is

the desired distance between each lagrangian point. Doing so, owing to the finite curvature

of the circle, an error of order O(l2p) = O(∆x2) is introduced for the distance between each

points. Mapping the cylinder length can also be done in a straightforward manner. Noting

that this part can be roll out, the resulting rectangular domain is mapped with a diamond

mesh (Fig. 33a). The lateral distance between each point along the length of the rectangle

is
√

3/2lp while the width distance is lp. Owing again to the finite curvature of the cylinder

an error on the distance of order O(∆x2) is made.

Rolling out
• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •

• • • •• • • •• • • •• • • •• • • •• • • •lp

√
3/2lp

(a)
(b)

D

lp

(c)

FIG. 33: (a) Mapping of the cylinder length with a diamond mesh. (b) Distribution of 512

points given by Vogel’s method [60]. (c) Hexagonal distribution of circles in a disk. Black

circles are the one contained entirely in the disk, dark circle those intersecting the disk and

grey circle exterior one.
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Distribute points uniformly on the surface of the disks appears much more challenging

than distributing it on the main part of the cylinder. A natural way which follows directly

the distribution of points on the corner of the particle is to distribute points in the disk as

concentric circle. However this distribution is far from uniform. Indeed it highly depends

on the position of the first point chosen when computing the circles and the distance be-

tween each concentric circles. A more sophisticated approach comes from the distribution

of individual flowers in flowers head [60]. The main idea is to distribute the points follow-

ing a Fermat spiral whose equations in polar coordinate is written: r = (1 − lp/D)
√
i/N ,

φ = π(3 −
√

5)i where r is the distance from the circle center, i the index number of the

points, N the total number of points, φ the angle and π(3−
√

5) the golden number. Fig. 33b

displays this distribution. The choice of the golden number as a parameter in φ is not tri-

fling and correspond to the angle for which the particles are the most uniformly distributed

for a given set of spiralling distribution [49]. This model is not closed since it requires the

number of points N to be distributed on the disk. This number is closely linked to the

densest packing of equal circles of diameter lp in a larger circle of diameter D. This problem

is only solved for a limited number of circles. In the following a simple approximation for

the maximum number of circle that can be packed in one bigger circle is presented.

For a two dimensional packing of equal-size circles the density η is defines as the ratio

between the solid surface and the total surface. In the case of an hexagonal arrangement

(which can be shown to be the highest density arrangement), the density is ηh = π/(2
√

3).

This result can be found taking three circles in contact in Fig. 33c and calculating the ratio

between the area of the circles contained in the equilateral triangle formed with their center

and the area of the triangle. For N � 1 the maximum packing in the disk (ηm) is assumed

to be very closed to an hexagonal arrangement as illustrated in Fig. 33c. Thus we have :

ηm ≈ ηh −
Niπl

2
p/4

πD2/4
, (27)

where Ni is the number of sphere intersecting the outer circle (in dark in Fig. 33c). Since

Ni ≈ πD
lp

and ηhπ(D − lp)2/4 ≈ Nπl2p/4, a relationship between the actual density and the

number of circle can be obtained:

ηm ≈ ηh −
1√

N/ηh + 1
. (28)

Fig. 34 shows the very good agreement between equation 28 and the exact results for the

densest packing obtained numerically.
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FIG. 34: Maximum density for equal circle contained in a bigger circle. Points are exact

value calculated numerically from http://hydra.nat.uni-magdeburg.de/packing/cci/. The

red line represents the maximal packing obtained from equation 28.

Since by definition ηm = Nl2p/D
2 we obtain an equation for the maximal number of

particles of diameter lp contained in a disk of diameter D :

N ≈ D2

l2p

(
ηh −

1√
N/ηh + 1

)
. (29)

Equation 29 is solved with a fixed point algorithm. The difference between two consecutive

solutions is less than one percent in 3-4 iterations.

L/D = 1, θ = 0◦ : results with a boundary-fitted method

Franck Auguste, David Fabre, Jacques Magnaudet

In this appendix the flow past a θ = 0◦, L/D = 1 cylinder is investigated. After a

short presentation of the numerical methods used for the study, the different hydrodynamic

regimes encountered are presented.

Numerical method and variables definition

The JADIM code developed at IMFT is employed. Since, the numerical method has

been detailed in previous articles [3, 16, 33] it will only be summarized here. The 3D

Navier-Stokes equations for an incompressible fluid are solved on an orthogonal curvilinear

mesh which follows closely the boundaries of the body (Boundary-Fitted Method). The
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equations are discretized using finite volume method and centered schemes which ensure

second-order space accuracy. The time step advancement strategy is a mixed Runge-Kutta

/ Cranck-Nicholson algorithm. The incompressibility condition is satisfied at the end of each

time step thanks to a projection method.

The computations are performed in a cylindrical domain. The grid resolution is 160(x)×

75(r) × 32(φ) nodes, where x is the distance on the cylinder symmetry axis, r the radial

distance from this axis and φ the azimuthal angle . A non-uniform spatial distribution is used

to properly capture the body wake and the boundary layer developed near the solid surface.

The characteristic cells size is ≈ 0.01D near the body and ≈ 0.1D in the near wake localized

by x ≈ 2D (x = 0 is the location of the cylinder centroid). The size of the domain is 10D

(resp. 20D) in lateral and upstream (resp. downstream) directions. Symmetry boundary

conditions is imposed on the lateral wall, while inlet and outlet boundary conditions are

imposed on the upstream and downstream boundary respectively.

The influence of the Reynolds number is studied over the range [20 : 460] by step of 10

in most of the interval. This implies a non-negligible incertitude on the proposed threshold

values associated to the nature of the wake instabilities. Simulations run duringO(102)DU−1

physical time to achieve the instability growth and saturation. The normalization of the

physical parameters (U , ω) is the same as in the main body of the paper. The pressure

is normalized by ρU2, the vorticity by U/D, the drag and lift force by 1/2ρU2D2 and the

Strouhal number is defined as St = fD
U

where f is the frequency of vortex shedding. A

convenient rotation is applied on the numerical solution showing a symmetry plane in such

a way that the (x, y) plane becomes the symmetry plane.

Axisymmetric solution

As observed at low Re in the wake of sphere or disk [65], the flow developed around

the L/D = 1 thick cylinder is a steady axisymmetric solution (invariance per x-rotation).

Except for very low Re . 2.5 [2], the body wake is characterized by a toroidal region for

which the recirculating length increases with Re (see Section ). Fig. 35 illustrates this

hydrodynamic regime (Re = 200) showing the pressure contours and the streamlines.

A significant difference with respect to the sphere and disk wake is the appearance of

a detachment at the upstream ridge for Re & 205. This detachment induces a new eddy
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FIG. 35: Re = 200: pressure contours and streamlines in an arbitrary azimuthal plane.

structure with a torus shape, growing in size and intensity with Re [2]. This regime is

observed until Re ≈ 278.

(a) (b)

FIG. 36: Re = 290: (a) ωz contours and streamlines in the symmetry plane (z is the

direction perpendicular to the symmetry plane); (b) longitudinal vorticity ωx contours in a

longitudinal plane localized one diameter past the rear body surface.

Two counter-rotating vortices

Re ≈ 278 is the critical value for which the axisymmetric mode becomes unstable and

the axial symmetry breaks (this critical value is estimated from the positive and negative

instability growth rates near the bifurcation). However the observed regime remains steady.

The bifurcation occurring at Re ≈ 278 is thus a steady one. No hysteresis is found. This

regime is characterized by a symmetry plane as illustrated in Fig. 36a and Fig. 36b. A pair
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of counter-rotating vortices (bifid wake) appear in the wake and induce a transverse force

(CL 6= 0).

Vortex shedding

(a) (b) (c)

FIG. 37: Re = 380: (a resp. b) ωx ± 0.25 isosurfaces with a view parallel (resp.

perpendicular) to the symmetry plane; (c) force coefficients diagram

The next bifurcation appears for Re ≈ 355 with the appearance of an unsteady mode.

No hysteresis is found. Figures Fig. 37ab displays the detachment and advection of hairpins

vortices in the L/D = 1 wake (Re = 380). The wake is still symmetric with respect to the

(x, y) plane.

Discrete Fourier Transform (DFT) of the lift force indicates a unique unsteady mode

associated to the dimensionless frequency St ≈ 0.12. Note that this value is comparable to

the one found for the flow past a sphere (resp. disk) for the same wake regime : Stsph ∼

0.13 (resp. Stdisk ≈ 0.12). The force coefficients diagram (CD;CL) is plotted in Fig. 37c

(Re = 380) and shows a loop attractor; the drag force oscillates with the same frequency as

the lift force.

The route to chaos

For Re & 395 a second frequency appears and the (CD;CL) attractor presents erratic

loops as shown in Fig. 37a (Re = 400). The newly detected frequency is not an harmonic
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of f and its value in dimensionless form approaches 1
4
St(Re = 400) ≈ 0.03. The symmetry

plane is still preserved up to Re ≈ 420.

(a) (b) (c)

FIG. 38: (a) (resp. b) drag versus lift coefficient for Re = 400 (resp. 460); (c) transverse

forces coefficient diagram for Re = 460.

This symmetry is distinctly broken for Re ≈ 450 and the flow exhibits 3D patterns.

Fig. 38b displays the hydrodynamic forces (CL =
√
C2
Ly + C2

Lz) observed at Re = 460.

The oscillation amplitude and the mean value of the lift force are significantly larger than

the one encountered in the previous regime. The forces diagram Fig. 38c illustrates the

chaotic character of the observed solution. The amplitude of the unsteady mode associated

to secondary frequency defined in the previous section becomes predominant and leads to

St(Re = 460) ≈ 0.03.

Scenario of the first bifurcations

Fig. 39 summarizes the non-3D chaotic regimes and associated bifurcations for Re ≤ 420.

The four encountered regimes (axisymmetric and bifid wakes, two vortex shedding types)

are referenced by order of appearance as function of Re as R[1 : 4]. The signature of

the unsteady character is weakly (resp. highly) visible on CD (resp. CL). The bifurcations

scenario of the L/D = 1 thick cylinder appears to be close to the sphere’s one [2, 28, 34]. The

nature of the fourth bifurcations and the route to chaos is found to be identical for each solid

body. Following the bifurcations theory [12] applied to wake instabilities [16], the first (resp.

second) bifurcation is as a pitchfork (resp. Hopf) regular one. This similarity is reinforced
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(a) (b)

FIG. 39: 20 ≤ Re ≤ 420: (a resp. b) evolution of the drag (resp. lift force) coefficient with

the Reynolds number. R[1 : 4] defines the four encountered wake regimes: axisymmetric,

bifid wakes and the two unsteady regimes with one or more characteristic frequencies. The

upper and lower values of the force coefficients are indicated with the black curves.

by the fact that the ratio between the critical thresholds for which each bifurcation occurs

for flow past a sphere and the one in our situation is closed to be a constant:
Resph

ReL/D=1
(R1↔

R2) ≈ Resph
ReL/D=1

(R2↔ R3) ≈ Resph
ReL/D=1

(R3↔ R4) ∼ [0.76 : 0.81].
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