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Abstract 25 

This study is part of a project aimed at developing an automated algorithm for algal 26 

bloom detection and quantification in inland water bodies using Moderate resolution 27 

imaging spectroradiometer (MODIS) imagery. An important step is to adequately detect 28 

and exclude clouds and haze because their presence affects chlorophyll-a (chl-a) 29 

estimations. Currently available cloud masking products appear to be ineffective in turbid 30 

coastal waters. The purpose of this study is to develop a cloud masking algorithm based 31 

on a probabilistic algorithm (Linear Discriminant Analysis) and designed for water 32 

bodies by using MODIS images downscaled at a 250 m spatial resolution 33 

(MODIS-D-250). Confusion matrix shows that the new cloud mask algorithm yields very 34 

satisfactory results, enabling water classification for heavy turbid conditions with a mean 35 

kappa coefficient ( (of 0.982 and a 95% confidence interval ranging from 0.979 to 36 

0.986. The model also shows a very low commission error (sensitive to the presence of 37 

haze) which is essential for accurate water quality monitoring, knowing that the presence 38 

of clouds/haze/aerosols leads to major issues in the estimation of water quality 39 

parameters. The cloud mask model applied on MODIS-D-250 images improves the 40 

sensitivity to haze and the classification of turbid waters located at the edge of urban 41 

areas better than the operational MODIS products, and it clearly shows an improvement 42 

of the spatial resolution (250 m spatial resolution) compared to other cloud mask 43 

algorithms (500 m or 1 km spatial resolution) leading to an increase in exploitable data 44 

for water quality studies. 45 

  46 
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1. Introduction 47 

Water colour satellite data are increasingly used to manage and monitor water quality for 48 

ocean and coastal waters. In water colour data processing, good cloud masking is an 49 

essential step in obtaining an accurate water colour signal. For that purpose, different 50 

cloud mask algorithms have been developed but all have certain issues, specifically in the 51 

processing of water colour data. In fact, a lot of these algorithms were developed 52 

specifically for turbid water colour data, which leads to classification errors or to the loss 53 

of valuable data (Chen & Zhang, 2015). Recently, efforts have been deployed to develop 54 

explicit algorithms for cloud masking over turbid water colour data, but most were 55 

applied on ocean and coastal waters (Wang & Shi, 2006; Banks & Mélin, 2015; Chen et 56 

al., 2015). No cloud masking algorithm has been specifically designed for inland waters 57 

(lakes, rivers, and estuaries), where water contains a lot more optically active components 58 

such as chlorophyll-a (chl-a), total suspended solids (TSS), and coloured dissolved 59 

organic matter (CDOM).  60 

In ocean water studies, cloud detection techniques are generally based on the hypothesis 61 

that the reflectance signal of water at near infrared (NIR) is almost null (Nagamani et al., 62 

2015). This approach becomes, however, less effective with the presence of optically 63 

active components in water, such as a high phytoplankton biomass, known to generate 64 

turbid waters, which significantly increase reflectance at red and NIR channels (Kahru et 65 

al., 2004). Turbid waters can be mistaken as cloud pixels, even under clear skies. 66 

Moderate resolution imaging spectroradiometer (MODIS) Atmosphere Group developed 67 

the standard MODIS cloud product generated at a 1 km and 250 m spatial resolution. 68 

This product also uses a NIR threshold which is its principal weakness when applying the 69 
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algorithm on turbid waters (Robinson et al., 2003). Another 1 km-spatial resolution 70 

algorithm developed by Nordkvist et al. (2009) and based on spectral variability of 71 

visible and NIR often incorrectly mask intense phytoplankton blooms (Banks et al., 72 

2015). Considering the high spatial variability of clouds, there are also algorithms based 73 

on a spatial variability threshold of the MODIS green band (Martins et al., 2002) and the 74 

MODIS NIR band (Nicolas et al., 2005). Once again, the use of visible and NIR bands 75 

will identify turbid waters as clouds, due to their high spatial variability at these 76 

wavelengths (Lubac & Loisel, 2007). To avoid this problem, certain cloud detection 77 

algorithms use the MODIS shortwave infrared (SWIR) threshold such as that of Wang et 78 

al. (2006) and Chen et al. (2015) who proposed a spatial variability threshold at SWIR 79 

band. These cloud masks are generated at a spatial resolution of 1 km and 500 m 80 

respectively. These methods based on SWIR band threshold appear to show the best 81 

overall performance; however, they lack adequate spatial resolution for water studies in 82 

small to medium-sized lakes. 83 

This study is part of a project aimed at monitoring and assessing past, present and future 84 

water quality in inland waters by using MODIS imagery downscaled to 250 m spatial 85 

resolution (MODIS-D-250). In fact, the Canadian Center for Remote Sensing has 86 

developed an approach allowing to downscale the spatial resolution of MODIS bands 3-7 87 

from 500 m to 250 m (Trishchenko et al., 2006). Annexe products are also generated with 88 

the downscaled images including a cloud mask at a spatial resolution of 250 m. However, 89 

this model generally doesn’t perform well when detecting clouds and cloud shadows over 90 

water bodies (see figure 1, centre). Furthermore, the actual cloud masking product 91 

available for MODIS images is recorded at 250 m and 1 km spatial resolution (Ackerman 92 
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et al., 2010). The one generated at 1 km-spatial resolution is  unsuitable for water quality 93 

monitoring in small to medium-sized inland waters and in addition, it appears to be 94 

ineffective in turbid coastal waters (see figure 1, right). The 250 m spatial resolution 95 

MODIS cloud mask (Platnick et al., 2017) incorporates the results from the 1 km 96 

resolution tests to maintain consistency with the 1-km cloud mask, and so, it appears to 97 

show the same issues than the 1 km cloud mask in detecting thin clouds/haze and 98 

distinguishing turbid waters. The Linear Discriminant Analysis (LDA) appears to be an 99 

interesting alternative. This method, which is designed to highlight inland water bodies in 100 

remotely sensed imagery, has often been used for land cover classification (Friedl & 101 

Brodley, 1997; Xia et al., 2014; Priedītis et al., 2015) and for water index (Adrian Fisher 102 

& Danaher, 2013). Indeed, multivariate techniques provide much richer and more global 103 

information to the predictive model. The use of LDA is also preferred to threshold 104 

algorithms when finding an optimal discriminant model. 105 

The objective of this paper is to develop a cloud mask for water bodies (inland, coastal, 106 

and open ocean) based on a LDA algorithm using MODIS-D-250 data. The present paper 107 

focuses on the application of a probabilistic method using 1-7 MODIS-D-250 bands to 108 

predict pixel classes, instead of actual parametric methods, as proposed in the literature 109 

(threshold algorithms).  110 

 111 

2. Material and Methods 112 

2.1. Data collection and pre-processing 113 

Satellite data that cover the southern part of the province of Quebec, Canada (44º-50º N, 114 

67º-80º W) were acquired from MODIS sensor aboard the Terra platform of NASA’s 115 
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Earth Observation System (see figure 2). Characteristics of the MODIS bands used in this 116 

study are presented in table 1. The spatial resolution of bands 3-7 was downscaled from 117 

500 m to 250 m by using an adaptive regression and radiometric normalization as 118 

described in Trishchenko et al. (2006). The approach used to downscale MODIS bands 3 119 

to 7 from 500-m to 250 m spatial resolution (Trishchenko et al., 2006) was validated 120 

using data at higher spatial resolution (Landsat ETM+ (30 m)). Results showed that the 121 

downscaling procedure does not alter the radiometric properties of a scene, and so, the 122 

higher resolution bands can be used to generate a reliable cloud mask at 250 m spatial 123 

resolution. Besides, the MODIS bands originally at 250 m spatial resolution (bands 1-2) 124 

and those downscaled (bands 3 to 7) are originally designed for aerosol, cloud and land 125 

applications. Images were then re-projected from the Sinusoidal to the Lambert 126 

Conformal Conic projection, and were corrected for atmospheric effects using the 127 

Simplified Model for Atmospheric Correction (SMAC). Image pre-processing, including 128 

downscaling, re-projection, and atmospheric correction was performed using an 129 

automatic tool developed by the Canadian Center for Remote Sensing (Trishchenko et 130 

al., 2007). Finally, in order to better distinguish water pixels from mixed pixels (land-131 

water), a land mask developed by El Alem (2014) was applied to the MODIS database.  132 

 133 

2.2. Model description 134 

This section briefly describes the linear discriminant analysis modelling framework, 135 

which was computed using Matlab software (R2016a). This method was proposed by 136 

Ronald Fisher (1936) and consists of finding a projection that minimizes the variance 137 

between classes while maximizing the distances between the projected means of the 138 
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classes. A general description of LDA can be found in Xanthopoulos et al. (2013). We 139 

assume that we have a categorical dependent variable corresponding to the following 140 

classes water, haze (a priori), and cloud, and independent variables corresponding to the 141 

reflectance values of the 1-7 MODIS-D-250 bands. Independent variables are 142 

transformed for normality. LDA allows to determine a subspace of dimension inferior to 143 

that of the original data in which data are separable in terms of statistical measures of 144 

mean and variance values. First, the model discriminates the three classes (water, haze (a 145 

priori), and cloud), assuming that independent variables have a multivariate normal 146 

distribution and the same covariance matrix for each class (figure 3). Clear water is easy 147 

to distinguish from cloud and fog due to the low reflectance in visible and near-infrared. 148 

At the opposite, water containing optically active components such as TSS, CDOM and 149 

chl-a is more difficult to distinguish from cloud/fog pixels in this spectral region. For that 150 

reason, a second LDA is performed only on the pixels classified as fog to try to 151 

discriminate real fog from waters with moderate to high chl-a concentrations or turbid 152 

waters. The resulting data are further separated into three other classes: water (high 153 

turbidity), water (algal bloom), and haze. A chl-a concentration estimator designed to 154 

perform in optically complex inland waters (El-Alem et al., 2014) was used to manually 155 

classify those three categories: fog, water (bloom), and water (turbidity). To classify 156 

these categories, the chl-a concentration estimator was applied to images taken during 157 

important algal blooms and on lakes known to have high turbidity. 158 

 159 

 160 

 161 
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2.3. Calibration and validation 162 

A set of samples from twenty-six MODIS images were selected from the ice-free season 163 

(May to November) of the years 2000 to 2015, and used for model calibration and 164 

validation (table 2). We selected several free water samples (lakes, rivers, gulf, bay and 165 

estuaries) from each MODIS scene that are representative of trophic classes of 166 

waterbodies (oligotrophic, mesotrophic, eutrophic and hypereutrophic classes). Helped 167 

by visual inspection of the maps and the highly turbid lakes known in the literature, a 168 

chl-a concentration estimator designed to perform in optically complex inland waters (El-169 

Alem et al., 2014) was also used to distinguish clear water, algal blooms and turbid 170 

waters. The samples cover all the range of trophic classes based on very low chl-a 171 

concentrations (0,1 g l
–1

) to very high chl-a concentrations (more than 1000 g l
–1

). 172 

The dataset was then partitioned into two sets: we saved some images for calibration, 173 

containing 70% (6186 pixels) of the data, and used the other for validation with 30% 174 

(2651 pixels) of the data. The performance of the statistical model is evaluated using a 175 

Monte-Carlo cross-validation: the random split of the original sample into calibration and 176 

validation data is repeated 10,000 times in order to obtain a distribution of the global 177 

success and the kappa coefficient ( values of the classification (see figure 4). To 178 

evaluate the performance of the cloud mask algorithm, the model was applied to several 179 

MODIS images (qualitative validation). These images were not used in the model 180 

calibration/validation steps. Scenes that include lakes and estuaries known to be highly 181 

turbid and lakes during a period when an algal bloom was occurring were selected. The 182 

algorithm estimating chl-a concentration in inland waters (El-Alem et al., 2014) was also 183 

applied to the validation images, allowing us to detect algal blooms.  184 
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3. Results and Discussion 185 

Table 3 presents the confusion matrix of the double discriminant analysis model over the 186 

three classes. Results show that the classification of cloud and water pixels is not 187 

problematic. The model adequately classifies water pixels with 0% false negative. The 188 

model underestimates cloud detection in 1% of cases (false negatives) but those pixels 189 

are classified as haze, which is not problematic for water colour data studies. 190 

Consequently, none of the water pixels are misclassified as cloud or haze, which is the 191 

major classification problem of actual cloud mask algorithms in presence of optically 192 

active components (chl-a, TSS or CDOM) in water (Banks et al., 2015). Overall, the 193 

model’s performance is very good with a  of 0.982 and a 95% confidence interval 194 

ranging from 0.979 to 0.986. Global success of the classification is 98.9% ranging from 195 

99.0% to 99.2% (95% confidence interval). In order to compare our cloud mask 196 

algorithm with the 250 m and 1 km MODIS cloud masks, we also have generated the 197 

global success and  over two classes (cloud, no cloud) into one combined cloud class. 198 

Table 4 presents the results obtained with the three cloud masks applied on the same 199 

validation data set. 200 

As a qualitative validation, the new cloud mask algorithm was applied to MODIS-D-250 201 

images and compared to the current MODIS 1 km and 250 m cloud masks. Figures 5 and 202 

6 present results for the Missisquoi Bay of Champlain Lake (during a period with 203 

moderate to high chl-a concentration), St-Lawrence river (moderate turbidity and 204 

moderate chl-a concentration) and Macamic Lake (high turbidity). MODIS cloud masks 205 

don’t appear to be sensitive enough to haze, which leads to major issues in remote chl-a 206 

estimates. Figure 5 shows an example of that issue and the improvement of haze 207 
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detection of our new algorithm. It presents the Missisquoi Bay during an algal bloom (at 208 

the top) and the Champlain Lake covered in part with cloud and haze (at the bottom). The 209 

three cloud masks are then presented (1km MODIS cloud mask, 250 m MODIS cloud 210 

mask, and the new 250 m cloud mask), and below, the chl-a concentration estimated with 211 

the remaining water pixels. The chl-a values were generated using an algorithm 212 

developed by El-Alem et al. (2014). Both MODIS cloud masks are not enough sensitive 213 

enough to haze, which yields some high estimates of chl-a concentration for pixels 214 

without a priori algal bloom. 215 

MODIS cloud masks are also not suited to perform well in turbid waters. It happens that 216 

the masks falsely detect clouds in turbid waters. The St-Lawrence MODIS scene in figure 217 

6 shows that the cloud/haze classification is highly improved with the new 250 m cloud 218 

mask compared to both MODIS cloud masks. Highly turbid waters located at the edge of 219 

an urban area, which are often problematic to cloud masking algorithms, are now much 220 

better classified as water pixels. It should be noted that the land mask which was 221 

developed and applied to the images covers transition zones from land to water (mixed 222 

pixels) up to 250 m of the edge of lakes. Also, on small to medium-sized lakes and 223 

particularly those with turbid waters, the false classification of MODIS cloud masks 224 

becomes a major issue in terms of exploitable data. Figure 6 (bottom) shows another 225 

MODIS scene on a smaller area, the Macamic Lake which has a surface area of 45 km
2
. 226 

MODIS cloud masks falsely classify as cloud approximately 16 % of the lake area. 227 

Figure 7 presents the cloud masks performance in thin haze and in cirrus conditions. The 228 

image of the Bay of Fundy from 24 August 2014 shows the very good performance of the 229 

algorithm in haze detection especially when compared to the MODIS cloud masks. The 230 
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second scene taken on St-Lawrence river clearly shows a lack of performance in 231 

detecting cirrus clouds by the MODIS products. As we showed earlier, the lack of 232 

sensitivity to haze and thin clouds can lead to misinterpretation of the water quality 233 

parameters. 234 

4. Conclusion 235 

In conclusion, a cloud masking algorithm based on a double discriminant analysis at a 236 

resolution of 250 m for MODIS imagery was presented. Overall, the new cloud mask 237 

shows a better performance than the MODIS cloud mask when it is applied on turbid 238 

waters, and particularly on highly turbid waters located at the edge of an urban area. The 239 

new cloud mask presents an improved resolution of 250 m, leading to an increase of 240 

exploitable data in the context of water colour studies, and particularly for water quality 241 

monitoring in small to medium-sized inland waters. The new algorithm reduces potential 242 

commission errors more efficiently than the MODIS cloud mask, which is less sensitive 243 

to haze. The commission error reduction is essential for accurate algal blooms 244 

monitoring, because the presence of clouds and haze affects chl-a concentration 245 

estimations. Finally, the innovative aspect of this algorithm is the use of a probabilistic 246 

method to generate a cloud mask compared to current methods proposed in the literature 247 

based on threshold algorithms, leading to an optimal and accurate predictive model. 248 

Confusion matrix results highlight the very good concordance between observed and 249 

predicted classes using the algorithm on the downscaled MODIS bands, showing a global 250 

success average of 99.6% with a 95% confidence interval ranging from 99.4% to 99.8%, 251 

and a   average of 0.993 with a 95% confidence interval ranging from 0.990 to 0.997.  252 
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Tables and Figures 323 

Figure 1: (a) MODIS true color image, (b) corresponding cloud mask developed by the 324 

Canadian Center for Remote Sensing and (c) cloud mask developed by MODIS 325 

Atmosphere Group. 326 

 327 

 328 
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Figure 2: Geographic location of MODIS imagery historical database. 329 

 330 

  331 
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Figure 3: Detailed method used to distinguish between cloud and water classes using 332 

discriminant analysis. 333 

 334 
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Figure 4: Details of the method used to estimate the distribution of the global success of 335 

the classification (%) and  using Monte-Carlo cross-validation. 336 

 337 
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Figure 5 : (a) MODIS R-NIR-B color and R-G-B color of the Missisquoi Bay and the 338 

Champlain Lake, (b) the three cloud masks generated and (c) the corresponding chl-a 339 

concentration layers estimated with the remaining water pixels left (bottom-right). The 340 

red circles show high chl-a concentration values where there is a priori no bloom. 341 

 342 
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Figure 6 : MODIS R-NIR-B color and R-G-B color of the St-Lawrence river (a) and the 343 

lake Macamic (c), and the corresponding three cloud masks (b) and (d). 344 

 345 
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Figure 7 : MODIS R-NIR-B color and R-G-B color of the Bay of Fundy (a) and the St-346 

Lawrence river (c), and the corresponding three cloud masks (b) and (d). 347 
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Table 1: Characteristics of the MODIS bands used in this study. 349 

MODIS sensor 

Satellite Terra (EOS AM-1) 

Operator NASA 

Orbit 705 km (ascending node) 

Temporal resolution 1-2 days 

Quantization 12 bits 

Swath 2330 km 

MODIS bands 

Band (resolution) Wavelength (nm) Description 

1 (250 m) 620–670 Red 

2 (250 m) 841–876 Near infrared 

3 (500 m) 459–479 Blue 

4 (500 m) 545–565 Green 

5 (500 m) 1230–1250 
Short wave 

infrared 

6 (500 m) 1628–1652 
Short wave 

infrared 

7 (500 m) 2105–2155 
Short wave 

infrared 

  350 
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Table 2: List of the MODIS images used for the model calibration and validation. 351 

Julian day Year 

185-217-243-299 2000 

262 2001 

141-200-246-282 2002 

133-195-231-267 2005 

262 2007 

136-189-234-293 2010 

147-217-237-268 2013 

170-201-234-266 2015 

Number of images: 26 

  352 
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Table 3: Results of the double discriminant analysis confusion matrix with 95% 353 

confidence intervals (percentile 2.5 and 97.5 of the distribution) of global success and 354 

means. 355 

 
  Observed 

 

  
Water Fog Cloud Total 

Commission error  Success rate  

    (%) (%) 

P
re

d
ic

te
d

 

Water 1059 0 0 1059 0 100 

Fog 0 236 0 236 0 100 

Cloud 0 27 1329 1356 2 98 

Total 1059 263 1329 2651 
  

Omission error (%) 0 10.3 0 
   

Success rate (%) 100 89.7 100 
  

95% confidence interval of the 

mean 

Global success (%) 
     

98.8 99.0 99.2 

           0.979 0.982 0.986 

  356 
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Table 4 : Classification results of the two MODIS cloud products (1 km and 250 m) and 357 

the proposed approach. 358 

  MODIS 1 km MODIS 250 m 
Ratte-Fortin 

250 m 

Global success (%) 91.3 95.3 99 

 0.827 0.905 0.982 

 359 


