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[1] Nonstationary oscillation (NSO) processes are observed in a number of hydroclimatic
data series. Stochastic simulation models are useful to study the impacts of the climatic
variations induced by NSO processes into hydroclimatic regimes. Reproducing NSO
processes in a stochastic time series model is, however, a difficult task because of the
complexity of the nonstationary behaviors. In the current study, a novel stochastic
simulation technique that reproduces the NSO processes embedded in hydroclimatic data
series is presented. The proposed model reproduces NSO processes by utilizing empirical
mode decomposition (EMD) and nonparametric simulation techniques (i.e., k-nearest-
neighbor resampling and block bootstrapping). The model was first tested with synthetic
data sets from trigonometric functions and the Rössler system. The North Atlantic
Oscillation (NAO) index was then examined as a real case study. This NAO index was then
employed as an exogenous variable for the stochastic simulation of streamflows at the
Romaine River in the province of Quebec, Canada. The results of the application to the
synthetic data sets and the real-world case studies indicate that the proposed model
preserves well the NSO processes along with the key statistical characteristics of the
observations. It was concluded that the proposed model possesses a reasonable simulation
capacity and a high potential as a stochastic model, especially for hydroclimatic data sets
that embed NSO processes.
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1. Introduction
[2] Stochastic simulation models of climatological and

hydrological variables have been widely developed as an
alternative to unavailable long series of historic data and to
assess the associated risk in agricultural, environmental,
and water resources studies. A number of time series mod-
els have emanated from autoregressive moving average
(ARMA) models with the assumption of stationarity or per-
iodic stationarity [Salas et al., 1980; Stedinger and Taylor,
1982a, 1982b; Stedinger et al., 1985; Bartolini et al.,
1988; Garrido and Garcia, 1992; Salas, 1993; Chebaane
et al., 1995; Katz and Parlange, 1996; Gamiz-Fortis et al.,
2008]. ARMA type models generally require data transfor-
mation. It has been known that modeling in a transformed
domain may cause some bias in reproducing the key statis-
tics in the real domain (e.g., variance, skewness).

[3] Nonparametric time series simulation techniques
have been developed to overcome some of the drawbacks
of ARMA type models with the same stationarity and

periodic stationarity assumption [Lall et al., 1996; Lall and
Sharma, 1996; Ouarda et al., 1997; Rajagopalan and Lall,
1999; Lee et al., 2010; Salas and Lee, 2010]. Unlike para-
metric models, nonparametric techniques do not make any
assumption concerning the underlying distribution. There
is also no need for parameterization in order to reproduce
observational statistics.

[4] During the previous decades, as sufficiently long
records of hydroclimatological data have been recorded,
experts started realizing the structure of long-term varia-
tions in climate and hydrologic data sets [Ghil and Vautard,
1991; Dettinger et al., 1995; Lee and Ouarda, 2011].
These long-term variations are commonly nonstationary or
quasiperiodic. Researchers have focused then on the devel-
opment of time series models that mimic these nonstation-
ary or quasiperiodic variations [Sveinsson et al., 2003; Ahn
and Kim, 2005; Kwon et al., 2007].

[5] Sveinsson et al. [2003] considered the long-term var-
iations as sudden mean shifts and applied the shifting mean
level (SML) model, originally developed by Salas and
Boes [1980]. SML was fitted to the Pacific Decadal Oscilla-
tion (PDO) index resulting in a fairly good reproduction of
the statistical characteristics of the index. Ahn and Kim
[2005] employed an autoregressive conditional heterosce-
dasticity model to describe the nonlinear properties of the
Southern Oscillation Index (SOI). Kwon et al. [2007]
devised an autoregressive type model assisted by wavelet
analysis and applied it to rainfall and temperature series.
The NINO 3.4 series was also tested by Kwon et al. [2007]

1Department of Civil Engineering, ERI, Gyeongsang National University,
Jinju, South Korea.

2Masdar Institute of Science and Technology, Abu Dhabi, United Arab
Emirates.

3Canada Research Chair on the Estimation of Hydrometeorological
Variables, INRS-ETE, Quebec, Canada.

Copyright 2012 by the American Geophysical Union
0043-1397/12/2011WR010660

W02514 1 of 15

WATER RESOURCES RESEARCH, VOL. 48, W02514, doi:10.1029/2011WR010660, 2012

http://dx.doi.org/10.1029/2011WR010660


and the results indicated that nonstationary processes em-
bedded in the series were fairly well reproduced. All these
models, however, do not take into account the slowly vary-
ing nonstationary oscillation (NSO) processes. Specifically,
the modeling of long-term NSO processes still needs to be
carried out.

[6] Meanwhile, Lee and Ouarda [2010, 2011] proposed
a NSO model to predict the future evolution of hydroclima-
tological variables. The proposed model employs a novel
decomposition technique, called empirical mode decompo-
sition (EMD), and nonparametric time series models (i.e.,
k-nearest-neighbor resampling (KNNR) and block boot-
strapping). The results presented by Lee and Ouarda [2010,
2011] revealed that the future long-term oscillation process
is relatively well predicted with the proposed model.

[7] The objective of the current study is to revise the
model of Lee and Ouarda [2010, 2011] and to demonstrate
that it can be employed as a stochastic simulation model
for hydroclimatological variables. The simulation perform-
ance of this model is tested with synthetic data sets and
real-world case studies. Furthermore, using teleconnection
results, a synthetic climate index showing long-term oscil-
lations is employed in simulating the hydrological variable
whose observed data do not reveal long-term oscillations
because of the relatively short record length. It is shown
that this procedure is efficient when the index and the
hydrological variable are significantly correlated.

[8] The paper is organized as follows. The theoretical
background and the proposed model are described in sec-
tions 2 and 3, respectively. To validate the model, synthetic
data sets from trigonometric functions and the Rössler sys-
tem are used in section 4. The results of the application of
the proposed model on the real-world case studies repre-
senting a low-frequency climatic index and a hydrologic
variable are illustrated in section 5. Finally, the summary
and conclusions are presented in section 6.

2. Background
2.1. Hilbert-Huang Transformation

[9] The Hilbert-Huang transformation (HHT) consists of
Hilbert spectral analysis (HSA) and EMD. The Hilbert spec-
tral analysis allows a way to express the nonstationarity of
time series data by evaluating the instantaneous frequency
and instantaneous amplitude through the Hilbert transform
(HT). To apply the HT, a purely oscillatory function with a
zero reference level is required. Motivated by the require-
ments of purely oscillatory functions, the EMD method was
developed by Huang et al. [1998]. The HSA and EMD have
been applied in the field of hydroclimatology during the last
few years [Xie et al., 2002; Chiew et al., 2005; Huang and
Wu, 2008; McMahon et al., 2008; Pegram et al., 2008; Peel
et al., 2009; Lee and Ouarda, 2010, 2011]. Barnes [2007]
showed that the instantaneous frequency has the disadvant-
age of not being robust in the presence of noise and fluctua-
tions. However, Han and van der Baan [2011] showed that
this disadvantage was not inherited in EMD. The methodol-
ogy of the HT and EMD is presented in this section.

2.2. EMD Analysis and Sifting Process
[10] EMD is devised to find the different intrinsic modes

of oscillations in any data set with different frequencies. An

intrinsic mode of oscillation is known as intrinsic mode
function (IMF) when it satisfies the following conditions:
(1) the number of extrema must be equal to the number of
zero crossings or differ from it at most by one, and (2) the
mean value of the two envelopes determined by the local
maxima and minima must be zero. When it satisfies these
conditions, an IMF is a pure oscillatory mode that bears am-
plitude and frequency modulations. In EMD, any complex
data set can be decomposed into a finite number of IMFs
through the sifting process. The sifting process to obtain
IMFs from a time series x(t) where t ¼ 1, . . ., N is as follows.

[11] 1. Identify all of the local extrema and connect all
local maxima (minima) with a smoothing technique to obtain
the upper (lower) envelope. A cubic spline [Press et al.,
2002] has been commonly used [Huang and Wu, 2008].

[12] 2. Obtain the first component, h, by finding the dif-
ference between the data and the local mean of the upper
and lower envelopes m as h ¼ x� m.

[13] 3. Substitute x by h and repeat steps 1 and 2 until a
certain criterion in which the component (h) is guaranteed
to retain enough physical sense of both amplitude and fre-
quency modulations is met [Huang and Wu, 2008].

[14] 4. Assign the final h as the jth IMF, cj, and the resi-
due is rj (i.e., rj ¼ rj�1 � cj where r0 ¼ x).

[15] 5. Repeat steps 1–4 by treating the residue rj as the
original data until the final residue becomes a monotonic
function. The final residue (rn) becomes cnþ1.

[16] Finally, the original time series, x(t), is presented as
the summation of the estimated IMFs as

xðtÞ ¼
Xnþ1

j¼1
cjðtÞ: (1)

Lower-order components have a higher frequency level
and vice versa. For example, the highest frequency level
component is c1 and the lowest frequency level component
is cnþ1.

[17] To examine whether an IMF obtained from EMD
contains a true signal or just a white noise component, Wu
and Huang [2004, 2005] developed a statistical signifi-
cance test for IMFs. The numerical experiments of Wu and
Huang [2004] reveal that

ln Ej þ ln Tj ¼ 0; (2)

where Ej and Tj are the spectral energy and the mean oscilla-
tion period calculated from the jth IMF, respectively. This test
compares the spectral energy and the mean period relation
between the IMFs of the original signal and the white noise. If
the IMF energy of the observed data with a certain mean pe-
riod is located above the confidence level, the corresponding
IMF is considered statistically significant at the given level.

[18] The ensemble EMD (EEMD) approach was also
devised by Wu and Huang [2009] by perturbing the
observed data and ensembling each IMF component of the
perturbed data in order to reduce the chance of mode mix-
ing and preserve the dyadic property. EEMD is employed
in the current study.

2.3. Hilbert Transform (Hilbert Spectral Analysis)
[19] The HT [Frederick, 2009] is considered as the con-

volution of x(t), a time series data, with the function g(t) ¼
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1/(�t). Because of the nonintegrable property of g(t), the
HT of x(t) (i.e., the complex conjugate y(t)) is presented
with the Cauchy principal value (PV) [Kanwal, 1996] as

yðtÞ ¼ PV

Z 1
�1

xð�Þgðt � �Þd� ¼ 1

�
PV

Z 1
�1

xð�Þ
t � � d�

¼ � 1

�
lim
"!0

Z 1
"

xðt þ �Þ � xðt � �Þ
�

d�:

(3)

The analytical signal z(t) is derived from x(t) and y(t) as

zðtÞ ¼ xðtÞ þ iyðtÞ ¼ aðtÞei�ðtÞ; (4)

where aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
is the instantaneous ampli-

tude, �ðtÞ ¼ tan�1ðxðtÞ=yðtÞÞ is the instantaneous phase
function and i ¼

ffiffiffiffiffiffiffi
�1
p

. The instantaneous frequency is
defined as !ðtÞ ¼ d�ðtÞ=dt. At a given time t, the instanta-
neous frequency !ðtÞ and amplitude aðtÞ are simultane-
ously calculated. The frequency-time distribution of the
amplitude is designated as the Hilbert amplitude spectrum,
H(!, t). The marginal Hilbert spectrum is a measure of the
total energy contribution from each frequency over the
entire data span, denoted as

Mð!Þ ¼
Z N

0
Hð!; tÞdt; (5)

where N is the total data length. This provides a quantita-
tive way to describe the time-frequency-energy. The instan-
taneous energy (IE) provides the information about the
time variation of the energy over the whole frequency lev-
els, denoted as

IEðtÞ ¼
Z
!

Hð!; tÞd!: (6)

3. Description of the Proposed Model
[20] A modification of the NSO resampling model

(NSOR) with EMD for the stochastic simulation is presented
in the current study, following the previous prediction work
of Lee and Ouarda [2010, 2011]. The current simulation
study differs from the previous work in several aspects
including the work objectives and the initial condition. Since
the previous work was focused on the extension of the cur-
rent series to obtain the future evolution, the initial condition
was considered as the most recent observed value. On the
other hand, the objective of the current study is to build a
simulation model that reproduces the statistical characteris-
tics of the observed data. Therefore, the initial condition
should be randomly selected. Here, the initial condition is
randomly selected from one of the observations (i.e., boot-
strapping). After generating a longer sample, the warm-up
period is deleted to avoid any potential initial bias.

[21] The overall procedure of the proposed model and the
specific algorithm of NSOR are presented in this section

3.1. Overall Stochastic Simulation Procedure

[22] The proposed model is briefly described as follows:
(1) Decompose the time series x(t) into a finite number of

IMFs. (2) Find the significant components among them by
using the EMD significance test [Wu and Huang, 2004]. (3)
Fit stochastic time series models to the selected significant
IMF components and the residuals (i.e., excluding the signif-
icant components from the observed time series, x(t)). (4)
Simulate each IMF component as well as the residuals from
the fitted models. (5) Sum up the simulated components.

[23] The procedure of stochastic simulation utilizes the
change rate of an oscillatory time series, defined as Dc(t)/
Dt, instead of the direct modeling component c(t). This
avoids abrupt changes while reproducing a smooth oscilla-
tion and easily adapts to the previous conditions. Since
observations are discretely measured with the same interval
(e.g., seconds, hours, and years), i.e., �t ¼ 1, we therefore
have

�cðtÞ=�t ¼ fcðtÞ � cðt � 1Þg=ðt � ðt � 1ÞÞ
¼ cðtÞ � cðt � 1Þ ¼ �cðtÞ:

(7)

[24] Three different types of models are used for simulat-
ing the NSO components, the trend component, and the
residuals. First, the significant oscillation components are
modeled with the NSOR model as explained in section 3.2.
Second, the last trend component should be modeled only
when the component is proven to be highly significant. This
is because the trend component might be induced by the
inability of the EMD procedure to efficiently capture the
IMF components [Lee and Ouarda, 2010], and also because
the current trend may be defined only for the time span of
the observed data [Wu et al., 2007; Huang and Wu, 2008].
Third, the residuals of the data excluded from the significant
components are treated as either random noise or autocorre-
lated noise according to their time dependency structure. A
proper stochastic simulation model for the residuals should
be fitted, such as bootstrapping [Lall and Sharma, 1996;
Vogel and Shallcross, 1996], ARMA [Salas, 1993; Brock-
well and Davis, 2003], etc. In the current study, the KNNR
model [Lall and Sharma, 1996] is used for the residuals sim-
ilarly to Lee and Ouarda [2010, 2011].

3.2. NSOR

[25] The NSOR model is based on two nonparametric
techniques (i.e., KNNR and bloc bootstrapping). A brief
description of the stochastic simulation procedure of the
NSOR model is presented here. Suppose that we have a
sequence of a certain IMF component c(t) where t¼ 1, . . ., N.
The superscripts H and G are used to represent the historical
and generated data, respectively. The NSOR simulation pro-
cedure is as follows.

[26] 1. Select an initial value cG(0) from the N historical
observations assuming that each observation has equal
probability of being chosen.

[27] 2. Randomly generate a block length, LB, from a dis-
crete distribution (e.g., Poisson or Geometric). A Poisson
distribution is generally selected [Lee, 2008; Lee and
Ouarda, 2010, 2011] because the distribution shape is close
to a normal distribution centered on the large mean (here
LB). The employed Poisson distribution with parameter � is
LB � e� � k�1=ðk � 1Þ! where k is a positive integer value.
For the estimation of the parameter � , the method proposed
by Wilks [1997] and Lee and Ouarda [2011] is used. It is
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estimated with a function of the variance inflation factor
(VIF), and the record length, N, by assuming that the data
follows a second-order autoregressive model. Lee and
Ouarda [2011] tested this method and checked its feasibil-
ity to the NSOR model.

[28] 3. Estimate the distances as follows:

Dj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1fcGðt�1Þ�cH ðj�1Þg2þ�2

�
�cGðt�1Þ��cH ðj�1Þ

�2
r

;

(8)

where �1 and �2 are the inverse variances of the compo-
nent data c and the change rates Dc respectively, and j ¼
2, ..., N � LB. The last LB elements are excluded to ensure
that the selected points are followed by records at least LB

in length.
[29] 4. Arrange the distances in ascending order and

select the first k values. Next, out of these k values, ran-
domly select one with the weighting probability given as

wi ¼ ð1=iÞ=
Xk

j¼1
1=j where i ¼ 1, . . ., k. Assign the corre-

sponding time index of the selected one as ~p. Here the num-
ber of nearest neighbors (k) is estimated using the heuristic
approach (i.e., k ¼

ffiffiffiffi
N
p

) proposed by Lall and Sharma
[1996].

[30] 5. Obtain the generated data with length Lb using

cGðlÞ ¼ cGðl � 1Þ þ�cH ð~pþ lÞ l ¼ 1; . . . ; LB;

where ~p is the selected time index from step 4.
[31] 6. Repeat steps 2–5 until all the required data are

generated.
[32] Note that in the applications carried out in the pres-

ent study, one tenth of the simulated records are addition-
ally generated and deleted as part of the warm-up period.

4. Model Validation
[33] A total of three synthetic data sets (i.e., two data

sets representing combinations of trigonometric functions
and the Rössler system) were employed in order to validate
the performance of the proposed model.

4.1. Validation With the Combination of
Trigonometric Functions

4.1.1. Methodology
[34] A synthetic data set is obtained from the combina-

tion of trigonometric functions as

f ðtÞ ¼ cosð0:05tÞ þ sinð0:02tÞ þ 0:5"ðtÞ; (9)

where "(t) is the random component which follows a stand-
ard normal distribution. The employed data set realized
from equation (9) with the record length N ¼ 1000 is illus-
trated by circles in Figure 1 (top). The three terms were
intentionally parameterized so that two oscillation compo-
nents and one random component are appropriately mixed.
The sine component, sin(0.02t), has about 300 time units
per cycle while the cosine component, cos(0.05t), has about
100 time units per cycle. The sine component has a longer
time cycle than the cosine component. The time series
obtained by the combination of these two components
(thick solid line in Figure 1, top) illustrates the oscillation
pattern of the time series f(t). The random component is
included in order to perturbate the combination of the trigo-
nometric functions.

[35] A second trigonometric function including an over-
all trend has been tested with two highly different modula-
tions as:

f ðtÞ ¼ cosð�t=180Þ þ sinð10�t=180Þ þ 0:2"ðtÞ þ 2� 10�6t2:

(10)

Figure 1. Time series of (top) the realized data from f(t) in equation (9) and (bottom) an example of
the generated data from the proposed nonstationary oscillation resampling (NSOR) model.
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This represents the case where long-term oscillations (e.g.,
seasonal cycle) are modulated by short-term oscillations
(e.g., diurnal cycle) while a significant trend exists. This trig-
onometric function illustrates hence a case that is commonly
encountered in hydrologic and climatic series. The same pro-
cedure for the previous case (i.e., equation (9)) is taken in
order to reproduce the oscillations and the trend. Here, the
historical trend extracted from EMD analysis is used in sim-
ulation instead of fitting a polynomial regression. Note that
it is expected that the second-order polynomial model leads
to the best fit for equation (10).

4.1.2. Results
[36] Nine IMF components were extracted from the real-

ized data of f(t) in equation (9) using EMD analysis as
shown in Figure 2. The fifth and sixth components contain
most of the information about cos(0.05t) and sin(0.02t),
respectively. The other components might be the random
part of f(t) or the inability of the EMD to efficiently capture
the IMF components, as discussed in section 3.

[37] The significance test of the IMF components [Wu
and Huang, 2004, 2005] reflects well the importance of
each component as shown in Figure 3. In Figure 3, the
points (asterisks) show the energy magnitude with a certain
mean period of each component. If the point is located
above a line indicating a certain significance level (e.g.,
solid and dotted lines for 95% and 99% significance levels,
respectively), the hypothesis that the component is induced
by random noise is rejected with the corresponding

significance level. The 5th and 6th components are highly
significant while the 7th, 8th, and 9th components are less
than moderately significant. The last three components

Figure 2. Realized sequence from f(t) in equation (9) and the extracted intrinsic mode function (IMF)
components. Note that most of the cosine and sine signals in f(t) are sifted in c5 and c6.

Figure 3. Significance test of the IMFs in Figure 2. The
points (asterisks) below the lines indicate the acceptance of
the hypothesis that the corresponding IMF of the target se-
ries is not distinguishable from the corresponding IMF of a
random noise series with 95th (solid line) and 99th (dotted
line) confidence levels.
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(i.e., c7, c8, and c9), however, present a very small variabili-
ty, as shown in Figure 2, with almost no contribution to the
variability of the original time series (first panel in Fig-
ure 2). Therefore, these components are not included in the
NSOR modeling. The shortcomings of the IMF significance
test suggested by Wu and Huang [2004, 2005] are dis-
cussed by Lee and Ouarda [2010]. In the latter, it is shown
that subjective judgment through visual illustration (e.g.,
Figure 2) is also required for the selection of NSOR model-
ing components. Only the fifth and sixth components are
selected for NSOR modeling while the sum of the other
components is treated as residual. The residuals were mod-
eled with KNNR as it can preserve nonlinear serial rela-
tions as well as linear relations [Lall and Sharma, 1996;
Prairie et al., 2005, 2006; Salas and Lee, 2010].

[38] Employing the modeling scheme presented above,
200 sequences were generated with the same record length
as the observed data (i.e., N ¼ 1000). A sample sequence is
presented in Figure 1 (bottom). The overall oscillation pat-
tern induced from the combination of the two trigonometric
functions as well as the variability of the random compo-
nent is reproduced well in the generated data.

[39] The basic statistics (i.e., mean, standard deviation,
and skewness) of the 200 generated sequences were esti-
mated and compared to the statistics of the observed data
as presented in the three box plots in Figure 4 (top). In
these box plots, boxes display the interquartile range (IQR)
and whiskers extend to the extrema with horizontal lines at
the 5th and 95th percentiles of the serial correlations of the
200 generated sequences. The horizontal lines inside the
boxes depict the median of the data. Also, the value of the
statistic corresponding to the observed data is represented

with a circle. The box plots of the three basic statistics indi-
cate that the proposed model reproduces well the statistical
characteristics of the observed data.

[40] The serial correlations were compared for the
observed and generated data from the proposed model as
shown in Figure 4 (bottom). The solid line represents the
observed correlations while the dash-dotted line and the
two dotted lines illustrate the mean and the 10th and 90th
percentiles, respectively. The observed serial correlations
are located within the 10th and 90th percentiles of the gen-
erated series indicating that the proposed model character-
izes well the dependence structure of the observed data as
well as the long-term oscillation property. Overall, the pro-
posed NSOR model reproduces well the key characteristics
of the test function. The marginal Hilbert spectrum of the
historical data (see equation (5)) is well preserved in the
simulated data, which indicates that the NSOR model has a
strong capability to reproduce the spectral characteristics of
the historical data (data not shown).

[41] The realized data set for the second trigonometric
function (see equation (10)) is shown in Figure 5 (top), and
one example of the simulated data is presented in Figure 5
(bottom). The results show that the combination of the two
highly different frequency oscillations and the trend com-
ponent are reproduced well in the simulated data using the
proposed NSOR approach. The marginal Hilbert spectra of
the realized data and the 200 generated sequences are illus-
trated in Figure 6 with a thick black line and with thin gray
lines, respectively. Figure 6 indicates that the marginal
spectrum of the realized data is well preserved in the simu-
lated data. Also, the results indicate that the simulations for
equation (10) have a similar reproduction capability for

Figure 4. (top) Basic statistics of the generated (box plots) and observed (circles) data; (bottom) serial
correlations of the observed (solid line) and generated data (a dashed line for median and two dotted
lines for the 5th and 95th percentiles).
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statistical characteristics as in the case of equation (9) (data
not shown).

4.2. Validation With the Rössler System

4.2.1. Methodology
[42] One of the most famous and chaotic nonlinear

dynamic systems, the Rössler attractor [Rössler, 1976,
1995], was selected in order to test the performance of the
suggested stochastic simulation model. This attractor was
intended to behave similarly to the Lorenz attractor
[Lorenz, 1963] but with a better qualitative understanding of
the chaotic flow. The system is represented by three nonlinear
ordinary differential equations as _p ¼ �q� s, _q ¼ pþ �q,
and _s ¼ � þ ps� �s. Here ðp; q; sÞ 2 R3 and ð�; �; �Þ 2 R3

are dynamical variables and parameters, respectively, and _p
represents the derivative of the variable x. Huang et al.
[1998] and Kijewski-Correa and Kareem [2007] showed that
the nonlinear oscillatory characteristics of this system are
well described with EMD and HT. This attractor is selected
since it oscillates within a fixed range but the oscillations are
chaotic, which is the general assumption with which the
NSOR model was applied [Lee and Ouarda, 2010, 2011].

4.2.2. Application and Results
[43] The system was realized with the same parameter

set (i.e., [�; �; �] ¼ [1/5, 1/5, 7/2]) as in the work of Huang
et al. [1998] and Kijewski-Correa and Kareem [2007], N ¼
500 and with the initial state of [p0, q0, s0] ¼ [�3, 3, 1].
Among the three variables p, q, and s, we used the p vari-
able as p þ " by perturbating the system with a random
component. Here " is normally distributed with zero mean
and the same variance as p. Through the significance test
and its implication [Wu and Huang, 2004, 2005; Lee and
Ouarda, 2011], the combination of the fourth and fifth IMF
components among eight IMFs was selected to fit the
NSOR model. The other components were considered as

the residuals and modeled with the KNNR model. From the
fitted model, 200 sequences were generated with the same
record length as the observed data.

[44] Hilbert spectrum analysis is applied to the realized
data and the generated sequences to validate the simulation
performance of the proposed model in the spectral domain.
The results are presented in Figures 7, 8, and 9. The results
for the observations and one example of the generated
sequences are presented in Figures 7 and 8, respectively,
for the time series, the time-frequency spectrogram of
H(!, t), and the marginal Hilbert spectrum of equation (5).

[45] The overall variability of the generated time series
(Figure 8a) is similar to the variability of the realized data

Figure 5. Time series of (top) the realized data from equation (10) and (bottom) an example of the
generated data from the proposed NSOR model.

Figure 6. Marginal Hilbert spectrum for the realized data
of the test function in equation (10) (thick black line) and
200 generated sequences from the NSOR model (thin gray
lines). The first peak of the frequency level (�2 � 10�3)
indicates the short-term oscillation in equation (10), while
the second peak of the frequency level (�2 � 10�2) shows
the long-term oscillation.
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(Figure 7a). For the spectrogram of the realized data shown
in Figure 7b, there are two frequency regions, i.e., 10�1 to
5 � 10�1 and 3 � 10�2 to 8 � 10�3 where the spectrum
magnitude is consistently high over the entire time span.
As shown in Figure 7c, the amplitude of the marginal

Hilbert spectrum for the lower-frequency region (i.e., 3 �
10�2 to 8 � 10�3) is also high, while for the higher-
frequency region (i.e., 10�1 to 5 � 10�1) it is low. Note
that the components that produce low spectrum amplitude
in the high-frequency level (i.e., 10�1 to 5 � 10�1) are

Figure 7. Hilbert transform of the realized Rössler attractor for (a) time series, (b) time-frequency
spectrogram of H(!, t), and (c) marginal Hilbert spectrum of equation (5).

Figure 8. The same as Figure 7, except the employed data are an example of the generated sequences
from the proposed NSOR model.
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low-order IMFs (e.g., c1 and c2). Therefore, the frequency
level of these components is highly sparse because of the
randomness of the lower-order components.

[46] These spectral characteristics of the HT in the real-
ized data are reproduced well in the HT of the example of
the generated data as shown in Figures 8b and 8c. The con-
sistent high amplitude of the realized data is also observed in
the HT of the example of the generated data, shown in Fig-
ure 8b as well as the marginal Hilbert spectrum in Figure 8c.

[47] The marginal Hilbert spectra of the realized data and
all the generated sequences are illustrated in Figure 9. The
amplitude of the realized data resides within the variability
of the amplitude of the generated sequences over the whole
frequency level. This indicates that the generated sequences
from the proposed model preserve well the spectral charac-
teristics of the realized data. Also, the key statistics and

serial correlations of the realized data are reproduced well in
the generated sequences (data not shown).

5. Case Studies
5.1. North Atlantic Oscillation Index

5.1.1. Data Description
[48] The North Atlantic Oscillation (NAO) is a large-

scale oscillation in atmospheric mass between the subtropi-
cal high (the Azores High) and the polar low (the Icelandic
Low) in the North Atlantic region [Rogers, 1990]. A zonal
average version of the NAO index was introduced by Li
and Wang [2003] and employed in the current study instead
of the instrumental record-based indices [Hurrell, 1995;
Jones et al., 1997; Cullen et al., 2002]. This index, esti-
mated from the difference of the monthly sea level pressure
(SLP) at 35�N and 65�N over the longitudes of 80�W–
30�E, is employed in the current study for the period 1873–
2007 as shown in Figure 10. It has been proven that this
index explains a large portion of the variance of the SLP
over the North Atlantic region for all time scales and pro-
vides the strongest correlation pattern with surface air tem-
perature among the NAO indices. The data was
downloaded from the site of the State Key Laboratory of
Numerical Modeling for Atmospheric Sciences and Geo-
physical Fluid Dynamics (http://www.lasg.ac.cn/staff/ljp/
data-NAM-SAM-NAO/NAO.htm).

5.1.2. Results
[49] On the basis of the IMF significance test, the fourth

and fifth IMF components were selected among eight
IMFs. The time series of the observed NAO index and the
combination of the selected components are shown in Fig-
ure 10. Even if the serial correlations of the observed data
are relatively small (Figure 11a), the pattern shows that the
long-term oscillation does exist in the observed data. The
serial correlations of the residuals, obtained by subtracting
the selected components from the observations, do not
show this oscillation pattern (Figure 11b). This indicates

Figure 9. Marginal Hilbert spectrum for the realized data
of Rössler attractor (thick black line) and 200 generated
sequences from the NSOR model (thin gray lines). Note
that at a certain frequency level, the corresponding ampli-
tude might be zero since the amplitude is estimated from
the instantaneous frequency of IMFs (e.g., frequency level
2.5 � 10�2).

Figure 10. Time series of the North Atlantic Oscillation (NAO) index (thin solid line, years 1873–2007)
and its selected components (thick solid line).
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that the selected components contain the long-term NSO of
the observed data as discussed by Lee and Ouarda [2010,
2011] and Schlesinger and Ramankutty [1994].

[50] As discussed in section 1, the SML model [Salas and
Boes, 1980; Sveinsson et al., 2003] is one of the commonly
adopted alternatives to represent long-term nonstationary

processes as abrupt shifts. The SML model was applied to
the NAO index for the comparative study with the proposed
NSOR model.

[51] The basic annual statistics of the annual NAO index
are presented with box plots for the NSOR and SML model
results in Figures 12 and 13, respectively. The key statistics

Figure 11. Serial correlations of (a) the observed data and (b) the residuals obtained by subtracting the
selected IMF components from the observed data for the NAO index.

Figure 12. Basic statistics of the observed (box plots) and generated (circles) data from the NSOR
model for the NAO index.
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are well preserved in both models. The statistics of the
mean, standard deviation, and lag 1 serial correlation are
supposed to be preserved in the SML model since the
model employs these statistics for parameter estimation.
Even if none of these statistics are employed as parameters
in the proposed NSOR model, it also preserves these statis-
tics. Nonparametric models are intended to let observed
data speak for themselves instead of parameterization with

the assumption of a certain distribution such as the normal.
Slight underestimation of the minimum is observed in both
models. No significant difference can be found between the
two models. The densities of the simulated data from the
NSOR model and the SML model are compared using
kernel density estimates [Silverman, 1986], as shown in
Figure 14. The figure shows that both models reproduce the
historical density well.

Figure 13. Basic statistics of the observed (box plots) and generated (circles) data from the shifting
mean level (SML) model for the NAO index.

Figure 14. Densities of the observed (box plots) and generated (solid line with crosses) data from (a)
the NSOR and (b) the SML models for the NAO index.
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[52] In Figure 15, the serial correlations of the observed
data are represented with a solid line, while the ones of 200
generated sequences from the SML model (Figure 15, top)
and the NSOR model (Figure 15, bottom) are represented
with a dash-dotted line (mean) and two dotted lines (5th
and 95th percentiles). The serial correlations of the gener-
ated sequences from the two models show significant dif-
ferences. The correlations of the SML model decrease
exponentially, while the correlations of the observed data

(the segment line) show a long-term NSO pattern, as shown
in Figure 15 (top). In contrast, this long-term NSO pattern
of the serial correlations is well preserved in the NSOR
model, as shown in Figure 15 (bottom). The long-term
NSO presented in the serial correlations cannot be pre-
served through the SML model since this model has an
exponentially decreasing correlation structure [Sveinsson
et al., 2003].

[53] A behavior similar to the serial correlation structure
is also presented by the marginal Hilbert spectrum, as
shown in Figure 16. The high spectrum amplitude of the
observed data at the low-frequency level around 10�2 is
underestimated from the generated sequences of the SML
model (Figure 16a) while the same is preserved well in the
sequences of the NSOR model (Figure 16b).

5.2. Romaine River Streamflows

5.2.1. Data Description and Methodology
[54] The Romaine River station is located at 50.35�N,

61.19�W in the province of Quebec, Canada with a drain-
age area of 13,000 km2. Recently, Hydro-Quebec has indi-
cated that it plans to build a hydroelectric complex with a
capacity of 1500 megawatts (MW) on this river. The mean
annual streamflows of the Romaine River station are simu-
lated in association with the NAO index in order to illus-
trate the potential usefulness of the generated climate index
in the simulation of the hydrological regime.

[55] Stochastic simulation of streamflows associated
with a climatic system provides better insights for the
future conditions of water availability. However, the rela-
tively short record length (1957–2008) of the Romaine
River observations, as shown in Figure 17a, hinders the
capacity to observe and capture long-term variations such
as shifting means and NSO processes. A stochastic simula-
tion model of streamflow data incorporating the long-term
variations of the appropriate climate index is a useful

Figure 15. Serial correlations of the observed and the
generated data for (top) the SML model and (bottom) the
NSOR model (observed, solid line; mean value, dash-dot-
ted line; 5th and 95th percentiles, dotted lines) for the
NAO index.

Figure 16. Marginal Hilbert spectrum for the observed data of the NAO index (thick black line) and
200 generated sequences (thin gray lines) from (a) the SML model and (b) the NSOR model for the
NAO index.
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alternative in this case. The connection between the NAO
index and the Romaine river streamflows was explored by
Lee and Ouarda [2010]. The opposite long-term phase
between the Romaine River and the NAO index can be
observed in Figure 17a. A significant negative cross corre-
lation (�0.44) is shown between the NAO index and the
Romaine River streamflow.

[56] Since no significant nonstationarities were observed
from visual inspection and statistical testing, an autoregres-
sive model with exogenous input (ARX) [Hipel and
McLeod, 1996] was applied in simulating the Romaine
River streamflows. The order 1 for the autoregressive (AR)
term and the order 1 for the exogenous term are used. Since
the record length is short and no long-memory structure is
observed in the streamflow data, more complex ARX mod-
els were not considered. A nonlinear classical ARX model
[Nelles, 2001] was also tested as a surrogate of the ARX
model. The results were not satisfactory because of overfit-
ting of the short record length of the streamflow station.

5.2.2. Results
[57] To test the performance of the proposed NSOR

model, 200 sequences were generated with the same record
length as the NAO index (135 years). The simulation records
are longer than the historical data and enable the generated
streamflow data to contain long-term patterns. The opposite
long-term phases between the streamflow and the NAO
index, embedded in the observations (Figure 17a), are repro-
duced well in the simulated data, as shown in Figure 17b.
Note that during the period when only the NAO index is
available (i.e., 1875–1957) the index is on a warming phase.
The expected streamflow values during this period might be

somewhat lower than normal because of the negative cross
correlation with the NAO index. Therefore, the mean of the
simulated streamflows is expected to be lower than the mean
of the observed data if the record is extended up to the year
1875. The mean of the simulated data is lower than the
observed one, as presented in Figure 18. This behavior was
expected since the simulation of the streamflows employs
the long-term oscillation of the NAO index. For the same
reason, the minimum of the simulated data is also lower
than the minimum of the observed data. Slight underestima-
tion of the skewness and overestimation of the lag 1 correla-
tion are observed in Figure 18. In conclusion, the ARX
model of the Romaine River annual streamflows employing
the simulated NAO index as an exogenous variable reprodu-
ces fairly well the key statistics of the observed streamflows
as well as the long-term NSO process that is not observed in
the historical data.

6. Summary and Conclusions
[58] The stochastic simulation NSOR model, based on

EMD analysis and nonparametric techniques, for hydrocli-
matological data was presented in the current study. The
modeling procedure can be summarized as (1) the observed
time series is decomposed using EMD into IMFs, (2) the
IMF significance test is performed, (3) each component is
modeled and simulated according to its characteristics (i.e.,
NSOR, residuals, and overall trend), and (4) the simulated
components are combined.

[59] Validation studies were carried out on the combina-
tion of trigonometric functions and the Rössler system. The
results indicate that the proposed model reproduces well

Figure 17. Time series of the NAO index and Romaine River streamflows for (a) observed data and
(b) an example of the generated sequences.
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the important statistical characteristics and the NSO proc-
esses. In the real case study of the NAO index, the pro-
posed model outperforms the existing SML model in
reproducing NSO processes. It was shown that the hydro-
logical variables (i.e., streamflows at the Romaine River)
can be efficiently generated with the ARX model employ-
ing the NAO index as an exogenous variable. The unprece-
dented long-term NSO processes were illustrated in the
simulated Romaine River streamflows assisted by the long
records of the NAO index.

[60] From the results of the validation studies and the
applications to case studies, we conclude that the proposed
NSOR model based on EMD analysis represents a good al-
ternative to simulate hydroclimatological variables contain-
ing NSO processes. The results indicate that the NSOR
model is useful when a significant NSO process exists in
the observed time series. Otherwise, it would be better and
easier to apply other time series models, such as SML or
ARMA. Furthermore, an elaborate process is still required
to find significant components for the EMD process since
the current significance test is not definitive yet. Employing
the AR(1) time series instead of white noise in the signifi-
cance test might be a good alternative to improve the selec-
tion capability of the significant IMF components.

Notation

x(t) observation variable.
"(t) a white noise random process with zero mean.

t time index.
N record length.
m mean of the upper and lower envelopes in sifting

process.
h difference between the mean envelopes and the

data in the EMD analysis.
cj extracted jth EMD component (IMF).
n number of IMFs not including the last trend

component.
rj jth residue variable.
Ej mean energy of jth IMF.

Tj mean oscillation period calculated from jth IMF.
PV Cauchy principal value.
y(t) Hilbert transform of x (i.e., complex conjugate).
a(t) instantaneous amplitude.
�(t) instantaneous phase function.
!(t) instantaneous frequency.

H(!,t) Hilbert amplitude spectrum.
M(!) marginal Hilbert spectrum.
IE(t) instantaneous energy.

Dc change rate of IMF.
k number of nearest neighbors in the KNNR model.

wi weighted probability with i ¼ 1, . . ., k.
LB block length.
Dj distance measurements in the NSOR model.
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