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Sommata-dry - n = 744

Juvenile pyroclasts come in a range of sizes, shapes, surface features and internal textures (e.g., for basalt, sideromelane versus tachylite). 
These parameters are influenced by how magma deforms, fragments and cools, which is controlled by factors such as magma viscosity, surface 
tension, crystallinity, volatile content, and interaction with external water, including Molten Fuel Coolant Interactions (MFCI) and less explosive in-
teractions.

To understand how both silica content and interaction with external water impact on magma fragmentation and the resulting juvenile pyro-
clasts, a series of laboratory scale experiments were performed at the Physikalisch Vulkanologisches Labor in Würzburg (Germany). In each run, 
200 g of volcanic rock was re-melted to 1200°C within 1 hour using an induction furnace. The melt was fragmented and expelled from the steel 
crucible through the use of compressed argon injected from the base; this is known informally as a “dry blowout”. In wet blowouts, a layer of liquid 
water was added on top of the magma just before the start of deformation. Dry and wet blowouts were performed on three melt compositions ran-
ging from olivine-melilitite (ultramafic) to basaltic trachy-andesite (intermediate); these three compositions have approximately the same equili-
brium viscosity for low shear rates at 1200°C. Dry blowouts are somewhat comparable to fire fountains in nature.

The artificial pyroclasts were collected and hand-sieved in order to obtain grain-size distribution, then different size fractions examined under 
the binocular microscope. Particles in the 0ϕ size fraction were assigned to different classes based on shapes and other visual features. Major 
differences in the particle shapes were observed between the three dry blowouts, despite using the same experimental conditions, comparable 
magma surface tensions, and equilibrium viscosities. Therefore, instantaneous viscosity and non-Newtonian behaviour probably plays a role in 
controlling particle shapes in lava fountains and other eruptive styles.

Exp. parameters
• Mass of volcanic material: 
200 g, granulated
• Water volume (wet blow-
out only): 100 ml
• Driving pressure: 500 cm3 

Argon at 10 MPa
• Magma temperature: 
1200°C
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Bilstein-wet - n = 752
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viscosity 

(Pa∙s)
Baden-Württemberg, Germany Hohenstoffeln lava lake (Miocene, 15 Ma) 38.1 3.89 73Olivine-melilitite

Alkaline basalt Bilstein, Brilon, Germany Continental lava flows (mid-Devonian, ??) 45.3 4.52 50

Basaltic 
trachy-andesite Vulcano, Italy La Sommata scoria cone (Pleistocene, 99 - 20 ka) 54.4 6.16 64
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Equilibrium viscosities of the three tested magma compo-
sitions at 1200°C, showing the strong dependence on the 
shear rate. (a) data from Hobiger et al., 2011. (b) data from 
Sonder et al., 2006.
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Geochemistry and equivalent viscosity

Experiment set-up
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• Dry hand-sieving of 
each sample, separat-
ing the single size frac-
tions up to 4ɸ (63 μm)

• Observation of all 
size fractions at the bin-
ocular microscope 

• 0ɸ (1 mm) fraction 
selected for i) particle 
shape analysis and 
counting at the binocu-
lar; ii) internal features 
in thin sections

• 4ɸ (63 μm) fraction 
selected for surface 
features study and 
geochemistry at 
SEM-EDS

Methods
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• Three magma compositions with similar equilibrium viscosities were tested under the 
same experimental conditions
• Important differences in particle shapes were observed, for the dry blowouts:
 ◦ The ultramafic magma produced mostly spheres, lobate clasts and tears
 ◦ The intermediate magma produced mostly elongate particles
 ◦ The mafic magma produced particles with transitional characteristics
• Experimental results on ink jets (Shimozuru, 1994) linked the production of Pele’s hairs 
versus Pele’s tears as dependent on several parameters such as magma viscosity (ƞ), 
magma and air density (ρ0, ρ), droplet velocity (ν) and surface tension (σ), all represented by 
Pele number (Pe), defined by Pe = ρ∙ν∙ƞ / ρ0∙σ. Pele's hair are produced by larger (Pe) and 
Pele's tears for smaller (Pe) (Shimozuru, 1994)

• The parameters defining Pele number initially appear to be the same for all dry blowouts, so 
identical particles would be expected regardless of magma composition. But this erroneously 
assumes that equilibrium viscosity of the magma is the relevant parameter
• Yet instantaneous viscosity, which is directly applicable to what happens in the crucible and 
air during the experiments, is thought to be much lower for ultramafic melts due to their 
non-Newtonian behavior (shear thinning). This allows the reshaping of the ultramafic melt drops 
to configurations such as spheres and tears
• In contrast, Newtonian behavior shown by our intermediate magma leads to a clear preva-
lence of elongated fragments under the same experimental conditions 
• Finally, fast interaction of the melt with water during the wet runs seems to have a role in the 
formation of platy particles, which appear for the mafic and intermediate compositions.
• In summary, non-Newtonian behavior probably has a major influence in controlling 
particle shapes in lava fountains and other eruptive styles
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