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R6sum6

Ce travail de recherche aborde les probldmes de la conception d'un systdme de

reconnaissance automatique de la parole ASR (Automatic Speech Recognition) en

ligne (on-line) robuste au bruit, d savoir, la reconnaissance de la parole en ligne auto-

adaptable d environnement-d6tectable similaire au processus humain et son ex6cution

dans les environnements acoustiques r6els hautement non-stationnaires. Commengant

par une 6tude de l'6tat d'art des technologies ASR en diff6r6 (off-line), on pr6sente,

en premier, les approches courantes utilis6es dans la litt6rature de I'ASR afin de

formuler un systdme de reconnaissance continue en ligne de la parole bas6 sur la

technique HMM. Dans cette approche, on examine la technique biais6e dynamique de

suppression de trame (frame dynamic bias removal technique) pour I'ASR en ligne, qui

a une trds bonne performance d'ASR pour de la parole propre (non corrompue par du

bruit). Nous introduisons alors une nouvelle technique pour un ASR en ligne typique

bas6 sur la technique en ligne bay6sienne d'inf6rence. Dans ce cas-ci, nous 6tudions la

performance de la technique de la moyenne r6cursive command6e par des minimum

MCRA (minima controlled recursive averaging) pour le d6tection et la compensation

de bruit de canal simple en r6alisant les essais en ligne d'ASR pour le signal de parole

dans des environnements acoustiques hautement non-stationnaires et comparer alors

leurs r6sultats avec la parole bruit6e au discours bruyant correspondant pour I'ASR
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en diff6r6. Finalement, nous pr6sentons une architecture d'ASR en ligne bas6e sur

une technique non-lin6aire et un moddle non-gaussienne pour mod6liser des sc6narios

acoustiques r6els. Dans cette approche nous proposons la technique de I'optimisation

d'essaim de particules PSO (particle swarm optimization) pour d6pister et estimer le

bruit, et nous avons montr6 par des exp6riences que la technique d'optimisation PSO

am6liore la performance du systdme en ligne de reconnaissance de la parole de manidre

significative dans les environnements acoustiques hautement non-stationnaires.

Introduction & principales contributions

La reconnaissance de la parole est un processus de conversion des expressions par-

l6es de la parole en mots ou textes. Ces textes peuvent €tre la sortie finale ou l'entr6e

au traitement de langage naturel. En raison de caract6ristiques naturelles et efficaces

du signal de parole dans l'6change d'information, il est devenu la manidre la plus rapide

que l'6tre humain peut utiliser pour communiquer avec des machines. Avec l'arriv6e

des technologies de calcul modernes, les interfaces entre les hommes et les machines

deviennent plus r6alistes pour l 'accds et la gestion de I'information lorsque (i) l 'espace

de l'information est large et complexe, (ii) les utilisateurs sont techniquement naifs,

et (iii) seule les t6l6phones sont disponibles. Les interfaces de communication, bas6es

sur la parole, le plus g6n6ralement utilis6es entre les hommes et les machines sont:

(a) l'identification de la parole simple comme, la commande et le contrdle, saisie de

donn6es par t6l6phone, dict6e, transcriptions: l6gal, m6dical, TV, et (b) conversations

interactives et machines intelligentes tel que, les kiosques d'informations, traitement

transactionnel, et agents intelligents, parcourir la musique, navigation sur le web,
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contrOle de voitures et la navigation GPS, etc. La reconnaissance automatique de

la parole (RAP) est un champ de recherche trds int6ressant pour la conception de

I'interface homme-machine. L'ASR est un champ de grande fascination et 6galement

fascinant d aborder. C'est un champ de recherche de grandes frustrations 6galement

lorsque les r6sultats sont moins fascinants. On pense que les aspects suivants sont les

contributions significatives de ce travail de recherche d I'avancement des connaissances

dans le domaine de I'ASR en ligne robuste au bruit.

Contribution L: Nous avons conqu et impl6ment6 un systdme ASR en ligne

robuste au bruit, avec I'extraction de caract6ristiques, d6tection en ligne et d6-

tection de brusque changements dans les environnements acoustiques, addition

conjoint dynamique des trames et compensation des distorsions du canal JAC

(channel distortions compensation), et les fonctionnalit6s de reconnaissance de

la parole dans un environnement de calcul multi-filet6 multithread.

Contribution 2: Nous avons propos6 la technique d'inf6rence en ligne bay6-

sienne pour les d6tections de point de changement (BOCPD) et l 'adaptation

rapide pour la d6tection du bruit bas6e par NICRA et la technique d'estima-

tion dans des environnements hautement non-stationnaire et d changements

abruptes. Nous avons d6velopp6 un moddle BOCPD bas6-par-trames pour I'adap-

tation rapide du NICRA aux conditions acoustiques r6elles non-stationnaires.

Nous avons montr6 par des exp6riences que le BOCPD peut r6duire le retard

de la fenOtre de mise A jour dans le MCRA en quantit6 significative dans les

plus mauvais sc6narios lorsque le SNR change rapidement des conditions les

plus elev6es vers les plus basses.

- Contribution 3: Nous avons impl6ment6 le moddle BOCPD par-trames RAP
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propos6 pour I'adaptation rapide de la technique de IVICRA pour la technique

ASR en ligne utilisant la base de donn6es de parole Aurora 2 [1]. Une com-

pensation de distorsion de canal dynamique de trame est impl6ment6e dans un

processus de reconnaissance d deux 6tages utilisant un outil de simulation de

calcul en temps r6el ATK [2]. Les r6sultats exp6rimentaux montrent l'am6liora-

tion significative dans I'exactitude de travail compar6e e I'ASR basique dans le

mode Batch.

Contribution 4: Nous avons impl6ment6 un filtre de bande critiques percep-

tuel et une technique de seuil masquant pour r6duire le bruit musical dans la

d6tection du bruits bas6 par MCRA et la technique de compensation dans notre

approche propos6e pour I'ASR en ligne bas6 par JAC. Les r6sultats exp6rimen-

taux montrent une r6duction significative du bruit musical en termes de PESQ

et SNR segmental (SegSNR) compar6s d, la technique de rehaussement de la

parole standard.

Contribution 5: Nous avons propos6 un filtre (PF) de particules bas6 par

lVlonte Carlo s6quentiel pour I'exploitation de la parole en ligne dans les envi-

ronnements acoustiques hautement non-stationnaires et d changement abrupte.

Nous avons d6velopp6 cette approche bas6e sur le moddle non-stationnaire et

non Gaussien pour le signal de parole dans les conditions acoustiques r6elles.

Nous avons montr6 par les exp6riences que le filtre PF peut aider d concevoir

et d am6liorer la performance de reconnaissance du systdme d'ASR en ligne.

Contribution 6: Nous avons 6galement propos6 le filtre d'optimisation d'es-

saim de particules (PSO) pour Ia d6tection du bruit non-stationnaire de canal

simple dynamique des trames et l 'approche de compensation pour I'ASR en ligne
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propos6. PSO est un genre 6mergeant de technique de filtrage bas6 sur les ph6-

nomdnes des oiseaux volants (bird flocking) et le mouvement des poissons (fish

schooling), qui est tout d fait intensivement utilis6 comme une forme alternative

et efficace d'algorithmes G6n6tiques. On le prouve par nos exp6riences que le

filtrage bas6 sur le PSO est une technique appropride pour concevoir un ASR

en ligne utilisable dans les conditions acoustiques hautement non-stationnaires.

Contribution 7: Nous avons test6 une approche commune de PF et de PSO

pour I'auto-adaptabilit6 du systdme d'ASR en ligne pour changer des bruits

acoustiques non-stationnaires fortement changeant. PSO est utilis6 pour assu-

rer la localisation des particules dans la partie la plus probable du secteur de

la densit6 de probabilit6 pr6dictive d, posteriori. Les r6sultats exp6rimentaux

d'ASR en ligne propos6 pour la parole test bruit6e montrent une am6lioration

significative dans le r6duction du taux d'erreur de mot compar6 d celui bas6 sur

le filtre PF simple et le filtre PSO respectivement.

Contexte

L'6tat de I'art ASR courant a trouv6 ses applications commerciales r6ussies pour

I'util isation des interfaces homme-machine de tous les jours. L'ASR a atteint sa posi-

tion actuelle en raison des efforts de recherche continue de beaucoup de scientifiques,

ing6nieurs, et linguistes de la parole pendant les trois dernidres d6cennies dans le

d6veloppement des technologies trds innovateur pour la reconnaissance de la parole

bas6e sur des techniques du moddle de Markov cach6 (HNIM) statistique. Fondamen-

talement, c'est dans la dernidre d6cennie ori les technologies de reconnaissance de
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la parole ont 6merg6 des plateformes d6pendantes de locuteur aux plateformes ind6-

pendantes de locuteur et du petit vocabulaire au grand vocabulaire continue et la

forme spontan6e de reconnaissance de la parole. Malgr6 ces grands d6veloppements,

la performance de I'ASR est encore loin de la comp6tence humaine de perception de

la parole.

L'6tat actuel d'ASR fonctionne particulidrement bien sous les environnements

acoustiques contrdl6s connus. Le probldme fondamental d'ASR est que sa perfor-

mance se d6grade rapidement lorsque les environnements d'apprentissage et de test

ne correspondent pas, c'est-d-dire, sa performance est insuffisante dans les environ-

nements de test inconnus. Ces disparit6s sont dues aux variabilit6s intra-locuteurs

et inter-locuteurs, aux environnements acoustiques de fond, aux microphones, et aux

variabilit6s du canal. Beaucoup de techniques trds innovatrices ont 6t6 d6velopp6es

pour r6duire au minimum ces variabilit6s, et la plupart d'entre elles sont performante

dans un environnement acoustique coh6rent d6pendant d'un contexte sp6cifique. Ces

techniques sont bas6es sur des suppositions au sujet du bruit ou les diff6rences dans

la collecte et I'apprentissage sur une condition de bruit sp6cifique. D'ailleurs, ces

techniques ont besoin que I'ASR fonctionne dans le mode batch, c'est-d-dire, I'ASR

d6code les expressions entidres de la parole dans un groupe d'ocourences.

Dans les scenarios du monde-r6el, les environnements acoustiques sont trds com-

plexes. Afin de rendre I'ASR robuste au bruit, il est exig6 de surveiller et de d6tecter les

environnements environnants et d'explorer la nature des bruits plutdt que de faire de

simples suppositions d'un type sp6cifique de bruit. Malheureusement, I'ASR actuelle

manque des techniques trds innovatrices qui depistent les environnements acoustiques

de fond et analysent la nature des bruits avant le d6codage de la parole test.
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Les m6canismes humains de perception de la parole d I'int6rieur du cerveau sont

encore beaucoup moins compris et restent comme une boite noire pour les chercheurs

du domaine de la parole. Cependant, les chercheurs ont observ6 cela pendant la conver-

sation humain-A-humaineT les gens surveillent le locuteur aussi bien que I'environne-

ment acoustique environnant sans interruption dans les conditions d6favorables et ils

ont la capacit6 de s'adapter rapidement aux environnements acoustiques changeants.

Les sources les plus communes des variabilit6s dans les environnements acoustiques

sont: (i) variabilit6 inter-locuteur - due d la longueur du conduit vocal et aux va-

riations des caract6ristiques, (ii) variabilit6 intra-locuteur: un locuteur ne peut pas

r6p6ter le m6me discours exactement de la m0me manidre, et (ii i) variabilit6 environ-

nementale, connue sous le nom de probldme extrinsdque, tel que: (a) environnement

acoustique - comme la parole de fond, musique, bruit de rue, bruit de voiture, 16-

verb6ration de pidce, bruit gaussien additif etc.; (b) canal de communication - telle

que des capteurs, codeurs de parole, distorsion de convolution, effets de canal non

lin6aire, annulation d'effacement d'6cho etc. Dans les environnements acoustiques du

monde-r6el, plusieurs de ces variabilit6s se chevauchent et les m6canismes humains

de perception de la parole peuvent traiter ces variabilit6s complexes avec succds. Ce-

pendant, dans I'ASR, on suppose que ces variabilit6s sont mutuellement exclusives

et distinctes et ne se chevauchent pas afin de r6duire ses la complexit6 des moddles

acoustiques.

Dans les 6tudes de perception de la parole humaine, on a constat6 que les Otres

humains utilisent de multiples caract6ristiques pour la perception de la parole dans

des conditions bruyantes pour pr6voir le signal de parole d partir de la source. Dans

des conditions d6favorables, les personnes d6pistent les environnements environnants,
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d6tectent tous changements brusques des milieux, extraient l'information similaire au

bruit, les caract6ristiques du locuteur, des conditions de I'environnement acoustique

sp6cifique, et des conditions du canal et les analysent. Les m6canismes humains de

perception de la parole utilisent I'information du bruit extraite pour s'adapter aux en-

vironnements en cours d'6volution et puis d6coder le signal de parole pour essayer de

le comprendre, c'est-d-dire, faire une certaine hypothdse sur les scores de sorties, ap-

pel6s des scores de confiance bas6es sur certains sch6mas de mesure, et puis envoyer

un signal de retour au m6canisme de perception de la parole si la parole d6cod6e

n'est pas intelligible. Selon des observations, on a constat6 que I'adaptation et Ia 16-

troaction sont des processus continus jusqu'd ce qu'un signal de parole ne soit pas

compr6hensible aux auditeurs. Les personnes essaient d'util iser des gestes du corps

et le contexte des communications s'il est connu d priori. Lorsque I'on considdre les

communications humain-d-ordinateur, comme I'ASR et les systdmes de dialogue de

machine, il est essentiel de surveiller les flux audio des locuteurs sources) les environ-

nements acoustiques de fond, et les changements de canal puisqu'ils repr6sentent des

d6fis significatifs dans le maintien de la performance du systdme ASR. N6anmoins, il

est difficile de concevoir un tel systdme de reconnaissance intelligent de la parole d6-

tectant I'environnement comme celui du systdme humain, qui explorera la nature des

bruits. Actuellement, il n'y a aucun algorithme innovateur qui peut 6tre utilis6 pour

surveiller les environnements acoustiques et pour analyser les bruits pour adapter les

moddles acoustiques du systdme ASR aux conditions changeantes.

Les approches statistiques bas6es sur le HMM courantes comme montr6es dans

la Fig. 1.1 ne peuvent pas traiter la d6gradation de performance des systdmes ASR

lorsque le rapport signal-sur-bruit (SNR) diminue. L'estimation appropri6e des pa-
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ramètres HMM comprenant les probabilités de transition, les densités de sortie des

états de Markov, et les statistiques de bruit échoue dans les conditions acoustiques

défavorables. Un autre problème de la RAP basé sur les HMMs est lié à l'utilisation

des schémas de traitement de signal HMM di�éré pour estimer les paramètres HMM.

Les HMMs utilisent l'algorithme Baum-Welch de maximisation-d'espérance (EM), qui

utilise un schéma rétroprogréssif à intervalle �xe pour estimer les meilleurs séquences

d'état possibles des mots correspondant aux expressions inconnues. L'estimation des

paramètres du modèle HMM exige également de grandes mémoires, et le processus

d'optimisation converge lentement. Les schémas HMM di�érés (o�-line) ne peuvent

pas estimer les paramètres des modèles qui varient lentement avec le temps ou su-

bissent des changements rapides peu fréquents en raison de l'environnement bruyant

défavorable. Pour dépister dynamiquement l'environnement acoustique, mettre à jour

l'information de bruit, et s'adapter au nouvel environnement, une approche alternative

comme le mécanisme de perception de l'être humain doit être développée. L'utilisation

des schémas HMM en ligne est susceptible d'être l'une des solutions possibles.
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Figure R-1 � Système de reconnaissance automatique de la parole basé sur les
HMMs.
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Beaucoup d'algorithmes innovateurs ont 6t6 d6velopp6s avec I'avancement de la

recherche dans les domaines de I'intelligence artificielle de identification de moddle,

la th6orie de I'information, et aussi dans le traitement du signal et la reconnaissance.

Ces algorithmes ont 6galement trouv6 des applications commerciales r6ussies. Dans

le domaine de traitement de la parole, les diff6rents algorithmes innovateurs sont

disponibles et peuvent estimer les bruits trds efficacement m€me pour de trds faibles

rapports signal-sur-bruit (SNR).

Dans le domaine de traitement du signal statistique, le filtre de particules (PF)

bas6 sur I'algorithme Monte Carlo s6quentiel (SNIC) est une technique stochastique

qui peut 6tre utilis6 pour estimer les signaux inclus dans des bruits hautement non-

stationnaires. La pr6diction et la mise d jour s6quentielles du signal dans des bruits

non-stationnaires sont largement utilis6s pour I'estimation des paramdtres des mo-

ddles en ligne dans des s6ries chronologiques en temps r6el, telles que le march6 des

actions, la plate-forme p6trolidre de forage, les finances etc. Dans les domaines d'opti-

misation, des algorithmes de recherche stochastiques sont largement utilis6s pour une

recherche efficace des paramdtres du moddle optimal dans un espace de recherche com-

plexe de grande dimension. Actuellement, les algorithmes d'optimisation de groupe

de particules stochastique 6volutionnaire PSO (evolutionary stochastic particle srvarm

optimization) sont devenus populaires pour r6soudre le probldme d'optimisation de

certaines fonctions objectives dans des probldmes r6els. Dans le domaine de classifi-

cation de moddle, I'inf6rence en ligne Bay6sienne pour la segmentation et le groupage

ont attir6 plus d'attention. Il peut Otre utilis6 avec succds pour d6tecter les change-

ments soudains des locuteurs, des conditions environnementales, et des conditions du

canal. Former le champ de traitement de la parole, des m6thodes statistiques pour
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l 'estimation du bruit, par exemple, NICRA peut 6tre utilis6 avec la technique d'in-

f6rence en ligne bay6sienne pour d6tecter les changements lents ou rapides dans les

conditions acoustiques hautement non-stationnaires. Cette approche peut 6tre utilis6e

pour concevoir un systdme ASR en ligne d environnement d6tectable.

R6cemment, le d6ploiement r6ussi des communications sans fil multim6dia d bande

large 3G/4G ont mis des demandes sur les systdmes ASR d. environnement d6tectable

pour beaucoup d'activit6s bas6es sur la voix comprenant le parcours du web bas6 sur

la voix, recherche de musique, composition tdlOphonique, dict6e de documents etc.

Puisque les t6l6phones mobiles travaillent en conditions acoustiques trds incertaines,

ce qui s'appellent commercialement les environnements impulsifs, un systdme ASR

diff6r6 bas6 sur les HMMs conventionnels ne peut pas fournir de bons services aux

clients.

Afin d'am6liorer la robustesse du systdme ASR sous les environnements acous-

tiques impulsifs, il est essentiel de d6velopper des nouvelles techniques trds innova-

trices qui peuvent rendre le systdme ASR averti des conditions acoustiques de fond

et s'adapte rapidement aux nouveaux changements d'environnements en temps r6el.

Dans ce travail de thdsis, nous proposons une architecture d'un systdme ASR en

ligne i d6tection d'environnement bas6 sur des technologies existantes. Nous d6velop-

pons de nouvelles techniques en se focalisant sur des cas sp6cifiques, tels que les bruits

de fond non-stationnaires changeant rapidement. Les utilisations des techniques de

d'exploration d'environnement pour d6pister et d6tecter les bruits de fond d varia-

tions lentes ou soudaines et l'extraction d'information sont propose dans ce travail

de thdsis. Des id6es innovatrices bas6es sur des techniques d'inf6rence bay6siennes en

ligne utilisant un PF et des techniques d'optimisation stochastiques bas6es sur les
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algorithmes PSO stochastiques sont 6tudi6es ici pour la reconnaissance simultan6e et

la compensation de moddle acoustique afin de s'adapter dynamiquement d de nou-

veaux bruits acoustiques extrOmement variables. On propose un nouveau cadre bas6

sur I'int6gration des algorithmes de d6tection de bruit dynamique et la compensation

de moddle simultan6e en utilisant le PF et le PSO stochastique dans un systdme bas6

sur les HMMs. Cette approche mdne au d6veloppement d'ASR en ligne robuste au

bruit dans un environnement bruit6 non-stationnaire du monde r6el.

Vision de recherche

Notre vision consiste d d6montrer comment le probldme de robustesse des systdmes

actuels de la RAP dans des environnements inconnus et bruit6s peut 6tre r6solu

en comprenant comment les Otres humains r6pondent aux environnements bruyants

inconnus et s'adaptent rapidement d de nouvelles conditions changeantes le systdme

des environnements; I' incorporation de la connaissance acquise dans la RAP courant

nous aiderait d contribuer A la r6solution de la question de la robustesse de la prochaine

g6n6ration des systdme de la RAP (ASR, en ligne).

Objectifs & m6thodologie

- Objectif GIobaI: Ce travail de thdsis aborde les questions de conception et de

la robustesse au bruit des systdmes ASR en ligne, plus sp6cifiquement, de la re-

connaissance de Ia parole en ligne et de sa performance dans les environnements

bruyants hautement non-stationnaires pour les dispositifs mobiles portatifs.

R-11



Premier Objectif: Nlotiv6 par le fait que les systdmes ASR en diff6r6 courants

sont tous vuln6rables dans les conditions bruyantes, notre travail est focalis6

sur l 'ajout d'auto-adaptabilit6 et la ddtection de I'environnement aux systdmes

ASR. Les actuels approches adopt6es mdnent au d6veloppement d'ASR en ligne

pour les environnements bruyants du monde r6el.

Deuxidme Objectif: Ia d6tection dynamique des changements environnemen-

taux acoustiques, I'extraction de l'information du bruit plutdt que de simples

suppositions sur les bruits et la compensation du moddle dans I'espace des pa-

ramdtres bas6 sur I'information extraite de bruit sont les premidres 6tapes vers

Ie d6veloppement d'un ASR d, environnement d6tectable comme le processus

humain. Par cons6quent, une int6gration de la connaissance de l'environnement

dans I'ASR par une meilleure exploitation de notre connaissance de la produc-

tion humaine de la parole et de la perception mdnent A une ASR en ligne d,

environnement d6tectable robuste au bruit. Ceci facilite la conception d'un sys-

tdme ASR i environnement d6tectable avec une r6duction plus importante des

taux d'erreur de mot (\,VER) avec un cott de calcul raisonnable sur un 6ventail

de conditions de corruption acoustiques hautement non-stationnaires.

Tboisidme Objectif: Les sous objectifs sont: (i) 6tudier le m6canisme humain

de d6codage de la parole dans les sc6narios en temps r6el d diff6rents environ-

nements acoustiques, et (ii) d6velopper un algorithme innovateur qui pr6parera

le terrain pour surmonter les limitations courantes de la technologie ASR. A

l'6gard de ces objectifs, une compensation conjointe du bruit acoustique hau-

tement non-stationnaire et des distorsions dans I'espace des paramdtres d'une

manidre r6cursive par trames avec un lissage temporel pond6r6 des paramdtres
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est propos6 afin de tenir compte les changements brusques dans les environne-

ments.

Dans les applications en temps r6el, le d6codeur ASR regoit un flux de trames des

expressions parl6es en direct. Le d6codeur ne connait pas d I'avance les frontidres de

la phrase du flux entrant des signaux de parole. Par cons6quent, le d6codeur ASR

fonctionne sur chaque flux entrant trame-par-trame et estime le meilleur score de

confiance pour chaque trame. Lorsque une frontidre de mot est d6tect6e partant d'un

silence ou d'une pause, le d6codeur produit le meilleur mot pr6sum6 comme les sorties

de tous les scores de confiance de toutes les trames comme le mot identifi6 d la vol6e.

Cependant, le d6codeur ASR peut d6tecter une telle frontidre de mot en conditions

non bruit6es. La frontidre de mot devient floue A cahse de I'ajout des bruits de fond

et des distorsions de canal. Ces bruits et distorsions biaisent 6galement les scores de

confiance de chaque trame. Par cons6quent, la performance de I'ASR en temps r6el se

d6grade rapidement dans les conditions bruit6s. La performance de I'ASR en temps

r6el peut 6tre am6lior6e en minimisant le biais (bias) des distorsions pour chaque

trame. La technique de suppression du biais dynamique de trame peut Otre utilis6e

pour minimiser la distorsion de chaque trame par Ia soustraction de la moyenne des

caract6ristiques dans le domaine cepstra-.

La technique de compensation en ligne dynamique par trame adaptative des dis-

torsions du canal non stationnaire est montr6e d la Fig. R-2. L'algorithme complet

pour la compensation de suppression du biais dans les environnements en temps r6el

est bas6 sur une approche conjointe d canal simple pour le bruit additif hautement

non-stationnaire et la compensation des distorsions du canal dans I'espace des carac-

t6ristiques dans la Fig. R-3.
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trames (JAC) avec un paramètre de lissage temporel. NTES signi�e l'estimation du
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Figure R-3 � L'architecture proposée pour la reconnaissance automatique de la
parole en ligne (ASR).

Les infrastructures ASR en ligne sont implémentés en utilisant l'util ATK [2]

pour concevoir les systèmes de reconnaissance de parole qui fonctionnent en mode

temps-réel dans des bruits non-stationnaires. L'ATK [2] fournit des plateformes multi-

�letées (multi-threaded) a�n de concevoir un ASR en ligne pour des applications du

monde réel. L'ATK fournit des APIs en temps réel pour HTK. Il se compose d'une

variété de composants à relier ensemble pour implémenter di�érents architectures et

applications en temps-réel. L'architecture de base de l'ATK, comme montrée à la Fig.

R-4, comprend les trois fonctionnalités principales suivantes [2]:

� Paquet: C'est un ensemble d'information. Les paquets sont utilisés pour trans-

mettre une variété d'information entre des composants exécutés en asynchrones.
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En particulier, les paquets sont utilis6s pour transporter diverses formes d'en-

tr6e utilisateur et de signaux de sortie (la parole, marqueurs d'6v6nement tels

que les cliques de la souris, etc..). Dans ces cas, chaque paquet a un t6moin de

temps pour d6finir le segment temporel auquel il est reli6. Les types de don-

n6es qu'un paquet peut porter incluent des chaines de textes, des fragments de

forme d'onde, des vecteurs de caract6ristiques cod6s, des 6tiquettes de mot et

des 6tiquettes s6mantiques.

Buffer: C'est une file d'attente de paquet FIFO. Les buffers fournissent le canal

pour passer des paquets d'un composant d I'autre. Les buffers peuvent 6tre de

taille fixe ou de taille illimitde. Les composants souhaitant acc6der d un buffer,

peuvent tester pour voir si I'op6ration de buffer serait bloqu6e avant d'ex6cuter

l'op6ration.

Composant: C'est un 6l6ment de traitement. Chaque composant est ex6cut6

dans son propre thread individuel. Les composants communiquent en passant

des paquets par I'interm6diaire des buffers. En outre, les composants ont une

interface de commande qui peut €tre utilis6e pour mettre d jour les paramdtres

de commande lors du fonctionnement et modifier de ce fait le comportement

d'ex6cution du composant.

Dans I'AIK, les trois ressources les plus requises, par exemple, i) le dictionnaire,

ii) la grammaire (comme montr6 A la Fig. R-5), et iii) les HMMs de la parole non

bruit6e, doivent Otre pr6par6s en mode batch en utilisant HTK. Pour la phase test,

I'ATK fournit en ligne le d6codage en utilisant H\rite au lieu de HDecode dans HTK.

Chacune des trois ressources exig6es peut 6tre d6finie comme entr6es dans un fichier

de configuration qui est charg6 au d6marrage. Un tel fichier contiendra 6galement ty-
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ARMan

FIcuRp R-4 - Architecture de base pour un systdme de reconnaissance

I

en ligne [21.

piquement les sp6cifications des paramdtres de codage. Le composant ARec dans ATK

comme montr6 dans la Fig. R-4 fournit une fonctionnalit6 similaire au d6codeur stan-

dard Viterbi du HTK. Il fournit 6galement le support du moddle du langage tri-gram

qui n'est pas disponible dans HTK. ARec est fourni avec un groupe de ressources

contenant les ensembles HMNI requis, le dictionnaire, la grammaire, et optionnel-

lement un moddle de langage n-gram. Il d6code alors les vecteurs caract6ristiques

entrants en cons6quence.

En fonction, le systdme de reconnaissance en ligne ATK demeure toujours dans un

des cinq 6tats possibles comme indiqu6 par le diagramme d'6tat montr6 dans la Fig.

R-6. Le systdme de reconnaissance change d'6tat, selon les configurations des modes de

fonctionnement. L'afficheur d'ARec affiche le mode courant comme une s6quence de 4

caractdres: repr6sentant les configurations pour CYCLE (1:oneshot, C:continuous),

FLUSH (I:immed, M-tomark, S:tospeech), STOP (I:immed, M:tomark, S-tosilence),
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FIcuRe R-5 - Reconnaissance d'un Simple chiffre Grammaire/R6seau [2].

et RESULTS (I:immed, A-asap, E:atend, X:all).

Lors de sa cr6ation, un objet ARec est plac6 dans l'6tat WAIT. Lorsqu'il est

dans l'6tat WAIT, le systdme de reconnaissance attend qu'une commande Start0 soit

publi6 par I'interm6diaire de son interface de commande. Lorsque cette commande

Start$ est regue, le systdme de reconnaissance se d6place vers l'6tat PRIME dans

lequel il charge les ressources de reconnaissance indiqu6es par Ie groupe courant de

ressource. Il se d6place alors imm6diatement d l'6tat FLUSH d'ot il prend des paquets

de son bufler d'entr6e et les jette jusqu'd ce qu'il soit pr6t d commencer la reconnais-

sance comme d6termin6 par la configuration du mode flush. Ceci peut se produire

soit imm6diatement, lorsque le marqueur START est regu, ou dds que le paquet en-

trant d'observation aura une armature marqu6e comme parole. Une fois, dans l'6tat

RUN, le systdme de reconnaissance effectue la reconnaissance des paquets entrants

jusqu'd soit un marqueur STOP est regu, une trame de parole marqu6e comme un
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silence est regue ou une commande StopQ est publi6e. Dans l'6tat ANS, le systdme

de reconnaissance nettoie le traitement de reconnaissance et revient aux 6tats \,VAIT

ou PRIME selon la configuration du mode CYCLE. Une description plus d6taill6e de

ce processus de reconnaissance peut 6tre trouv6 dans [2].

recoe$r1e
packete

lcad
re3curces REtll_trlYlMED ar

ilffiil START tr;trter ,?.ened or
F a@recdY€d

compule
a:5r4.ers

FIcuRp R-6 - Diagramme de transition d'6tat du systdme de reconnaissance ATK [2].

Principaux r6sultats

Pour la d6tection et l 'estimation en ligne du bruit, le d6lai dans la mise d jour

de I'estimation du bruit tout de suite aprds les changements rapides des conditions

acoustiques affecte s6rieusement la performance de I'extraction du bruit de la parole,

en particulier, dans les r6gions de transitions. Lorsqu'un changement se produit, la

fen€tre de recherche est initialis6e aux nouvelles conditions. Le bruit de fond cause

un changement dans la moyenne et la variance des caract6ristiques spectrales de la

STOP_MMED ar
STOP ry*arecejved
Silacr Fr*relece*'ed
Sttp*
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parole. Pour les systdmes de d6tection en temps r6el du bruit dans un environnement

qui a pu avoir abruptement chang6, I'algorithme de d6tection doit pouvoir d6pister le

bruit en se basant sur les trames pr6c6dentes de la parole. La technique d'adaptation

rapide propos6e bas6e sur BOCPD et MRCA est capable de d6tecter les points de

changement spectral abrupt et s'adapte aux environnements acoustiques hautement

non-stationnaires changeants rapidement. L'algorithme propos6 est donn6 au tableau

1 .

Le d6fi pour I'algorithme MCRA de d6tection de bruit est de mettre d jour sa

fen6tre de recherche de minimum dds que les changements se produiront en condi-

tion acoustique pendant son temps de changement hautement non-stationnaire. Le

BOCPD effectue la d6tection de changement rapide en ligne et adapte la fenOtre de

recherche de minimum de I'algorithme MCRA, ce qui mdne au d6lai minimum dans

la mise d jour de la fen6tre de recherche de minimum. Un autre d6fi pour le d6tection

d'environnement bas6 par BOCPD-NICRA et pour I'algorithme d'adaptation rapide

est I' initialisation appropri6e des paramdtres de d6tection e, e", ap, 0,1, et, a5, qui est

la clef pour une performance de d6tection r6ussi du bruit non stationnaire. Le ASR

de base dans [1] est conqu pour 6valuer la performance de la tiche Aurora 2 standard

de reconnaissance d'une suite de chiffres dans le bruit et I'environnement distordu du

canal. Ce systdme ASR de ligne de base fonctionne dans le mode batch (en diff6r6)

et util ise la configuration MFCC_E_D_A pour les caract6ristiques MFCC. Il util ise

les moddles HMM du mot entier avec 18 6tats par mot comprenant 2 6tats factices au

d6but et d la fin. Ces moddles HMM sont des moddles de gauche-d-droite sans sauter-

au-dessus des 6tats. II util ise une mixture de 6 Gaussiennes par 6tat. Cette ASR de

base est test6 en utilisant HTK comme systdme de reconnaissance de r6f6rence.
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Tast,n 1 - proposition d'une adaptation
de d6tection de bruit.

rapide bas6e par BOCPD de d'algorithme

1:Initialization: Set
P(rg:0) <- l initial run Iength ?"6, &rd P(re) <-.9ir; run length r
,!o) * ue,to,, Xf) ? Xw;o,, ,\ <- 250 constant Hazard, function
cpFlag <- {0, 1} for CPD, k <- frequency@kth bin in Hz
R^ ? 0 holds maximum run length information
2:for each speech frame m do:
3: Observe new DFT coefiicient Y^ at kth bin of rnth frame
4: Evaluate predictive probability using student t distribution

rh: P(Y^lr!{,),x*))
5:Evaluate the Hazard function H(r*)
6: Calculate the grorvth probabilities

P (r  ̂  : 0,Y,*) : I P (r  ̂ -rh,^-r)r|tr '  H (,  ̂ )
7: Calculate change point probabilities

P(r^ : 0, Yr,-) : I P (r*-r, Yr,--r)nS' H (, *)
8: Calculate the evidence P(Y,^): lP(r*,Y1,^)
9: Determine the run length distribution

P (r  ̂ lY,*) : P (r *,Y,*) I P (Yr,*)
10: Update sufficient statistics. Posterior update depends on UPM

,f\, +- ,.0o,, yf)*, <- x.*,
*Ii) * ul t r, xf,I? * xk + p(Y^)

11: Perform prediction

P (Y-+tlYr,^) : t P (Y*+lY#) 1 P 1r ̂lYr,^)
12: Update R* for each run length r
13: Search the changepoint in R* and if changepoint detects set

cpFlag <- I
14: Start noise tracking algorithm
15: Search minimum psd P^in(m, k) over D-frame window
16: Update the minimum whenever

Vcount :- length of V (V < D) ll cpFlag :: 1
Reset subwindow (t/) counter Ucount if cpFlag -: 1
Set cpFlag <- 0

17: compute and update the noise PSD
18:while on-coming speech frame buffer not empty
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Le tableau 2 montre les performances de la reconnaissance des chiffres de Aurora

2 en diffdre (en mode batch) pour le moddle d'apprentissage propre [1]. La tAche de

Aurora 2 standard de reconnaissance d'une suite de chiffres dans le bruit et les en-

vironnements distordus de canal 6tait test6e en diff6r6 pour deux modes des donn6es

d'apprentissage: (i) apprentissage en non-bruit6, et (ii ) apprentissage multi-condition.

La performance du DSR de Aurora 2 pour des donn6es d'apprentissage non-bruit6 est

trds faible compar6e d, celle avec multi-condition. Cependant, Ia m6me performance

est obtenue pour des donn6es test non-bruit6 dans les deux cas d'apprentissage. Nous

avons d6cid6 d'utiliser le moddle d'apprentissage propre-seulement pour notre test.

L'objectif de notre ASR en ligne est de compenser les expressions test pour les en-

vironnements bruit6s, c'est-d-dire, pour ramener le signal de parole test proche du

moddle propre. Cette tactique maintient le moddle d'apprentissage inchang6.

Nous avons examin6 la tAche de Aurora 2 standard de reconnaissance d'une suite

de chiffre dans du bruit non-stationnaire et l'environnement distordu du canal dans

de condition en temps-r6el en utilisant les mOmes paramdtres de configuration utilis6s

dans le mode diff6r6s en utilisant ATK toolkit, I'API pour HTK en temps-r6el multi-

filet6 (multi-threaded) [1].

Le tableau 3 et le tableau 4 montrent les performances de reconnaissance des

chiffres de Aurora 2 en diff6r6 (mode batch) et en temps-r6el sans compensations

biais6es, respectivement.

Dans l'environnement en temps-r6el, la connaissance a priori des conditions acous-

tiques n'est pas connue. Par cons6quent, l'apprentissage de I'ASR devrait 6tre fait

sur des donn6es propres d'abord et puis, il doit d6tecter les changements environne-

mentaux pour une auto-adaptation aux nouvelles conditions. Pour des donn6es test
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Tael,o 2 - Performance du systdme de base avec apprentissage sans bruit pour la
reconnaissance des chiffres de Aurora 2 [1].
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propres, I'Aurora 2 obtient les m6mes performances dans les deux cas. Cependant,

ses performances se d6gradent rapidement en temps-r6el compar6 d ses performances

en mode batch. La technique de suppression biais6e de trame-adaptative dans le do-

maine cepstral avec les configurations de caract6ristiques MFCC MFCC_0_D_A_Z

est utilis6e pour am6liorer la performance de la reconnaissance des chiffres reli6s de

l'Aurora 2. Pour la compensation biais6e cepstral dynamique de trame en temps r6el,

I'ASR a besoin des coefficients NIFCC statiques (Co-Crr).La performance de I'Aurora

2 clans I'environnement en temps-r6el est montr6e dans le tableau 4. Cependant une

comparaison graphique des performances des exp6riences pr6liminaires sur la tAche

de I'Aurora 2 de reconnaissance des chaines de chiffres dans les deux modes en ligne

vs. diff6r6 (en mode batch) dans des bruits hautement non-stationnaires avec et sans

compensations biais6e est montrds dans la Fig. R-7 pour des donn6es test ensemble
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TReLp 3 - Performance du systdme de base sans aucune compensation biais6e pour
la tAche de Aurora 2 de reconnaissance des chaines de chiffre.
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9.97 12.42 Lr.20 8.47

40.54 39.96 40.25 35.06

a, la Fig. R-8 pour les donn6es test ensemble b, et la Fig. R-9 pour les donn6es test

ensemble c, respectivement.

Les r6sultats exp6rimentaux montrent que la technique de suppression biais6e

dynamique de trame-r6cursive dans le domaine cepstral am6liore la performance de

I'Aurora 2 sensiblement compar6e A ses r6sultats obtenus par le systdme de base.

Puisque les donn6es test pour Aurora 2 sont des phrases pr6-enregistr6es, le d6codeur

ASR dans ATK lit une phrase d chaque fois de la liste de donn6es test et imite

les expressions parl6es en temps-r6el en envoyant un flux de trames au d6codeur.

L'installation de I'exp6rience de base suit le standard fourni par ETSI [3].

Pour confirmer la validit6 de la technique d'adaptation spectrale rapide propos6e,

nous avons compar6 la performance de cet algorithme i la technique de base la plus

populaire MCRA [4] pour d6pister et estimer les bruits non-stationnaires. A partir

des r6sultats de simulation, on peut voir que notre m6thode propos6e performe avec
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Taelp 4 Performance du systdme de reconnaissance pour la technique de suppres-
sion biais6e r6cursive de trame de la tdche de I'Aurora 2 de reconnaissance des chairres
de chiffre.
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excellence pour les plus mauvais sc6narios of les conditions acoustiques changent

rapidement de conditions de SNR trds 6lev6 a un SNR trds faible. Les r6sultats de ces

simulations sont montr6s dans les Figs. R-10, R-11, R-12, et R-13, respectivement.

L'ASR en ligne propos6 est teste en utilisant des donn6es test ensemble du corpus

de parole Aurora 2 dans deux environnements bruyants - 1) Metro, et 2) Discus-

sion. Pour confirmer la validit6 de I'ASR propos6 utilisant BOCPD-MCRA, nous

avons compar6 sa performance d la technique MCRA de base [4]. Dans le systdme

de base, une technique de normalisation de la moyenne cepstral (CMN) est util is6e

pour supprimer le biais du canal du signal de parole test. Pour notre technique pro-

pos6e, nous avons utilis6 la technique de suppression du biais du canal dynamique de
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(b) Babble noise
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(c) Car noise
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(d) Exhibition hall noise

Figure R-7 � Performance de reconnaissance de Aurora 2 (Test ensemble A: �ltré
par ITU-T G.712).

trame-récursive comme décrit dans Eqs. 1 et 2:

b̄t = αwtb̄t−1 + (1− αwt)ỹt (1)

x̄t ≈ ỹt − b̄t (2)

À partir des résultats de simulation, on peut voir que notre méthode proposée
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(a) Restaurant noise
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(b) Street noise

-5 0 5 10 15 20 clean
0

10

20

30

40

50

60

70

80

90

100

SNR (dB) ---->

W
or

d 
R

ec
og

ni
ti

on
 A

cc
ur

ac
y 

(%
) 

--
--

>

 

 

Off-line Aurora 2 DSR 
On-line Aurora 2 DSR
On-line ASR with baseline MCRA

(c) Airport noise
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(d) Train noise

Figure R-8 � Performance de reconnaissance de Aurora 2 (Test ensemble B: �ltré
par ITU-T G.712).
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(a) Subway noise
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(b) Street noise

Figure R-9 � Performance de reconnaissance de Aurora 2 (Test ensemble C: �ltré
par MIR).
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Figure R-10 � Performance de la technique d'adaptation rapide proposée contre des
techniques de détection de bruit basée sur MCRA pour le cas de test I.

se comporte bien compare à la méthode de base. La méthode proposée améliore la

performance de l'ASR en ligne dans les deux cas des environnements bruités non-

stationnaires comme montré dans la Fig. R-14 et la Fig. R-15 pour les bruits de

métro et de discussion, respectivement.

L'algorithme pour cette technique de compensation de bruit de canal simple basée

par PSO (Particle Swarm Optimization) est décrit dans les algorithmes 0.1, 0.2, et

0.3

Conclusion

Cette thèsis a abordé un certain nombre de questions non résolues liés â la non-

stationnarité des environnements acoustiques pour la reconnaissance automatique
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Figure R-11 � Performance de la technique d'adaptation rapide proposée contre des
techniques de détection de bruit basée sur MCRA pour le cas de test II.

robuste de la parole. Les questions principales sur lesquelles nous nous sommes foca-

lisées dans ce traval sont dans les domaines de traitement et de reconnaissance de la

parole, tels que détecter les changements environnementaux brusques dans des condi-

tions en temps réel. Plus spéci�quement, nous nous intéresssons â la robustesse d'ASR

en adoptant une compensation des distorsions de canal et de bruit additif conjoint

en con�guration dynamique de trame en ligne JAC (an on-line frame dynamic joint

additive and channel distortions compensation) dans les environnements acoustiques

hautement non-stationnaires. L'ASR obtenue en ligne a une performance supérieure

dans des conditions bruyantes non-stationnaires par rapport à l'état actuel de l'ASR

qui fonctionne dans le mode batch (en di�éré).

Nous avons entamé notre travail par une étude étendue des questions de la robus-

R-28



0 200 400 600 800 1000
50

55

60

65

70

75

80

85

Speech Frames (m) −−−−>

N
oi

se
 E

st
im

at
e 

(d
B

) 
@

 7
5 

H
z

Test Case III: 5 dB SNR − 15 dB SNR − Clean

 

 

Proposed method
MCRA
MCRA2
EMCRA2

CP (15 dB SNR to Clean)

CP (5 dB SNR to 15 dB SNR)

Figure R-12 � Performance de la technique d'adaptation rapide proposée contre des
techniques de détection de bruit basée sur MCRA pour le cas de test III.

tesse des technologies de l'état de l'art d'ASR. Nous avons développé des technologies

pour concevoir et analyser la performance d'un ASR en ligne robuste au bruit, avec

une détection de bruit hautement non-stationnaire, la détection de changement sou-

dain dans les environnements acoustiques, et la compensation conjointe de signal de

parole observé dans des fonctionnalités de conditions bruitées pour la reconnaissance

de la parole. Nous avons ajouté ces fonctionnalités dans le traitement bout-en-bout

(front-end) d'ASR et des étapes de décodage a�n de simuler l'ASR en ligne. Nous

avons discuté la technique de réduction de bruit musical pour minimiser la distorsion

de la parole basée sur le �ltrage perceptuel et la modélisation du masquage du bruit

de la parole, qui peuvent être optionnellement déployés pour un pré-traitement de

l'ASR.
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Figure R-13 � Performance de la technique d'adaptation rapide proposée contre des
techniques détection de bruit basée sur MCRA pour les cas de test I, II, et III.

Nous avons développé une compensation par trame synchrone séquentielle du biais

du bruit (frame synchronous sequential noise bias compensation) et la reconnaissance

de la parole dans des conditions bruitées basées sur la technique d'inférence en ligne

bayésienne. La technique de détection de point de changement en ligne bayésienne

en association avec les algorithmes MCRA classiques ont été implémentées celes-ci

peuvent être vues comme des technique de calcul dans le pré-traitement en arrière

plan du système ASR pour fonctionner dans les environnements en temps réel. Le

système ASR en ligne est indépendant du locuteur et indépendant de la tâche et

l'apprentissage a été e�ectue sur un vocabulaire de 8440 mots. Il utilise des HMMs de

18 états avec 3 mixtures de distribution gaussienne continue. La topologie du modèle

du système ASR présenté dans cette thèsis semble être optimale et donne le meilleur
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r6sultat de I'ASR.

Dans le cas de la technique de d6-bruitage synchrone de trame de parole bas6 sur
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Algorithm 0.1 Pseudo Code for Particle Swarm Optimization (PSO) Algorithm
Input: l/ <- No. of Particles ; ,9 <- Swarm; P <- Best position.
Set :

l < -0
,S <- initial value
P :S

Evaluate S and P, and define index g of the best position
while termination criterion not met do

Update S using Eqs. 4.1 and 4.2, respectively
Evaluate ,S
Update P and redefine index g
Se t : l < - t+1

end while
Record best position

JAC, nous avons 6tudi6 plusieurs algorithmes populaires, et avons 6galement propos6

nos propres m6thodes. Nous avons propos6 deux techniques: (i) Inf6rence en ligne

bay6sienne en mOme temps que des algorithmes de d6tection de bruit MCRA avec

un filtre de bande critique perceptuel, et (ii) la pr6diction s6quentielle et I'adapta-

tion du signal de parole bas6es sur une approche de mod6lisation non-Gaussienne

et non-stationnaire en utilisant la technique d'optimisation par essaim de particules

(PSO) pour la reconnaissance de la parole en ligne dans des conditions acoustiques

r6elles. Nous avons prouv6 par des exp6riences que ces deux approches peuvent aider

A am6liorer la-performance de reconnaissance de la parole d'un systdme ASR pour

des applications en temps r6el. Par I' int6gration des algorithmes de filtrage PSO,

la performance de I'ASR peut 6tre am6lior6e dans diff6rentes conditions bruyantes,

compar6es avec l'utilisation des moddles autonomes de r6gression lin6aire classique.

Les filtres de particules sont donc les candidats prometteurs pour d'autres 6tudes

de reconnaissance automatiques de la parole et pour des applications pratiques) par

exemple, les applications ASR robustes aux bruits dans les environnements mobiles.
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Algorithm 0.2 Non-Stationary Noise Compensation Using DMS-PSO [5]
Set: rn <- Each slvarm's population size
Set: n <- Swarm's number
Set: R <- Regrouping period
Set: .L <- Local refining period
Set: LpEs <- Max fittest evaluations (FE) using in the local search
Set: MarpEs <- Max fitness evaluations, stop criterion
Set: rn x n <- Particles initialization for position and velocity
Set: rn x n <- Particles initialization for position and velocity
Set: FEs <- 0
Set: gen <- 0
while FEs < 0.95 x MarpEs do

! € 7 1 , : g e n l I
f o r  i : 7  t o  ( m  x  n )  d o

Find lbesta
f o t d : I  t o  D d o

if rand ( 0.5 then
Voo :, x Ud + c1 x randTl x (pbest! - Xf) r c2 x rand2l x (lbestf - rf)
Vd : min(mar(Vf - V,A"), uA",)
xl : xl +vod

else
yd : pbest!

end if
end for
if Xi € lX^rn,X-o,]D then

Calculate the fitness value
F E s :  F E s  - l 7
rJpdate pbest

end if
end for
if mod(gen, L) :- 0 then

Sort lbest according to their fitness value and refine the first [0.25n'l best lbesl
using Quasi-Ner,vton method
FEs: FEs -t  10.25n] x LpEs
Update the corresponding pbesl

end if
if mod(gen,R)::Q 16"tt

Regroup the swarms randomly
end if

end while
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Algorithm 0.3 Non-Stationary Noise Compensation Using DMS-PSO
Set: Frame index rn <- 0
while Frame of speech not end do

r(m) <- d(m)
Find best particle from DMS-PSO Algorithm 3.2
Evaluate trV(z) using best particles as the filter coefficients
y(m) <- W (z) a r(m)
e(m) <- (d(*) - a(m))
fr(m) <- e(m)
m<- rn+1

end while

Cet these a propos6 une architecture d'ASR en ligne en utilisant un algorithme rapide

d'adaptation bas6 par BOCPD-MCRA pour des bruits inconnus et non-stationnaires

variant rapidement. L'architecture ASR en ligne propos6e a exploit6 les avantages

de l'inf6rence en ligne bay6sienne bas6e sur un calcul flexible pour la technique de

d6tection de point de changement (BOCPD).

Nous avons int6gr6 cet algorithme dans les algorithmes bien connus de d6tection

de bruit bas6s par MCRA utilisant les donn6es de parole de Aurora 2 qui d6montrent

les ensembles de donn6es simul6s du monde-r6el. Le cadre de travail ASR en ligne

propos6 qui est bas6 sur l 'adaptation rapide d'une fen6tre glissante d de nouvelles

conditions acoustiques fournit la d6lin6ation (delineation) commode de I'impl6men-

tation de l'algorithme de point de changement dans l'architecture des algorithmes de

d6tection de bruit bas6s par recherche du densit6 spectrale de puissance (psd) mini-

mum courant. D'aprds les r6sultats exp6rimentaux, nous avons constat6 que non du

nouvel algorithme ASR en ligne nous permet de d6coder la trame des expressions de

la parole test dynamiquement d, diff6rentes conditions SNR pour des environnements

hautement non-stationnaires. Cependant, il a besoin davantage d'am6lioration pour

atteindre une pr6cision de reconnaissance plus 6lev6e d des conditions de SNR plus



faibles comparO au systdme de base.

Nous travaillons sur la technique de pr6diction s6quentielle en ligne bay6sienne et

d'estimation pour am6liorer plus encore la performance de I'ASR en ligne propos6

pour le d6ploiement r6el dans les environnements acoustiques non-stationnaires.

Comme futur travail de recherche, les points suivants peuvent 6tre consid6r6s:

- La performance de la reconnaissance de la parole dans les environnements acous-

tiques r6els pourrait 6tre am6lior6e en prolongeant l'approche de recherche cou-

rante pour tenir compte d'un moddle acoustique plus r6aliste bas6 sur une mo-

d6lisation nonJin6aire et non-Gaussienne pour aborder le probldme largement

discut6 de non-stationnarit6 pour I'ASR.

- La prddiction et l'adaptation s6quentielles bay6siennes avec le I'am6lioration fine

de HMMs courant avec de multiples flux, des paramdtres normalisds, augmenta-

tion des donn6es d'apprentissage, et une large taille de vocabulaire peuvent 6tre

de nouvelle direction de recherche pour un ASR i environnement d6tectable

comme il est fait par le processus humain.

- L'inclusion des moddles de comportement inspir6s par les systdmes biologique

peut faire qu'il soit possible de contribuer A r6soudre les probldmes de perfor-

mance de I'ASR courant dans des conditions acoustiques r6elles. Le PSO est

une telle approche qui pourrait ouvrir de nouvelle direction de recherches pour

I'ASR robuste au bruit.

- Les paramdtres du JAC propos6 et de I'ASR en ligne bas6 par PSO peuvent

Otre encore optimis6s exp6rimentalement, afin de minimiser les distorsions de la

parole et les artefacts.
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Abstract

This dissertation develops new techniques to improve the noise robustness of au-

tomatic speech recognition (ASR) in highly non-stationary real-world on-line acoustic

environments. It examines human-like soft attributes, namely, environment-awareness

and self-adaptability. One of the main shortcomings of current ASR to maintain high

performance consistently in diverse test environments is its poor ability in handling

the non-stationarity of unknown test conditions, specifically in an on-line mode. Cur-

rently, researchers are trying to learn from nature to solve complex problems. The

soft computing technique is an outcome from this study. It is a biological problem sol-

ving model inspired by nature. In this thesis, a novel soft computing approach using

Bayesian on-line inference is proposed that detects rapid changes in the test acous-

tic conditions followed by updating joint background noise and channel distortion

compensation (SJAC) for on-line ASR. In contrast to conventional hard computing

techniques to compensate the non-stationary background noises and distortions for

current ASR in batch mode (off-line), the bio-inspired soft modeling techniques prove

to provide more flexible noise processing and handling capability to track the changes

in acoustic environments with time and adapt ASR in on-line mode to these previously

unseen real-life ambiguous conditions.

In this dissertation, we carefully studied the Bayesian online change point detec-



tion (BOCPD) technique in the context of tracking and detecting the rapidly changing

non-stationary acoustic conditions. Based on the study results, we develop a novel

soft computing model to detect the rapid variations in the acoustic environments by

monitoring the statistical properties of the noisy speech signal. In real-life situations,

the non-stationarity of the environments introduces variations in the statistical pro-

perties of the speech signal. Both the mean and the variance of the po\,ver spectral

density of speech signals remain unknown and subject to changes with the changes in

the acoustic environments. In our proposed soft model, we incorporate the BOCPD

technique into the well knor,vn minima controlled recursive averaging (MCRA) noise

tracking algorithm to track and compensate environmental distortions in the f'eature

space and adapt the ASR to new conditions in on-line mode with minimum delay in

response to the rapid environmental variations. The proposed soft technique, called

the Bayesian on-line spectral change point detection (BOSCPD), achieves significant

improvement in recognition performance of on-line ASR compared to the baseline

NfCRA-based technique when evaluated over the Aurora 2 speech database.

Towards applying soft computing to improve the noise robustness of ASR in on-

line conditions, \,ve introduce the well known evolutionary particle swarm optimization

(PSO)-based soft computing technique in the second part of this dissertation. PSO has

previously been applied to optimization of highly non-linear multi-modal objective

functions. lVe use a PSO-based soft technique for adaptive modeling of the real-

r,vorld acoustic environments that are non-linear and non-Gaussian. lVe implement

a dynamic multi-swarm PSO technique, called DMS-PSO, to track and compensate

the non-stationary noises by adaptively tracking the rapid variations in the real-life

unseen ambiguous environments. From the experimental results, we find that the



PSO-based soft computing technique improves the performance of the on-line ASR

significantly compared to the proposed BOSCPD technique in highly non-stationary

acoustic environments.

The soft computing techniques explored in this dissertation prove to add human-

like attributes to current stat-of-the-art on-line ASR to compensate the non-stationary

distortions and improve the recognition performance in the unknown test conditions.

The experimental results shor,v that the soft modeling technique may be an alternative

approach to improve the noise robustness of current ASR.
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Chapter 1

Introductron

Speech recognition is a process of converting spoken speech utterances to words

or text. This text can be the final output or the input to natural language processing.

Due to the natural and efficient characteristics of speech in exchanging information,

it becomes the fastest way human beings can communicate with machines.

With the advent of modern fast computing and broadband telecommunications

technologies, the interfaces between men and machines become more realistic for in-

formation access and management when (i) the information space is broad and com-

plex, (ii) the users are technically naive, and (iii) only telephones are available. Nlost

commonly used speech-based communication interfaces between men and machines

are: (a) simple speech input recognition, such as command and control, data entry

over the telephone, dictation, transcriptions: legal, medical, TV, and (b) interactive

conversation and machine understanding, such as information kiosks, transactional

processing, and intelligent agents, music browsing, web browsing, car control and

navigation, Global Positioning System (GPS) navigation etc.



1.1 Background & Motivation

Current state-of-the-art ASR has found its successful commercial applications for

everyday usage of man-machine interfaces. ASR reached its current position as a re-

sult of continuous research efforts of many speech scientists, engineers, and linguists

during the last three decades in developing cutting-edge technologies for speech re-

cognition based on data-driven hidden Markov model (HMNI) techniques. It is only in

the last decade that speech recognition technologies emerged from speaker-dependent

platforms to speaker-independent platforms and from small vocabulary to large vo-

cabulary continuous and spontaneous speech recognition forms. In spite of these de-

velopments, the performance of ASR is still far from human speech perception per-

formance.

ASR performs exceptionally well under known controlled acoustic environments.

A fundamental problem is that ASR performance degrades quickly when the training

and testing environments do not match, i.e., performance is unsatisfactory in unknown

test environments [6], [71. These mismatches are due to inter- and intra-speaker va-

riabilities, acoustic background environments, microphones, and channel variabilities.

Many cutting edge techniques have been developed to minimize these variabilities,

and most of them perform successfully within a specific context-dependent consistent

acoustic environment [Bl, [91. These techniques are based on assumptions concerning

the noise or the differences in collecting and training on a specific noise condition.

Most of these techniques need ASR to work in a batch mode, i.e., ASR decodes a

whole speech utterance as a unit l2l, [71.

Human speech perception mechanisms inside the brain are still poorly understood



and remain as a black box to speech researchers. Holvever, researchers have observed

that during human-to-human conversation, people monitor the speaker as well as the

surrounding acoustic environment continuously under adverse conditions and they

have the ability to quickly adapt to changing acoustic environments [10], [11]. The

most common sources of variability in the acoustic environments are (i) inter-speaker

variability - due to vocal tract length and characteristic variations, (ii) intra-speaker

variability - a speaker cannot repeat the same speech exactly in the same rvay, and (iii)

environmental variability, known as the extrinsic problem, such as (a) the acoustic en-

vironment - like background speech, music, street noise, car noise, room reverberation,

additive noise, and (b) the communication channel - such as transducers, speech co-

ders, convolutional distortion, non-linear channel effects, fading echo cancelation etc.

In real-world acoustic environments, many of these variabilities overlap each other

and human speech perception mechanisms can deal with these complex variabilities

successfully. Holvever, in ASR, it is assumed that these variabilities are mutually ex-

clusive and distinct and do not overlap each other in order to reduce acoustic model

complexitv [12].

In human speech perception studies, it was found that human beings use multiple

cues/traits for speech perception under noisy conditions to predict the speech signal

from the source. In adverse conditions, people track surrounding environments, detect

any abrupt changes in the backgrounds, extract information of noiselike speaker

traits, specific acoustic environment conditions and channel conditions, and analyze

them [13]. Human speech perception mechanisms use the extracted noise information

to adapt to the changing environments and then decode the speech signal, try to

understand it, i.e., make some hypothesis on the output score, called a confidence score



based on some measurement schemes, and then send a feedback signal to the speech

perception mechanism if the decoded speech is not intelligible [10]. From observations,

it was found that adaptation and feedback are continuous processes until a speech

signal is not understandable to listeners. People even try to use body gestures and

the context of communications if it is known a priori.

When we consider human-computer communications, like ASR and machine dialog

systems, it is essential to monitor the audio streams of source speakers, background

acoustic environments, and channel changes since they represent signi�cant challenges

in maintaining the performance of the ASR system. Nevertheless, it is hard to design

such a human-like environment-aware intelligent speech recognizer that explores the

nature of noise [12]. Hardly few algorithms in the current literature have been shown

to monitor and track acoustic environments properly and analyze their noises on-line,

so as to adapt the acoustic models of an ASR system to its changing conditions.
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Current classical HMM-based statistical approaches as shown in Fig. 1.1 face

difficulty to deal with the performance degradation of the ASR systems when the

signal-to-noise ratio (SNR) decreases. The proper estimation of HNIM parameters

including transition probabilities, Markov state output densities, and noise statistics

fails in adverse acoustic conditions. Another problem of HMNI-based ASR is that

it uses off-line HMM signal processing schemes to estimate the HMM parameters.

HMMs use an off-line expectation-maximization (ENI) Baum-Welch algorithm, which

uses the fixed-interval foruard-backward scheme to estimate the best possible state se-

quences of words corresponding to the unknown test utterances [7], [9], [14], [15]. The

estimation of H\,IM model parameters increases computational cost and complexity,

and the optimization process converges slowly. Off-line HMM schemes are not able to

estimate the model parameters that undergo infrequent rapid changes as a result of

adverse noisy environments.

On-line signal processing techniques have been reported in the literature for HMNIs

to deal with dynamic environments where the statistics of the observed data are

changing with time. These on-line techniques are based on sequential expectation-

maximization (EM) technique [16], [171. Though these algorithms have shown success

in dealing with context-dependent dynamic environments, they need more improve-

ments to work in real-world acoustic conditions. For dynamically tracking the acoustic

environment, updating the noise information, and adapting to the new environment,

an alternative approach like the perception mechanism of human beings needs to

be developed. The use of on-line frame-dynamic noise tracking and compensation

schemes is likely to be one of the possible solutions.

Recently, the successful deployment of 3G/4G broadband multimedia wireless



communications put demands on environment-aware ASR systems for much voice-

based activities including voice based web-browsing, music searching, phone dialing,

E-mail and document dictation etc. Since mobile phones work in very uncertain acous-

tic conditions, which are commercially called'impulsive environments', a conventional

HMNI based off-line ASR system is not able to deliver good services to the customers.

In order to improve the robustness of an ASR system under impulsive acoustic en-

vironments, it is essential to develop new cutting-edge techniques that can make the

ASR system aware of the background acoustic conditions and quickly adapt to new

environmental changes in a real-time manner [18].

Many innovative algorithms have been developed with the advancement of research

in the fields of artificial machine intelligence, pattern recognition, information theory,

and as well as speech signal processing and recognition. These algorithms have found

successful commercial applications as well. In the speech processing field, different

innovative algorithms are available that can estimate noises very efficiently even under

a very low SNR [19].

In the statistical signal processing field, the sequential prediction and updates of

a signal in non-stationary noises are widely used for the estimation of on-line model

parameters in real-time time series, such as the stock market, drilling oil rigs, and

finance [20]. In optimization fields, stochastic search algorithms are widely used for

efficiently searching the optimum model parameters in a high-dimensional complex

search space. Currently, evolutionary stochastic particle slvarm optimization (PSO)

l2Il,I22l algorithms are becoming popular to solve the optimization problem of certain

objective functions in real-life problems.

In the pattern classification field, Bayesian on-line inference for segmentation and



clustering has attracted more attention [20], [231. It can be successfully used to detect

sudden changes in speakers, environmental conditions, and channel conditions. For

the speech processing field, statistical methods for noise tracking and estimation, e.g.,

minima controlled recursive averaging (MCRA) [4], can be used with the Bayesian

on-line inference technique to track and detect slow or fast changes in highly non-

stationary acoustic conditions. This approach can be used to design an environment-

arvare on-line ASR.

Speech is a very complex phenomenon involving biological information processing

systems that enables humans to accomplish very sophisticated communication tasks.

These tasks use both logical and intuitive processing. Conventional 'hard computing'

approaches have achieved prodigious progress, but their capabilities are still far behind

that of human beings, particularly r,vhen called upon to cope with unexpected changes

encountered in the real world [24].

lVith the advent of advanced technologies for processing statistical and cogni-

tive information, a new computing technology, called soft computing [25], [26], based

on sound biological understanding has been evolving. It is a new paradigm of the

computational intelligence and the role model for soft computing is the human mind.

According to the definition gir.'en by Professor L. Zadeh "The guiding principle of

soft computing is to exploit the tolerance for imprecision, uncertainty, partial truth,

and approximation to achieve tractability, robustness and low solution cost and better

rapport with reality" [26], l27ll29l. At present the main constituents of soft computing

are: i) Frzzy Logic, ii) Neural Computing, iii) Evolutionary Computation, iv) Particle

Swarm Optimization, v) Machine Learning, and vi) Probabilistic Reasoning (PR),

with the latter subsuming belief networks, chaos theory and parts of learning theory



[2e], [30], [241.

The acoustic modeling technique of current ASR relies on an off-line learning

strategy. In this off-line learning approach, the statistical HMNI models learn from

historical data. This modeling technique is appropriate if the underlying dynamics of

the test acoustic environments do not change over time. In reality, it is not the case as

the characteristics of the acoustic conditions vary and evolve over time. In this case,

the off-line learning approach fails to take into account these variabilities unless the

model is re-learned or compensated. With the evolving of the soft computing-based

intelligent computing techniques, it is possible to incorporate a current ASR system

with sequential or on-line learning attributes [31].

In this dissertation, we explore a soft computing technique for a system archi-

tecture of environment-arvare on-line ASR based on statistical and probabilistic rea-

soning technologies. We develop a novel soft computing model giving focus to very

specific casesT such as rapidly changing non-stationary background noises. Usages of

environment tracking techniques to detect slowly or suddenly varying background

noises and extract noise information are proposed in this dissertation work. Innova-

tive ideas based on Bayesian on-line inference techniques and evolutionary stochastic

PSO techniques are investigated here for simultaneous recognition and acoustic model

compensation in order to adapt dynamically to new rapidly varying acoustic noises.

A ner,v framer,vork based on the integration of dynamic noise tracking algorithms and

simultaneous feature compensation using the soft computing approach into an HMM-

based system is proposed. This approach leads to the development of an on-line ASR

to be more noise robust in real-world acoustic environments.



7.2 Objectives

The main objective of this dissertation is to investigate the robustness problems

of current HNIM-based ASR in real-life non-stationary acoustic environments, and

to develop solutions to mitigate these deficiencies. In particular, this dissertation

intends to develop a soft computing model to improve the robustness of current ASR

in unknown acoustic environments. In the course of this thesis, we pursue the following

goals:

- Primary Objective: Motivated by the fact that current HNINI-based off-line

ASR systems are all vulnerable in unknor,vn test conditions, this dissertation

focuses on developing a new soft computing technique using Bayesian on-line

inference to deal with dynamic environments in previously unseen conditions.

- Secondary Objective: An integration of soft knor,vledge into ASR by the

better exploitation of our knowledge of human speech production and perception

mechanisms to the development of noise robust on-line ASR. This facilitates

designing an environment-arvare ASR system with larger and more consistent

reduction in r,vord error rates (\,VER) at reasonable computational cost over a

wider range of corrupting highly non-stationary noises.

- Tertiary Objective: This work develops a cutting edge algorithm based on a

newly evolving PSO soft computing technique to improve the noise robustness

of ASR. Toward this goal, we propose a soft adaptive filtering technique to

track highly non-stationary acoustic distortions in feature space for front-end

processing of current HMM-based ASR.



1.3 Contributions

The following conference papers, journal article publications, posters and book

chapters are significant contributions of the current dissertation towards the advan-

cement of soft knowledge for on-line noise robust ASR. These r,vorks r,vill lead to

develop new applications for mobile multimedia devices.

Md Foezur Rahman Chowdhury-, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
A Soft Joi,nt Add,i,ti,ue and Channel D'istort'ions Computi,ng Approach to Irnproue The
Robustness of On-Li,ne ASR i,n Non-Stat'ionary Enu,ironments. n Proc. 25th IEEE Ca-
nadian Conference on Electrical and Computer Engineering (CCECE'72), N{ontreal,

Quebec, Canada, April 29-May 2,20L2.

Md Foezur Rahman Chowdhury, and Sid-Ahmed Selouani. Identi,fi,cati,on et udrifica-
t'ion d,u locuteur distri,bu6.es dans les commun'icat'ions mob'iles. In book chapter 7 to the
book title: Tfaitement du signal et de I'image en biom6trie, Hermes (Europe) editions,
20t2.

Md Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
Bayes'ian On-Ltne Spectral Change Point Detect'ion: A Soft Computing Approach for
On-Li,ne ASR. In International Journal of Speech Technology, Springer, vol. 14, Online
First (http://www.springerlink.com,/content/1381-2416),11 October 2011.

Md Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
A Highly Non-Stat'ionary No'ise Track'ing and Compensat'ion Algorithm, wi,th Appli,ca-
t'ions to Speech Enhancement and, On-Line ASR. In Proc. IEEE International Confe-
rence on Acoustic, Speech, and Signal Processing (ICASSP'12), March 25 - 30,2072,
Kvoto, Japan.

Md Foezur Rahman Chou,dhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
A Rapi,d, Adaptat'ion Algori,thm for Tracki.ng Hi,ghly Non-Stat'ionary No'ises Based on
Bayes'ian Inference for On-Li,ne Spectral Change Po'int Detect'i,on. In Proc. INTER-
SPEECH 2011, pp. 1205-1208, August 28-31, Florence, Italy'.

Md Foezur Rahman Chowdhurr,', Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
Real-Trme Bayes'ian Inference: A Soft Computi,ng Approach to Enu'ironmental Lear-
ni,ng for On-Line Robust Automat'ic Speech Recogn'it'ion. In Proc. of 6th International
Conference on Soft Computing Models in Industrial and Environmental Applications
SOCO 2011 (vol. 8712011, Advances in Intelligent and Soft Computing: pp.445-452),
Salamanca, Spain, April 6-8, 2011.

Md Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
Tert-'independent di,stri,buted speaker i,denti,ficati,on and uerifi,cat'ion usi,ng GMM-UBM

2.
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8.

speaker n'Lodels for mobi,le commun'icat'ions. In Proc. 10th International Conference
on Information Sciences Signal Processing and their Applications (ISSPA'10), Kuala
Lumpur, N{alaysia, pp. 57-60, May, 2010.

Md Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
Frame recurs'iue dynami,c mean b'ias remoual techn'ique for robust enu'ironment-auare
speech recogn'i,t'ion 'in real world appl'icat'ions. In Proc. 23rd IEEE Canadian Conference
on Electrical and Computer Engineering (CCECE'10), Calgary, Alberta, Canada, pp.
1-5, May, 2010.

Md Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
A Stud,y on B'ias-Based Speech Si,gnal Condi,ti,oning Techn'iques for Improuing The Ro-
bustness oJ Automati,c Strteech Recognii'i,on. In Proc. 22nd IEEE Canadian Conference
on Electrical and Computer Engineering (CCECE'O9), St John's, Newfoundland and
Labrador, Canada, pp. 664-669, May 3-6, 2009.

Md Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
Di,stri,buted automat'ic tert-'i,ndependent speaker i,denti,fi,cati,on us'ing GMM-UBM spea-
ker models. In Proc. 22nd IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE'09), St John's, Newfoundland and Labrador, Canada, pp.372 -

375, May 3-6, 2009.

Md Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy.
Towards Human-L'i,ke Enu'ironment-Aware Automat'ic Speech Recogn'it'ion. In Poster
SYTACom Research Wbrkshop, Ecole de Technologie Sup6rieure, Montreal, Quebec,
Canada, Tuesday April 28, 2009.

Moreover, the follor,ving conference paper has accepted for conference presentation

and this will further enhance significantly the contributions of the current dissertation

towards the advancement of soft knowledge for on-line noise robust ASR.

1. N'td Foezur Rahman Chowdhury, Sid-Ahmed Selouani, and Douglas O'Shaughnessy. ,4
Soft Computi,ng Approach to Improue The Robustness of On-Li,ne ASR i,n Preu'iously
Unseen Hi,ghly Non-Stat'ionary Acoust'i,c Enu'ironments. Accepted for presentation to
the 11th International Conference on Information Sciences Signal Processing and their
Applications (ISSPA'12), Montreal, Quebec, Canada, July 3 -5,2012.

Finally, we summarize the significant contributions of the current dissertation

work to the advancement of soft-computing knowledge in the field of on-line noise

robust ASR as follows:
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Contribution 1: We design and implement a soft computing model for noise

robust on-line ASR, with feature extraction, on-line tracking and detection of

abrupt changes in acoustic environments, frame dynamic joint additive and

channel distortion compensation (JAC), and speech recognition functionalities

in a multi-threaded computing environment.

Contribution 2: lVe propose a soft computing model using Bayesian on-line

inference for tracking abrupt spectral change detection and rapid adaptation in

highly non-stationary acoustic environments. We develop a frame-based Baye-

sian on-line spectral change point detection (BOSCPD) model for rapid adap-

tation of MCRA to non-stationary acoustic conditions. lVe show through ex-

periments that the proposed BOSCPD can reduce significantly the delay in

updating the minima search window in IvICRA-based algorithms in the worst

scenarios when the noise floor changes rapidly from low to high.

lVe implement the proposed BOSCPD-based soft tracking model for on-line

ASR using the Aurora 2 speech database [1]. A frame dynamic channel distor-

tion compensation is implemented in a two-pass recognition process using the

real-time computing simulation tool ATK [2]. The experimental results shorv

significant improvement in word accuracy compared to the baseline MCRA

technique.

Contribution 3: We also propose a particle slvarm optimization (PSO)-based

soft adaptive filter for frame-dynamic non-stationary noise tracking and com-

pensation. PSO is an emerging kind of filtering technique based on bird flocking

and fish schooling phenomenon, which is quite extensively used for an alternative

and efficient form of genetic algorithms and gradient-based search techniques.
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PSO techniques are suitable for modeling non-Gaussian and non-linear systems.

It is shown through our experiments that PSO-based soft adaptive filtering is

a candidate technique for front-end processing of on-line ASR in unknown and

highly non-stationary acoustic conditions.

4, Organization of Thesis

This dissertation has been organized into six chapters as follows:

- In Chapter 1, we discuss the shortcomings of the current HMM-based state-

of-the-art ASR and the motivation of the dissertation work. Then we give our

dissertation objectives, summarize the contributions of our work and finally the

outline of our dissertation.

In Chapter 2, we present issues regarding noise robustness of current ASR, fol-

lowed bv the basic model of a speech communication system, state-of-the-art

signal processing techniques for ASR, and joint additive and channel distor-

tion (JAC) compensation techniques to achieve robust performance of ASR in

noisy conditions. We also discuss the MCRA-based classical speech tracking

algorithms in highly non-stationary acoustic environments.

- In Chapter 3, lve describe the main idea of Bayesian on-line inference for change

point detection (BOCPD) technique, followed bv the proposed mathematical

model, called Bayesian on-line spectral change point detection (BOSCPD), for

noise tracking and rapid adaptation in highly non-stationary acoustic environ-

ments. We also discuss the soft frameworks for on-line ASR in real-time appli-

cations.
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In Chapter 4, we introduce the biological population-based stochastic search

algorithm, called particle srvarm optimization (PSO), for adaptive front-end

processing of the ASR in rapidly changing acoustic environments for real-world

applications. lVe implement a dynamic multi-swarm particle slvarm optimiza-

tion technique (DMS-PSO) technique for soft on-line ASR.

In Chapter 5, we present our experimental setups and results of the proposed

soft computing model for on-line speech recognition based on the algorithms

introduced in the previous chapters. lVe also provide a description of the speech

database that has been used to evaluate the performance of the proposed soft

computing technique-based on-line ASR.

Finally, Chapter 6 contains conclusions as well as suggestions for future work.
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Chapter 2

Review of Noise Robustness in

Automatic Speech Recognition

2.L Introduction

Most speech recognition systems deal r,vith audio streams that typically contain a

single speaker over a single channel under constrained acoustic environmental condi-

tions. In [tO], Pols found from his investigation on flexible human speech recognition

that ASR systems are trying to imitate underlying human speech recognition and

understanding techniques under controlled and consistent environmental conditions.

Ho'wever, human beings have developed their own language understanding techniques

from context independent and uncontrolled acoustic enl'ironments. They can reco-

gnize and understand speech under extreme noisy conditions, and have a very high

degree of robustness to different variabilities of acoustic environments.

Currently, in ASR, r've are trying to gain performance to equal or perhaps even

15



outrank human performance. Nevertheless, current ASR technologies are not designed

to emphasize the flexibility, robustness, and efficiency of human performance. ASR

follows a shorter way of mimicking human language understanding techniques to serve

commercial needs. A real design of ASR to behave like human beings would be very

complex. At present we do not have enough information on how human beings decode

speech in the brain to build such a system, nor is such a thing on the immediate

horizon.

In an earlier study in [6], Lippmann found that the performance of ASR rvas one or

more orders of magnitude r,vorse than human performance on similar tasks. Holvever,

there have been enormous advances in improving the robustness of ASR over the last

several years, there is still a large gap between human and machine performance.

In order to improve this inferior performance of machine recognition system, that

is, robustness with acoustic noises and channel as well as speaker variabilities, it

needs more research on improving low-level acoustic phonetic modeling, especially for

modeling spontaneous speech recognition systems [6], [321.

Human listeners use various acoustic features and cues with a high degree of

flexibility [33]. However, ASR is not that flexible. In addition, human listeners have

amazing power to adapt quickly to new acoustic environments, like a variable spea-

king rate, telephone quality speech, or somebody having a cold, using pipe speech

(e.g., speech in intra-ship communication), or having a heavy accent, or surrounding

acoustic noises like car noise, street noise, babble noise, wide-band noise, narrow-band

noise, non-stationary noise etc. This clearly indicates that human speech recognition

and understanding capacities are highly adaptive as they can predict and track rapidly

varying acoustic environments and adapt to current situations quickly.

16



For the last three decades speech researchers have developed many approaches to

make ASR more human-like robust but with limited success [32], [13]. In the soft com-

puting domain, researchers brand these approaches as "hard computingrr techniques

compared to the bio-inspired soft computing model [24].Even though soft researchers

are interested to categorize the conventional techniques as hard computing techniques,

some of these systems are also capable of making soft decisions. These efforts to im-

prove the robustness of ASR results can be classified into two categories - one is

human speech recognition (HSR) and the other one is automatic speech recognition

(ASR). While many of these algorithms r,vork quite well for specific context dependent

situations, in general, they do not perform well in previously unseen non-stationary

acoustic environments.

In this chapter, we revier,v the human speech perception and recognition mecha-

nism (HSR) in section 2.2. This is followed by a review of the prominent hard noise

robust techniques for ASR that have been developed in the past in section 2.3. An

overvielv of the classical noise compensation techniques for ASR is presented in section

2.4. Section 2.5 briefly describes the basic architecture of an environment-aware ASR

recently proposed in the ASR literature. Finally, we summarize our review results in

sect ion 2.6.

2.2 Human Speech Recognition

Human listeners can show arvareness of different speech perception phenomena

and their underlving mechanisms, as mentioned below, to achieve surprisingly flexible,

robust, and efficient performance for speech recognition and understanding. Speech
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scientists and engineers might see good opportunities to implement certain elements

for improving the performance of their speech recognition systems [10] [341.

2.2.t Background Noise and Room Reverberation

A speech recognizer trained in clean condition (SNR > 30 dB) degrades in per-

formance as the background signal-to-noise ratio (SNR) in testing environments de-

creases, and substantially at SNR of +10 dB or less. However, human listeners per-

form well even under such low SNR. In addition, aspects of human speech percep-

tion depend on the size of the vocabulary and the native languages of the speaker

and of the listener. Experiments have shown that, at about -10 dB SNR, all speech

becomes unintelligible even for very limited vocabularies, such as digits or spelling

alphabets [10], [35].

Speech sounds, especially consonantal sounds, lose their intelligibility and create

confusion under various conditions of noises, e.g., speech-like noise spectrum, pink

noise (low-pass filtered), non-stationary noise (such as door slams, car passing, etc.)

having SNR from f 15 to -6 dB, and also under room reverberation [36], [101. In order

to improve the performance of ASR, we need to explore the relationship between the

effects of noise, reverberation, and speech intelligibility.

2.2.2 Spectral Distortions

Current ASR is based on statistical pattern recognition techniques under control-

led environments, where it is trained to learn phoneme, triphone, or word templates.

Recognition is then performed by measuring the shortest distance or greatest simila-
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rity between testing and reference templates. Before applying pattern-matching tech-

niques, sometimes speaker adaptation is applied. On the other hand, human beings

learn in diverse conditions and their templates seem to be much more flexible and

adaptable. High-pitched small-headed youngsters seem to have little difficulty to un-

derstand their low-pitched big-headed parents. People can easily understand telephone

quality speech (300-3400 Hz). Substantial variability in speaking rate does not seem

to bother people a lot [37], [10].

Present state-of-the-art ASR is very sensitive to spectral distortions. Therefore,

it is essential for ASR to be insensitive to spectral variations to achieve human-like

noise robust performance.

2.2.3 AuditoryModeling

Neuro-mechanical signal processing in the peripheral auditory system is so com-

plex that we may not understand it well enough to imitate that process in ASR

front-end modeling, apart from its functionality [10]. Horvever, current-state-of-the-

art ASR systems use perceptual-based features such as MFCC and PLP [38], which

perform well under clean conditions. Though these features are extracted from the

speech signal based on critical band filtering, to follow human speech perception, they

do not represent the optimal features to show robustness under adverse conditions

that human beings demonstrate even in severely degraded environments. Optimal

features need careful selection of the spectro-temporal characteristics of the speech

signal to be robust to diverse environments.
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2.2.4 Multiple Features

Human listeners use a flexible multi-feature approach for speech perception [39],

[13]. On the other hand, current speech recognition systems are based on a pattern

matching technique using fixed and limited perceptual features like NIFCC or PLP,

which is, in fact, the main limitation of ASR [39]. Human beings use multiple acoustic

cues to recognize'words in efficient and flexible ways [10]. However, implementation

of such flexible acoustic cues is still very hard for ASR, as the decoding mechanism

of these cues by a human brain seems extremely complex and mostly unknown, like

a black box.

2.2.5 Adaptation and Speaker Normalization

Human beings can adapt to different speakers, speaking styles, speaking rates,

and speaking under emotion or stress, almost instantly. Holvever, current so-called

adaptive ASR uses adaptive techniques that are far from human performance. This

adaptive ASR needs chunks of speech to adapt [401. If such ASR is not adapted, it

performs poorer for new speakers and new acoustic environments.

Adaptation to a new environment, whether it is background noise, another spea-

ker, or a different speaking style, should not require new training, except just a quick

adaptation of all models. This idea needs optimal use of parameter dependency. Cur-

rent researchers are giving more attention to this optimal use of parameter depen-

dency. Speech researchers are also thinking of a tree-based multi-scale dependency

model-based approach for improving the adaptation capacity of adaptive speech re-

cognizers [41],  [101.
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2.2.6 Predictabilitv

Human beings have amazing predictability power. They are better than an n-

gram language model in predicting what might come next in the speech stream.

From this viewpoint, we can say that the perplexity of language for human listeners

is always much lower than for ASRs. Most recognizers use the left-to-right processing

for decoding and prefer to parse a whole sentence. The performance of state-of-the-art

ASR systems is largely hindered by out-of-vocabulary words, which unavoidably set

the upper limit of the word error rate (\,VER) of the ASRs. On the contrary, human

beings have little difficulty to understand, interpret, and remember unknor,vn r.vords

or nerv r,vord compounds [42], [101.

2.2.7 Co-Articulation and Reduction

In conventional ASR we pay much attention to the dynamic spectro-temporal

events, i.e., formant transitions in a higher resolution of the speech spectrum, which, in

turn, give us better understanding of the human sensitivity to vocalic transitions [43].

However, the Difference Limen (DL) in endpoint frequency for 40 ms tone glides is

as low as 30 Hz; it is more than 200 Hz for vor,vel-consonant (VC)-like stimuli with a

short (20 ms) formant transition. This may be another indication that high spectral

resolution is not always required and that unique spectral targets are quite useless [10].

It was also found by observing the formant transitions that formant undershoot hardly

occurs in fast rate speech compared to normal speech for comparable consonant-vor,vel-

consonant (CVC)-segments [44].

In fast speech, a speaker adapts his speaking style, also called articulation speed,
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so that the vowel target can be easily reached for a specific context [13]. Contex-

tual and prosodic conditions cause a lot of variations in the vowel midpoint formant

position reached, while higher speaking rate and shorter duration add very little to

that variability. On the other hand, changing the speaking style from read to sponta-

neous speech causes vowel reduction, and more specifically, a centralization of mainly

first formant Fl [45]. It would be preferable to model such systematic phenomena as

specific knowledge in ASR, rather than treat these phenomena just as variability in

training data.

In ASR, triphones or HMM states are used in modeling the contextual informa-

tion to take into account the co-articulation effects [9], [15]. However, they could not

distinguish n levels of vowel reduction due to change in speaking rate [46]. In [45],

it was found that consonant reduction is also as important as vowel reduction. Se-

veral acoustic measurements such as segmental duration, spectral center of gravity,

intervocalic sound energy difference, intervocalic F2 slope difference, and the amount

of vowel reduction in the syllable kernel, r,vere used in [45] to find consonant identifi-

cation errors for vowel-consonant-vowel (\rCV) syllables extracted from spontaneous

vs. read speech for both stressed and unstressed syllables. All these acoustic measures

appear to be indicators of both vowel and consonant reduction and are all correlated

to changes in speaking style and syllable stress.

2.2.8 Pronunciation Variation

Speech recognizers use standard pronunciation rules from a'word lexicon irres-

pective of the speaker and the context in which the words occur, which is a huge
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oversimplification. The human lexicon certainly does not r,vork like that. In 1471, the

authors use cues from vowel and consonant reduction, lvord boundary effects like de-

letion and stress clash, and allophone variation, for efficient modeling of word lexicon

search. Therefore, it is clear that for improving the robustness of ASR, we have to

search for new algorithms so that pronunciation can be better represented.

2.2.9 Speech Perception Models

Speech scientists and engineers have developed many speech perception and word

recognition models based on the analysis of human psychoacoustic behaviors, such as

motor theory [48], analysis-by-synthesis [49], quantal theory [50], logogen model [51],

cohort model [52], lexical access from spectra (LAFS) [53], first order context sensitive

coding (ERIS) [54], autonomous search [55], dual coding [56], interactive activation

TRACE model [57], short-list [58], adaptive learning [59], etc.

Though HMM-based ASR dominates current ASR approaches, without incorpo-

ration of explicit adaptation mechanisms it performs poorly in noisy environments.

In order to improve the performance of current speech recognizers, it is essential to

include in the models more specific knowledge to be extracted easily from the speech

streams. The knowledge may be obtained dynamically by tracking the surrounding

environmental characteristics, speaker specific variabilities, e.g., speaking style, spea-

king rate, r,vord stress, reduction, co-articulation etc., and by quickly adapting the

model parameters. This dynamic modeling will certainly enhance the performance of

current ASR systems [40], [60].
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2.2.10 Multi-Modal Speech Recognition

Current speech recognizers are limited to acoustic modeling of speech signals.

However, speech communication is not necessarily limited to the auditory mode only.

In practice, human listeners use different modes sub-consciously like body gestures,

facial expressions, Iip reading, and eye blinks. Now audio-visual feature-based speech

recognizers called multi-modal ASRs are becoming more popular as the performance

of such ASR systems is being improved over conventional acoustic model-based ASR

systems [61].

In this section, we present some of the important approaches for human speech

recognition. From this review study, we find that human speech recognition (HSR) is

far superior to speech recognition mechanisms developed by human. Speech resear-

chers and engineers are trying to develop new cutting-edge technologies very similar

to human understanding and recognition performance. This led to the development

of robust automatic speech recognition. In the following section, we briefly present

our review result on robust automatic speech recognition, which will help to get a

closer look on the status of current ASR svstems.

2.2.'l,L Discussion

In this section, we present some of the important aspects of the human speech

perception and recognition mechanisms. The objective of this review is to get an

insight into the HSR systems. Since the soft computing concept is derived from nature,

it is essential to understand how human beings use their natural processing techniques

for speech recognition and understanding. Soft computing researchers might be able to
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develop new ideas by incorporating certain knowledge, €.8., speaker and environment

adaptation, multi-modal recognition, auditory modeling, speech perception etc., of

the HSR systems.

2.3 Robust Automatic Speech Recognition

The performance of ASR systems degrades quickly when there is a mismatch bet-

ween testing and training environments [62]. There has been much interest to develop

various techniques to improve the robustness of ASR systems under various adverse

conditions. Many of these algorithms perform well for specific tasks or environments

in general, but they are not generalized to all the situations responsible for acoustic

degradation. At present, researchers are trying to develop generalized techniques so

that ASR systems can dynamically track the surrounding acoustic conditions and

quickly adapt to the new environments. Holvever, before going to a detailed analysis

of these techniques to improve the noise robustness of ASR, we need to know the fun-

damental building blocks of the speech communication model, which are discussed in

the next subsection.

2.3.1 Speech Communication Model

Current state-of-the-art noise robust ASR is based on two models [9], [1a]: (i) the

acoustic model (ANI), and (ii) the language model (LNI), as shown in Fig. 2.1. The AM

model of ASR is based on the human speech communication model [11], [63] as shown

in Fig. 2.2. This initial model is used for non-linear channels and background models.

Later it is simplified based on the assumptions of a linear channel and additive noise



Decoded
Text

Ftcunp 2.1 Main building blocks of a state-of-the-art HMM-based (ASR).

degradation. A mathematical form of the speech communication model [11], which is

formulated in detail as described in Appendix A, is

: x + b + I DFT{ln(r + eDrr[n-o-*1)]

x f b+ r ( x ,n ,b ) , (2 .1 )

where y is the observed noisy speech signal, x is the uncorrupted clean speech signal,

b is the channel bias, n is the additive background noise, and r(x, n, b) is a correction

vector in the cepstral domain [11].
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FtcuRp 2.2 - Speech communication model.

2.3.2 Techniques to Improve the Robustness of ASR

Current techniques to improve the noise robustness of automatic speech recogni-

zers can be categorized into the following two approaches [7]:

- model adaptation-based techniques, and

- feature compensation-based techniques.

The basic idea of model adaptation-based techniques is that the feature vectors

are degraded due to external noises and attempt to handle this noise corruption by

adapting the acoustic model of the speech signals, whereas the feature compensation

techniques are based on the principle to make the feature vectors more insensitive to

noise by compensating them without adapting the acoustic model.

Many successful techniques for both the approaches have been reported in the

literature. A brief description of these techniques to improve the noise robustness of

ASR is discussed next.
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2.3.3 Model-Based Approaches

A model-based technique takes into account the effects of background additive

noises in two ways. Firstly it adapts the statistical acoustic model to match the new

acoustic environment by estimating the noise distribution or through the estimation

of the perturbations in the speech distributions caused by the noise [9], [14]. Secondly,

it helps the acoustic model to discard the unreliable part of the feature vector. Howe-

ver, model compensation-based techniques are computationally expensive. Some of

these techniques need large chunks of transcribed data for the adaptation during the

recognition process. Some of the most widely used model-based adaptation techniques

are listed in the followine subsections.

2.3.3.1 Multi-condition Tbaining

Multi-condition training is a simple and direct model adaptation technique. It

includes all the possible testing noise conditions in training the acoustic model by

which the statistical model can take into account all the possible variabilities in the

acoustic features due to background noise [64], [32]. Although this approach achieves a

certain degree of robustness, it cannot always be applied in training the acoustic model

depending upon the predictability of the range of noises that may be encountered.

Horvever, such a multi-condition training has the risk of making statistical models

diffuse, i.e., models with a large variance. Therefore, there is no guarantee that a

multi-condition model will produce good results in an specific acoustic condition.

There is also a problem of generalization for such trained models to new testing

conditions not seen in training [65].
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2.3.3.2 Signal Decomposit ion

In this method, the signal is decomposed into different components and then a

set of HMMs is used for each decomposed signal component for recognizing them

simultaneously [66], [aZ]. ffre recognition is carried out by searching through the

combined state space of the constituent models. A major disadvantage of the si-

gnal decomposition method is that it needs to train the acoustic model in a large

number of noisy conditions, which is hardly possible in practice. Another disadvan-

tage is that the computational cost increases exponentially as the number of signal

components increases. Even for a single component noise, it needs a search through

three-dimensional spaces, which is computationally expensive. Since it is not possible

to knor,v a priori, the number of noise components present in a speech signal, it is

difficult for a signal decomposition method to improve the noise robustness of ASR

systems beyond a certain point.

2.3.3.3 Maximum Likelihood Linear Regression

The maximum likelihood linear regression (N,ILLR) model was developed basically

for speaker recognition ; later it was used successfully for adaptation of acoustic models

of speech signals under noisy conditions [67]. In this model, the means and variances

of a Gaussian mixture model (GMM) are adapted to new noise conditions using data

from the new environment. A linear transformation technique is used to transform

the mean vectors and variances for model adaptation based on parameter estimation

using a maximum likelihood method. Holvever, the estimation of parameters requires

a chunk of data of the new conditions for adaptation during the recognition, which is
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considered as a major drawback of the MLLR method for previously unseen acoustic

conditions. The transformation of parameters to adapt to new environments may

not be linear. In such cases, a non-linear transformation is suitable for parameter

estimation bv a mixture of linear regression classes, which requires a large amount of

adaptation data.

2.3.3.4 Maximum a Posteriori (MAP) Adaptation

Model adaptation can also be accomplished using the maximum a posteriori

(NIAP) approach. This adaptation process is sometimes referred to as Bayesian adap-

tation. The MAP estimation framework provides a way of incorporating prior infor-

mation in the training. Hence, if we know what the parameters of the model are likely

to be (before observing any adaptation data) using the prior knowledge, we might

well be able to make good use of the limited adaptation data, to obtain a decent MAP

estimate [15]. This type of prior is often termed as informative prior. Note that if the

prior distribution indicates no preference as to what the model parameters are likely

to be (a non-informative prior), then the MAP estimate obtained will be identical to

that obtained using a maximum likelihood approach [68]. However, MAP adaptation

adapts the mean and variance of each Gaussian model on a component-by-component

basis, so more adaptation data is needed relative to MLLR.

2.3.3.5 Mult i -Band Processing

In multi-band processing, also kno'wn as sub-band processing, the speech signal

is passed through several narrorv-band filters centered at different frequencies [32].

The output of each filter is processed separately to extract the feature vectors. These
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feature vectors are processed with different HNIMs for each sub-band to extract sub-

band likelihoods or probabilities. These probabilities are combined together to get an

effective likelihood that can be used for recognition. The major merit of this tech-

nique is that if a particular sub-band is corrupted by noise, it has less significant

effect on the combined likelihood or probabilities, which in turn, contributes to im-

prove the recognition performance. Therefore, the recognition performance depends

on the reliabilitv of each sub-band. This method is fruitful for speech contaminated by

colored noise. Since each sub-band is processed independently, this method degrades

the performance of speech recognition for clean speech, as it distorts the clean speech.

To avoid this problem, some researchers [32] proposed a full-decomposition method,

where all possible combinations of sub-bands including full-band, which does not treat

different bands independently, are considered while computing the final likelihood to

use in decoding.

2.3.3.6 Multi-Streaming Processing

In this approach, different feature vectors are extracted from the same speech

signal. Different processing techniques used for extracting different features weight

different aspects of the signal, which may be complementary in nature. Essentially,

the ideas of this method came from observing how human beings use multiple acoustic

cues to identify words in noisy environments for speech communications [69].

From investigation on how a human being performs robust speech recognition

under severe adverse conditions, it was found that there are multiple representations of

speech signals at different stages of human auditory processing and their integration to

get robustness in noisy environments. Multi-stream feature-based techniques involve
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different processing techniques to extract different feature vectors from the same

speech stream, providing much complementary information useful for robust decoding

of the speech signal under severe adverse conditions. Different feature streams are

combined together based on the following t'r,vo approaches:

1. Feature combination: In this approach, different feature vectors are concatena-

ted together and then using different feature dimension reduction techniques

like linear discriminant analysis (LDA) or Heteroscedastic linear discriminant

analysis (HLDA) [19], the overall dimensions of combined feature vectors are

reduced to a lor,ver level in order to minimize the computational cost.

2. Posterior combination: In this method [69], probability outputs of the acoustic

models of different streams are computed and then combined together in order

to get the total probability to train the acoustic model.

2.3.3.7 Missing Data Approach

In this method [70], it is assumed that noise dominates some of the spectro-

temporal regions in the speech spectrogram and these noise-corrupted regions are

considered to be missing or unreliable data for improving the noise robustness of

ASR. The missing data method uses the follor,ving two techniques to improve the

robustness of ASR: (i) Marginalization technique, where the local emission probability

is estimated as just the emission probability of the reliable part of the speech signal,

and (ii) Data imputation, where values corresponding to the unreliable parts of the

speech signal are estimated and then used to compute the local emission probability.

Horvever, the missing data method needs robust algorithms to identify the reliable
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regions in the spectrum. Simple noise estimation techniques are used as a basis for

the identification task.

2.3.3.8 TandemModel ing

In the tandem approach a Multi-layer perceptron (MLP) classifier is first trained

to estimate the context-independent phoneme posterior probabilities. The probabi-

lity vectors are further processed to de-correlate and to optionally reduce the dimen-

sionality and used as the acoustic features that model the output of conventional

data-driven HMM and GMM models (HMM/GMNI). A MLP nonlinearly transforms

the input phoneme posterior probabilities data to a higher dimensional space defined

by the output of hidden units and performs LDA analysis on the hidden unit out-

puts. The output of LDA is called Tandem features, which represent the a posterior

probabilities of the phonemes with greater discrimination between phoneme classes.

Tandem modeling outperforms conventional HMM systems under noisy conditions,

but does not perform as well compared to HMM based systems for clean speech [71].

2.3.4 Vector Tavlor Series

In the Vector Taylor series (VTS) technique, the speech model in Eq. 2.1 is expan-

ded by its Vector Taylor series approximation. In this technique, the non-linearity in

the speech model in Eq. 2.1 is approximated as a feature preprocessor r,vith a Gaus-

sian in the spectral domain. Several variations of VTS, e.g., lst order VTS,2nd order

VTS, higher order VTS, truncated VTS etc., find successful application for model

adaptation to improve the noise robustness of ASR in off-line mode [72], [73].
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2.3.5 Feature-Based Approaches

The model-based adaptation techniques as lve discuss in subsection 2.3.3 are com-

putationally very complex and expensive [32], [13]. Feature based approaches are

alternatives to model based adaptation techniques in order to minimize the com-

putational complexities by generating acoustic features invariant to the noise. Such

techniques use some knowledge from external sources about the effect of noise on the

features and use auditory-like transformations of the features to remove the noise-

prone aspects of the features. Different techniques are adopted to improve the noise

robustness ofspeech recognizers based on a feature-based adaptation approach. These

are described in the followins sections.

2.3.5.L Psychoacoustic and Neuro-Physical Knowledge

The most widely used speech feature vectors, MFCC and PLP coefficients, incor-

porate human auditory perception knowledge successfully into the feature extraction

process. The performance of speech recognizers increases substantially by including

some speech processing characteristics of the human auditory system. NIFCC fea-

tures are based on the NIel scale filter bank, also known as critical bands, which ap-

proximates the power law of hearing by mapping acoustical frequency to perceptual

frequency approximately linearly up to 1 kHz and logarithmically at higher frequen-

cies [13].

Both NIFCC and PLP feature vectors have been shorvn to improve the robustness

of ASR systems [9]. PLP is based on linear predictive (LP) analysis with a number

of prior transformations, including critical band integration on the bark scale, equal
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loudness pre-emphasis, and cubic root compression to account for the power law

of hearing. The auditory spectrum obtained in this way is used to extract the LP

coefficients, and then the equivalent PLP spectrum, and finally the PLP cepstrum.

Both MFCC and PLP reduce undesirable variabilities as a result of the incorporation

of various auditory-like transformations [32].

2.3.5.2 Spectral  Subtract ion

In spectral subtraction (SS), an estimate of the clean speech spectrum is obtained

by subtracting the additive noise spectral estimation from the noisy speech spectrum.

Horvever, the success of this method depends on the reliable estimation of the noise

power spectrum. In this method, the noise is estimated from the non-speech part

of the speech signal using a voice activity detector (VAD). Horvever, this technique

suffers from a number of difficulties as mentioned below:

lVhen the speech to noise ratio is very low, i.e., when noise dominates the speech

signal, it becomes a very difficult task to find a reliable estimate of the speech

signal from this noisy signal.

Furthermore, this technique is only suitable for stationary noises. For non-

stationary noises, it is not possible even by using a very accurate VAD detector

to accurately follow the noise spectral statistics, as they change quite rapidly.

Therefore, it usually results in removal of a significant part of the speech infor-

mation.

The method performs worse if the subtraction of the noise power results in

negative values when the estimated noise exceeds the actual noise magnitude.

A threshold is used to partially solve this problem, resulting in a nerv residual
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noise called musical noise.

Several new techniques have already been developed to solve this problem. One

is to use non-linear spectral subtraction (NSS), which combines spectral subtraction

with a noise masking technique. A more prominent technique, called the relative

spectra (RASTA) technique, has been shown to be quite successful for improving

the word error rate of speech recognizers. The underlying technique of RASTA is to

suppress the noise components whose temporal properties are quite different from

that of the speech in the spectral domain.

2.3.5.3 Wiener Fi l ter ing

In the signal processing domain, Wiener filtering is an optimal filtering technique

in the mean square sense r.vith some prior assumptions as follows:

- Both the speech signal and noise are statistically independent of each other

- Noise is assumed to be stationary or at least r,vide sense stationary

Wiener filtering needs a pri,ori, knowledge of a noise in its reference channel. Ho-

rvever, in real-time acoustic environments the reference noise is not available. This

limitation of a lViener filter results in poor estimation of the noise spectral density in

unknown test conditions. Despite this weakness, the lViener filter is widely used as a

speech enhancement technique for spectral subtraction based noise compensation in

kno'wn test conditions to improve the noise robustness of ASR, e.g., the ETSI Front

End 2.0 for distributed speech recognition [1], [31.
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2.3.5.4 Noise Masking

Noise masking is a psychological phenomenon observed in humans. Acoustic sti-

muli lower than a certain threshold, fixed adaptively based on the noise level, cannot

be perceived as a result of the masking effect. Based on our knowledge of perception,

this involves reduction of the contribution of the lower energy regions of the spectrum

during the recognition process. Employing this idea in the ASR system, a simple noise

flooring and its extension in the HMM framework were shown to provide improved

noise robustness. Noise masking in the logarithmic spectral domain and the cepstral

domain have also been tried [13], [321.

2.3.5.5 Linear Discriminant Analvsis

Reducing the feature dimension is a sensible approach tor,vards improving the per-

formance of a speech recognition system that uses auditory features. Dimensionality

reduction is used in practical pattern classification applications where the ultimate

objective is to design a system that classifies the vector of features in different classes

by partitioning the feature space. In a typical classification problem the system de-

signer chooses a number of features. The s1'stem designer believes that each of these

features helps in some discrimination. Nevertheless, it is difficult to ensure that the

information contained in each feature is extra to what is already available through

the remaining features. If the parameters of the statistical model were known a priori,

adding new features would not degrade the performance of a pattern recognition sys-

tem. At most, if the new features do not contain any nerv information they will be

ignored.
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Feature dimension reduction not only improves the recognizer performance but

can also speed up the pattern classification process. Fisher introduced a technique

of dimension reduction to a one-dimensional linear subspace for the problem of two-

class classification. Other researchers later extended this technique to handle mul-

tiple classes, knorvn as linear discriminant analysis (LDA). LDA, also called Fisher

discriminant analysis or multiple discriminant analysis in the literature, is a widely

used technique for reducing the feature dimension. LDA and its generalization he-

teroscedastic linear discriminant analysis (HLDA) have wide applications to speech

recognition [74].

2.3.5.6 Constrained Maximum Likelihood Linear Regression

Constrained maximum likelihood linear regression (CMLLR), also known as fea-

ture space MLLR (f\4LLR), is a feature adaptation technique [75]. It estimates a set

of linear transformations for the features. The effect of these transformations is to

shift the feature vector in the initial system so that each state in the HMM system

is more likely to generate the adaptation data [7]. For extremely resource constrai-

ned systems, the time required to perform the sufficient statistics accumulation for

adaptation shows big challenge for this technique [76].

2.3.5.7 Histogram Normalization

Histogram Normalization, a non-linear non-parametric normalization technique,

aims to match the cumulative density of the test features with the one collected during

the training. This approach has successfully been used in both spectral and cepstral

domains to deal with stationary noise [7].



2.3.5.8 Stochast icMatching Compensat ion

In the Stochastic Matching (SM) technique [77], [62], the compensation transfor-

mation is based on the mismatches betr,veen the training and the testing data and is

done off-line. An affine transformation function is used for this transformation in the

cepstral domain. The advantage of the SM technique is that it does not make any

prior assumptions about the nature of the degradation [7].It is an important criterion

to compensate the distortions in unknown environments. A MLLR-based modeling

approach for SM is reported in [77].

2.3.5.9 Sequential Compensation

In this technique, the compensation parameters are estimated in sequential man-

ner. The authors in [78] used this technique to track the noise distortion of a signal and

to adjust the compensation function using partial recognition state sequences r,vithin

a small window. The authors used the Kullback-Leibler (KL) information measure as

the optimization criterion.

In [79], the author proposed a sequential Stochastic Matching (SSM) compen-

sation technique based on minimization of the recursive prediction error. It is an

approximation of the technique developed in [7S] and it is based on optimization of

the recognition sequence. In supervised compensation, this recognition sequence is

assumed to be known. For unsupervised compensation, the sequence is obtained from

the first pass of ASR on the sentence [7].

Li Deng and et al. in [80] developed a sequential estimation of non-stationary

noise within the speech feature enhancement framework of noise-normalized SPLICE
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for robust speech recognition. In this technique, the authors used a 1"t order vector

Taylor series (VTS) decomposition technique of the non-linear model of the acoustic

environment in the cepstral domain. The noise mean vectors lvere estimated frame-

by-frame and variance r,vas ignored in this method.

In [81], the authors developed a sequential noise estimation method in the non-

stationary acoustic conditions within the framework of 1st order VTS for robust

speech recognition. They used the sequential Expectation-Maximum (EM) technique

to develop this noise compensation model. In this model, only the additive noise is

considered and both the mean and variance of the noise were updated frame-bv-frame.

The effect of channel distortion was ignored.

The authors in [7] developed an on-line SNI compensation technique that could

perform the compensation in parallel r,vith recognition. In this technique, the authors

estimated the noise compensation parameters frame-by-frame using the forward-only

probability during Baum-lVelch forr,vard-backward search in HMM-based ASR. In this

technique, an environment change monitoring system was used to take into account

the rapid changes in acoustic environment. This technique does not need any know-

ledge about the test environments. However, it only considered additive noise and

ignored channel distortions.

2.3.6 Discussion

In section 2.2, we discuss hor,v human beings can successfully recognize speech

signals using their amazing speech perception and understanding mechanisms. How

they decode speech signal in noisy conditions is still a hot research topic. How the
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human brain works for robust HSR still remains unknolvn and mvsterious to speech

scientists and researchers. In section 2.3, tve present the issues regarding the robust-

ness of ASR developed by human beings. The robustness issue of ASR mainly r,vorks in

two ways: model adaptation and feature extraction. These adaptation techniques can

adapt the model parameters or compensate the feature parameters for the changes in

test conditions. One important change that ASR sees happen is acoustic noise. In the

following section, we discuss various mathematical techniques currently employed for

acoustic noise compensation in ASR.

2.4 Acoustic Noise Compensation

Most of the techniques developed to improve the robustness of HMM-based ASR

are based on the speech communication model of Eq. 2.1. This acoustic model contains

highly non-linear and complex exponential functions. It can be further simplified using

mathematical manipulation as described in Eq. A.13 and it can be written in the

following form:

y:n + IDFT{ln(\* 
"Dr"[x+b-nJ;

:n  *  s (x ,  n ,  b ) , ( )  2 \

where n is the noise, and s(x, n, b) is a correction vector. The phase information is

omitted in Eq. 2.1 and Eq. 2.2 assuming that ASR performance does not depend on

phase information. Mathematical formulation of this model is explained in Appendix

A and details can be found in [11].
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For high SNR, the channel distortion

to the following form:

is the main dominant effectand Eq. 2.1 reduces

y = x * b .  ( 2 . 3 )

Similarly, at very low SNR, the additive noise is a more dominant factor for distortion

of speech and Eq. 2.2 reduces to the following form:

y E n . (2.4)

In real-life environments, test acoustic environments are highly non-stationary

and complex, and, in most cases, consist of overlapped different acoustic conditions.

The distortion in Eq. 2.L becomes a joint function of both the additive noise and

channel distortions. Moreover, there is no a pr'iori, information about these acoustic

conditions and the SNR changes very rapidly. Horvever, the mathematical solution of

this complex model for highly non-stationary acoustic environments is very complex

and there is no closed-form solution.

Most of the current approaches developed to improve the robustness of ASR use

simple assumptions that the acoustic environments are stationarv, and the SNR is

high. Some techniques consider the non-linearity to a certain degree based on a linear

or piece-r,vise linear approximation of the non-linear function [7], [82], [11], [63]. In all

cases, it is also assumed that information of test conditions is known a pri,ori^ These

approaches used to solve the robustness problem of ASR can be classified basically

into t'r,vo categories:
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1. additive noise removal techniques, and

2. channel bias removal techniques.

These techniques increase the robustness of ASR either in feature space or in a

model domain. Their performance depends on the extent to which the model of de-

gradation used in the compensation process accurately describes the true nature of

the distortion to which a speech signal has been subjected. Horvever, the computa-

tional complexities of these algorithms increase with the degree of accuracy of the

approximation of the non-linearity in the distortions.

2.4.L Additive Noise Compensation

For additive noise bias compensation techniques, it is assumed that speech and

additive noise are uncorrelated and stationary. Under this assumption, the acoustic

model in Eq. A.2 as described in Appendix A can be redefined as follows:

aQ) :  r ( t )  +n( t ) , (2. 5)

r,vhere g(l) is the observed noisy signal, r(t) and n(t) the uncorrelated speech and

noise signals respectively. This noise changes the Gaussian power distribution of the

original speech signal into a bimodal or non-Gaussian form. The typical effects of the

additive noise over the clean speech distribution are given in detail in [83].

In the cepstral domain, Eq. 2.5 takes the form as shown below:

Y : x + I DFT{1n(1 + eDFzl'-*l;1.
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Here it is clear that at high SNR, the complex term in Eq. 2.6 becomes negligible and

the observed speech signal will be very close to the original speech signal as

y=x .

Based on this idea, several speech processing algorithms such as (e) spectral sub-

traction techniques, (zz) statistical model-based algorithms, (i,ii) subspace algorithms,

and (eu) SNR-based polynomial regression techniques were developed in order to get

an estimate of the speech signal based on a more accurate model of the additive noise.

The target of these speech enhancement techniques is to increase the SNR to get the

estimated speech signal as shown in Eq. 2.7. These are the simplest speech enhance-

ment algorithms that mostly work in the DFT domain and are based on the basic

principle that the noise is additive. It is also assumed that noise can be estimated

during the speech absence period, i.e., the silences or pauses ofthe speech signal, and

can be subtracted from the speech signal during speech present periods. However,

the main disadvantage of these speech enhancement techniques is that they produce

annoying speech distortions known as musical noise.

2.4.2 Channel Bias Compensation

Speech distortions for additive noise and channel effects are highly non-linear

functions in both the log-spectral domain and cepstral domain. The modeling of

these non-linear functions is very complex and computationally expensive. The tech-

niques that have been developed to mitigate this non-linearity problem can be broadly

categorized as follows:

(2.7)
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1. bias removal techniques,

2. affine transformation,

3. linear regression modeling techniques, and

4. vector Taylor series expansion

These techniques are based on a linear or piece-wise linear approximation of the

non-linear function. They are also based on the assumption that SNR is high. They

can be used to increase the robustness of ASR either in feature space or in a mo-

del domain. The performance of these methods depends on the extent to which the

model of degradation used in the compensation process accurately describes the true

nature of the distortion to which a speech signal has been subjected. However, the

computational complexities of these algorithms increase with the degree of accuracy

of the approximation of the non-linearity in the distortions.

In this chapter, we briefly describe the bias removal techniques since the proposed

soft computing for joint additive and channel distortions compensation (JAC) tech-

nique is based on these techniques. The acoustic model in Eq. 2.1 can be rewritten

into the following simplified form in the cepstral domain:

ym x  xm *b * . (2 .8)

where x- is the cepstrum of the clean speech signal for the rnth frame, and b- is a

non-stationary additive bias in the cepstral domain for the rnth frame. This model is

valid when there is little additive noise present, i.e., at very high SNR. At lor,v SNR,

from Eq. 2.2itis found that y^p rrm. At other SNRs, one must estimate two biases:
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one for the channel distortion and the other for the additive noises.

Let Y : {At,az,As,...,Ao} be the feature vector for each frame of the observed

speech signal,  and A, be the training HNIMs for the clean speech X :  {rr ,"r , rz, . . . , rn}

with probability distribution function (pdf) - Jr[(r; lt,,D,) as shown below:

(2.e)

where p, is the mean and X, is the covariance of the clean speech signal. D is

the dimension of the feature vectors for each speech frame. Under these conditions,

bias can be estimated and removed from the noisy speech signal using transformation

techniques, as shown in Fig. 2.3. These transformations can be done either in a feature

space or in a model domain as described in the following section.

max p(B,W I f  ,Ax ) max  p (B ,W IY ,Lx )

Flcunp 2.3 Joint maximization of Eq. 2.8. Here B is the parameter of the trans-
formation function, and is called a bias vector. W is the word or phone sequence to
be decoded, and A; is the acoustic model for the clean speech signal.

2.4.2.1 A Feature-Based tansformation

A feature-based approach uses some knowledge from external sources about the

effect of noise on the features and uses auditorv-like transformations of the features



to remove the noise-prone aspects of the features.

In the feature-based technique, a bias vector 6: {br,  bz,. . . ,but}  is est imated and

then the transformation function Il,(.) in Fig. 2.4 with u:b translates to removing

an offset from the received sisnal as

x*:  Fr(y^) :  V* -b*,

where m {m :  1, . . . ,  My} is the index of

the inverse function in feature space, and

speech frame.

(2 .10)

speech frames, z is the parameter of

is the bias vector estimated from each

the

6_

Ftcunp 2.4 Acoustic noise compensation in feature space. Here Ax is the HMM
model for clean speech signal x, F, is the feature transformation function and z
reDresents the bias 6 estimate to be removed from the feature.

2.4.2.2 A Model-Based Transformation or Adaptation

This technique takes into account the effects of background additive noises in

two ways. Firstly it adapts the statistical acoustic model to match the new acoustic

environment by estimating the noise distribution or through the estimation of the

Speeh in

I
Y

,il,h[bs.rt]i" Decoded
Text

t
Comlrensated features

t
Noisy Features

x = 4,(y)
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perturbations in the speech distributions caused by the noise [9], [141. Secondly, it

helps the acoustic model to discard the unreliable part of the feature vector. Horvever,

model compensation-based techniques are computationally expensive. Some of these

techniques need lots of transcribed data for the adaptation during the recognition

process.

In a model-based approach, the transformation function Ma(4v*) as shown in Fig.

2.5 translates to removinq an offset from the model mean and variance as follows:

l1v : trrx

) v : xx

rBp ,

*  Br , (2.11)

r,vhere B defines the set of biases that are shared across states, and model units.

Thus, the problem of robust speech recognition is reduced to that of estimating a set

of biases B.

The model-based adaptation technique to improve the robustness of speech reco-

gnizers is computationally very complex and expensive. The feature-based transfor-

mation technique is developed as an alternative to model-based adaptation techniques

in order to minimize the computational complexities by generating acoustic features

invariant to the noise.

When B is reduced to a global (i.e., one vector for each utterance), then both

M"(.) and it become equivalent [84]. However, several bias estimation techniques have

been developed for speech recognition. The prior requirement for the bias removal is to

get a good estimate of channel bias. The channel bias can be estimated by maximum
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Model adaptation

A"=Ms(A r )
Speech in
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FIcuRn 2.5 - Acoustic model adaptation in model domain. Here Ay is the transfor-
med HMM model for the observed noisy speech signal y, and A11 is the HMM model
for clean speech signal x.

a posteri,ori (MAP) adaptation that maximizes the transformation function as

(B,W) -  argI I Iqxp(B,  WlY.Lx) .
B . W ,  ' (2.1,2)

where trV is the word (or phone) sequence. This MAP adaptation holds B fixed and

solves for optimal W,Lhen holds trV fixed and solves for the optimal B. In this case,

finding tY is the standard recognition problem while finding B may be approached

via the EM algorithm. Accordingly, an iterative two-pass recognition is necessary

in which trZ is computed in the first pass, B is estimated, and then a second pass

recognition is performed to obtain an improved estimate of the word sequence given

B as shown in Fig. 2.3 [84].
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2.4.3 Joint Additive and Channel Distortions Compensation

For real-world highly non-stationary environments the distortion as described in

Eq. 2.1 becomes a joint function of both the additive background noise and channel

distortions. Current state-of-the-art techniques to remove distortions either for addi-

tive noise or for channel distortions in feature space or the model domain fail to work

for joint compensation of both the additive noise and channel distortions. Only a

few algorithms have been developed to compensate the noisy speech signal jointly for

both the additive noise and the channel distortions within certain context-dependent

constraints. In practice for on-line ASR, it is desirable to treat both additive and

convolutive bias simultaneously and jointly without any a pri,ori information, while

at the same time using only one set of clean speech models for real-world applications.

The concept of joint normalization of noise and filter effects was first introduced

in [11] for current HMM-based ASR in batch mode. The author developed two al-

gorithms: (i) a SNR-dependent cepstral normalization (SDCN) algorithm, and (zz)

a codeword-dependent cepstral normalization (CDCN) algorithm. Both algorithms

exhibit higher accuracy than the algorithms that perform independent compensation

for noise and channel distortions. However, the success of these algorithms depends

heavily on the a priori availability of the stereo database of the test environment to

train the correction vectors. Since in real world situations such a stereo database is not

available, the algorithms do not work for context-independent real-time environments.

In his Ph.D. work [63], Gales developed a model-based joint compensation tech-

nique called parallel model combination (PMC) as shown in Fig. 2.6. The PNIC tech-

nique adapts the speech model to the noisy environment in two steps. First, it esti-
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mates the noise statistics during a pause or silence of the speech signal and transforms

the clean HMMs from the cepstral domain to the DFT domain to adapt them for ad-

ditive noise. In a second step, it adapts the HMMs in the cepstral domain for channel

distortions based on a pri,ori information of the test conditions. However, PMC is

based on some assumptions that additive noise and channel distortions are stationary

and noise can be estimated during the silence or non-speech portion of the utterances,

which is, however, not possible in real cases at low SNR. Therefore, PMC works well

to improve the robustness of ASR only for context-dependent acoustic environments.

(u:,":) 
"AA36 

$ h,";)

h:l}}-h]'"])E"s-sp"-trail
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FIcuRp 2.6 - Parallel model combination for JAC compensation. The suffix c indi-
cates cepstral domain and / indicates log-spectral domain.

In [85], Afify developed a unified additive and channel bias compensation ap-

proach to improve the robustness of noisv Lombard speech based on expectation

maximization (EM) algorithms in conjunction with PMC. In this joint bias compen-

sation algorithm, linear spectral bias is estimated from the speech pauses and used

to compensate the clean speech models. Then the additive bias-compensated speech

signal is adapted in the cepstral domain. Holvever, this algorithm also assumes that
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acoustic environments are stationary, which is not true in practical cases. Moreover,

at low SNR, it is difficult to detect the pauses or non-speech periods of the speech

signal.

A unified approach to compensate for the additive noise and the Lombard effect

in adverse environments was developed in [86]. This joint approach consists of (z) a

spectral addition algorithm to compensate for the additive noise during the training

phase, and (ze) an HMM state labeling algorithm to compensate for the Lombard

effect. This approach demonstrated great improvement of ASR robustness in severe

adverse environments. The main advantage of this algorithm is that the compensa-

tion for noise and the Lombard effects was made in the training phase. Therefore,

it greatly reduced the computational complexity in the recognition phase. Holvever,

this algorithm is dependent on the a pri,ori, information of the acoustic environment,

which is not available for real world highly non-stationary acoustic environments.

In [87], Li et al. developed a joint additive noise and channel distortion com-

pensation (JAC) technique to compensate for both the additive noise and channel

distortions in a unified approach. In this JAC approach, the authors used a first-

order vector Taylor series approximation to adapt the HMNI model parameters in

a dynamic fashion. The adaptation process needs to estimate the model parameters

for adaptation from the non-speech periods (beginning and end) of the speech signal.

However, such a JAC approach is time consuming since it needs to adapt all the

HNIMs and is not suitable for real-time applications.

In [BB], the authors introduced a joint scheme to compensate the channel and noise

distortions in order to improve the robustness of ASR in adverse test conditions. In

their r,vork, the authors developed an adaptive Gaussian attenuation (AGA) algorithm
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to compensate the noisy speech signal for additive noise over a wide range of noise

conditions. A variance-scaling technique for cepstral mean normalization (CMNVS)

was used for feature normalization for acoustic distortions. A joint process of these tr,vo

algorithms improved the performance of ASR significantly However, these algorithms

were developed for stationary noise conditions with a mandatory requirement of 3

seconds of stationary noisy speech to obtain maximum compensation effects. Holvever,

this JAC in [BB] might be a milestone for the JAC algorithm for compensating for

highly non-stationary noise in real-time applications.

The authors in [89] proposed an algorithm for joint evaluation of multiple speech

patterns. In this work, the authors exploited human speech perception to develop

an iterative training of the HMMs using multiple speech patterns in bursty acoustic

conditions, called virtual pattern evaluation, based on a hybrid approach of dynamic

time warping (DTW) and the HMM framework. The proposed technique requires a

repetition of exactly the same spoken word whose confidence score is low, which is

very difficult to implement in real world applications like dialogue systems. A user

cannot be expected to repeat a sentence in exactly the same manner as in previous

utterances.

The authors in [84] proposed a codebook-based stochastic matching (CBSM) fra-

mework for integrated bias removal both at the feature level and at the model level.

In thisl,vork, the authors integrated a hierarchical signal bias removal technique with

their proposed CBSM algorithm and further extended it to account for n-best candi-

dates for HMM-based ASR. The CBSM technique is based on a maximum likelihood

(ENI) technique. It was tested for the cellular telephone network and got significant

improvement in recognition accuracy. Holvever, CBSM is based on the assumption
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that the utterance boundaries are known a pri,ori.

In [7] an on-line frame-synchronous Stochastic Matching framework was imple-

mented to compensate for abruptly varying noise. The basic idea of the proposed

method is to perform the compensation and the recognition steps at the same time.

The environment changes r,vere identified using monitoring algorithms. The Stochas-

tic Matching compensation method makes little a pri,ori, hypothesis on the acoustic

conditions. Holvever, it uses an affine compensation function for the test data, and

its parameter needs to be computed off-line.

In all these JAC approaches, the authors used context based information to com-

pensate for the background and channel distortions. For the JAC approach to r,vork

successfully on-line for practical applications, it should have the capability to si-

multaneously track and adapt to the surrounding unknor,vn and non-stationary test

environments. With the evolving of the soft computing-based intelligent computing

techniques, it is possible to incorporate current ASR system with sequential or on-line

feature compensation or model learning attributes [31]. However, the on-line learning

of HMNI models is computationally expensive. An on-line joint background additive

and channel distortions compensation (JAC) technique [11], [90] in feature space is

a convenient approach to avoid computationally expensive HMMs adaptation for ra-

pidly varying test environments.

2.4.4 Simultaneous Noise Ttacking and Estimation

Additive noise estimation algorithms are well known for their performance to

timate the noise spectrum. A proper estimate of the noise spectrum is crucial

es-

for
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the quality of the enhanced speech signal. Hor,vever, these speech enhancement algo-

rithms suffer from several weaknesses, which make them inappropriate to estimate a

noise spectrum under highly non-stationary acoustic environments. First, if the noise

estimate is low, annoying musical noise will be audible, and if the noise estimate is

too high, speech will be distorted, possibly resulting in loss of intelligibility. Secondly,

these algorithms use a voice activity detector (\AD) to estimate and update the noise

spectrum during non-speech periods of the observed noisy signal as the reference of

the source of noise and use this noise estimated during speech presence periods. These

approaches might work satisfactorily in stationary acoustic environments. However,

VAD does not work at low SNR since, in this case, it is difficult to find speech/non-

speech boundaries in noisy speech with very low SNR conditions [19].

In real-world acoustic environments, the spectral characteristics of the noise change

vary rapidly and frequently. Therefore, it is difficult to get a proper estimate of the

noise in a highly non-stationary environment by simply using the speech enhancement

algorithms [191. A more realistic approach is to estimate the noise spectrum conti-

nuously, even during speech activity. More precisely, the noise estimation algorithms

might be able to track the noise spectrum continuously, compensate noisy speech

frame-by-frame for estimated noise, and detect the abrupt changes in the noise spec-

trum. Recently, noise estimation and tracking have been getting more attention from

researchers in the field of speech enhancement. These ideas are getting momentum

for tracking suddenly changing non-stationarl' noises.

Several state-of-the-art noise estimation algorithms have been reported in the

speech processing literature. These algorithms are known as single channel noise tra-

cking algorithms, which estimate the noise spectrum continuously frame-by-frame
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even during speech-present periods. These noise tracking algorithms can be classified

into two main categories [19]:

- Minimal-Tlacking Algorithms: Minimal-tracking algorithms are based on

the assumption that the por,ver of the noisy speech signal in individual frequency

bands often decays to the power level of the noise, even during speech activity.

Hence, by tracking the minimum of the noisy speech power in each frequency

band, it is possible to get a rough estimate of the noise spectrum in that band.

Ttvo different approaches have evolved for tracking the minimum of noise level

in each frequency band. The first algorithm is known as a minimum statistics

algorithm that tracks the minimum of the noisy speech po'wer spectrum within

a finite windor,v. The second algorithm tracks the minimum of the noisy speech

spectrum continuously without requiring a window [91], [4], [92].

- Time-Recursive Averaging Algorithms: The time-recursive averaging al-

gorithms are based on the fact that the noise spectrum does not affect the

spectrum of a speech signal uniformly. Some regions of the speech spectrum

are affected by noise more than others. Each spectral component will typi-

cally have a different effective SNR. Therefore, it is possible to estimate and

update the noise spectrum of a particular frequency band that has extremely

low SNR, leading to determining the probability of speech being present at

a particular frequency band. These observations led to the development of a

recursive-averaging of past noise estimates and the present noisy speech spec-

trum. The weights change adaptively depending either on the effective SNR of

each frequency bin or on the speech-presence probability [19], [93], [921.

Several time-recursive averaging algorithms have been reported in the speech pro-



cessing literature, such as:

- SNR-dependent recursive averaging,

- weighted spectral averaging, and

- recursive averaging algorithms based on signal-presence probability.

The recursive averaging algorithms based on signal-presence probabilitv have se-

veral forms of implementation such as:

- Minima-controlled recursive averaging (MCRA) [4],

- Improved minima-controlled recursive averaging (IMCRA) [92],

- MCRA-2 algorithm [94], and

- enhanced MCRA algorithm [95].

2.4.4.1 MCRA for Single Channel Non-Stationary Noise Tlacking

Recently, minimum statistics-based single-channel noise-tracking algorithms, e.9.7

MCRA [4], have been getting the attention of speech researchers and engineers in

tracking and estimating non-stationary noises. These algorithms assume that the

power of the noisy speech signal in individual frequency bands often decays to the

power level of the noise, even during speech activity. Hence, by tracking the minimum

of the noisy speech power in each frequency band, it is possible to get a rough estimate

of the noise spectrum in that band [4].

MCRA algorithms track the minimum of the noisy speech power spectrum within

a finite search window. They do not need any voice activity detector (VAD) for pause

or silence detection and can even track the noise during the active speech periods [191.

These features make the MCRA algorithm an ideal candidate for JAC-based on-line

ASR for real-world applications.
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In NICRA, once the noise estimate is obtained for each frame of the speech signal,

a standard speech subtraction-based enhancement technique can be used to denoise

the speech signal, as sho'wn in Fig. 2.7. MCRA-based noise tracking algorithms do not

need any prior noise information and \AD for noise psd estimates [19]. These features

make NICRA-based noise tracking techniques suitable for on-line single channel JAC

distortion compensation for real-time ASR.

Speech Frames

Denoised
Speech
Signal

Ftcunp 2.7 Non-stationary noise tracking, estimation, and subtraction. For the
MCRA noise tracking algorithm, the power suffix p is set to 2.

The mathematical formulation of the MCRA-based non-stationary noise tracking

algorithms can be described briefly as follows:

The observed speech signal as mentioned in Eq. 2.5 is divided into overlapping

frames by applying the Hamming window function Trr(n) and then each windowed and

overlapped frame is transformed in the frequency domain by computing the FFT as

follows:

#*Jil[ il

N- -1

Y(m.k) :  t  s (^+ mM)w( \ )e- i f f i x * .
,\:0

where Y(m,k) is the STFT of the observed noisy speech signal

frame index, M is the frame update step in time, and k{k :

(2 .13)

y(n) , m is the time

0 , . . . ,  N .  -  1 )  i s  t he
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frequency bin index, and l/, is the size of the analysis window ur(n).

Since speech and noise are assumed to be uncorrelated, it is possible to estimate

the noise power spectrum by tracking the minimum of the periodogram P(m, k) of the

noisy speech signal Y(m,k) over a fixed window long enough to bridge the broadest

peak in the speech signal [96], [94]. The periodogram P(m,k) varies abruptly over

time in rapidly changing acoustic environments. Under this condition, it is preferable

to use a first-order recursive averaging of the periodogram P(m,k) of Y(m,k) [19] as

follows:

P(m,k )  :  a (Tn ,k )P (m -  1 ,  k )  +  (1  -  a (m, , k ) ) lY (m,k )12 , (2.14)

r,vhere a(m,k) is a smoothing parameter. a(m,k) is time-frequency dependent to

avoid over-smoothing problems. This smoothing factor is calculated based on the

signal presence probability in each frequency bin separately. This probability can be

calculated using the ratio of the noisy speech po\,ver spectrum P(m,k) to its Iocal

minimum P*m(m,k) calculated over a finite'window [4], [191.

In MCRA, the noise power spectral density (psd) estimate based on the signal

presence probabilitv is derived using the following two hypotheses:

Ho(^, k) :  Y (m, k): N (m, k),

Ht(m, k) :  Y (m, k):X (m, k) + N (m, k), (2 .15)

where X(*,k) and N(^,k) are the STFT of the clean speech and noise respectively,

Ho(m, k) and Ht(m, k) represent the absence or presence of speech hypotheses res-



pectively. The noise variance for the kth band is defined as o2,(m,k): Elll,l(m,k)121.

The noise psd estimate is updated based on the following hypotheses:

Ho:  62, (m,k) :a ,61(m -  I ,k)  + (1 -  a , ) lY(m,k)12,

Hr :  62 r (m, f i :A2 r (m -  7 , k ) ,

r,vhere CI, (0 < ao < 1) is a smoothing parameter, and

for  Eq.  2 . I8 .  I (m,k ) : t  i f  S , (m,k)  >  5  and l (m,k )

(2.16)

(2 .18)

I(m,k) is an indicator function

: 0 otherwise. Here Sr(m,k) :

where a, (0 < an I I) is a smoothing parameter. o2,(m,k) denotes the variance of

the noise in the kth frequency bin [4].

In Eq. 2.L6,the noise estimate is updated whenever speech is absent, otherr,vise it

is kept constant. The estimate of the noise PSD can be estimated in the mean-square

sense as follows:

6" , ( * , k ) :  dn (m,k )6 ' z " (m- r , k )  +  [ (1  -  dn (m,k ) ) ] l y (m,k )12 , (2.17)

'where dn(m,k) : tn + (1 - a,)p(rn,k) is a time-varying smoothing parameter and

it varies within the range an I dn(m, k) < 1.

Accordingly, the noise spectrum can be estimated by averaging past spectral po-

lver values, using a smoothing parameter that is adjusted by the signal presence

probability as follows:

p(* ,k)  :  apf (m -  1 ,  k)  + (1 -  a) I (m,k) ,
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P (m, k) I P*m(m, k) is the ratio of the local energy of the noisy speech and its derived

minimum over a search window of length tr . d is a threshold for speech presence

determined as follows:

P( rn ,k )  :  a "P (m -  7 , k )  +  (1  -  a " ) lY (m,k )12 ,  (2 .19 )

where a" (0 < a" < 1) is a smoothing parameter. P^an(m,k) is defined as follows:

P^m(m,k)  :  min{P( i ,k) ) ;  for  m -  2L < j  <  m,

which is calculated [95] as

(2.20)

P(0 ,k ) t f  m : 0 ,

P * i n ( m , k ) : min{P^ in (m -  1 ,k ) ,  P(m,k) }  i f  m%L 10,

mtn{P1^o(m - 7,k),  P(m,k)} otherwise,

12.21)

P(0 ,k ) i f  m :0 ,

Pt^e(m,k) : min{ f l^o(m -  I ,k) ,  P(m,k)}  i f  m%L 10, (2.22)

P(m,k ) otherwise,

where % sign is used to indicate modulus after division [95].

The parameter L determines the resolution of the local minima search. The local

minimum is based on a 'window of at least ,L frames, but not more than 2-L frames.

The length of the r,vindow controls the bias upwards during continuous speech and

the bias downwards when the noise level increases [96], [41.
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FlcuRn 2.8 - The delay in MCRA to update the noise estimate in response to the
rapid changes in acoustic environments at "f: 1500 Hz. The test speech signal was
sampled at 8 kHz and it is degraded by babble noise and subway noise at 5 dB SNR.
A frame duration of 25 millisecond (ms) with 60% overlapped is used in this test
example.

MCRA-based algorithms cannot update the noise power spectral density (PSD)

estimate right ar,vay for the drastic changes in spectral properties of the non-stationary

noises as shown in Fig. 2.8. The estimated noise PSD lags behind the true noise PSD

by two times the length L of the minimum search window in worst case scenarios, e.g.,

from high SNR to very low SNR conditions. It is a serious shortcoming of MCRA-

based algorithms for tracking rapidly changing noises in real world acoustic regimes.

Several derivatives of MCRA have been developed to reduce the delay in updating

rapid variation in acoustic

- Noise Power Spectrum
rr-' Estimated noise using MCRA
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the noise PSD after sudden changes in noise [92], [94], [95]. However, these algorithms

fail to sufficiently reduce the adaptation delay.

2.4.4.2 Speech Enhancement

The noise over a frame duration can be assumed to be stationary or quasi-

stationary. An estimate of the noise spectrum for each frame using NICRA noise

tracking algorithms and its subtraction from the respective frame as shown in Fig. 2.7

will be an alternative implementation of the classical spectral subtraction algorithm

formulated. The implementation of this spectral subtraction algorithm is formulated

as follows:

1*1m,tt112
lY ( * ,k ) l '  -  a . "1N1m,k)12 ,  i f  lY (^ ,k ) l '  >  (a , "  *  P" f ) lN(m,k)12

l3"flN(n,k)12, otherr,vise,

(2.23)

where ao" is a oversubtraction factor (ro" 2 1), and 0"1(0 < P < 1) is the spectral

floor parameter.

This spectral subtraction algorithm is known as an oversubtraction algorithm [97].

The advantage of this algorithm is that it removes an overestimate of the noise power

spectrum r,vhile preventing the resultant spectral components from going below a pre-

set minimum value called the spectral floor. The two parameters ao" and Fsy control,

with great flexibility, the overall performance of this oversubtraction algorithm. The

spectral floor parameter B"y controls the amount of the remaining residual noise and

the amount of perceived musical noise. If Bs is too large, residual noise will be audible

-I-I
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but the musical noise will not be perceivable. On the other hand, 1f 0"f is too small,

the musical noise .,vill be annoving but the residual noise will be greatly reduced.

The oversubtraction factor ao, controls the speech spectral distortion in Eq. 2.23.For

very large ao", the resulting speech spectrum in Eq. 2.23 will be distorted to a great

extent to the point r,vhere the intelligibility suffers greatly. For best noise elimination

with the least amount of speech distortion, i.e., minimum musical noise, ao, should

be small for speech frames with high SNR, and vice versa. Based on this observation,

the authors in [97] made oo" a function of frame SNR as follo.ws:

as: ao - fisl,{R* -\dB < ,St/.R < 20 dB , (2.24)

where a, is the oversubtraction factor and it is a function of the SNR for each frame,

a6 is the desired value of ao, for the rnth frame at 0 dB SNR, and SNR is the

short-time SNR estimated for the nzth frame.

In the noise tracking algorithm, it is not possible to get the clean speech signal for

the measurement of the SNR. Therefore, an a posteri,ori, estimate of the SNR is to be

computed from the ratio of the noisy speech power to the estimated noise power. A

plot of o as a function of. a posteriorz SNR is shown in Fig. 2.9.

2.4.5 Discussion

Though speech researchers have addressed the robustness problem and developed

many cutting-edge algorithms, as we salv in sections 2.2 and 2.3 to improve the

performance degradation of ASR, they are still far behind a human performance.

These algorithms work well within controlled environments, but seldom work well
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FrcuRp 2.9 - Plot of the oversubtraction factor oe as a function of the SNR [191.
The factor a in this figure represents a, in Eq. 2.24.

in unkno'wn environments. For example, in impulsive environments, like for portable

devices such as cell phones, where usually no information exists about the occurring

time, the level and the nature of the sudden noise available, these algorithms fail to

work. In the following section, we briefly present our review results on nerv evolving

techniques that eventually r,vill lead to design self-adaptable ASR.

2.5 Environment-Aware ASR

Recently, speech researchers and engineers are getting more interested about how

to address the issue of noise robust environment-aware ASR. Speech researchers are

now focusing on a common framework to address the problems of environment alva-

reness of the ASR. Some important approaches towards developing a general ar-

chitecture of combating the robustness problems of ASR in adverse environmental
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conditions have .just started to appear in the ASR literature. However, research in

this field is very ne'w and little information is available in the literature. Some of the

approaches are discussed below.

In a recent article [12], the authors proposed a general architecture called "envi-

ronment sniffing" to detect, classify, and track acoustic environmental conditions, as

shown in Fig. 2.10. Here the environmental conditions include speaker, noise, channel,

and signals. The goal of their framer,vork is to seek out detailed information about

the environmental characteristics instead of just detecting the environmental changes.

This is the first time that an idea of the architecture of environment sniffing systems

was published in the literature. The authors claimed that this sniffing system could

be used for many applications, such as ASR, speech coding, speaker ID, speech en-

hancement, language ID, noise transcription etc. The authors tested this architecture

for ASR under a wide range of variations of car noise and found improved accuracy

over conventional ASR svstems.

, . , " " " " " " " " " " " " " " ' . . 1
:"ASR i

*hhfhll'iu"
Speech

,.....:.......
i . Single Microphone I
i . Microphone Array i
i . n|ulti Sensor Input i
i . . - . . . . . . . . . . . . . . . .

. . . . . . .  i  
.SpeakerID

-'i 
. Speech Enhancement

i . Language ID

i . Noise Transcription

Could contain:

FIcunp 2.10 Environment sniffing architecture in [12]. Here g(t) is the noisy input
analog speech signal, and g(n) is the digitized noisy speech signal.

In [12], the authors focused on mainly three areas of current state-of-the-art ASR

Data
Capture
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to develop an environment sniffing system that can successfully monitor the surroun-

ding acoustic environment and adapt the model or parameters: (i) Input sensor -

single microphone, or multiple microphones, (ii) Extraction of acoustic environment

information as a function of the input signal, and (iii) Adaptation of the acoustic

model and/or usage of best features based on environment information. However, the

main complexities of this sniffing system lie in the area of extracting environment

information and model adaptation and/or best feature selection. Environment infor-

mation may consist of noise information, speaker identity and speaking style, channel

information etc. For model adaption, they suggested to use one of several adaptation

schemes, for example, Jacobian adaptation [98], maximum likelihood linear regression

(MLLR) [67], parallel model combination [90] etc.

The general framework of sniffing the environmental conditions and its successful

application for in-vehicle dialog systems [12] created new changes in the direction of

research in the field of environment-aware ASR systems. Nevertheless, while such an

environment sniffing system could provide significant knowledge to help direct and

improve the subsequent speech processing tasks and thereby increase robust speech

system performance, it is very complicated and requires huge noise databases of long

hours including all possible noise occurrences. It also works off-line and still poses

some limitations to mimic human speech recognition characteristics under adverse

environmental conditions. It does not include the simultaneous recognition and mo-

del adaptation process, a real-time process that human beings try to do in adverse

acoustical conditions. Model adaptation techniques such as MLLR, PNIC, Jacobian

etc., all work off-line and they require a section of data of the nelv environment, which

is difficult to obtain during an on-line model adaptation process.
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2.6 Summarv

In this chapter, we give a comprehensive revie'w of the prominent noise robustness

techniques of human speech recognition (HSR) and automatic speech recognition

(ASR) systems. We also discuss the basic model of speech communication, which is

used as the building block of the acoustic model of the current state of ASR. The

cutting-edge technologies that have been developed to compensate for both additive

and channel distortions in order to improve the robustness of speech recognition

systems in noisy environments are also briefly discussed in this chapter.

In order to develop new cutting-edge technologies to solve the non-stationarity

problem for ASR in real-world environments, the contribution of this chapter can be

summarized as follows:

- facilitating the understanding of past and present trends of speech technology

and underlying constraints in solving noise robustness of ASR;

- helping to understand the basic acoustic model of ASR and technologies to

improve the noise robustness of ASR in noisy conditions;

pointing to the comparative features of different methods, their merits and

demerits to improve the noise robustness of speech recognition;

finally, facilitating the understanding of the basic idea of MCRA-based single

channel noise tracking and compensation techniques to improve the noise ro-

bustness of ASR in noisy conditions.

We present the contribution of this thesis in the next two chapters. The first chap-

ter is devoted tor,vard improving the ASR performance in on-line condition using a

soft Bayesian on-line spectral inference technique in a non-stationary acoustic speech
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environment. In the second chapter, we present the bio-inspired evolutionary PSO-

based soft adaptive filtering technique to improve the robustness of on-line ASR in

previously unseen non-stationary noises. This is follor,ved by the chapter containing

the experimental setup, results, and performance evaluation of the contributed algo-

rithms.
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Chapter 3

Proposition 1: Bayesian On-Line

Spectral Inference A Soft

Computing Approach to Improve the

Robustness of On-Line ASR

3.1 Introduction

lVe present the review results on cutting-edge techniques that are currently used

for robust automatic speech recognition in the previous chapter (Chapter 2). Though

these techniques r,vork well to improve the noise robustness of ASR in a context de-

pendent environment, they lag far behind the human performance for self-adaptability

or environment awareness in unknown test conditions. Speech researchers and scien-

tists are trying to develop nerv innovative techniques to add human like self-adaptability
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features to current ASR. Currently, they are trying to learn from nature and to apply

this knowledge to current ASR systems. This leads to the development of a new kind

of approach called soft computing technique.

Bio-inspired soft computing (SC) is a set of methodologies that combines different

well-known artificial intelligent methods that work synergistically and provides, in

one form or another, flexible information processing capability for handling real life

ambiguous situations [29]. The Bayesian belief network or inference (BI) technique

is one of the constituent technologies of the SC methods. Bayesian inference pro-

vides probabilistic reasoning for a learning mechanism to update a system affected

by randomness or probabilistic uncertainty.

In recent years SC methods for treating uncertainties and variabilities have rea-

ched the speech processing and speech recognition fields. Since human speech is a

biological signal and soft computing techniques are generally inspired by biologi-

cal processes, soft computing techniques are better suited for tackling many of the

challenging problems of speech processing and speech recognition [24]. Soft compu-

ting techniques have the potential to extract information from time-varying complex

acoustic environments and can be used in improving the noise robustness of current

ASR in the real-life scenarios. Bayesian inference of the spectral variation over time

could be used as a soft learning technique for ASR to compensate for non-stationary

noises in feature space.

Motivated by the ability of the soft computing techniques over the conventional

hard techniques to handle complex natural processes, we develop a novel soft model

to track and compensate the previously unseen non-stationarity of the acoustic envi-

ronments to improve the noise robustness of ASR in on-line mode. The proposed soft
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model is based on Bayesian on-line belief or inference for simultaneous recognition and

acoustic model compensation in feature space in order to adapt ASR dynamically to

new rapidly varying acoustic conditions. This approach leads to the development of a

new framework of on-line ASR to be noise robust in real-r,vorld acoustic environments.

In this chapter, the proposed framework of the soft computing model to improve

the noise robustness of ASR in on-line condition is presented as follows. An overview

of a soft computing model using Bayesian on-line belief based on the mathematical

formulation of a Gaussian process in Appendix C is presented in section 3.2. Section

3.3 describes the proposed architecture of the Bayesian on-line spectral change point

detection (BOSCPD) algorithm. The soft BOSCPD technique for tracking and com-

pensating background additive non-stationary noises is described in section 3.4. We

describe the soft JAC (SJAC) technique for on-line ASR in section 3.5. Section 3.6

briefly describes about the simulation setups. Finally, rve summarize the chapter in

section 3.7.

3.2 Soft-Computing: Bayesian Approach

Real world acoustic environments are very complex in nature and vary rapidly

over time. For current ASR, off-line learning limits its ability to accurately capture

the dynamics of acoustic environments. It can only model the events that were en-

countered during the learning process. Therefore, current ASR should be allowed to

track the changes over time and to adapt to these previously unseen conditions. The

MCRA algorithm is a good candidate to incorporate into the front-end of such a smart

self-adaptable ASR. However, the main disadvantage of MCRA to perform this job

72



is that it fails to detect the abrupt changes when noise floor jumps from low to high

values [191. MCRA can detect changes with large delay. For real-time ASR, we need to

detect the changes in environment with high precision, i.e., with minimum detection

delay time. Under theses circumstances, an on-line Bayesian prediction model that

learns the acoustic environments with high uncertainty and fuzziness could be used

to update the ASR to new conditions with time [31].

Bayesian inference (Bl)-based probabilistic modeling has long been used off-line

(batch mode) for analyzing and tracking high non-stationarity and environmental

change detection in systems [201. With the advancement of computing power, the

Bayesian inference-based soft computing modeling technique finds its application for

tracking unknown non-stationary systems having a high degree of uncertainties.

3.2.L Bayesian Off-Line Inference

Bayesian inference (BI) or belief has long been used for off-line (batch mode)

change point detection in time series. The Bayesian change point detection (CPD)

technique uses a change point model of the parameters and integrates out the un-

certainty in the parameters rather than using a point estimate. Bayesian approaches

to CPD have been retrospective, r,vhere the central aim is to infer change point loca-

tions in batch mode [20], [99], [231. These methods work fine for off-line time-series

data sets. They are not designed for on-line prediction systems that need to adapt

predictions in light of incoming parameter changes.

Recently, an application of BI, called Bayesian on-line change point detection

(BOCPD), in real-r,vord time series data sets, e.g., finance, oil drill ing, robotics, and
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satellite tracking, has been reported in the literature [20], [23]. One appealing feature

of BOCPD is that it allows one to express uncertainty about the number and location

of change points. For a noisy speech signal, BOCPD can be used as a frame-based

causal predictive filter, i.e., can generate an accurate predictive distribution of the

next unseen spectral data of the speech frame, given only the spectral properties of

the already observed speech frames.

The inability of MCRA-based noise tracking algorithms to react right away to

abrupt changes in non-stationary noises has a detrimental impact on their perfor-

mances. Bayesian on-line inference for change point detection (BOCPD) can be used

to reduce this performance degradation by recognizing speech spectral properties'

change events and adapting the MCRA model appropriately.

3.2.2 Bayesian On-Line Inference for CPD

The Bayesian on-line change point detection (BOCPD) algorithm mainly focuses

on the time since the last change point, called the run length r . It uses an underlying

predictive model (UPM) of the time series that changes at each change point. It also

uses a hazard function H7(r101) that describes hor.v likely a change point is given the

run length r. The UPNI is used to compute the posterior predictive p(rlr6-,1,0,)

for any r  e 17,. . . , ( t  -  1)] ,  at  t ime I  .  The parameters 0 :  {0^,97,} form the set of

hyper-parameters for the model, and are assumed to be fixed and knor,vn.

The posterior run length p(rtlrr,t) at time f is estimated sequentially to predict

the on-line changes by marginalizing the run length variable as follows:
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lvhere r|" refers to the last 11 observations of r, and p(r6a1lr)'/) is computed using

bhe UPM. The run length posterior can be found by normalizing the joint likelihood:

\ -  r  t  ( r \ t  r:  
)  P\r t+t l :E i  )P\r1 l 'x11) ,
rt

-  t - -  t - -  ,  P ( r , . r t , , )
P\rtVt,)  :  

,e?,rrn
rt

J{ :P(r1,  r1.7)

: Ip(" r ,  r t ; , r t , t ) )
rt- 1

:  Ip("r1" t-) plr l lr*r,r l ' \  p(rt-r,rt1-r).
*-*,ffi8Y

The joint likelihood can be updated on-line using a recursive message passing scheme

(3.1)

(3 .2)

(3.3)

This defines a forward message passing scheme to recursively calculate n from

1-1. The conditional can be restated in terms of messages as p(r1lrl:r) x n. All

the distributions mentioned so far are implicitly conditioned on the set of hyper-

parameters 0 : {0^, 0h} 1231.
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3.3 Bayesian On-Line Spectral Change Point Detec-

t ion (BOSCPD)

In real-world acoustic environments, both the background additive noise and the

channel distortions are highly non-stationary in nature and are not known a priori,.

The non-stationarity in the acoustic conditions causes a rapid change in either mean

or variance or both mean and variance of the noise por,ver spectrum density (psd)

with time. Under these circumstances, the actual model of the speech signal is highly

non-linear and non-Gaussian, as sho'wn in Eq. A.12.

The changes in real-world acoustic conditions can easily be monitored by tracking

the changes in the statistical properties of the psd for each frame of the observed

speech signal. In this dissertation, we apply the UPM model to detect rapid changes

in the noise floor by tracking and monitoring the second order statistic of the noise psd

for each noisy speech frame. The UPNI is modeled with an independent and identically

distributed (iid) Gaussian observation with changing mean and precision of the kth

DFT bin. Under this condition, the posterior distribution p(p, \) is a normal-gamma

or Gaussian-gamma distribution, as is shorvn in Eq. C.18. If precision is replaced

with the corresponding variance, the distribution is called a normal-inverse gamma

or Gaussian-inverse gamma distribution. Nor,v the UPM for the kth frequency bin of

lY(m,k)l can be set to the predictive distribution (e.g., for a Student-t predictive)

and it can be implemented using Eq. C.18 as follows:

lY(* ,k) l  - ;V(p,  ) - ' ) , (3.4)
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where the mean p is a Gaussian distribution as follows

p - Af (ro, (lo)-') ,

rc is a model hyperparameter, and the precision

(3 .5)

) is a gamma distribution as follor,vs

) - Gamm (o.r,0.r) .

In terms of the variance, Eq. 3.5 and Eq. 3.6 can be written as

F -A [ (po ,o l n ) ,

o-2 - Gamm (*.,,0.,) ,

(3 .6)

(3.7)

(3.8)

where a" is the scale parameter and B, is the shape parameter of the gamma dis-

tribution. The standard conjugate prior of a normal-inverse-gamma distribution for

variance is computationally advantageous. Here, the model parameters for the change

point detection of the kth bin of the mth frame arc 0* e {po, a1,01,K}.

In this proposed noise psd tracking model, called Bayesian on-line spectral change

detection (BOSCPD), we have replaced the product partition model used for trme

series with speech frames based on the assumption that the arrival of each frame is

independent of other frames. A Hamming window is used for windowing the speech

signal and the temporal correlation effects between overlapped adjacent speech frames

are neglected in order to make the UPM model simple. A constant hazard function,
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H7,(rl0) t: ?h.on", similar to [20], is used in this paper. A constant hazard function

means p(rt:}lrt-t,97,) is independent of ry-1and gives rise to geometric inter-arrival

times for change points. Under these conditions, the model hyper-parameters are:

0 :  { 0^ ,?h "on " ton t } . (3.e)

The detailed description of these model hyper-parameters for the BOCPD-based

model can be found in [23] and [20].

3.4 Soft BOSCPD for Additive Noise Compensation

For MCRA-based noise tracking and estimation, any delay in updating noise es-

timation right after rapid changes in the acoustic conditions may seriously affect the

speech denoising performance, especially in transitional regions. In this dissertation,

the window update mechanism in MCRA is made as a function of the output results

of the proposed BOSCPD algorithm. lVhen a change happens, the search window is

reset to new conditions.

The result of the BOSCPD algorithm for each noisy speech frame is a decision

whether there is an abrupt change in the noise psd or not. If there is a change point

detected in a noisy speech frame, the algorithm raises a flag and the noise tracking

algorithm uses this decision to update its noise estimation process as follows:

f  (C^ , t ) :
lf change poi,nt i,s detected,

otherr,vise,
(3 .10)

{ ;
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where f (C^,r) is a function of change point C detected by the BOSCPD algorithm for

the kth frequency bin of the rnth frame of the noisy speech signal. Finally, the noise

estimation in Eqs. 2.27 and2.22 can be updated in response to abrupt environmental

change detection as shor,vn in Algorithm 3.1.

Algorithm 3.1 Updating noise estimation based on the proposed BOSCPD algo-
rithm

if mod(mlL) : 0 ll f (C^,*) :: 1 then
P*m(rn, k) <- min {Pr^o1* - I , k) , P (m, k)} ;
Prrrrp(m,k) <- P(m,k);

else
P^n(rn, k) <- min {P*m(m - 7,k), P(m,k)};
Pt*o(m, k) +- min {Pt^r(^ - I ,k), P(m,k)} ;

end if

For on-line noise tracking and adaptation systems in an environment that may

have abruptly changed, the tracking algorithm must be able to track noise based

on past speech frames. The proposed BOSCPD for rapid adaptation is based on

BOCPD and NIRCA. It is able to detect abrupt spectral change points and adapt

to the rapidly changing highly non-stationary acoustic environments. The proposed

algorithm is summarized in Algorithm 3.2.

The challenging problem for the MCRA noise tracking algorithm is to update its

minima search window as soon as the changes occur in the acoustic condition during

its highly non-stationary changing time. BOSCPD performs the on-line rapid change

detection and adapts the minima search window of the MCRA algorithm, which leads

to minimum delay in updating the minima search window.

The target of the proposed BOSCPD noise tracking algorithm is to minimize

speech distortion in the spectral domain to improve the SNR. For non-stationary
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Algorithm 3.2 Proposed BOSCPD algorithm for
rapid adaptation in unknown test conditions.

non-stationary noise tracking and

t :  In i t ia l i za t ion
Set: F6u7y", <- 1 on-coming speech frame buffer is full
Set:  P(rs:0) <- 1 for in i t ia l  run length rs,  or P(rs:0) <- S1";  tor run length r

Set, zfO) t- I/p,riart xfo) <- Xpri,urt.\ <- 250 constant Hazard function;
Set: CPD <- false initial change point state;
Set: cpFlag <- 0 for initial CPD;
Set: ,R- t 0 holds maximum run length information;
Set: Y- +- 0 initial magnitude value for kth DFT bin of the m speech frame ;
while Fuuf f., is not empty do

2: DFT Coeff ic ient Tracking
Y^ ? lY(*,k)l; l lMagnitude for kth DFT bin of the rnth speech frame
3: Evaluat ion of the Predict ive Probabi l i ty

n*) +- P(Y*lr*) , Xf,\; I lPredictive probability using student l-distribution
4: Evaluat ion of Hazard Funct ion
H* ? Hn(r*); I fHazafi function
5: Calculate the Growth probabi l i t ies

P(r^:  rm-t*\ ,Yt,*)  1- P(r^-1,Yt,*- t)n| tr)(r  -  H^);  f  f  Growth probabi l i t ies
6: Calculate the change point probabi l i t ies

P(r* : O,Yr,^) <- | P(r^-r,Yt,^-t)7rH'(t - H^); I lChange point probabilities

7: Calculate the evidence
P(Yr,^) +- | P(r*,Yr,^) ; f f Evidence

B: Determi?" tn" run length distribution
P(r- lY,-)  <- P(r- ,Yr,*) f  P(Yr,^);  l l  Run length distr ibut ion
9: Update suff ic ient stat ist ics.  Poster ior updates depend on UPM
,S\, + I/prior t xll,\, ? Xe,lo,lf f Stfficient statistics

,!i#' - u; + r; x*I? +- x:^ + p(Y*) ;
10:  Per fo rm pred ic t ion

P(Y*+rlY,^) : D P(Y^*rlYli) ,r^)P(r^lY,*); //Prediction
Tnt

11: Update run length
R*? R*( r^ ) ;  l l Lpdate  run length
12: Change point detect ion
Search for change point CPD in R*; llChange point detection (CPD)
13:  Update  func t ion  /  in  Eq.  3 .10
14: Run MCRA algorithm
15: Update noise est imate using Algori thm 3.1

end while
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noise, the frame-wise denoising process r.vill increase the segmental SNR of the inco-

ming noisy signal.

3.5 Soft JAC for On-Line ASR

For highly non-stationary acoustic environments, the long-term averaged channel

bias is not constant. Instead, it is essential to estimate the channel bias for each

speech frame over which the channel bias can be considered as stationary or quasi-

stationary. A first-order recursive filter with a time smoothing constant can be used

to estimate the channel bias by exploiting the correlation with the previous frame.

Such an approach is very suitable for real-time applications where the end of a speech

utterance is not known a pri,ori, and the background environment is highly changing

in nature.

3.5.1 Single Channel Soft JAC Model

The background additive noise in a stationary environment shifts the average

speech distribution. It tends to mask the speech distribution with low amplitude.

The noise masking does not affect the portion of the speech signal with high ampli-

tude energy [13]. However, the overall effect of the additive noise is the elimination of

the spectral valleys, which asymmetrically decreases the dynamic range of the power

or magnitude channel values. The decrease in the dynamic variation is propagated

later to the cepstral features and differential features (delta and delta-delta cepstral

features), which are linear combinations of the log power or magnitude channel va-

lues. The average of the cepstral features is also shifted. Some of the asymmetrical
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masking effects were also translated in the cepstral domain. For example, the shape

of cepstral distributions for the coefficients C0 and C1 becomes very asymmetric in

noisy conditions [88].

Simultaneous noise tracking and estimation for each frame with the classical noise

subtraction technique in Eq. 2.23, as shown in Fig. 2.7, r,vould reduce the effects of the

spectral valley distortions, which in turn increases the dynamic range of the power

or magnitude channel values. Then a frame recursive dynamic bias estimation and

removal normalizes each frame for channel variations.

In real-r,vorld applications, the ASR decodes a stream of frames of live spoken ut-

terances. The decoder does not kno'w the sentence boundaries of the incoming stream

of speech signals in advance. Therefore, the ASR decoder works on each incoming

stream frame-by-frame and estimates the best confidence score for each frame. A

frame adaptive bias-removal technique could be used to minimize the distortion of

each frame by subtracting the mean of the features in the cepstral domain. For frame-

recursive dynamic bias removal in the cepstral domain, Eq. 2.8 can be written using

a first-order recursive filter as

* m :  Y m  - b m - t ,

6^: ,u6*-r t  (1 - oa)y*,

(3 .11)

(3.12)

where y- is the observation cepstrum for current frame, x- is the bias compensated

cepstral feature, 6- is the bias estimate in the cepstral domain from the current

observation using a first-order recursive filter, and a6 is a time smoothing constant.

82



ob provides a smooth estimation of the bias from frame to frame and its value is

o.ees [21.
To prevent x- being estimated from a small amount of data, it can be updated

after a number of successive frames. An initial value for Xp:s c&n be obtained from

the global mean value of the trained HMMs. The schematic diagram of the proposed

frame-recursive dynamic joint bias compensation for on-line ASR is shown in Fig. 3.1

and Fig. 3.2.

v(t) y(m)

Speech Features
in Linear

Spectral Domain

Channel Bias
Compensation in
Cepstral Domain

-,'-,*EHH.
i Environmental :
: r'r.--^.'r--^r.i-^ :i Change Tracking i
i and Detection I
t ,  , , , , , , ,  t , . . .  r . . , ,  t  r , , . .  f

FlcuRn 3.1 - Schematic diagram showing the soft architecture of the proposed on-line
automatic speech recognition (ASR).The dotted and gray shaded blocks are contribu-
ted blocks for the on-line automatic speech recognition in real-life ambiguous unknown
acoustic test conditions. Gray shaded region represents proposed JAC compensation.

3.5.2 Soft Channel Distortions Compensation

A first-order recursive filter with a weighted time smoothing parameter for the

channel bias compensation is suitable to account for the rapid changes in the acoustic

environment due to high non-stationarity in the background test conditions. Mathe-

matically, this approach can be described as follor,vs:

For the feature-based transformation described in Section 2.4.2.I, the estimated

speech frame is
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Figure 3.2 � Frame adaptive dynamic joint bias compensation (JAC) technique with
time smoothing parameter αb = 0.995 [2]. NTE stands for noise tracking, estimation
and subtraction in a linear spectral domain. CD stands for change detection. Y is
the observed speech frame in spectral domain. Z is the additive noise compensated
features in linear spectral domain. X̄ is the channel bias compensated features based
on Eq. (3.11) in the cepstral domain. bm is the channel bias estimated for the mth
frame in a frame-recursive manner and its estimation is a function of change detection
CD. In the decoding stage, the decoder estimates the bias, which will be used for the
next frame, and decodes the best hypothesis for each frame.

xm = fυ(ym) ≈ ỹm − b̄m, (3.13)

where ỹm is the additive noise compensated observed speech signal for the mth frame,

and b̄m is the estimated bias for the current frame in the cepstral domain.

The bias b̄m is updated recursively for the current frame in the cepstral domain

using the �rst-order recursion technique in Eq. 3.11 and, �nally, it has to be subtrac-

ted from the next frame as shown in Eq. 3.12. However, in a highly non-stationary

environment, the channel bias changes quickly during the abrupt transition from one

acoustic condition to another. The frame recursive bias compensation technique ba-

sed on the �rst-order recursive �lter with a constant time-smoothing parameter fails

to compensate for the changes of the channel. A static time-smoothing parameter
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can affect the bias estimate for the fast changing non-stationary distortions. If it

is chosen too large (close to one, such as 0.995) or too low, then the bias estimate

might lead to over-estimation or under-estimation of the non-stationary channel bias.

Ideally, we would like the smoothing parameter to be small only during a transition

of acoustic condition from low to high distortion conditions for better estimating the

non-stationarity of the channel bias. Hence, there is a need to make the smoothing

factor change dependent, taking into account the abrupt changes ofSNR ofthe speech

signal.

In this thesis, we propose a frame dynamic first-order recursive filter with a weigh-

ted time smoothing parameter a61,1.1 described in the following:

*^x!* -b^-t,

6*:a6g11Em-t I (7 - oo(.i[^,

(3.14)

(3.15)

where b- is the updated bias for the current frame, a61.1; is the weighted (as a

function of change detection) smoothing parameter (0.7 to 0.995), i- is a noise-

compensated current-observed cepstral feature, and i- is a bias-compensated final

observation feature in the cepstral domain. It may be noted here that 6 needs an

initial value, which is supplied from the global mean value of the 13 static MFCC

coefficients used for the HMM modeling technique.

The weighted smoothing parameter a61.11 for channel bias estimation and com-

pensation is a function of smooth a posteri,orz SNR 7, as shown in Fig. 3.3. The

optimum r,veighted smoothing factor a;q[r, for each frame is calculated as follows [19]:
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where ab(mar) is set to abenan) : 0.995 to avoid deadlock a posteTiori,

I. a"(m) is a correction factor that is smoothed over time, and the

smoothing parameter is set to a*in:0.7.

FIcunp 3.3 Weighted smoothing parameter a6611for channel bias estimation as a
function of the smooth a posteriori SNR ? [191.

^,oqt
a61^or1a.(m)

(3 .16)

SNR ? becomes

minimum of the

b(wt) -  
r  + (P(m - r ,D l  az(ff i  -  r ,k) -  r)

3.6 Simulation

We simulate the proposed soft BOSCPD algorithm to track and compensate the

highly non-stationary noises in previously unseen acoustic environments and compare

the results with the popular baseline MCRA [4], and two of the most recent deriva-

tives of MCRA, e.g., MCRA2 [94] and ENICRA [95] for noisy speech enhancement.

!!'e also simulate the proposed SJAC algorithm for on-line ASR and compare its per-

formance with the baseline MCRA-based JAC for on-line ASR. The performance of



the proposed SJAC is also compared with on-line ASR using the MCRA2, and EM-

CRA, and off-line Aurora 2 DSR. The detailed experimental methodologies, speech

corpus used in this simulation, and evaluation of the results are presented in Chapter

5 .

3.7 Summarv

Adaptation to the environmental variabilities and artifacts remains one of the

most challenging problems for speech recognition. A robust speech recognition is re-

quired to maintain satisfactory recognition performance in previously unseen adverse

conditions, which is a tough challenging task for speech scientists. In this chapter, we

develop a Bayesian on-line belief-based soft computing approach to compensate for

the noise in the feature space in order to improve the noise robust performance of

ASR in previously unseen non-stationary acoustic environments. The proposed soft

computing technique for noise robust on-line ASR consists of two algorithms: i) the

BOSCPD technique, and ii) the soft JAC (SJAC) compensation technique. These

algorithms pave the way to develop on-line ASR for real-r,vorld applications. Finally,

the contributions of this chapter can be summarized as follows:

- helping to develop ner,v cutting-edge soft computing technologies based on the

Bayesian on-line belief to solve the non-stationarity problem for ASR in pre-

viously unseen real-world test conditions;

- discussing the techniques how to integrate the new technologies into the current

ASR in order to develop simultaneous recognition and acoustic model compen-

sation (SJAC) techniques for on-line ASR;
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finally motivating us to advance the soft computing for speech recognition to be

noise robust and readily deployable through mobile devices for 3G/4G broad-

band wireless communications.

In the next chapter, \,ve discuss the basic idea of an on-line ASR based on our

proposed bio-inspired soft adaptive filter using the soft evolutionary computing tech-

nique, called particle slvarm optimization technique.
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Chapter 4

Proposition 2: PSO A Soft Adaptive

Filter to Improve the Robustness of

On-Line ASR

4.7 Introduction

The bio-inspired soft computing (SC) model appears to be a promising technique

to handling real life complex non-stationary acoustic environments. It is becoming an

alternative solution to conventional hard computing techniques for speech processing

and speech recognition. In recent years SC models for treating uncertainties and

variabilities in ambiguous conditions have reached the speech processing and speech

recognition fields [24].

Particle swarm optimization (PSO) is an evolutionary algorithm. It is one of the

constituent technologies of soft computing techniques. Since human speech is a bio-
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logical signal and PSO-based soft computing techniques are generally inspired by

biological processes) PSO is better suited for tackling many of the challenging pro-

blems of speech processing and speech recognition [24]. This is confirmed by the recent

study reports from speech processing literature which show that PSO exhibits flexibi-

lity in speech processing with large degree of uncertainty and variability [1001, [1011.

PSO proves to be superior to the current gradient search-based adaptive filtering

techniques for speech enhancement and noise cancellation.

PSO-based SC techniques prove to have the potential to estimate with great preci-

sion the coefficients of an adaptive filter to model the unknown time-varying acoustic

environments. This biologically inspired precision adaptive filter can be used in im-

proving the noise robustness of current ASR in real-life scenarios. Motivated by the

ability of the PSO-based evolutionary SC model over conventional hard adaptive

techniques to track the complex non-stationary noisy environments, we propose a

dynamic multi-swarm PSO-based soft adaptive filter model to track and compensate

the previously unseen non-stationarity of the acoustic environments to improve the

noise robustness of ASR in on-line mode.

In this chapter, we develop an on-line soft JAC (SJAC) model to improve the ro-

bustness of ASR in rapidly changing non-stationary acoustic environments. Usages of

the soft adaptive filter based on dynamic multi-swarm PSO (DMS-PSO) techniques to

frame sequentially compensate the non-stationary background additive noises in the

front-end, and channel distortion compensation in the back-end of ASR are proposed

in this chapter. This approach facilitates opening a nerv approach to the development

of on-line ASR to be noise robust in real-world acoustic environments.

The organization of this chapter is as follor,vs. An overvier,v of particle swarm opti-
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mization (PSO) is presented in section 4.2 follor,ved by the mathematical description

of the PSO algorithm in section 3.3. Section 4.4 describes the PSO-based additive

background noise compensation schemes. An improved version of the PSO, called

dynamic multi-swarm PSO (DMS-PSO), is presented in section 3.5. We describe the

DNIS-PSO-based soft JAC (SJAC) technique for on-line ASR in section 4.6. Section

4.7 briefly describes the simulation setups. Finally, we summarize our achievement in

this chapter in section 4.8.

4.2 Particle Swarm Optimization

Particle slvarm optimization is a biological population-based stochastic search

algorithm. It r,vas originally proposed as a stochastic optimization algorithm in 1995

by Eberhart and Kennedy [21], inspired by the social behavior of bird flocks as shown

in Fig. 4.1 or fish schools as shown in Fig. 4.2. Their original intent was to graphicallv

simulate the choreography of a bird flock or fish school. Hor,vever, it was found that

the particle s'vvarm model can be used as an optimizer [21].

PSO has constructive cooperation between particles since particles in the srvarm

share information. Compared with other optimization algorithms, PSO has many me-

rits. This algorithm is simple, easy to realize, search space is fast, and it demonstrates

a wide scope to model noisy time-varying environments [102]. Its efficiency, simplicity

as well as adaptabilitv to different problems has rendered PSO as a very attractive

approach for solving numerical optimization problems. It results in global solutions

even in high-dimensional and multimodal spaces [t0Z], as shown in Fig. 4.3 [103].

PSO is different from other evolutionary algorithms, €.8., genetic algorithms (GAs).
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Figure 4.1 � Bird Flocking.

Figure 4.2 � Fish Schooling.

Indeed, in PSO, the population dynamics simulates a bird �ock's behavior where social

sharing of information takes place and individuals can gain pro�t from the discoveries

and previous experience of all other companions during the search for food. Thus, each

companion, called a particle, in the population, which is now called a swarm, is assu-

med to �y over the search space in order to �nd promising regions of the landscape.

For example, in the minimization case, such regions possess lower function values
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Figure 4.3 � Multi-modal Griewank Function (F7).

than others visited previously. In this context, each particle is treated as a point in a

D-dimensional space, which adjusts its own �ying according to its �ying experience as

well as the �ying experience of other particles (companions) [21], [102], [5]. A detailed

mathematical formulation of PSO algorithm is presented next.

4.3 Mathematical Framework of PSO

Let A ⊂ Rnd be the search space, and f : A→ Y ⊆ R be the objective function.

In order to keep descriptions as simple as possible, we also assume that A is also the

feasible space of the problem at hand, i.e., there are no further explicit constraints

posed on the candidate solutions. Also, note that no additional assumptions are re-

quired regarding the form of the objective function and search space. As mentioned

in the previous chapter, PSO is a population-based algorithm, i.e., it exploits a popu-

93



lation of potential solutions to probe the search space concurrently. The population

is called the swarm and its individuals are called the parti,cles - a notation retained

by nomenclature used for similar models in social sciences and particle physics [22].

The swarm is defined as a set:

So :  { t r ,  f r2t  f r1,  . . . ,  r rvo}

of N, particles (candidate solutions), defined as:

r ;  :  { . r i r ,  I i 2 , r , n , . . . . x i n a \ '  e  A ,

where  ' i  :  \ ,2 ,3 ,  . . . ,  Np.

Indices are arbitrarily assigned to particles, while l/o is a user-defined parameter

of the algorithm. The objective function , f (r), is assumed to be available for all points

in A. Thus, each particle has a unique function value, 7o: f (r1) e Y.

The particles are assumed to move within the search space, A, iteratively as shown

in Fig. 4.4. This is possible by adjusting their 'position' using a proper position shift,

called 'velocity', and denoted as:

u t  :  { u ; t , l ) i 2 , ' U B t  . . . ,  U r r u } '  ,

w h e r e  i , :  \ , 2 , 3 , . . . ,  N p .

Velocity is also adapted iteratively to render particles capable of potentially vi-

siting any region of A. If r denotes the iteration counter, then the current position

of the ith particle and its velocity will be henceforth denoted as r6(t) , and ui(t) ,

respectively.

Velocity is updated based on information obtained in previous steps of the al-

gorithm. This is implemented in terms of a memory, lvhere each particle can store

the best position it has ever visited during its search. For this purpose, besides the

srvarmT S, which contains the current positions of the particles, PSO maintains also



 

Current 
Position 

New 
Position 

Velocity 

To the best 
performance of 

the particle 

To the best 
performance of 

the swarm 

To the point 
accessible with 

the current 
velocity 

Figure 4.4 � Strategy of particle displacement in a PSO technique.

a memory set:

Ps =
{
p1, p2, p3, ..., pNp

}′
,

which contains the best position:

pi = {pi1, pi2, pxi3, ..., pind}
′
∈ A i = 1, 2, 3, ..., Np,

ever visited by each particle. These positions are de�ned as:

pi(ι) = arg min
ι

fi(ι)

where ι stands for the iteration counter.

Particle Swarm Optimization (PSO) is based on simulation models of social beha-

vior ; thus, an information exchange mechanism exists to allow particles to mutually

communicate their experience. The algorithm approximates the global minimizer with

the best position ever visited by all particles. Therefore, it is a reasonable choice to

share this crucial information. Let gp be the index of the best position with the lowest

function value in Ps at a given iteration ι, i.e.,
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ps,Q): argmin f  (po(t)) .

Then, PSO is defined by the following equations [21]:

u i 1 ( t * t ) :  w o u i l Q )
---

momentum local inf ormation gl&al inf ormati,on

I  ctRr(n, iQ) -  ,uiQ)) I  czR2(pn,tQ) -  r61Q)),
- - -

(4 .1)

riiQ -f 7) : rilQ) -t uaiQ -t 1), t L  ) \

w h e r e  ' i : 7 , 2 , 3 , . . . , N p ,  i  : 7 , 2 , 3 , . . . , f r d , ,  r  d e n o t e s  t h e  i t e r a t i o n  c o u n t e r ,  t o o  i s  t h e

inertia weight chosen in the interval [0,1], R1 and Rz are random variables uniformly

distributed within [0,1], and c1 and c2 ale weighting factors, also called the'cognitive'

and 'social' parameters, respectively. In the first version of PSO, a single weight,

c: ct: cz, called the acceleration constant, was used instead of the two distinct

weights in Eq. 4.1. Hor,vever, the latter offered better control on the algorithm, leading

to its predominance over the first version.

At each iteration, after the update and evaluation of particles, best positions

(memory) are also updated. Thus, the new best position of ri at iteration r. * 1 is

defined as follows:

p.i(t -t 7) :
r i ( t+7 )  i f  f ( r i ( t+1 ) )  <  f (po ( ' ) ) ,

pr(t) othenvise.
(4.3)

The new determination of index g, for the updated best positions completes an

iteration of PSO. The operation of PSO is provided in pseudocode in Algorithm 4.1.

Particles are usually initialized randomly, follor,ving a uniform distribution over the
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search space, ,4. This choice treats each region of ,4 equivalently; therefore it is mostly

preferable in cases where there is no information on the form of the search space or

the objective function, requiring a different initialization scheme. Additionally, it is

implemented fairly easily, as all modern computer systems can be equipped with a

uniform random number senerator.

Algorithm 4.L Pseudo Code for Particle Swarm Optimization (PSO) Algorithm

Input: .n/, <- No. of Particles ; Sp ? Swarm; P" <- Best position.
Set:

, < -0
,S, +- initial value
p - q

t s - v n

Evaluate ,5, and P", and define index go of the best position
while termination criterion not met do

Update ,9, using Eqs. 4.1 and 4.2, respectively
Evaluate ,S,
Update P" and redefine index ge
S e t :  r  + -  L + 7

end while
Record best position

The previous velocity term, uii(t), in the right-hand side of Eq. 4.1, offers a means

of inertial movement to the particle by taking its previous position shift into consi-

deration. This property can prevent it from trapping in local minima if suboptimal

information is carried by both (e.g., if they both lie in the vicinity of a local minimi-

zer). Furthermore, the previous velocity term serves as a perturbation for the global

best particle, rsp.Indeed, if a particle, ri, discovers a new position with lower function

value than the best one, then it becomes the global best (i.e., gp + i) and its best po-

sition, pz, will coincide avith pno and ri in the next iteration. Thus, the two stochastic

terms in Eq. 4.1 r,vill vanish. If there was no previous velocity term in Eq. 4.1, then
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the aforementioned particle would stay at the same position for several iterations,

until a new best position is detected by another particle. Otherwise, the velocity term

allows this particle to continue its search, following its previous position shift. The

values of c1 and c2 ca,n affect the search ability of PSO by biasing the sampled ner,v

positions of a particle, tri) towards the best positions, p; and peol r€spectively, as well

as by changing the magnitude of the search [22].

n)

e(n)

FIcunp 4.5 LMS algorithm for speech enhancement.

4.4 Additive Noise Compensation Using PSO

Speech denoising in non-stationary acoustic environments is an optimization pro-

blem to compute the globally optimal estimate of the speech signal. High non-stationarity

in acoustic environments leads to non-linear and non-Gaussian models, and solutions

Transversal Filter
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of these complex non-linear acoustic models have multiple local and global optima.

For optimal estimation of speech signals in noisy conditions, it is essential to design an

optimal estimator that will provide a global optimal estimation of the speech signal.

There have been enormous advances in gradient-search-based optimization techniques

over the last several years. Holvever, these gradient-based algorithms cannot solve the

multimodal and high dimensional nonlinear objective functions as, in most cases, they

converge to local optima.

Recently, PSO [21], [22] has found application in estimating a speech signal in

additive noise, as it provides global solutions even in high-dimensional and multimodal

spaces. However, it is not tested well enough against multiplicative noises in dynamic

environments, which is an interesting research topic at present. Not many results are

available about PSO's behavior for speech processing in the presence of non-stationary

noise. In other words, the performance of the PSO is not knor.vn when noise is inserted

into the function values and/or the environment is continuously changing [102].

4.4.L Dual-Channel Speech Denoising Using PSO

Gradient search-based adaptive optimization algorithms are widely used in esti-

mation theory for the speech enhancement process. For example, the Least Mean

Square (LMS) algorithm, as shown in Fig. 4.5, is one of the common adaptive al-

gorithms widely used in Adaptive Digital Speech Processing (ADSP) for denoising

noisy speech [1041. The normalized version of the LMS, called NLNIS, outperforms the

LMS algorithm in the sense of SNR improvement. There are several other adaptive

algorithms such as Recursive-Least-Squares (RLS) algorithms, which also have wide
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I
Recovered speech

FlcuRe 4.6 - Dual-channel speech enhancement using the PSO technique [100]. Here
r(n) is the clean speech signal, d(n) is the noisy speech signal, a(n) is the background
noise added to the speech signal, y(n) is the output of the adaptive filter W(z), r(n) is
the source of background additive noises, and e(n) is the error signal, which represents
the recovered speech signal.

application for the speech enhancement process in noisy conditions. These adaptive

algorithms work based on the principle of the classical lViener filter. A Wiener filter

works in dual-channel mode. i.e.. it needs a reference noise information of the noise

in order to denoise the noisy speech signal [104].

In [100], the authors used an improved version of the PSO technique for a dual-

channel speech enhancement process and found \.ery encouraging results in denoising

the speech signal even in very low SNR conditions. The fundamental design process

of this dual-channel speech enhancement process is shown in Fig. 4.6.

In a PSO-based dual-channel speech denoising process, the position of each particle

in the slvarm represents a candidate for the coefficients of the adaptive frlter W (z)

in Fig. 4.6 [1001, [101]. After a predetermined number of iterations, the coefficients of

the optimal adaptive frlter W(z) are determined according to the position vector of

the best particle in the srvarm (ga""r) . Then, y(n) is obtained by modifying the noise

d(n) = x(n) +r7@)

Noisy speech signal
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reference by the adaptive filter W(z)e(n) .Finally, the enhanced frame is obtained

by subtracting y(n) from d(n) .

4.4.2 Adaptive Noise Compensation Using PSO for On-Line

ASR

In PSO, each potential solution is regarded as a particle. All particles have fitness

values and velocities. The particles fly through the D-dimensional problem space by

learning from the historical information of all the particles. Using the useful infor-

mation collected in the search process, the particles have a tendency to fly towards

a better search area over the course of the search process. Though PSO works r,vell

compared to gradient-based optimization techniques, it has a problem of early conver-

gence. It still is in an early stage of development. To avoid this problem, two main

variants of the PSO search process have been developed - i) global PSO, and ii) local

PSO. In the local version of PSO, each particle's velocity is adjusted according to

its personal best and the best performance achieved so far within its neighborhood

instead of learning from the personal best and the best position achieved so far by

the whole population in the global version. In focusing on improving the local version

of PSO, different neighborhood structures are proposed and discussed [5].

Eberhart and Kennedy, who first developed and introduced the PSO optimization

technique [21], claimed that PSO with a large neighborhood would perform better

for simple problems and PSO with a small neighborhood might perform better on

complex problems [5]. Estimating adaptive filter coefficients based on the minimi-

zation of the objective function in Eq. ( .a) in a frame-dynamic fashion in highly
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non-stationary acoustic environments is a unimodal complex problem. Within this

complex modeling constraints in Eq. (4.4) tor adaptive speech denoising, lve propose

to use PSO with small local neighborhoods.

Currently, several versions of a local PSO algorithm are available in the literature.

In [5], the authors proposed a dynamic multi-sr,varm particle swarm optimization

with a local search technique called DMS-PSO. The authors successfully implemented

this DMS-PSO for optimizing 25 complex functions and found results superior to

other forms of local PSO. Among these complex functions, five were unimodal and

the remaining functions were multi-modal. In this dissertation, lve choose to use

DMS-PSO to optimize the soft adaptive filter coefficients. A perfectly optimized filter

provides a better solution to predict the dynamics of the non-stationary acoustic

environments.

4.4.3 Discussion

\,Vithin the limited scope and time of this dissertation, we decide to implement

a DMS-PSO algorithm to design a soft adaptive filter to be suitable for tracking

noisy speech signal in non-stationary acoustic environments. lVe do not perform a

detailed analysis of DSM-PSO. A full-scale mathematical analysis of DMS-PSO will

be provided in future work. In the next section, we provide a brief description of the

form of DMS-PSO.
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4.5 Dynamic Multi-Swarm PSO

In DMS-PSO, small neighborhoods are used to reduce the population's conver-

gence velocitv and to increase diversity and achieve better results on complex search

problems. In this case, the population is divided into small swarms. Each swarm

consists of two to three particles and it uses its or,vn members to search for better

areas in the search space.

Small srvarms search based on their own best historical information; there are

risks for these particles to converge to a local optimum because of PSO's convergence

property. In order to avoid this premature convergence, an exchange of information

among the s'warms is allowed in DMS-PSO. In this information exchange, more infor-

mation including the good ones and the less good ones is kept in the record to add

to the varieties of the particles and achieve larger diversity. So a randomized grou-

ping schedule is used to make the particles have a dynamic changing neighborhood

structure.

An example of DMS-PSO with local search for three swarms with three particles

in each srvarm is graphically shown in Fig. 4.7.In this example, each of the randomly

partitioned three swarms uses its o'wn particles to search for better solutions. In this

case, each solution may converge to near a local optimum. Then the whole swarm

population is grouped into ner,v slvarms. The ner,v swarms begin their search. These

grouping processes are continued until a stop criterion is satisfied. With the random

grouping schedule, particles from different slvarms are grouped in a new configuration

so that each small s\,varms search space is enlarged and better solutions are possible

to be found by the new small swarms [5].
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FtcuRp 4.7 - DMS-PSO search [5].

In DMS-PSO with local search [5] as presented in Algorithm 3.2, for every ft6r

generations, the population is grouped randomly and starts searching using a new

configuration of small swarms. Here R6: is called the grouping period. In this way, the

information obtained by each srvarm is exchanged among the sr,varms. Simultaneously

the diversity of the population is increased. The new neighborhood structure has more

freedom when compared with the classical neighborhood structure [5]. In DMS-PSO

with local search, when updating the positions of the particles, half of the dimensions

are kept the same as its best historical position, pbest, to make better use of the

particles' historical information to improve its global search ability.

In PSO optimization, a larger diversity and a faster convergence velocity are always
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Algorithm 4.2 Non-Stationary Noise Compensation Using DMS-PSO [51
Set: rn"o <* Each swarm's population size
Set: n"r, <- Swarmts number
Set: na <- Search space dimension for each particle
Set: R6 <- Grouping period
Set: ,L7 <- Local refining period
Set: -Lps" <- Max fittest evaluations (FE) using in the local search
Set: MarpB" (- Max fitness evaluations, stop criterion
Set: rn"o x nsn <- Particles initialization for position and velocity
Set: .F,Es +- 0
Set: gen <- 0
while FEs < 0.95 x MarpB, do

l e f i , : g e n , * I
for i, : 7 to (m"p x n"rr) do

Find lbesti
f o r  t : 7  t o  n 6  d o

if rand < 0.5 then
u'r : w x ui -t c1 x R'ro x (pbesti - r) + c2 x R'ru x (lbesti - ri)
ul :  mi,n(mar(ui  -  u '^o),uko,)
r i : r i *u i

else
r i :  pbest i

end if
end for
if ri e lfi*m,r^orf'd then

Calculate the fitness value
F E s : F E s * 7
Update pbest

end if
end for
if mod(gen, Lt) :- 0 then

Sort lbesC according to their fitness value and refine the first f0.25nl best lbesl
using Quasi-Ner,vton method
FEs: FEs * 10.25n] x LpEs
Update the corresponding pbesl

end if
i f  mod(gen, R6) : :0 then

Group the swarms randomly
end if

end while
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a trade-off problem. Since DNIS-PSO provides a larger diversity, at the same time, the

algorithm loses its fast convergence velocity. This problem is alleviated to give a better

search in the better local areas by adding a local search to DNIS-PSO. The DMS-PSO

algorithm is described in Algorithm 3.2. Nevertheless, a detailed description of DMS-

PSO for optimizing multi-modal objective functions is available in [5], [105], [1061.

4.6 Soft JAC Compensation Using DMS-PSO

In this dissertation, r.ve implement a DMS-PSO optimization technique for frame-

dynamic non-stationary distortion compensation, as shown in Fig. 4.8. In this noise

compensation technique, we adopt the dual-channel adaptive noise cancellation tech-

nique to minimize the cost function. For on-line speech recognition, the observed

input signal d(n) is processed in frames. For speech denoising using DMS-PSO, we

follow similar steps in [100] to define the cost function to evaluate the fitness of each

particle. The cost function is derived based on the average error betr,veen the noisy

speech signal, d(n), and the estimated noise signal, O(t) , in each frame and it is

based on the principle that the fittest particles will have lower cost function values.

The cost function is defined as folloi,vs:

n,:  
*

N- -1
\ -  z r z r r  ^ , t t ' 2

)  \ a \ K ) -  l r 1 ( / f J )  ,
k:0

(4.4)

where I/., is the length of each frame, and O(n) is the output of W (z) designed by the

algorithm. When fli is minimum, the parameters of W (z) provide the best possible

representation of the unknown non-stationary acoustic environments.
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Algorithm 4.3 Non-Stationary Noise Compensation Using DMS-PSO
Set: Frame index m +- 1
while Frame of speech not end do

r(m) +- d(m)
Find best particle from DMS-PSO Algorithm 4.2
Evaluate tr4l(z) using best particles as the filter coefficients
A(rn) +- W(z) a rz(m)
e(m) <- (d(^) - u(m))
3(m) <- e(m)
m < -  r n+ I

end while

rr(n)
d(n)=s(n; +l(n)

FIcuRe 4.8 - Proposed noise compensation using the DMS-PSO technique.

This adaptive filter predicts the unknown environments represented by the filter

U(t) .In this model in Fig. 4.8, the speech signal d(n) is the clean speech signal

s(n) corrupted by the background noise a(n). The adaptive filter W(z) tries to model

the rapidly changing non-stationary acoustic environments. In this experiment, the

reference noise is picked by a microphone. lVe model the path the reference noise

travels from its source to the second microphone by a moving average filter. The
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output of this moving average filter is the input to unknown adaptive filter W(z).

The filter output CI(n) is an estimate of the noise present in the current frame. The

error signal in the output of the structure, e(n), becomes an estimate of the clean

signal s(n).

w(z-) :
pt + p? z-r + p? r-' + pt z-3 + plz-4

(4.5)
r + pf z-r -r plz-z * plz-z + p?z-4

We adapt an IIR filter with an order of 4 as shown in Eq. 4.5. In this case, the filter

coefficients are used as the dimension of each particle in the swarm. After getting the

best fitting particle, the dimensions of this best particle are used as filter coefficients

and the output of this filter O(n) is directly subtracted from the observed speech

frame, which results in the best estimate of the actual speech signal. The algorithm

for this DMS-PSO-based noise compensation technique is described in Algorithm 3.3.

4.7 Simulation

We simulate the bio-inspired DMS-PSO-based soft adaptive filter algorithm to

track and compensate the highly non-stationary noises in previously unseen acous-

tic environments for dual channel noisy speech enhancement. We also simulate the

DNIS-PSO-based SJAC algorithm for on-line ASR and compare its performance with

the baseline BOSCPD-based SJAC for on-line ASR. The detailed experimental me-

thodologies, speech corpus used in this simulation, and evaluation of the results are

presented in the next chapter.
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4.8 Summarv

In this chapter, we discuss and develop evolutionary stochastic-based optimiza-

tion techniques, especially the DMS-PSO technique for frame-dynamic adaptive noise

tracking and estimation. This new algorithm shows the way to develop on-line ASR

for real-world applications.

In order to develop on-line ASR technologies to meet the demand of current hand-

held mobile devices for real-world applications, the contribution of this chapter is

helping to develop PSO-based front-end processing of automatic speech recognition to

solve the non-stationaritv problem for mobile applications in unknown test conditions.

In the next chapter, tve present the detailed experimental methodologies, simula-

tion setups, and results and performance evaluation of the soft computing techniques

to improve the robustness of on-line ASR that we propose in this thesis.
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Chapter 5

Experiments and Results

In order to demonstrate the performances of our on-line ASR compared to off-Line

ASR, we performed experiments in the following chronological order:

- A comprehensive study of current approaches to improve the noise robustness

of ASR in noisy acoustic environments, especially in non-stationary noisy condi-

tions,

Simulation of on-line ASR using Aurora 2 speech data in non-stationary en-

vironments using bias-removal techniques as a first step towards developing

noise-robust ASR for real-time applications,

- Development of a soft joint additive and channel distortion compensation (SJAC)

technique for on-line noise tracking and rapid change detection as an essential

criterion for on-line ASR to work in real-world non-stationary acoustic condi-

tions, and

- Development and simulation of an advanced SJAC model using stochastic op-

timization techniques, called particle slvarm optimization (PSO), to implement
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the proposed on-line ASR.

We develop our proposed on-line ASR algorithms using the Aurora 2 speech da-

tabase from the ETSI [1] distributed speech recognition (DSR) specification. Before

proposing the on-line ASR, we did an extensive study on the noise robustness pro-

blems of current ASR modeling techniques. In this chapter \,ve present our study as

well as simulation results for the proposed frame-dynamic on-line ASR algorithms.

In Section 5.1, we briefly describe speech corpora that we use to validate our

proposed algorithms for on-line ASR. Section 5.2 presents the simulation results of

an on-line ASR using a frame dynamic bias removal technique in non-stationary noisy

conditions. We present the result of the proposed soft BOSCPD technique for SJAC-

based non-stationary noise tracking and compensation for the on-line ASR in Section

5.3. Section 5.4 discusses the results of on-line ASR using the SJAC based on the

particle swarm optimization (PSO) technique. Finally, we summarize the results of

this work in Section 5.5.

5.1 Aurora 2 Speech Database

This section describes the Aurora 2 speech corpus developed for distributed speech

recognition (DSR) in simulated non-stationary acoustic environments [1], [107]. In

the Aurora 2 Distributed Speech Recognition (DSR), speech feature processing is

done in the telecommunication terminal (front-end) and the recognition is carried

out at a remote central location (back-end) in the telecom network based on the

ETSI (European Telecommunications Standards Institute) [3] standards for DSR.

In this DSR architecture, the front-end is located at the client side and connected
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over the data channel of telecommunication networks to remote back-end recognition

servers, as shor,vn in Fig. 5.1. The DSR architecture includes tr,vo-stage Mel-warped

lViener filtering for noise enhancement, NIel frequency cepstral coefficient (MFCC)

feature extraction and compression as well as bit-streaming, formatting and decoding

at the front-end.

Frcunp 5.1 Schematic diagram of the Aurora 2 DSR architecture [t], [3].

The source speech for the Aurora 2 database is the TI Digits, consisting of a

connected digits task spoken by American English talkers and down-sampled to 8

kHz. It contains speech of isolated digit sequences of up to 7 digits from 110 speakers

of US-American adults among whom 55 speakers are male and 55 speakers are female.

The original 20 kHz data of TI Digits rvere recorded in a single sitting session. In

Aurora 2, these data have been down-sampled to 8 kHz with a precision of 16 bits

with an I'idealil low-pass filter extracting the spectrum between 0 and 4kHz.
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In Aurora 2,the training data set contains 8440 utterances of 110 speakers. Each

speaker utters 75 to 77 sentences. These training data are equally split into 20 subsets

with 422 short utterances in each subset in multi-condition training mode. The 20

subsets represent four different artificially added noise scenarios Subway, Babble, Car,

and Exhibition Hall at 20 dB, 15 dB, 10 dB, 5 dB and > 30 dB signal-to-noise ratios

(SNRs).

The Aurora 2 speech database has also three sets of test data (set'A', set'B', and

set 'C') from 104 speakers (52 male and 52 female). In each category, each speaker

utters about 9-10 utterances of digits ranging from a single digit to a maximum of

7 digits. These test data rvere corrupted by artificially added B different real-world

noises (e.g., Subway, Babble, Car, Exhibition Hall, Restaurant, Street, Airport, and

Train) at 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and -5 dB signal-to-noise ratios (SNfu).

In Aurora 2, speech and noises are added artificially and filtered with the G.7I2

and MIRS (modified intermediate reference system) characteristic before adding in or-

der to artificially simulate the actual non-linear acoustic distortions [3]. This filtering

is done to consider the realistic frequency characteristics of terminals and equipment

in the telecommunication area. The G.71,2 characteristic is defined for the frequency

range of the usual telephone bandwidth up to 4 kHz and has a flat characteristic

in the range between 300 and 3400 Hz. MIRS shows a rising characteristic with an

attenuation of lower frequencies that simulates the behavior of a telecommunication

terminal, which meets the official requirements for the terminal input frequency res-

ponse as specified, e.g., for GSNI.

The Aurora 2 DSR [1] is designed to evaluate the performance of the standard

Aurora 2 task of recognizing digit strings in noise and a channel distorted environ-
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Taslp 5.1 - Recognition accuracy of clean-trained model in batch-mode (off-line) for
the Aurora 2 DSR [107].

Ulean training - Results
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clean 98.83 98.97

20 dB 96.96 89.96

15 dB 92.91 73.43

10 dB 78.72 49.06

5 dB 53.39 27.03

0 dB 27.00 11.73

-5 dB 12.62 4.96

Average 65.78 50.73

98.81 99.14

96.84 96.20

89.53 91.85

66.24 75.t0

33.49 43.51

t3.27 15.98

8.35 7.65

58.08 61.35

98.94 98.83

94.99 89.19

86.93 74.39

67.28 52.72

39.36 29.57

17.00 11.70

8.40 5.0

58.99 51.63

98.97 98.81

95.77 90.07

88.27 76.89

O O . / D  J J . I J

38.15 30.69

18.68 15.84

r0.07 8.11

59.52 53.37

99.14 98.94

94.38 92.35

83.62 80.79

59.61 58.06

25.74 32.04

t2.25 14.62

8.49 7.92

55.32 54.96

99.02 98.97

s4.47 95.L9

87.63 89.69

75.t9 75.27

52.84 48.85

26.01 2t .64

12.10 10.70

63.89 62.90

98.99 98.96

94.83 94.06

88.66 85.46

75.23 66.86

50.84 40.75

23.83 18.48

rr.40 9.24

63.40 59.12

ment. It works in batch-mode (off-line), and uses 39 NIFCC coefficients by using 12

static cepstral coefficients (C1, C2,...,C12) and the logarithmic frame energy, 13 A

coefficients and 13 AA acceleration coefficients for HMMs. It uses whole r,vord HNIMs

r,vith 18 states per word including 2 dummy states at the beginning and the end.

These HMMs are left-to-right models without skip-over states. They use a mixture of

3 Gaussians per state. The Aurora 2 DSR is tested using HTK [15] as the reference

recognizer. Table 5.1 shows the performances of the Aurora 2 digit recognition for a

clean training model [107].

Aurora 2 speech database is one of the most widely used speech corpora for many

benchmark research results on DSR-based speech recognition. It demonstrates the

simulated real-world highly non-stationary acoustic environments. For this reason,

we use this speech database for our proposed on-line ASR for mobile communication
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devices.

Taet,e 5.2 - Recognition accuracy of the
mode without frame-dynamic noises and
DSR.

clean-trained model in simulated on-line
distortion compensation for the Aurora 2

Clean training - Results
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clean 97.97

20 dB 49.80

15 dB 38.78

10 dB 31.35

5 dB 22.94

0 dB 13.6

-5 dB 8.54

Average 37.57

98.31 98.12

37.06 42.20

27.45 32.30

18.53 23.51

t2.33 16.61

8.40 11.01

5.91 8.53

29.71 33.18

98.12 98.13

47.92 44.25

34.46 33.25

24.38 24.U

17.03 17.23

7L.77 11.20

8.55 7.90

34.60 33.77

97.97 98.31

37.64 47.04

28.95 33.89

19.40 25.21

10.01 L7.29

6.71 11.85

3.88 8.53

29.22 34.59

98.12 98.12 98.13

38.32 36.35 39.84

29.44 28.06 30.08

21.29 2r .38 2) . .82

14.32 12.58 13.55

8.65 6.48 8.42

6.26 6.57 6.31

30.91 29.93 31.16

97.27 97.25

59.23 58.25

47.26 44.38

32.69 30.06

22.66 22.44

t4.70 14.90

9.97 12.42

40.54 39.96

97.26 97.84

58.74 47.6r

45.82 36.38

31.38 25.88

22.55 17.76

14.80 tt.47

t7.20 8,47

40.25 35.06

5.2 Dynamic Bias Removal Technique Results

This section presents the simulation results of the MCRA-based frame dynamic

bias removal technique in the cepstral domain. lVe have tested the Aurora 2 task of

recognizing digit strings in non-stationary environments for on-line conditions using

the same configuration parameters for HNIM models used for the Aurora 2 DSR. lVe

conduct this simulation using the ATK toolkit [2].

The standard Aurora 2 task of recognizing digit strings in noise and channel

distorted environments was tested off-line for two modes of training data: (z) clean-
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Taet,n 5.3 - Recognition accuracy of clean-trained model for MCRA-based on-line
frame recursive bias removal technique of the Aurora 2 task of recognizing digit
strings.

Clean training - Results
Average

z
P^g f a

- r 5 >
a a

=-E :+
; 9 X . i i
? . r E E 9

= 6

F ; o

O : Y
! + u
A X

o h l

b o
t f

clean 98.86

20 dB 96.28

15 dB 92.85

10 dB 80.99

5 dB 55.85

0 dB 28.53

-5 dB t2.27

Average 66.52

98.88 98.66

97.34 97,8r,

93.68 94.15

83.52 80.79

55.75 48.97

25.89 21.83

9.26 6.56

66.33 64.12

99.01 98.85

96.48 96.99

92.07 93.19

79.11 81.10

51.13 52.93

22.63 24.72

7.88 8.99

64.04 65.25

98.86 98.88

97.45 96.92

s4.47 92.41

85.02 80.05

62.65 53.93

30.37 24.43

11.07 8.36

68.56 65.00

98.66 99.01 98.85

97.35 97.99 97.43

94.66 95.25 94.20

88.04 83.86 84.24

65.45 57.33 59.84

35.95 26.53 29.32

11.72 9.00 10.04

70.26 67.00 67.71

98.89 98.82 98.86 98.86

95.98 96.70 96.34 96.92

91.68 93.08 92.38 93.26

79.40 78.63 79.02 81.46

A 4 , I V  J Z . I  I  J J . #  J D . 4 I

28.62 23.03 25.83 26.63

11.84 8.87 10.36 9.80

65.79 64.56 65.18 66.05

only training, and (zz) multi-condition training. The performance of the Aurora 2

DSR for clean-only training data is poor compared to that of the multi-condition

one. However, it performs the same for clean test data in both the training cases. We

have decided to use the clean-only training model for our test. The objective of our

on-line ASR is to compensate the test utterances for noisy environments? i.e., to bring

back the test speech signal close to the clean model. This tactic keeps the training

model unchanged.

In a real-time environment, a pri,ori, knowledge of the acoustic conditions is not

known. Therefore, ASR should be trained on clean data first and then, it needs

to track the environmental changes to self-adapt to new conditions. For clean test

data, Aurora 2 performs the same in both the batch-mode and on-line. However, its
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performance degrades quickly in on-line conditions without any bias compensation

compared to its batch-mode performances. These simulation results are presented in

Table 5.2.

In order to improve the performance of the on-line ASR using a frame-adaptive

bias removal technique) we use the MCRA noise tracking algorithm to track the

non-stationary noises and compensate it. In this simulation, we also change the confi-

guration parameters used for training the HMM models. lVe include the coefficient of

order 0 in the static NIFCC coefficientt (Co, Ct,Cr,...,Ct ) and train the HMM models

using HTK [15]. For frame-adaptive on-line ASR, r,ve use a running average cepstral

mean normalization technique using Eqs. 3.11 and 3.12 and reset the running-mean

back to the default at the start of every input utterance. The simulation results for

this experiment are shown in Table 5.3.

From these simulation results, we have found that the performance of the Aurora

2 DSR in on-line condition r,vithout frame-adaptive bias compensation decreases quite

rapidly with a decrease in SNR values, though at clean conditions, its performances are

quite similar to the batch mode (off-line). The percent reduction in the performance

of the Aurora 2 DSR in on-line mode without bias compensation is presented in Table

5.4. The results show that the average drop in the word accuracy for test set 'A' is

42.09%, for test set 'B' is 43.327a, and for test set 'C' is 36.51%. The overall reduction

in word recognition accuracy rate for Aurora 2 DSR is 40.64%. These simulation

results show that at very low SNR conditions, especially at 0 dB or below, the ASR

recognition accuracy is very poor due to the fact that at those SNRs, speech signals

are always highly dominated by the background noise.

In the case of on-line simulation of the Aurora 2 DSR in frame-adaptive NICRA-
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T.tet,p 5.4 - Reduction (%) in the recognition accuracy of the ofi-line Aurora 2
DSR in frame dynamic decoding r,vithout bias compensation schemes in the task of
recognizing digit strings.
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0.76 7.LO
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based bias compensation mode, we have found that the joint additive and channel

distortion compensation in a frame dynamic fashion increases the word recognition

accuracy greatly compared to the off-line recognition accuracy rate, especially for

SNRs between 20 dB and 5 dB. This gain in recognition accuracy as shown in Table

5.5, shows that the joint compensation for additive and channel noises works well

according to the acoustic model of the speech signal in Eq. A.12. The results show

that the average increase in the r,vord accuracy for test set 'A' is 11.67Vo, for test set

'B' is 23.69Y0, and for test set 'C' is 2.81%. The overall increase in word recognition

accuracy rate for MCRA-based on-line ASR is 72.72% compared to the off-line results

in Table 5.1. This simulation result shows that at very low SNR conditions, especially

at 0 dB or below, the ASR recognition accuracy is very poor due to the fact that at
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those SNRs, speech signals are always highly dominated by the background noise and

the observed speech signals become almost noise.

Teslp 5.5 - Improvement (%) of recognition accuracy of the clean-trained model for
MCRA-based on-line frame recursive bias removal schemes of the Aurora 2 task of
recognizing digit strings.
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A graphical comparison of the performances of preliminary experiments on the

Aurora 2 task of recognizing digit strings in both off-line (batch-mode) vs. MCRA-

based on-line modes in highly non-stationary noises is shown in Fig. 5.2 for test

data set 'A', Fig. 5.3 for test data set 'B', and Fig. 5.4 for test data set 'C', res-

pectively. These experimental results show that the MCRA-based frame-recursive

dynamic acoustic distortions compensation improves the performance of the Aurora

2 significantly compared to its off-line results. Since the test data for the Aurora 2 are

pre-recorded sentences, the ASR decoder in AIK reads one sentence each time from

119



-5 0 5 10 15 20 clean
0

10

20

30

40

50

60

70

80

90

100

SNR (dB) ---->

W
or

d 
R

ec
og

ni
ti

on
 A

cc
ur

ac
y 

(%
) 

--
--

>

 

 

Off-line Aurora 2 DSR 
On-line Aurora 2 DSR 
On-line ASR with baseline MCRA

(a) Subway environments
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(b) Babble environments
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(c) Car environments
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(d) Exhibition hall environments

Figure 5.2 � Recognition performances of Aurora 2 DSR in o�-line vs. on-line ASR
with baseline MCRA for test data set `A'.

the list of test data and mimics the real-time spoken utterances by sending a stream

of frames to the decoder.

5.3 Results for BOSCPD-Based On-Line ASR

In this section, we present the simulation results for SJAC-based on-line ASR using

our proposed BOSCPD technique. The additive non-stationary noise is substantially

reduced in the front-end processing using the BOSCPD-based SJAC algorithm. The

non-stationary channel distortion bias is removed during the decoding stage as shown
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(a) Restaurant environments
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(b) Street environments
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(c) Airport environments
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(d) Train environments

Figure 5.3 � Recognition performances of Aurora 2 DSR in o�-line vs. on-line ASR
with baseline MCRA for test data set `B'.
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(a) Subway environments
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(b) Street environments

Figure 5.4 � Recognition performances of Aurora 2 DSR in o�-line vs. on-line ASR
with baseline MCRA for test data set `C'.
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in Fig. 5.5. In these two-step decoding processes, the decoder first estimates the

frame hypothesis score based on the bias estimated in the previous frame and then

it estimates the bias to be used for the next frames. The experimental setup for this

simulation as shown in Fig. 5.5 is described in the following subsections.

5.3.1 Simulation Setup for BOSCPD Algorithm

Before recognition results are presented we first will present the results of some

simulations to il lustrate the behavior of the proposed BOSCPD algorithm and obtain

some non-recognition based performance measures. We measure the performance of

the proposed BOSCPD approach using speech samples from the Aurora 2 speech

database [1] as described in Section 5.1. In order to validate the proposed BOSCPD

algorithm to track fast changing acoustic environments, lve devise three simulation

environments as follows:

5.3.1.1 Simulation Environment I

For simulation environment I, lve examine three test cases of subway noise. In

test case I, the test speech sample consists of two acoustic conditions in cascade:

the speaker suddenly mo\zes from a clean (> 30 dB) to a 15 dB SNR condition and

stavs there some time. Then the speaker moves to a clean (> 30 dB) condition again.

Similarly, in test case II, the test speech sample consists of two acoustic conditions

in cascade: the speaker suddenly moves from a clean (> 30 dB) to a 5 dB SNR

condition and then moves to a clean (> 30 dB) condition. In test case III, the test

speech sample consists of three acoustic conditions in cascade: the speaker suddenly

moves from a 5 dB SNR condition to a 15 dB SNR and then moves to a clean (> g0
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Figure 5.5 � Flow diagram of the proposed BOSCPD algorithm for the soft compu-
ting model of on-line ASR as described in Fig. 3.1 and Fig. 3.2.

dB) condition. Test cases I and II demonstrate well background acoustic conditions

that changed rapidly from very high SNR to low SNR. The �rst two test conditions
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represent \.vorst-case scenarios where NICRA shows maximum delay in adaptation to

new conditions.

5.3.L.2 Simulation Environment II

For the simulation environment II, we examine a single test utterance. The test

utterance is corrupted by babble noise at 5 dB SNR. This test case demonstrates well

background acoustic conditions that change rapidly with time.

5.3.1.3 Simulation Environment III

For the simulation environment III, we examine a test case where the speaker

suddenly moves from the babble noise environment at a 5 dB SNR condition to the

subway noise environment at a 5 dB SNR condition. This test case demonstrates well

background acoustic conditions that change rapidly from one environment to another

environment.

These simulation test environments represent a real-time situation for non-stationary

noises r,vhere both the mean and variance of the speech spectral properties change due

to non-stationarity of the acoustic regimes. Both speech signal and noise are assumed

to be iid Gaussian. In our experiment, 'we tracked changes of the magnitude value

of a DFT bin of the observed noisy speech signal based on the proposed BOSCPD

technique to compensate for the rapidly changing non-stationary noises.

5.3.2 HMM Configurations for On-Line ASR

To confirm the validity of the proposed BOSCPD-based on-line ASR, we compared

its performance to the MCRA-based on-line ASR's recognition performance. The on-
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line ASR is tested using the same HNIM configuration as rve discussed in previous

subsection 5.2. We use the ATK toolkit to implement it.

5.3.3 Non-stationary Noise Tracking Results

In this subsection, we present the tracking performances of our proposed BOSCPD

algorithm compared to the baseline NICRA and some of its derivatives, e.g., MCRA2

[94] and EMCRA [95], in rapidly changing noisy environments. From the simulation

results, we find that our proposed BOSCPD algorithm shows an improvement in

tracking rapid variations in the spectral properties of the noisy speech signal compared

to the MCRA-based noise tracking algorithms. The performances of the BOSCPD

algorithm for each test case as we mentioned earlier are discussed next.

5.3.3.1 Test Results for Simulation Environment I

The proposed BOSCPD-based frame dvnamic SJAC compensation algorithm for

non-stationary noises is validated by comparing its performance to the baseline NICRA-

based techniques (e.g., MCRA [4], MCRA2I94l, ENICRA [95]). From the simulation

results, it can be seen that our proposed method performs excellently for r,vorst case

scenarios where acoustic conditions change rapidly from very high SNR to lor,v SNR

conditions in test cases I and II. In test case III, the proposed algorithm follows

the NICRA algorithm. Graphical representations of performances of the proposed

BOSCPD-based noise tracking, rapid change detection, and adaption algorithms for

test cases I, II, and III are shor,vn in Fig. 5.6,5.7 and Fig. 5.8 respectively.
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Figure 5.6 � Comparison between the noise spectrum (for f = 750 Hz) estimated
using the proposed BOSCPD algorithm and MCRA [4], MCRA2 [94] and EMCRA [95]
algorithms for test case I in the simulation environment I.
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Figure 5.7 � Comparison between the noise spectrum (for f = 750 Hz) estimated
using the proposed BOSCPD algorithm and MCRA [4], MCRA2 [94] and EMCRA [95]
algorithms for test case II in the simulation environment I.
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Figure 5.8 � Comparison between the noise spectrum (for f = 750 Hz) estimated
using the proposed BOSCPD algorithm and MCRA [4], MCRA2 [94] and EMCRA [95]
algorithms for test case III in the simulation environment I.

5.3.3.2 Test Results for Simulation Environment II

In this case, we evaluate the performance of the proposed BOSCPD technique for

noisy speech enhancement. We use several standard objective quality measures such

as i) global SNR (GSNR), ii) segmental SNR (segSNR), iii) Itakura-Saito distortion

(It-Sa), iv) weighted spectral slope (WSS), and v) perceptual evaluation of speech

quality (PESQ). For one particular noisy speech �le, results are summarized in Table

5.6.

Figure 5.9 shows an example noise spectrum estimated with our algorithm and

with MCRA [4], MCRA2 [94], and EMCRA [95] for a scenario in which the spoken

utterance is degraded with highly non-stationary babble noise. Our algorithm is able

to track non-stationarity in environments and adapt to the new environment without

delay while MCRA-based algorithms required large delay to adapt.
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Figure 5.10 compares the performance of the proposed BOSCPD algorithm with

MCRA for denoising the noisy speech signal degraded by babble noise. The time

window size L is set to 64 frames for both the proposed algorithm and the MCRA

algorithm. The proposed algorithm performed better than the original MCRA, which

can be easily observed from Figure 5.10(d-e).

Table 5.6 � Speech Enhancement Comparison of Di�erent Noise Power Spectrum
Estimation Techniques.

GSNR SegSNR It-Sa WSS PESQ
Noisy Speech 5.264 -1.545 3.848 93.927 1.987
MCRA 9.304 0.623 3.061 85.681 2.357
MCRA2 8.672 0.166 2.612 88.046 2.316
EMCRA 9.352 0.524 3.507 86.488 2.373
BOSCPD 9.397 0.631 3.050 85.382 2.420
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Figure 5.9 � Comparison between the noise spectrum (for f = 1.5 kHz) estima-
ted using the proposed algorithm and MCRA [4], MCRA2 [94] and EMCRA [95]
algorithms for a sentence corrupted by babble noise at 5 dB SNR.
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Figure 5.10 � Comparison of speech enhancement performances using the proposed
algorithm and the baseline MCRA algorithms for the test utterance corrupted by
babble noise.

5.3.3.3 Test Results for Simulation Environment III

The noise tracking performance of the proposed BOSCPD algorithm for simula-

tion environment III is shown in Fig. 5.11. This test environment shows an example

noise spectrum estimated with our algorithm and with the MCRA [4], MCRA2 [94]

and EMCRA [95] algorithms for a scenario in which the noise environment changes

suddenly with an increased noise �oor. Our algorithm is able to adapt to the new

environment within 0.08 sec, while the MCRA and EMCRA algorithms required 1.1

secs, and the MCRA2 algorithm required 1.3 secs to adapt.

In all the tests cases, a standard spectral subtraction-type speech enhancement

method has been used to perform the noise removal. Speech signals sampled at 8 kHz

are segmented into 25-ms frames using a Hamming window with 60% overlap.
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Figure 5.11 � Comparison between the noise spectrum (for f = 1.5 kHz) estimated
using the proposed algorithm and the MCRA [4], MCRA2 [94] and EMCRA [95]
algorithms for a sentence corrupted by babble noise (t < 4.4 sec) followed by a
sentence corrupted by subway noise (t > 4.4 sec).

5.3.4 Recognition Performance of the BOSCPD-Based On-

Line ASR

The simulation results of the on-line ASR show that the proposed BOSCPD-

based SJAC technique increases the word recognition accuracy greatly compared to

the baseline MCRA, MCRA2 and EMCRA systems, especially for SNRs between 20

dB and 5 dB. We conduct these recognition simulations for test data set `A', set `B',

and set `C' of the Aurora 2 speech database [1], [107]. The recognition performance

of the proposed BOSCPD-based on-line ASR is shown in Table 5.7, and percentage

gain in word recognition accuracies compared to the baseline MCRA-based on-line

ASR is presented in Table 5.11.

The recognition results for test data set `A' compared to the baseline MCRA,

MCRA2 and EMCRA are shown graphically in Fig. 5.12. Test data set `B' repre-

sents restaurant, street, airport, and train station environments, and these results are
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TRnLp 5.7 - Recognition accuracy of the proposed BOSCPD-based on-line ASR using
the clean-trained model for recognizing digit strings.
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graphically presented in Fig. 5.13. Similarly, Test data set 'C' represents two simu-

lated test acoustic environments (MIRS filtered), e.g., subway and street, and the

recognition results in these noisy conditions are shown in Fig. 5.14.

We present the recognition performance of the proposed BOSCPD-based on-line

ASR using the clean-trained model in Table 5.7. lVe also show the percentage im-

provement in digit recognition accuracies using our proposed BOSCPD algorithm

for on-line ASR compared to the baseline MCRA-based on-line ASR in Table 5.11.

In this performance evaluation, lve include test set data in noisy environments ran-

ging from a clean condition to -5 dB SNR. Our test results show that the propo-

sed BOSCPD-based on-line ASR gains 2.25% overall improvement compared to the

baseline MCRA-based on-line ASR. We achieve an improvement of 5.16% in digit

recognition accuracy compared to the baseline NICRA system within 20 dB to 0 dB
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Tasrp 5.8 - Improvement (%) of recognition accuracy of the proposed BOSCPD-
based on-line ASR using the clean-trained model for recognizing digit strings compa-
red to the baseline MCRA-based on-line ASR.
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SNR ranges.

The word recognition performances of MCRA2- and EMCRA2-based on-line ASRs

for test data sets 'A' 
,'B' , and 'C' of Aurora 2 speech corpus as shown in Fig. 5.12, Fig.

5.13, and Fig. 5.14, respectively, are poorer compared to the performance of MCRA-

based on-line ASR. Among these tr,vo variants of NICRA, MCRA2 performs very

poorly compared to EMCRA2 in most cases. This is due to the fact that MCRA2 fails

to follor,v the rapid changes in acoustic environments, as lve can see in Fig. 5.9, and it

introduces more unwanted distortions especially at higher SNR conditions. However,

we include these two variants of MCRA in our performance as they represent the

most recent improvements of the NICRA algorithm. The simulation results show that

our decision to consider MCRA as our baseline system is right.
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(b) Babble environments
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(c) Car environments
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Figure 5.12 � Performance of the proposed on-line ASR for the Aurora 2 test data
set `A'.

These simulation results show that at very low SNR conditions, especially at 0

dB or below, the ASR recognition accuracy is very poor due to the fact that at those

SNRs, speech signals are always highly dominated by the background noise and the

observed speech signals become almost noise.

5.3.5 Discussion

This dissertation presented an architecture of on-line ASR based on the proposed

BOSCPD algorithm in rapidly varying non-stationary noises. In this architecture, we
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(c) Airport environments
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Figure 5.13 � Performance of the proposed on-line ASR for the Aurora 2 test data
set `B'.
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Figure 5.14 � Performance of the proposed on-line ASR for the Aurora 2 test data
set `C'.
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address a number of unsolved issues involved in the non-stationarity of acoustic envi-

ronments for robust automatic speech recognition. The main issue we have focused on

is the frame dynamic non-stationary noise tracking and detecting abrupt environmen-

tal changes in real-world conditions. More specifically, we address the robustness of

ASR by adopting an on-line frame dynamic joint additive and channel distortion com-

pensation (JAC) in highly non-stationary acoustic environments in particular. From

this research work, it is found that on-line ASR performs better in non-stationary

noisy conditions compared to the current ASR that works in batch-mode (off-line).

The thrust of the research work in this paper is to find JAC distortion compensation

approaches and to integrate them for on-line ASR.

Current design criteria require ASR to work in batch-mode (off-line). In batch

mode, utterance boundaries are known to the ASR decoder and it normalizes the test

utterances by subtracting a global mean cepstral bias from these utterances. Current

ASR also needs a pri,ori, information of the test conditions to improve recognition

performances. The context dependency of ASR technologies limits its application in

diverse fields. With the advent of fast computing and broadband communications

technologies, the application areas of ASR are increasing quickly. In many appli-

cations, users of an ASR system move from one place to another randomly (e.g.,

3Gl4G mobile users). In most cases, these test conditions are unknor,vn and highly

non-stationary in nature.

The proposed on-line ASR architecture exploits the advantage of Bayesian on-line

inference for the change point detection (BOCPD) technique. \tr'e have verified this

algorithm using the Aurora 2 speech data, which demonstrated simulated real-world

data sets. The proposed on-line ASR framework based on BOSCPD provides conve-
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nient delineation of the implementation of the change point algorithm within the

architecture of the MCRA noise tracking algorithms. From the experimental results,

we found that the new state-of-the-art on-line ASR algorithm enables us to decode the

test speech utterances at different SNR conditions in highly non-stationary environ-

ments. Hor,vever, it needs further improvement to attain higher recognition accuracy

at low SNR conditions.

5.4 PSO-Based Flont-End Processing for On-Line ASR

In this section, we present the simulation results for our proposed on-line ASR

based on a dynamic multi-srvarm particle swarm optimization (DMS-PSO) technique.

We implement the DMS-PSO as noise canceller in the front-end of our proposed on-

line ASR. The experimental setup for this simulation is described in the follor,ving

subsections.

5.4.L Test Database Preparation for DMS-PSO

In order to simulate the real-time noise cancellation in the front-end of the pro-

posed on-line ASR, we use a dual-channel soft adaptive filter as shown in Fig. 4.6.

For a real-time de-noising process using DMS-PSO, the test utterances are prepared

by adding non-stationary noises with the clean test utterances of test set A of the

Aurora 2 speech corpora. These test utterances are blended with subway, babble, car,

and exhibition hall noises from the Aurora 2 noise database. We add these noises at
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Tasln 5.9 - Configuration parameters for the DMS-PSO algorithm.

Parameter Initial Values

DMS-PSO

Frame length in samples 256
Frame overlapping 6jYo

Swarm numbers 10
Swarm population size J

Total population size 30
Particle dimension 1 0

Acceleration constants c1,c2 7.49445
Upper velocity mit V*o, I

Lower velocity mit V*in -1

aini, 0.95
Qend 0.4

Grouping period 10
Local refining period 100

SNR levels 20 dB, 15 dB, 10 dB, 5 dB, 0 dB, and -5 dB. Aurora test data sets have

noisy test data at these SNR levels.

In this DMS-PSO-based adaptive filtering process, input noise n1 is filtered with

an ITU-T G.7L2 filter before adding it to the clean speech signal. The reference noise

n2 is correlated to input noise n1. Holvever, trve assume that noises are uncorrelated

with the speech signal.

T,telp 5.10 Qualitative performance evaluation of the DNIS-PSO algorithm for
noise cancellation in non-stationary environments.

Test Case at -5 dB SNR

Mean SegSNR (dB) at noisy conditions -3.3783

Mean SegSNR (dB) after denoising 1 L . 0 6 9 1

PESQ (MOS) at noisy conditions 1.0669
PESQ (MOS) after denoising 2.O574
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Table 5.11 � Qualitative performance evaluation of the NLMS algorithm for noise
cancellation in non-stationary environments.

Test Case at -5 dB SNR

Mean SegSNR (dB) at noisy conditions -3.3783
Mean SegSNR (dB) after denoising 5.8951

PESQ (MOS) at noisy conditions 1.0669
PESQ (MOS) after denoising 1.6801
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Figure 5.15 � From the top, (a) time waveforms of the clean signal, (b) the speech
signal corrupted by the non-stationary noise at -5 dB SNR, (c) the denoised speech
signal for the DMS-PSO algorithm and (d) the denoised speech signal for the NLMS
algorithm.

5.4.2 Setting Con�guration Parameters

In DMS-PSO-based noise cancellation in the front-end of our proposed on-line

ASR, we process the input speech signal in frames. Each frame contains 256 samples

(32 ms for 8 kHz sampling frequency) with 50% overlap between adjacent frames.

The experimental conditions for the PSO technique are shown in Table 5.9 [5].
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5.4.3 Experimental Results

In the first subsection we compare the performance of the PSO algorithm with

standard NLNIS [108] algorithm as an adaptive noise canceling technique in the front-

end of ASR in non-stationary acoustic environments. In the second subsection, we

present the word recognition performance of our proposed on-line ASR using DMS-

PSO in the front-end as a dynamic noise canceller. We compare these recognition

results r.vith the lViener-based optimal filter in the Aurora 2 front-end. In the recog-

nition stage, we follow the same procedures as in Section 5.4.

5.4.3.L DMS-PSO-Based Noise Reduct ion

The performance of the DMS-PSO algorithm compared to the NLMS [108] algo-

rithm for adaptive non-stationary noise cancellation for a test utterance at -5 dB SNR

is shown in Fig. 5.15. From the spectrograms of the test speech signal as shown in

Fig. 5.16, it is clear that PSO-based evolutionary algorithms are capable of recovering

speech signals even at very low SNR in non-stationary environments compared to the

NLMS algorithm. The corresponding improvements in PESQ and Segmental SNR are

listed in Table 5.10 and Table 5.11 for DMS-PSO and NLMS algorithms, respectively.

DMS-PSO shows big improvement in the Segmental SNR and it doubles the PESQ

score. These improvements clearly show that PSO in the front-end processing would

play an important role in canceling the non-stationary noises and improving the SNR

of the speech signals, which are the main criteria for feature-based noise compensation

in current ASR techniques.

The simulation results confirm the validity of the PSO-based adaptive noise com-
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pensation algorithm according to the speech communication model in Eq. A.14 and

Eq. A.15. The DMS-PSO method works well even at very low SNR as shown in Fig.

5.15. The objective of our proposed DMS-PSO-based method is to increase the SNR

values by compensating the additive non-stationary noise frame dynamically in the

front-end and then compensating the non-stationary channel distortions in the ASR

decoding stage in the back-end.

Figure 5.16 � Performance of the DMS-PSO for adaptive noise cancelation compared
to the NLMS algorithm. From the top, (a) Spectrogram of the clean signal as shown
in Figure 5.15(a), (b) spectrogram of the noisy speech signal at -5 dB SNR, (c)
spectrogram of the denoised speech signal by the PSO algorithm, and (d) spectrogram
of the denoised speech signal by the NLMS algorithm.

5.4.3.2 Recognition Performance of On-Line ASR using DMS-PSO

The recognition performance of the on-line ASR using the DMS-PSO optimization

technique in dynamic non-stationary noise compensation in non-stationary acoustic
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environments is validated by comparing its performance to the baseline Aurora 2 DSR

system. The baseline Aurora 2 front-end uses lViener-based optimal filter for adap-

tive compensation of acoustic noise. Aurora 2 front-end uses voice activity detector

(VAD) to detect speech and non-speech parts of the speech signal. It takes the refe-

rence noise during the non-speech period of the noisy speech signal and performs the

process enhancement process as a dual channel adaptive noise canceller. Since Au-

rora 2 front-end's Wiener-based optimal filter acts as a dual channel adaptive filter,

in this dissertation, \,ve compare our proposed DSM-PSO-based soft adaptive filter's

performance with this Wiener filter.

The simulation results of the on-line ASR show that the DMS-PSO-based frame

dynamic noise compensation technique increases the word recognition accuracy greatly

compared to the baseline system for SNRs between clean and -5 dB. These simulations

are conducted for test data set 'A'of the Aurora 2 speech corpora representing subway,

babble, car, and exhibition hall environments, and these are graphically presented in

Fig. 5.17. These simulation results shorv that at very low SNR conditions, especially

at 0 dB or below, the ASR recognition accuracy is improved compared to the baseline

dual channel Wiener filter. This improvement in performance at low SNR is due to

the fact that DMS-PSO optimization technique is capable of modeling the optimal

adaptive filter that represents the highly non-stationary acoustic environments.

5.4.4 Discussion

In this section, we propose DNIS-PSO for noise reduction in the front-end of our

proposed on-line ASR algorithm to improve the robustness of ASR in unknown highly
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(a) Subway environments
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(b) Babble environments
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(c) Car environments
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(d) Exhibition hall environments

Figure 5.17 � Performance of the DMS-PSO-based on-line ASR compared to the
Wiener-based Aurora 2 front-end for the Aurora 2 test data set `A'.

non-stationary test conditions. The PSO-based optimization technique for tracking

and adapting the dynamics of non-stationarity of acoustic environments proves e�-

cient in tracking and compensating noises. We have veri�ed this algorithm for test

data set A of the Aurora 2 speech corpora for subway, babble, car, and exhibition

hall acoustic conditions. The simulation results show that DMS-PSO-based frame-

dynamic adaptive noise tracking and compensation in the front-end of the proposed

on-line ASR improves the recognition accuracy greatly even in low SNR conditions,

as shown in Table 5.12.
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The performance improvement in the DMS-PSO-based SJAC system compared

to the baseline Wiener filter based Aurora 2 front-end in presented in Table 5.13.

The average increments in recognition accuracy compared to the baseline system are

17.99%, 45.47%, 25.73%, and 18.68% for subway, babble, car, and exhibition hall

environments respectively. The average increment in recognition accuracy for the

data set 'A' is 25.47% compared to the Baseline Wiener-based Aurora 2 front-end.

From our experiments, we find that the proposed DMS-PSO-based frame adaptive

SJAC system for on-line ASR works significantly better than the baseline Aurora 2

DSR and needs further improvement to minimize distortions at lor,v SNR conditions.

Here DN{S-PSO performs comparatively better at moderate SNR conditions, which is

supported by the basic idea of the PSO-based evolutionary optimization techniques.

Holvever, we achieve these improvements in recognition accuracy at the expense of

more computational cost compared to the Wiener-based optimal filter for adaptive

noise cancellation.

5.5 Summarv

By using the BOSCPD-based noise tracking and rapid adaptation in highly non-

stationary acoustic environments and the DMS-PSO-based optimization technique to

track dynamics of non-stationarity of the test conditions speech recognition, and a

joint background noise and channel distortions compensation technique for on-line

ASR introduced in previous chapters, a number of frame dynamic real-time ASR

tests are performed for noisy speech signals and their denoised counterparts. From

our experimental results, lve drar,v conclusions as follows:

1 l e
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Taet,e 5.12 - Recognition performance of clean-trained model for the proposed DMS-
PSO-based on-line ASR for recognizing digit strings.

SNR Subway Babble Car Expo Hall

clean 98.99

20 dB 97.99

15 dB 95.65

10 dB 87.59

5 dB 70.65

0 dB 40.53

-5 dB 24.27

Average 73.67

98.98 99.16 98.81

98.94 98,31 98.08

96.28 96.85 95.49

89.62 92.L9 88.01

73.25 66.79 70.36

39.95 38.62 41.03

19.56 16.26 L7.9

73.80 72.60 72.81.

Taslp 5.13 - Improvement (%) of recognition accuracy
DMS-PSO-based on-line ASR compared to the proposed
tem.

of clean-trained model for
BOSCPD-based SJAC sys-

SNR Subwav Babble Expo Hall Average

clean 0.16

20 dB 1.06

15 dB 2.95

10 dB LL.27

5 dB 32.33

0 dB 50.11

-5 dB 92.3r

Average 11.99

0.01 0.35

9.98 1.52

31..12 8.18

82,67 39.18

171.00 108.39

240.58 191.03

294.35 94.73

+ o . + t  z o . l J

-0.33 0.05

1.95 3.63

3.96 11.55

r7.L9 37.58

6r.71 93.36

L56.76 159.62

133.99 153.99

18.68 25.47

1,44



BOSCPD-based joint non-stationary noise tracking and compensation algo-

rithms for on-line ASR can help to improve ASR performances in real-time

applications. Among them, the PSO-based SJAC algorithm gives the best re-

sults and can significantly improve the ASR performance of noisy speech at very

low SNR conditions.

In our proposed SJAO-based on-line ASR experiments, we show that significant

improvements can be achieved by using an appropriate algorithm to instantly

detect and compensate rapid changes in acoustic conditions in unknor,vn non-

stationary test environments.

Experimental results show that our proposed BOSCPD and DMS-PSO ap-

proaches for SJAC-based noise compensation in the front-end of on-line ASR

applications not only improve the absolute values of ASR accuracies, but also

largely increase their dynamic ranges in all conditions. Thus these approaches

can be used in real-time ASR applications where people desire high and stable

ASR performance even when the surrounding environment is changed abruptly.

145



Chapter 6

Conclusions and F\rture Research

6.1 Conclusions

This dissertation has addressed a number of unsolved issues involved in the non-

stationarity of acoustic environments for robust automatic speech recognition. The

main issues we have focused on in this dissertation are tracking and detecting abrupt

acoustic environmental changes in real-world conditions in order to improve the noise

robustness of automatic speech recognition. More specifically, it addresses the ro-

bustness of ASR by adopting BOSCPD and PSO techniques for an on-line frame

dynamic soft joint additive and channel distortion compensation (SJAC) in highly

non-stationary acoustic environments. In this dissertation, it is found that BOSCPD-

based on-line ASR performs better in non-stationary noisy conditions compared to

MCRA-based on-line ASR. The PSO-based dual-channel front end processing for on-

line ASR performs better than gradient-search-based dual channel lViener filter based

Aurora 2 front-end-based on-line ASR in non-stationary environments. The thrust of
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the research was to develop new ideas which will show ways for developing more

robust on-line ASR.

6.2 Review of Achievements

Starting with an extensive study of issues of the robustness of state-of-the-art ASR

technologies, we develop \,vays to design and analyze the performance of noise-robust

on-line ASR, with highly non-stationary noise tracking, sudden change detection in

acoustic environments, joint compensation of the observed speech signal in noisy

conditions. lVe add these functionalities to ASR front-end processing and decoding

stages in order to simulate on-line ASR.

We develop a soft frame-synchronous sequential noise-bias compensation and

speech recognition in noisy conditions based on a Bayesian on-line inference technique.

The Bayesian on-line change point detection technique in association with classical

NICRA algorithm is implemented, which can be as a soft computing technique in the

back-end processing of ASR systems to work in real-time environments.

In the case of a SJAC-based speech frame-synchronous denoising technique, we

not only study several popular algorithms, but also propose our own methods. lVe

propose two techniques: (i) Bayesian on-line inference in conjunction with an NICRA

noise tracking algorithms, and (ii) sequential prediction and adaptation of speech

signals based on a non-stationary and non-Gaussian modeling approach using a par-

ticle swarm optimization (PSO) technique for on-line speech recognition in real-world

acoustic conditions. lVe have shown through experiments that these two approaches

can help improve the speech recognition performance of an ASR system for real-
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time applications. By the integration of the PSO soft adaptive filtering algorithms,

ASR performance can be improved in different noisy conditions, compared with using

classical linear regression models stand-alone. The soft adaptive filters are therefore

promising candidates for further automatic speech recognition studies and for prac-

tical applications, e.g., noise-robust ASR applications in mobile environments.

6.3 F\rture Research

In future research r,vork, the follo.wing areas could be considered:

- The performance of speech recognition in real-world acoustic environments

could be improved by extending the current research approach to take into ac-

count a more realistic acoustic model based on a non-linear and non-Gaussian

modeling approach to tackle the current widely discussed non-stationarity pro-

blem for ASR.

The Bayesian sequential prediction and adaptation along with fine refinement of

current HMMs r,vith multiple streams, normalized parameters, increased training

data, and large vocabulary size could be the new direction in research for human-

like environment-ar,vare ASR.

At present, researchers are trying to learn from behavior patterns of species in

nature, e.g., birds flocking, fish schooling etc. They are very optimistic about

bio-inspired solutions to give us new insights into solving performance issues of

current ASR in real-world acoustic conditions. PSO is one such approach that

could open a new research direction for noise robust ASR.

The parameters of the proposed SJAC-based on-line ASR could be further op-
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timized experimentally, so as to minimize speech distortions and artifacts.



Appendix A

Mathematical Model

Communication

of Speech
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Speech Communication Model

A general model of the observed speech signal g(t) considering all the noise sources

independently can be described [63] as

a(t) : t{@@lt"![ffu"",a]n,G) + n1(r))oh ^lr,.(t) + n2(t)]ah"n",(t)l + nz(t), (A.1)

r,vhere n1(t) is the background noise, h^u*"(t) is the impulse response of the micro-

phone transducers, nz(t) and h"6on(t) are the additive noise and impulse response,

respectively, of the transmission channel, and n3(f) is the noise present at the recei-

ver. Now Eq. A.1 can be further simplified by combining the various additive noises

and channel distortion into composite non-specific sources and ignoring the Lombard

and stress noises, as shown in Fig. A.1. Under these conditions the acoustic modeling

reduces to

a( t ) : r ( t )ah ( t )+n( t ) , (A.2)

r,vhere h(t) is the impulse response of a linear-time-invariant (LTI) system, n(t) is

additive noise, and r(l) is the clean speech. In this case, the model parameters are

assumed to be stationary during the course of observation.

In the discrete time Fourier transform (DTFT) domain, Eq. A.2 can be written

into its equivalent form in the spectral domain without phase information as follows:

Y (a) : X (w) H (w) + lr(r,.').

1 5 1

(A.3)



Flcunr A.1 - Speech communication model [11].

where Y(c,;) is the DTFT of the observed noisy speech signal g(t), X(u) is the DTFT

of the clean speech signal r(t), H(w) is the DTFT of the impulse response h(f) of the

LTI system, and //(u,') is the DTFT of the additive noise n(t) .

In the DFT domain, Eq. A.3 can be re-written as follows:

Y (rr) :  X (u*) H (ro) * l /(r*), (A.4)

where k {k:0,.. . ,N, - 1} is the frequency bin index, and /V., is the DFT sampling

period.

Now, the magnitude spectrum of the transformed speech signal in Eq. A.4 is

lY (rr)l : lx(r*) l lu (rr)l + ll/(a"'6) l.

In the power spectral domain, Eq. A.5 has the form as follor,vs:

(A.5)

r52



(lx(rn) | lH (rr)l + lr/(o6) l)'z

lX (a e)12 lH (, n)l ' + l,n/(r,:p) 12

2lX (a p)l ln @ r) l l  l / (r*) I  cos 0,r, (A.6)

where 9,* denotes the random angle between the two complex variables (lH (rr) llX(r*) l)

and l,n/(r,.'6)1. Currently there are two approaches for this random angle 0,, as follows:

- case L: The phase information is omitted assuming that ASR performance does

not depend on phase information. Therefore, the angle term cos9r," is set to 0

and uses the power spectrum as the acoustic feature. Under this condition, Eq.

A.6 will become

lY (, r)12 : lX (up)l ' lu (, r)l '  + l l /(r.,. '6) 12.

Holvever, Eq. A.7 can be rewritten in the following form,

(A.7)

Pv@*): Px(wr)lH(up)12 + P7'1(up). (A.B)

where Pv(ux) represents the por,ver spectra of the noisy speech observation,

Px@n) represents the por,ver spectra of the clean speech, P1,'(cu6) represents the

power spectra of the noise, and lH(r*)l'represents the power spectra of the

channel.
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- Case 2: In this case, cos9,,. is set to 1 and Eq. 4..6 r,vill become

lY(rn)|" : lx(r*)l ' lu(rr)1'z+ llrl(r.,. '6)12 +zlx(a) lla(r*)ll lrr(r*)l (A e)

In this paper, we followed the most commonly used 1st approach, Eq. A.B, as the

basis for single channel JAC compensation in feature space for the proposed on-line

ASR.

freq

Energy in
Each Band

FIcunp A.2 Mel-cepstral transformation. Here mi represents eth Mel-spectral band.

After Mel filtering using Mel-filterbank as shown in Fig. A.2 and log transforma-

tion of Eq. A.8, we get

ln Py(w*^) : lnlPx (ar-  ̂) lH (r^^)12 + PN(a^^)], (A.10)

where lrlm : 0, ..., M* - 1 , and M* is the number of Mel weighting filters, and u^-

represents a particular Mel-spectral band.

Now Eq. A.10 can be further processed as follows:
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InPy(w-^):m 
[er1r- 

^)lH(r^^)t ' ( l *

:tn le* @*^)l H (r^^)l'] + t"

:lnPx(u^-) + ln lH(w^*)12 +

Pu(w^^) )lPa(u^^)lH (r^^)l '

l +
Pu(a*^)

'l'
Pa

+

(r^^)lH(r^^)l'
Pw(w^^)

Py(w^^)lH (r^^)l ' ]  to" i

(A.13)

Taking the IDFT on both sides of Eq. A.10, rve can write it in the cepstral domain as

(
y :x fb+ IDFf ln t

t
: x *b+ IDFT{ tn

: x *b * r ( x ,n ,b ) ,

(r *"""f '"'{^(adffi!,';v)}f 
)}

(1  q  oDFT[n-u- " ] )  ]\ ^ ' "  / )

(A.12)

where y : I DFT{ln Py(w*^)} is the observed speech signal, x: I DFT{In Py(w^^)}

is the clean speech signal, b: IDFT{lnlH(u*^)l'} ir the channel bias, n is additive

background noise and r(x,n,b) is a correction vector in the cepstral domain [11].

However Eq. A.10 can be simplified differently as follows:

Taking the IDFT on both sides of Eq. A.13, we can write it in the cepstral domain as
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y :  rr+ IDFT {tn(t  + eDFT[x+b-n]) ]

:  n  *  s (x ,  n ,  b ) . (A.14)

where n: IDFT{lnPp(u*^)} is the addit ive background noise and s(x,n,b) is a

correction vector in the cepstral domain [11].

Since the acoustic model in Eq. A.12 contains a highly non-linear term, the noise

compensation algorithms used a simplified form of the acoustic model based on some

assumptions as follows:

for fairly stationary environments and at high SNR

-  ( *+b )>>n ,and

-  r ( x , n ,b )  =  0

as a result Eq. A.12 in the cepstral domain reduces to the following simple form [11]

y=x tb . (A.15)
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Appendix B

Implementation of On-Line ASR



Et.1 On-Line ASR using ATK

HTK, the speech recognition platform from [15], has long been used in most of

the research labs in academic premises around the world for the simulation of off-line

ASR. However, for real-time applications, especiallv for smart-phones-based on-line

speech recognition, it is essential to use a speech recognition engine developed based

on multi-threaded programming architecture. Multi-threaded programming is used for

embedded technology for design and developed real-time systems. AIK, a real-time

API for HTK, is developed in [2] to meet these requirements to simulate real-time

speech recognition systems. We simulate our proposed on-line ASR algorithms using

ATK, which is described briefly in the follor,ving subsection.

8.1.1 On-Line ASR Architecture

The proposed on-line ASR infrastructure based on ATK [2] consists of a variety of

components connected together as shown in Fig. 8.1. The functionalities of the main

components are described as follor,vs:

- Packet: It is a chunk of information. Packets are used for transmitting a va-

riety of information between asynchronously executing components. In particu-

lar, packets are used to convey various forms of user input and output signals

(speech, event markers such as mouse clicks, etc). In these cases, each packet

has a time stamp to define the temporal span to which it relates. The types of

data that a packet can carry include text strings, lvaveform fragments, coded

feature vectors, r,vord labels and semantic tags.

Buffer: This is a first-in first-out (FIFO) packet queue. Buffers provide the
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channel for passing packets from one component to another. Buffers can be of

fixed size or unlimited size. Components wishing to access a buffer can test to see

whether the buffer operation would block before committing to the operation.

Component: it is a processing element. Each component is executed within

its own individual thread. Components communicate by passing packets via

buffers. In addition? components have a command interface that can be used to

update control parameters during operation and thereby modify the run-time

behavior of the component.

ARMan
r  -  -  -  -  -  -  -  - l

FIcuRp B.1 - Basic Architecture for On-Line Recognition System

8.L.2 On-Line Digit Recognition

In ATK, the three most required resources, €.g., i) dictionary, ii) grammar, and iii)

HNIMs of clean speech, need to be prepared in batch-mode using HTK. For the test
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phase, ATK provides on-line decoding using HVite instead of HDecode in HTK. Each

of the three required resources can be defined as entries in a configuration file, which

is loaded at start-up time. Such a file will also typically contain the specification of

the coding parameters.

8.1.3 Fbame Dynamic Recognition

The ARec component in ATK as shown in Fig. 8.1 provides similar functionality to

the standard HTK Viterbi decoder. It also provides tri-gram language model support,

which is not available in HTK. ARec is supplied with a resource group containing the

required HMM Sets, dictionary, grammar, and optionally an ?r-gram language model.

It then decodes incoming feature vectors accordingly.

In operation, the ATK on-line recognizer always remains in one of five possible

states as indicated by the state diagram shown in Fig. 8.2. The recognizer changes

state, depending on the settings of the operating modes. The ARec display shows the

current mode as a sequence of 4 characters: representing the settings for CYCLE

(1-oneshot, C-continuous), FLUSH (I:immed, M-tomark, S:tospeech), STOP

(I:immed, M:tomark, S-tosilence), and RESULTS (I:immed, A-asap, E-atend,

X:al l ) .

On creation, an ARec object is placed in the WAIT state. When in the WAIT state,

the recognizer waits for a Startfl command to be issued via its command interface.

When this Startfl command is received, the recognizer moves to the PRIME state in

which it loads the recognition resources specified by the current resource group. It then

moves immediately to the FLUSH state where it takes packets from its input buffer
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and discards them until it is ready to start recognizing as determined by the flush

mode setting. This can happen either immediately, r,vhen a START marker is received,

or as soon as the incoming observation packet has a frame marked as speech. Once

in the RIJN state, the recognizer recognizes incoming packets until either a STOP

marker is received, a speech frame marked as silence is received or a StopQ command

is issued. In the ANS state, the recognizer cleans up the recognition processing and

returns to either the WAIT or PRIME states depending on the setting of the CYCLE

mode. A more detailed description of this recognition process can be found in [2].

ffi[[

FIcuRp B.2 - ATK Recognizer State Ttansition Diagram [2]

8.1.4 Confidence Scoring

ARec supports a simple method of confidence scoring. Every frame, the acoustic

log likelihood (i.e., acoustic score) of the best matching model state and the best

matching background model state are saved. When a r,vord is recognized, these besf-

discard

RIIN-EVIMED OT

S?Ari-T lcater :ecered or

STOP IMMED or
ffOP rrkerrecerved or
Silance Frmre rece'h'rd or
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state and background sfale scores are summed to form a best-possible-acoustic score

(bs) and a background score (bg) over the segment of the waveform for which the word

is being hypothesized. A raw confidence score in the range -1 to 1 is then computed

AS

rawconf : ac - @+9, (8.1)

where oc is the actual acoustic log likelihood of the word. The confidence for that

word is then computed as

gTscs

conf :
e L s c s  +  e - & s c s

(8.2)

where trscs is the scaled rawconf score

frscs: Q.scc.f aLDCOnf - 0.r. (B.3)

The constant ascc sets the slope of the confidence curve and p* sets the opera-

ting point. Their values are set by the configuration parameters CONFSCALE and

CONFOFFSET with default values of 0.15 and 0.0, respectively.

The background model is usually stored in a separate HMM definition whose name

is determined by setting the configuration variable CONFBGHMN{. Once loaded, this

HMM is used to compute the background state probability. It might be noted that

the transition matrix of the background HMNI is completely ignored in this process.

Instead, the probability of the current speech vector is computed for each state of the
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background HNIM, and the maximum log probability is used as the background state

score. If no background model is loaded, the average score across all model states is

used as a surrogate [2].

8.1.5 Dict ionarv

The ADict class is derived from the abstract Resource class and an instance of

the ADict class is used to store a pronunciation dictionary. Logically a pronunciation

dictionary can be vier,ved as a list of r,vord entries where each word entry contains the

orthography for the word and a list of pronunciations. Each pronunciation consists

of a list of phones, a probability and an output symbol. The latter is optional but

if present, the recognition output will use the output symbol rather than the word

itself.

A dictionary can be created emptv and then filled via programmed actions, or

more commonly, it is loaded from an external file. In either case, a loaded dictionary

can be edited by adding/deleting words and changing the pronunciations of existing

words.

B.1.6 Configuration Parameters

An example configuration parameters file for ATK-based ASR system is shown

below:

# Confi.guration

*

TARGETKIND

SOURCEFORMAT

fi le for Aurora 2-based dlgi. t  on-1ine recognizer

= MFCC-O-D-A-Z

= tlAv
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HNET: TRACE

TARGETRATE

SAVECOMPRESSED

SAVEWITHCRC

WINDOWSTZE

USEHAMMING

ENORMAL]SE

ZMEANSOURCE

PREEMCOEF

NIJ},ICHANS

CEPLIFTER

NUMCEPS

SOURCERATE

LOFREQ

HIFREQ

100000 .0

T

F

250000 .0

T

F

F

0 . 9 7

26

22

72

L  Z C V

64

4000

"HMMS . l ist "

"HMMS . mmf t'

"d ia ler  .  dct  "

t 'd i -a1er.  net  t '

HMMSET: HMMLIST =

HMMSET: MMFO

ADICT: DICTFILE =

AGRAM: GRAMFILE =

SILFLOOR

USEP0I,IER

=  - 1 0 . 0

- f

HPARM: CMNDEFAULT

HPARM: CMNTC0NST

HPARM: CMNRESETONSTOP

HPARM: CMNMINFRA},IES

t' . /cepmean-ubrn"

0 . 9 8 0

F

L

t64



HPARM: TRACE

SILDISCARD = O

SPEECHTHRESH = 0

SPCGLCHCOUNT = O

SILSEQCOUNT = 0

SPCSEQCOI'NT =O

ACODE: DISPSHOW = F

HSIGP: TRACE

HREC: TRACE = 0

= 0100

= 0

= 0

= 5.0 # Grammar

= 0

=  - r 7 . 0

=  2 3 5 . 0

=  2 1 0 . 0

=  2 3 5 . 0

= 0

HREC:FORCE0UT = T

HREC:TRACEDELAY = O

HREC:C0NFSCALE =  1 .0

HREC:C0NFOFFSET = 0

HREC:CONFBGHMM = rr ' '

AIN: TRACE

AREC: NTOKS

AREC: LMSCALE

AREC: NGSCALE

AREC: WORDPEN

AREC: GENBEAM

AREC: WORDBEAM

AREC: NBEAM

AREC: TRACE

scale factor -s in HTK
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8.L.7 Fbont End Processing for On-Line ASR

The proposed soft on-line ASR in this work is based on classical context-independent

11-digit HMMs using 16 active states and 6 Gaussian mixtures per state [1]. In the

feature analysis, a pre-emphasis coefficient of 0.97, a Hamming window of 25 ms, a

frame shift of 10 ms, and 26 Mel-scale filters covering from 64 Hz to 4000 Hz are used

in the configuration file, as mentioned in subsection 8.1.2. Thirteen cepstral features

(C}-C12) were calculated in combination with 13 A and 13 A-Acepstral features. The

cepstral mean is subtracted from the trained HNIMs during the training period. Fig.

B.3 shows the front-end block diagram and the algorithms used in our experiments.

In the test experiments, continuous digit accuracy was evaluated based on an ATK

real-time ASR simulation process [2].
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Appendix C

Bayesian Inference



C.1 Bayesian Inference for the Gaussian Process

The maximum likelihood technique provides point estimates of model parameters,

e.g., the mean p and the variance E. The Bayesian inference technique provides a

treatment of this problem by introducing prior distributions over these parameters.

There are three instances of inferring model parameters, which are discussed for a

single Gaussian random variable as follor,vs:

Case I: To infer the mean when the variance is known

For inferring the mean p given a sequence of Al, observations X : {rr, 12, frs, ..., r ug}

for a single Gaussian random variable r with known variance o2,the posterior distri-

bution [109] is

p@lx) xp(xlp)p}t), (c.1)

where the likelihood function p(Xlp) can be written as follows [109]:

Ne

p(xlr'):fr n@,,111,
n . : l

r (  r  i l  ,r l
Q""'fn*o t 

-#8,("n - 
"' 

j'

Now if the prior p(p) is given by a Gaussian as follows:

p0,') : N (uluo, "3) .

In this case, it is a conjugate distribution for this likelihood

(c.2)

(c.3)

function because the
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posterior function p(plX) is a product of tr,vo exponentials of quadratic functions of

p and hence it will also be Gaussian.

Under these conditions, the posterior pQtlx) is

p!'lx) : t{ (ulu*,,ok,) ,

where

o2 Noo2n
ItrNn : 

NR + orQo 
+ 

*fiiLtrwr,

(c.4)

(c.5)

(c.6)

in which Fmr is the maximum likelihood solution for trr given by the sample mean [109]

l l M L : Ngrnn' (c.7)

The posterior mean in Eq. C.5 is a compromise betr,veen the prior mean p6 and the

maximum likelihood solution p,x,y1. For ly', : 0, Eq. C.5 reduces to the prior mean,

and for 1V, -+ oo the posterior m€or prryn is given by the maximum likelihood solution.

The inverse variance is called the precision. The precision of the posterior in Eq.

C.6 is the precision of the prior plus one contribution of the data precision from

each of the observed data points. If Al, increases the precision .\ry, steadily increases,

corresponding to a posterior distribution with steadily decreasing variance. When

11 / / "
_ + -

t  ,  I  t )ofuo 06

#r_  9  n q : l
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N, : 0, the posterior precision reduces to the prior precision )s : IloS.Similarly,

when l/n -+ oo the posterior variance goes to zero and the posterior distribution

becomes infinitely peaked around the maximum likelihood solution [109].

Case II: To infer the variance when the mean is known

In this case, it is customary to choose a conjugate form for the prior p()) for

simplicity [109]. Now the likelihood function p(Xl)) can be r,vritten

N.

p(xl^): fl p@,,1\-')
n " : l

Gam(.\la, rl : 
#uasa-t"-D,

(c.8)

(c e)

Gamm()las, bs) and the posterior

x \Nn/2.,., 
{ 

Url-=,(,nn * ,f}

The corresponding conjugate prior should therefore be proportional to the product

of a power of ) and exponential of a linear function of ). This corresponds to a gamma

distribution that is defined by

Now

p() lx)

the prior

is

p()) is a gamma distribution

(
p() lx) o 1ao-1;N' l2 exp {

l.

which shows that the posterior

Gamm()lan",  bnn),  where

"N '  

' l

-bo)-;F,(,nn-,4' l).

p(^lx) is also a gamma distribution

(c.10)

of the form
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where o2ML is the maximum likelihood estimate of the variance. For the case of va-

riance, the prior distribution will be an inverse gamma distribution.

Case III: To infer the precision and the mean when both of them are unknown

Now the likelihood function p(Xlp,.\) has functional dependence on p and I, and

it can be written [109] as

lr"
AN,:AO i  

;  
j

., N,

b*n:bo * ;>, 
(r,o - tr)'

n^ : l

- l / " o:oo * io"r",

p(Xtp,^): fr, (+)'" "*o {-i ,,"., - ,)'} ,

which can be'written in a simplified form as follows:

f  , , ,  /  )p' \ l t '  f  : ! .p(xtp.))x 
f.irrz ""r (-?,)] *o 

t 
^rEx,n ;*"r'\

ndence on p and

(c .11)

(c .12)

(c.13)

(c.14)

) as the

(c.15)

Now the prior p(p, )) which must have the same

likelihood function p(Xlp,)) can be expressed as

p\ t , \ )  u exp {cr.\,u - dn\} ,

depe

f  /  r , , 2 \ l b

l^'/, e*p { -+ ) |
L  

- \ ' 2 / )

which can be rewritten as
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pfu,, \) o( exp ^a/2 exp

where cn , dn , B arc constants. The prior p(p, \)

{ +o'-',to)'} {-  
( , ,

can be

- #)^j,
written as

(c.16)

pfu,\) :  p(rr l^)p(^).  (C.17)

Comparing Eq. C.16 and Eq. C.17, we find that p(plL) is a Gaussian whose precision

is a linear function of ), and p(llambda) is a gamma distribution. Now the normalized

prior takes the form

p1-t, \) : Af (uluo, (pl)- ') Gamm ()la, b) , (c.18)

where Fo:  cg l0,  a :7+ Pl2,  and b -  ds-"? lZB.  This  d is t r ibut ion is  ca l led the

normal-gamma or Gaussian-gamma distribution [109].
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