

Application of a reactive transport processes module for a coupled (groundwater/surface water) physically based model on a vineyard hillslope (Beaujolais, France).

Context

The European Water Framework Directive \rightarrow to achieve a good ecological and chemical status for all natural aquatic environments. Physically based and spatially distributed models are useful to :

- 3D surbsurface processes (lateral transfers)

- spatial surface runoff \rightarrow representation of specific surface runoff patterns (for exemple concentratred fluxes)

- interactions between the soil surface and subsurface

Objectives :

- Better understanding of solute transfers at the hillslope scale, in particular the surface / subsurface interactions
- Deeper expertise on the CATHY model

2- Study site : A hillslope with complex surface / subsurface interactions

Study site (Beaujolais, France) :

- 150-m long hillslope bordering a river
- connected ditches redirecting the surface runoff and creating a concentrated runoff situation

Laura Gatel^{a*}, Claire Lauvernet^a, Nadia Carluer^a, Claudio Paniconi^b.

a-Irstea, UR MALY, 5 rue de la Doua, 69100 Villeurbanne, France (*corresponding author: laura.gatel@irstea.fr), b-INRS, centre Eau-Terre-Environnement, 490 rue de la Couronne, Québec (Québec) G1K 9A9, Canada.

1- Implementation of mixing in the CATHY model

CATHY is a validated 3D flow and transport model (Camporese et al. 2010, Weill et al. 2011). Reactive processes have been recently implemented.

Simulation :

- natural rain event of 60 minutes (total of 29 mm)
- hydrodynamic parameters and initial watertable level are based on data

Initial condition : pesticide (diuron) in the first ten centimeters of the vineyard (and not in the buffer strip).

4- Some surface and subsurface results

Runoff dynamic over the hillslope Aerial view of the diuron concentration in the surface runoff.

→ Runoff pathway through the ditches and the concrete pipe is well represented.

 \rightarrow When the rain intensity exceeds the vineyard Ks, the whole vineyard surface generates runoff.

The adsorbed and dissolved pesticide behaviour Evolution of adsorbed, dissolved and surface pesticide masses

Challenges :

- some parameters are not well-known
- complex runoff repartitioning (connected ditches)
- strong surface / subsurface interactions

3- Consistency of results with field data

Calibration of the vineyard Ks on fied data Cumulative flow in gutter 1 and 2 during the event.

Simulated and observed total volumes passing through the gutters are close.

against initial situation.

 \rightarrow Rain dilutes solute concentration and thus lowers adsorbed part of pesticides. → Mass balance is very well respected : the coupling procedure is mass conservative

Overview of the buffer strip efficiency in a situtation of concentrated runoff

- Mass exiting the system : 10 g (0,36 % of the total mass) in 5 minutes
- Mass stored in the buffer strip : 1 g
- \rightarrow Buffer strip is not efficient in this particular situation

Conclusion & perspectives

Keep in mind : some processes are not represented (macroporosity, diffusion and dispersion, sediment transport)

- Simulations are **consistant with observed data** at the hillslope scale
- The CATHY model allows a better understanding of pesticide fate in **3D** at the hillslope scale, in particular in **complex surface / subsurface interaction** cases

- The model parametrisation is complex, and a **sensitivity analysis** is necessary to prioritize influential parameters.

References :

