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Résumé

Ce mémoire est consacré a la synchronisation temporelle (ou estimation du délai) pour
les récepteurs numériques. Les principales contributions incluent deux grands volets. Le
premier consiste a estimer le retard ou les nouvelles techniques d’estimation développées
sont basées sur le critere du maximum de vraisemblance. D’une part, nous développons un
estimateur 2 maximum de vraisemblance par la méthode "importance sampling” pour les
signaux numériques linéairement modulés ou I’on considere un seul trajet de propagation,
et donc un seul parametre 2 estimer. Dans cette configuration, nous supposons que les don-
nées transmises sont totalement inconnues au niveau du récepteur. Le délai reste constant
sur I’'intervalle d’observation et le bruit est supposé blanc. Nous appliquons aussi la mé-
thode proposée dans le cas d’un seul trajet au cas de plusieurs trajets et donc le nombre
de parametres a estimer augmente avec le nombre de trajets détectés. Nous signalons que
dans ce cas le signal transmis est connu par le récepteur. Cette méthode peut s’appliquer
dans les radars et les systemes de localisations. En plus nous nous sommes intéressés a la
synchronisation temporelle pour les systtmes CDMA en développant deux estimateurs a
maximum de vraisemblance. Le premier se base sur la méthode "importance sampling” et
I’autre sur I’algorithme itératif "expectation maximization".

D’autre part, nous dérivons aussi les expressions analytiques des bornes de Cramér-Rao
pour les estimateurs non biaisés du retard dans le cas des signaux QAM carrés et des
systtmes CDMA.
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Introduction

La synchronisation est une tache essentielle pour n’importe quel systtme de communi-
cations numérique. Souvent les performances d’un systéme de transmission sont dictées
par la fiabilité de la fonction de synchronisation. En effet, le signal recu est complétement
connu a ’exception des données transmises et des parametres introduits par le canal (dé-
lai, phase, décalage fréquentiel...). Méme si la fonction primordiale du récepteur est de
reconstruire les données transmises, ceci ne peut se faire qu’en connaissant les parametres
introduits par le canal. Dans ce travail, nous nous intéressons a la synchronisation tempo-
relle, ou en d’autres termes a 1’estimation du délai de propagation. Dans ce contexte, bien
que plusieurs estimateurs du délai aient été développés durant les derniéres décennies,
ce probléme suscite encore une grande attention surtout apres le succes des systémes de
communication sans fil et les avancées en microélectronique qui offrent plus de possibilité
d’implémentation.

Les estimateurs du retard peuvent étre classés en plusieurs sous-classes : supervisés, semi-
aveugles ou aveugles. Les techniques supervisées exploitent 1a connaissance des symboles
transmis dans les blocs de synchronisation pour faciliter la procédure d’estimation. Les
méthodes semi-aveugles s’inspirent des techniques supervisées puisque les symboles in-
connus sont d’abord estimés puis utilisés dans la synchronisation. Bien qu’elles requicrent
la transmission de moins de symboles connus, elles souffrent d’erreurs de détections qui
dégradent les performances du systeme. Dans la suite, nous nous intéressons au cas ol les
données transmises sont inconnues.

Dans ce contexte, plusieurs estimateurs ont été rapportés dans la littérature pour of-
frir les meilleures performances possibles. Il est connu que I’estimateur & maximum de
vraisemblance est un estimateur asymptotiquement efficace et qu’il réalise la meilleure
performance a des valeurs relativement élevées du rapport signal sur bruit (RSB), méme
sur de courts intervalles d’observation. Par conséquent, il a été I’objet de recherches in-
tensives. Dans le cas ol les symboles transmis sont connus, une expression analytique du
maximum global de la fonction de vraisemblance peut étre obtenue. Toutefois, lorsque
les données transmises sont totalement inconnues (c’est-a-dire le parametre d’intérét doit
étre estimé d’une maniere aveugle), la fonction de vraisemblance devient une fonction
non-linéaire et il est difficile, méme impossible, de trouver une expression analytique du

maximum global de la fonction de vraisemblance. Dans ce cas, des méthodes de résolution




numériques doivent €tre envisagées. Le travail présenté dans ce mémoire s’inscrit dans le
cadre de développement de méthodes pour trouver le maximum global de la fonction de
vraisemblance. L’ étape primordiale pour le développement de tels estimateurs est d’expri-
mer le probleme sous la forme d’un modele linéaire généralisé. Pour ce faire nous traitons
les modeles les plus répandus en communication numérique, a savoir le cas d’une trans-
mission d’un signal modulé sur un seul trajet, une transmission sur plusieurs trajets et le
cas des systtmes CDMA. Une telle distinction est indispensable puisque les estimateurs
développés par la suite changent d’un modele a un autre.

Une fois que les estimateurs sont développés, nous évaluons leurs performances en termes
de variance de 1’estimé comme une mesure de performances du systéme. Pour ce faire,
il est évident qu’il faut les comparer aux autres estimateurs mais aussi par rapport a une
borne inférieure de la variance de tout estimateur. Dans ce contexte, les bornes de Cramér-
Rao sont connues comme des bornes inférieures contre lesquelles les performances des
estimateurs sont comparées. Elles indiquent la limite inférieure de la précision d’estima-
tion qui peut étre atteinte. Notre revue de la littérature nous a révélé que ces bornes n’ont
pas encore été dérivées analytiquement en estimation aveugle. Elles n’ont été calculées
que de fagon numérique a partir d’expressions tres complexes. La dérivation de ces ex-
pressions permet de mieux caractériser et analyser les performances du syst¢me. Dans ce
travail, nous dérivons les expressions analytiques de ces bornes pour les estimateurs de dé-
lai en présence de la pluspart des constellations utilisées couramment et pour les systémes
CDMA.

Ce rapport est structuré comme suit. Dans le chapitre 1, nous présentons une bréve intro-
duction sur I’estimation du retard en communication sans fil. Les contributions effectuées
sont présentées dans les chapitres suivant. Le chapitre 2 décrit le nouvel estimateur pour
les signaux modulés. Ensuite, dans le chapitre 3, nous dérivons les expressions exactes des
bornes de Cramér-Rao pour I’estimation aveugle. Dans le chapitre 4, nous développons
un estimateur de délai dans le cas d’un canal a plusieurs trajets. Et dans le dernier cha-
pitre nous nous intéressons aux systemes CDMA ou nous développons deux estimateurs a

maximum de vraisemblance et les bornes de Cramér-Rao correspondantes.




Chapitre 1

La synchronisation temporelle pour les

signaux modulés




1.1 Introduction

La synchronisation est une tache essentielle pour n’importe quel systéme de communi-
cations numérique. La synchronisation temporelle, appelée aussi estimation du délai de
propagation, est un probléeme fréquemment rencontré dans la synchronisation. Le but est
de s’assurer que les échantillons pris du signal recu concordent avec la valeur optimale
pour reconstruire les données d’une maniére fiable. Autrement dit, le délai introduit par le
canal de propagation doit &tre pris en considération au niveau du récepteur. Une des solu-
tions pour estimer ce parameétre est d’envoyer un signal connu au récepteur. La méthode
classique consiste a faire I’auto-corrélation de 1’ observation. Cependant, cette approche est
coliteuse en termes d’énergie et de bande passante puisque le signal transmis ne transporte
pas d’information utile. C’est pour cette raison que plusieurs travaux ont traité le probleme
de la synchronisation temporelle en utilisant directement le signal recu. Les méthodes ré-
sultantes sont classées comme aveugle (non-data-aided) ou le récepteur n’a pas besoin de
connaitre les donnés transmises. Une étape importante dans le processus d’estimation est
de déterminer une fonction objective, calculée a partir du signal recu, de telle facon qu’une
estimée du délai de propagation peut étre obtenu. En se basant sur cette fonction, les es-
timateurs du délai sont classés comme suit [1] : & erreur quadratique moyenne minimale
(minimum mean square error), forcage a zéro (zero forcing), early-late gate, maximum
de vraisemblance, etc. Dans ce qui suit, nous nous intéressons au critére du maximum de
vraisemblance.

1.2 DL’importance de la synchronisation temporelle

Dans plusieurs systémes de communications, les performances sont étroitement liées a la
marge temporelle allouée. La marge temporelle est I’erreur de synchronisation maximale
que le récepteur tolere sans provoquer des dégradations en performances. Elle peut étre
jugée en examinant le diagramme de I’ceil du signal a ’entrée du bloc de décision au
récepteur. Le diagramme de I’ceil est obtenu en superposant plusieurs répliques du signal
recu. Le nom de ce diagramme vient du fait que la figure obtenue ressemble a un ceil
humain. Pour évaluer la marge de manceuvre d’un systeme par rapport aux distorsions que
subit le systeme, par exemple a I’erreur de synchronisation, a I’interférence inter-symbole
et au bruit, nous étudions la forme et I’ouverture du diagramme de 1’ceil.

Les figures 1.1 et 1.2 illustrent les diagrammes de I’ceil en absence de bruit et en uti-
lisant un filtre & cosinus surélevé avec un coefficient de retombé de 20% et 100%, respec-
tivement. L’instant auquel 1’ouverture du diagramme est maximale correspond a 1’instant
optimal d’échantillonnage. Comme nous pouvons le voir, I’ouverture de I’ceil diminue de
plus en plus que nous nous €loignons de I'instant ¢ = 0. En effet, 'interférence inter-
symbole augmente d’autant plus que I’instant d’échantillonnage s’éloigne de 1’instant op-
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Données binaire, un coefficient de retombée de 20%
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FIGURE 1.1 — Diagramme de 1’ceil pour un filtre & cosinus surélevé avec un coefficient de
retombée de 20%

Données binaire, un coefficient de retombée de 100%
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FIGURE 1.2 — Diagramme de I’ceil pour un filtre & cosinus surélevé avec un coefficient de
retombée de 100%

timal, et par conséquence, la marge de bruit diminue. En absence de bruit, les données
peuvent étre parfaitement détectées tant que 1’instant d’échantillonnage est a 1’intérieur de
la zone d’ouverture de I’eeil. Une synchronisation parfaite qui satisfait le critere de Ny-
quist minimise ou annule complétement I’interférence inter-symbole. Cependant, plus le
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rapport signal sur bruit (RSB) diminue, plus I’intervalle d’échantillonnage fiable diminue
et le systeéme devient plus sensible aux erreurs de synchronisation.

1.3 Estimateur a maximum de vraisemblance

L’estimateur 8 maximum de vraisemblance (MLE) est un estimateur dit a efficacité asymp-
totique. Il est défini comme la valeur du parametre qui maximise la fonction de vraisem-
blance. En général, il a ét€ prouvé en [2] que le MLE est asymptotiquement non-biaisé,
atteint la borne de Cramér-Rao (CRLB) et son erreur posséde une Distribution Gaussienne.
Concernant notre probléme, le MLE devrait atteindre 1a CRLB pour de grandes valeurs du
rapport signal sur bruit. Pour cette raison, la plupart des algorithmes de synchronisation
sont basés sur le critere de maximum de vraisemblance.

La formulation du probléme d’estimation varie suivant que nous considérons un signal a
temps continu ou un signal a temps discret. La premiere approche semble étre la plus ap-
propriée a cause de la nature physique du signal, mais les récepteurs numériques operent
sur des séquences échantillonnées.

Dans cette partie, nous considérons d’abord une formulation a temps continue pour étendre,
dans les chapitres qui suivent, I’approche au temps discret. Nous notons par -y I’ensemble
des parametres inconnus qui inclut la fréquence porteuse, 1’offset de phase, le retard in-
troduit par le canal et les symboles transmis dans le cas d’une estimation aveugle. Nous
adoptons la notation (¢, «y) pour le signal recu en absence de bruit qui met en évidence la
dépendance en «. Le modele en bande de base est :

y(t) =zt v) +w(?), (L.1)

ol w(t) est le bruit additif complexe. On consideére que y(t) est une réalisation d’un pro-
cessus aléatoire y(¢) pour une valeur donnée de v = -y. En effet, une réalisation de y(t)
a un certain degré de ressemblance avec y(¢) dépendamment de la ressemblance entre
z(t,%) et z(t,~), en d’autres termes, la distance entre 4 et ~y. L’estimateur & maximum
de vraisemblance est basé sur le calcul de 4 de sorte que la ressemblance entre y(t) et la
réalisation y(t) soit maximale. En termes de probabilité, nous appelons p(y(¢)|7) la den-
sité de probabilité de y(¢) conditionnée par 7. Supposons que pour deux réalisations de 7,
notées par ~; et 42, nous avons :

p(y(t) = y(®)7) < ply(t) = y(t)[72), (1.2)

alors ~; est dit plus vraisemblable que 7;.
Comme nous I’avons mentionné, le but est de maximiser p(y(¢) = y(¢)|7) par rapport 2 .
La position du maximum est appelée estimé a maximum de vraisemblance et est donnée
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par:
YumL = arg mgx{p(y(t) =y} (1.3)

Cependant, 7 inclut, en plus des parametres de synchronisation, les symboles inconnus
qu’on ne cherche pas a estimer a ce niveau. C’est pour cette raison que les parametres a
estimer sont rassemblés dans A et les autres paramétres, appelés parametres de nuisance,
sont rassemblés dans 7. Maintenant, nous devons reformuler 1’estimateur en (1.3) pour
tenir compte de n. Soient X et 71 deux valeurs hypothétiques de A et n, respectivement.
En modélisant n comme un vecteur aléatoire de densité de probabilité p(n), la formule
des probabilités totales permet d’écrire :

PO =3ON) = [ pot0) =) PRI (14

o0

Puis, I’estimateur & maximum de vraisemblance de \ est :
Xy = arg max{p(y(t) = y() N)}. (L5)

Dans la suite de ce chapitre, ainsi que dans les chapitres 2 et 3, nous nous concentrons sur
le cas olt A est un scalaire (le délai 7) et nous traitons le cas o A est un vecteur dans les
chapitres 4 et 5.

1.4 Estimateurs du retard a maximum de vraisemblance

1.4.1 Estimateur pour Faible RSB

Dans cette section, nous nous intéressons au cas aveugle (symboles non connus). Nous
présentons le traditionnel estimateur pour faible valeurs de RSB développé en [3]. La
fonction de vraisemblance est :

2 T 1 T
Autne e {2 [ aeoa - - [ (0ar}, (1.6)
Ny 0 No 0
ou Ny est la puissance du bruit, ¢ = {cg, ¢1, ..., ¢} représente la séquence de données

inconnue et x(t) est définie comme suit :

L
z(t) = eh(t—iT — 7). (1.7)
=0

L’ objectif est d’estimer le retard 7 sans avoir une connaissance a priori des symboles. La
méthode la plus directe est de considérer les données ¢ comme un vecteur alé€atoire. La
fonction de vraisemblance est moyennée par rapport aux données transmises pour obtenir

la fonction de vraisemblance inconditionnelle ;

Alylr) = Ec{A(t|r, c)}. (1.8)
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Malheureusement, I’expression analytique de la fonction de vraisemblance incondition-
nelle est difficile a évaluer. C’est pour cette raison que quelques approximations sont utili-
sées. Premieérement, le second terme dans I’expression de la fonction de vraisemblance en
(1.6) est ignoré. Cette simplification entrainera une dégradation des performances d’esti-
mation. Ensuite, une approximation de la fonction résultante peut étre envisagée en utili-
sant le développement de Taylor sous I’hypothese de faibles valeurs de RSB. Alors nous

obtenons [3] :
2

Alylr,¢) ~ 1+ Nio /O ()t + Nig { /0 Ty(t):c(t)dt] | (1.9)

Considérant la définition (1.7), nous avons :

T L-1 T
/ y(t)z(t)dt = Z Ci / y(t)h(t —4iT — T)dt. (1.10)
0 = Jo

Troisieéme approximation, puisque les coefficients de h(t) sont négligeables pour ¢ ¢
[0, T, les limites de I’intégrale dans (1.10) peuvent étre élargies a I’infini pour obtenir :

T L-1
/ y(Oa(t)dt = Y er(iT +7), (1.11)
0 i=0
avee too
r(t) = / y(v)h(v — t)dv. (1.12)

Maintenant, nous substituons (1.11) dans (1.9) et tenant compte de 1’hypothese E{c;} = 0,
la fonction de vraisemblance inconditionnelle s’écrit comme suit :

L-1
Alylr) = r*(T +7), (1.13)
=0

ou les termes constants sont ignorés. De cette fagon, une expression plus pratique de la
fonction de vraisemblance inconditionnelle est trouvée. C’est une expression quadratique
qui implique la réponse du filtre adapté au signal recu. A partir de (1.13), la valeur optimale
du retard 7 maximise 1’énergie de la séquence {r(¢T + 7)}. Pour trouver cette valeur
optimale, il faut annuler la dérivée de A(y|7) par rapport a 7 :

L-1
N(ylr) = 2) r(T +r)r'(iT + 7). (1.14)

i=0
Pour 7 = 73, 1a dérivée de la fonction de vraisemblance inconditionnelle est considérée
comme une erreur d’estimation et utilisée pour estimer le retard de fagon itérative :

Tir1 = Tk + pe(k), (1.15)

avec
e(k) = r(kT + i)' (KT + %), (1.16)

et ;1 correspond au pas d’adaptation.




1.4.2 Estimateur a Maximum de Vraisemblance Conditionnel

Nous avons vu que suite a plusieurs approximations, le critére du maximum de vraisem-
blance se formule d’une maniére pratique. Cependant, I’algorithme est dérivé sous I'hy-
pothese d’un faible RSB. Cette hypothese limite les performances de I’ estimateur pour les
larges valeurs du RSB de telle fagon que la différence entre la borne de Cramer-Rao et les
performances d’estimation est d’autant plus importante que le RSB augmente. En effet,
I’estimateur a faible RSB est une approximation de I’estimateur a maximum de vraisem-
blance. A grand RSB, cette approximation ne refléte plus la vraie fonction de vraisem-
blance et les performances de I’estimateur ne sont plus optimales. C’est pour cette raison
qu’un autre algorithme, connu sous le nom de maximum de vraisemblance conditionnelle
(MVQ), a été développé [4]. Afin d’éviter les approximations, une approche différente est
utilisée pour calculer la fonction de vraisemblance. Contrairement a la premiere méthode
présentée en 1.4.1, les symboles recus sont modélisés comme déterministes et inconnus.
Les parametres de nuisance (données, phase) sont exprimés en fonction du parametre a
estimer et du signal recu. De cette facon, nous obtenons une fonction qui dépend seule-
ment du paramétre inconnu qui est le retard 2 estimer. A partir de cette fonction, un signal
d’erreur est calculé puis utilisé pour mettre a jour I’estimé du retard.

Nous présentons plus de détails sur ce point dans chapitre 2.

1.5 Limites de performance des estimateurs

1.5.1 Les Bornes de Cramér-Rao

Considérons n’importe quelle méthode d’estimation de 7 et notons par 7 ’estimé corres-
pondant. Vu que 7 dépend de 1’observation vy, différentes observations engendrent diffé-
rents estimés. Dans ce cas 7 est une variable aléatoire dont la moyenne peut coincider avec
les vraies valeurs de 7. Dans ce cas, 1’estimateur est dit non biaisé. Cette propriété est un
caractere d’évaluation des performances d’estimation puisque, en moyenne, 1’estimateur
fournit la vraie valeur du parametre. Cependant, I’erreur d’estimation 7 — 7 est aussi une
mesure importante, d’ol la nécessitée de minimiser cette erreur, ou encore sa variance.
Alors quand est ce qu’on peut dire que I’erreur d’estimation est acceptable ?

Dans ce contexte, la borne de Cramér-Rao est une limite théorique qui fournit une borne
inferieure pour la variance de tout estimateur non-biaisé [2] :

var{7 — 7} > CRLB(7), (1.17)
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avec

1
_E { 52 ln(A(r|T22}

or?

_ 1 . (1.18)

2
A In(A(r|T))
E { ( ar ) }

Dans les problemes de synchronisation, 1’application de cette borne est difficile & cause

CRLB(1) =

de la complexité de A(r|7). En effet, nous devons moyenner A(r|7,u) par rapport aux
parametres de nuisance u :

o0
Alrir) = / " Al wp(u)du (1.19)
—o0
qui, jusqu’a présent, n’a pas d’expression analytique. Nous présentons dans le Chapitre 3
une méthode pour dériver I’expression analytique de la borne de Cramér-Rao pour 1’esti-
mation du délai et ceci pour une large gamme de modulations.

Une alternative a la borne de Cramér-Rao, connue sous le nom de borne de Cramér-Rao
modifiée, est présentée en [5] pour contourner les problémes de calcul.

1.5.2 Les Bornes de Cramér-Rao Modifiées

Une approche modifiée, proposée par D’ Andrea, Mengali et Reggiannini [S] est souvent
utilisée. 11 s’agit de la borne de Cramer Rao modifiée (MCRB pour Modified Cramer Rao
Bound). Cette nouvelle borne s’écrit :
N,
MCRLB = 0 . (1.20)
E { KT ‘ dz(t,m,u) dt}
v 3 Jo

ar
Dans (1.20), la moyenne E, {.} est effectuée sur les parametres de nuisance u et K est le

nombre de symboles dans I’intervalle d’observation. La notation x({, 7, u) est introduite
afin de séparer le parametre a estimer 7 des parametres de nuisance u.

Deux remarques doivent étre soulignées a ce niveau sur la MCRLB. Premi¢rement, dans
les étapes de dérivation de la borne, nous supposons que :

- les densités de probabilité de la phase et de la fréquence sont connues ;

- les symboles {c;} sont des variables aléatoires indépendantes, de moyenne nulle et
B{(c)?} = C.

De plus, D’ Andrea a montré que la borne de Cramér-Rao est supérieure a la borne modi-
fiée [5]. Il est évident qu’il y a égalité si le vecteur u est parfaitement connu. Notez que
cette remarque reste valide quelque soit le paramétre a estimer.

La dérivation de la MCRLB peut étre effectuée de la fagon suivante :
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ET 1 9z (t, 7, u) 2 _ KT 2
E. {/O e [ _/0 Eu{||m ol }dt, 1.21)
avece
m/(t) = ep(t —iT — 1), (1.22)

et p(t) = dh(t)/dt. Comme m/'(t) est indépendante de f, et , le moyennage dans (1.21)
se limite au moyennage sur les symboles émis. Par suite, nous obtenons :

Eu{lm' (1)} = C) p(t—iT —7)
C .
= = En: P, (%) eI2m(t=1)/T (1.23)

ol P,(f) représente la transformée de Fourier de p?(¢). La derniere égalité dans (1.23)
est vérifiée par la formule de Poisson. Ensuite, considérant (1.21) et (1.23) et notant que
fOKT e??™(t=7)/T = §(n) KT, nous obtenons :

KT 2 KT
ox(t, 7, u) C n ;
E., el SCAn ety - = P (_) / ]Qﬂn(t—r)/Tdt
{ /0 ar dt} T Xn: 1) ), °©
= KCPy0). (1.24)
Cependant, P,(0) est en relation directe avec H(f), la transformée de Fourrier de h(t) :
N CIONS oo
PO = [ () —an [ T PR (125)
Finalement, en intégrant (1.24) dans (1.20), nous obtenons le résultat désir€ :
T2
MCRLB(7) = ———— N, E,, 1.26
(1) SC R (1.26)

ol E est I’énergie moyenne du signal émise par symbole et C}, est le carré de la largeur
de bande moyenne normalisée qui dépend de la fonction de mise en forme et sont donnés,
respectivement, par :

C [t 9
=3 [ (P, (1.27)

LS FRH(f)|2df
ST H(f))2df

L’expression analytique en (1.26) montre que la MCRLB est inversement proportionnelle

C,=T (1.28)

au rapport signal sur bruit F;/Ny et a la taille de I’observation. De plus, elle est inverse-
ment proportionnelle a Cj, le carré de la largeur de bande de H(f). Ceci veut dire que
I’estimation du retard est plus facile a effectuer avec des signaux a large bande. Ceci peut
s’expliquer intuitivement par le fait que les filtres de mise en forme a large bande ont re-
lativement une petite durée temporelle et donc peuvent étre mieux détectés en présence de
bruit.
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1.6 Conclusion

Dans ce chapitre, nous avons présenté les caractéristiques de 1’estimateur 2 maximum de
vraisemblance. L’absence d’une expression analytique de I’estimé a favorisé le dévelop-
pement de plusieurs algorithmes d’estimation avec des complexités et des performances
variées. Dans ce contexte, la dérivation de bornes de précision d’estimation est impor-
tante puisque celles-ci représentent une limite théorique a la performance des estimateurs.
Les bornes de Cramér-Rao indiquent les limites inferieurs pour la variance de 1’erreur
d’estimation. Cependant, leur application au probleéme de synchronisation résulte en de
sérieuses difficultés mathématiques. Les bornes de Cramér-Rao modifiées sont beaucoup
plus faciles a calculer, mais elles se détachent des vraies bornes de Cramér-Rao de facon
imprévisible et donc ne reflétent pas les vraies performances possibles.
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Abstract

Dans cet article, nous présentons un nouvel estimateur 8 maximum de vraisemblance pour
le retard de propagation basé sur "importance sampling” (IS). Nous montrons que la re-
cherche exhaustive et les problemes de convergence dont souffrent les méthodes itératives
peuvent étre contournés. Les données transmises sont supposés inconnues. Le retard reste
constant sur I’intervalle d’observation et le signal est entaché par un bruit blanc gaussien.
Nous utilisons IS pour trouver le maximum global de la fonction de vraisemblance. L’idée
du nouvel estimateur est de générer des réalisations a partir d’une version simplifiée de la
fonction de vraisemblance. Nous verrons que les parameétres de 1’algorithme affectent les
performances d’estimation et qu’avec un choix approprié de ces paramétres, le retard peut
étre estimé de facon précise.

In this paper, we present a new time delay maximum likelihood estimator based on im-
portance sampling (IS). We show that a grid search and lack of convergence from which
most iterative estimators suffer can be avoided. It is assumed that the transmitted data are
completely unknown at the receiver. Moreover the carrier phase is considered as an unk-
nown nuisance parameter. The time delay remains constant over the observation interval
and the received signal is corrupted by additive white Gaussian noise (AWGN). We use
importance sampling to find the global maximum of the compressed likelihood function.
Based on a global optimization procedure, the main idea of the new estimator is to generate
realizations of a random variable using an importance function, which approximates the
actual compressed likelihood function. We will see that the algorithm parameters affect the
estimation performance and that with an appropriate parameter choice, even over a small
observation interval, the time delay can be accurately estimated at far lower computational
cost than with classical iterative methods.

2.1 Introduction

Parameter estimation is a crucial operation for any digital receiver ; in particular the reco-
very of time delay introduced by the channel. Typically, in network communications, the
time delay is usually assumed to be confined within the symbol duration [1]. Particularly,
symbol timing recovery allows for sampling the signal at accurate time instants in order
to achieve satisfactory performances. The key task of timing recovery consists in determi-
ning the time instants at which the received signal should be sampled in order to perform
reliable data recovery. However, in many other applications such as radar or sonar systems
[2] [3], where it can exceed the symbol duration, the time delay is used to localize targets.
During the last few decades, many time-delay estimators have been developed trying to
achieve the well-known Cramér-Rao lower bound (CRLB). A key step in time recovery
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schemes is the determination of an objective function from the statistics of the received
signal from which an estimate of the time delay can be extracted. In this sense, it is known
that the maximum likelihood estimator is an asymptotically efficient estimator, and that it
performs close to the CRLB at relatively high SNR values [7], even for short data records.
Therefore, it has been subject to intense research. In the case of data-aided transmissions,
where the transmitted data are a priori completely known, an expression for the glo-
bal maximum of the log-likelihood function is analytically tractable. However, when the
transmitted data are completely unknown (i.e., the parameter of interest should be blindly
estimated), the log-likelihood function becomes extremely non-linear and it is difficult to
analytically find its global maximum. In this case, maximum likelihood (ML) solutions
must be numerically tackled. The grid search technique is the most basic alternative to
numerically find the maximum of the non-linear likelihood function. Unfortunately, this
technique can be used only if the range of the parameter is confined to a finite interval,
otherwise, iterative maximization procedures must be envisaged. The most famous itera-
tive procedures are the Newton-Raphson method [5] and the expectation-maximization
algorithm [6]. However, these two prominent methods are known to converge to the ML
solution only if the initial guess is close enough to the true unknown parameter value. If
not, these iterative algorithms may converge to a local maximum of the likelihood func-
tion, or even diverge. To circumvent this problem, these algorithms may use many initial
values to improve their performance. But this increases in counterpart their computational
complexity without even ultimately warranting their convergence to the global maximum.
In this work, we resort to an entirely different approach for the estimation of the time delay
parameter. The compressed likelihood function is derived considering the transmitted sym-
bols as unknown but deterministic. Based on this function, an iterative algorithm earlier
implemented in [8] performs better in the high SNR region than the low-SNR uncondi-
tional ML (UML) timing error detectors (TEDs) [1], but its performance still depends on
the initialization value making it therefore prone to severe degradation due convergence
uncertainty.

Motivated by these facts, we develop in this paper a new non-iterative approach to find the
time delay conditional maximum likelihood (CML) estimates. We implement the CML
algorithm in a non-iterative way. We avoid the grid search, essential in traditional iterative
approaches, by using the importance sampling technique which has been shown to be a
powerful tool in performing NDA ML estimation. In fact, this method was successfully
applied to estimate other crucial parameters such as the direction of arrival (DOA) [9],
the carrier frequency [10] or the joint DOA-Doppler frequency [11]. The importance sam-
pling technique is used in this paper in the context of time delay estimation. Moreover,
we adopt the discrete-time model widely used in the field of sensors array processing [12]
and more recently formulated in the context of time-delay estimation [8]. The resulting
IS-based estimator attains the modified CRLB (MCRLB) over both the medium and high
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SNR regions, whereas the traditional UML TED, being derived under the assumption of
low SNR, does not approach the MCRLB at the high SNR region.

The remainder of this paper is organized as follows. In section II, we present the discrete-
time signal model that will be used throughout this article. We derive the compressed like-
lihood function in section III. In section IV, we introduce the importance sampling method
that will be used in this article to find the global maximum of the compressed likelihood
function. Section V deals with the choice of the importance function and discusses the im-
pact of some parameters on the estimator performance. The newly proposed algorithm is
developed in section VI. Simulation results are discussed in section VII and, finally, some
concluding remarks are drawn out in section VIII.

2.2 Discrete-Time Signal Model
First, we present a list of notations and definitions that will be used in this article.

E{}: the expectation with respect to z.

| : Euclidean norm.
()T, ()2 : transposition and conjugate transposition.

SNR: signal to noise ratio.

IS: importance sampling.

ML : maximum likelihood.

CML : conditional maximum likelihood.
MCRLB : Modified Cramér-Rao lower bound.
QAM: quadrature amplitude modulation.
PAM : pulse-amplitude modulation.

Consider a traditional communication system where on one hand the channel delays the
transmitted signal and on the other hand an AWGN with an overall power of Ny corrupts
the received signal as follows :

y(t) = VE, o(t — )’ + w(t), @.1)

where 7* is the unknown time delay to be estimated, # is the unknown but deterministic
channel distortion phase, w(t) is an additive white Gaussian noise (AWGN) with inde-
pendent real and imaginary parts, each of variance Ny/2 and v/E, is the signal amplitude.
The unknown transmitted signal z(¢) is modeled as follows :

K—1
z(t)=> e h(t—iT), (2.2)
=0

where K is the number of transmitted symbols in the observation interval, {c;}7 ' are the

unknown complex-valued symbols, h(t) is the shaping pulse of energy E; and T is the
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symbol’s duration.

In the sequel, we outline the discrete-time signal model which was proposed for the first
time in [8] to derive an iterative CML timing recovery algorithm. The received signal y(¢)
is passed through an ideal lowpass filter of bandwidth F;/2 and sampled at a frequency
F, = 1/Ts = k/T, where k is a given integer which guarantees that F}; is above the
Nyquist rate. Then, the received samples y = [y(0), y(Ts), y(2Ts), ..., y((M — 1)T,)]*
can be written in a matrix form as follows :

y=A T +w, (2.3)
where M is the number of samples of y(t) and w and A.- are defined as follows :

w = [w(0), w(Ty), ..., w((M — 1)T,)]7, (2.4)

A = [ag(t"), ai(7Y), ..., ag_1(T")], (2.5)
with
a;(t*) = [M(—=iT = 1), MTs —iT — 1), ..., h(M = DT, —iT — 7). (2.6)
In (2.3), x is the set of unknown data and signal phase which is given by :
x =ce’ =[cg, ¢1 ... cx1]7 0. 2.7
Moreover, the covariance matrix of w is given by :
C, =201y = NoF, Iy, (2.8)

where I, refers to the (M x M) identity matrix and 202 = Ny F;. The sampled data y is a
linear function of the vector = but depends non-linearly on the time delay 7*. We mention
that the model of Eq. (2.3) presented in [8] is inspired from the model widely used in array
signal processing where each column of the transfer matrix is a function of a different
parameter, usually the direction-of-arrival or the frequency of each incoming signal. In the
context of time delay estimation, the entire matrix A,. depends on the same parameter 7*.

2.3 Likelihood function

The conditional likelihood function of the observed data y is given by :

1
Alylz; 7) o p(y|z;7) = C exp{ ~55ly-Ae| } (2.9)

where p(y|x;7) is the probability density function (pdf) of ¢ conditioned on x and pa-
rameterized by 7, and C is a positive constant which does not depend on the time delay
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and therefore will be dropped, without loss of generality. Note here that 7 is any possible
value of the time delay parameter 7* and that A(y|x; 7) attains its maximum at 7 = 7%,
ie., 7" = argmax A(y|x; 7).

Actually, oneTneeds to maximize A(y|x; 7) with respect to 7 in order to find the ML so-
lution 7*. However, (2.9) imposes a joint estimation of & and 7*, which is very difficult
to perform. Therefore, two principal approaches are developed in the literature in order to
obtain a likelihood function that depends only on 7. On one side, the unconditional maxi-
mum likelihood (UML) estimator introduced in [1] considers the data symbols as random
and hence averages the joint likelihood function over & to obtain a function that depends
only on the time delay as follows :

Ay|7) = Ex{A(y|z;7)}. (2.10)

On the other side, the data symbols are modeled as unknown but deterministic in the for-
mulation of the conditional likelihood function. Therefore, Z, the solution that maximizes
(2.9) with respect to @, for a given 7 is used in (2.9) as a substitute of x. Actually, Z which
maximizes A(y; x, 7) also maximizes the log-likelihood function given by :

1 2
L(y;x77-)=_20_2 “ y—AT:n H : (2.11)
Therefore, taking the gradient of L(y|x; 7) with respect to & and setting it to zero :
; 1
M = ——(ATy - ATA x)=0, (2.12)
ox o?

yields the following result :

&)

= (A7A;) ATy
= ATy, (2.13)
where A# = (AT A,)"1 AT is the pseudo-inverse of the matrix A,. Substituting Z into

(2.11), one obtains the so-called compressed likelihood function, that depends only on the
unknown time delay parameter :

~ 1
L(y;7, @) = —55y" (Ix — A-Af)y, (2.14)

which can be further simplified by dropping the constant terms to obtain the useful com-
pressed likelihood function denoted by L.(y; 7) as follows :

Le(y;7) = y7 A (ATA,) 1 ATy (2.15)

Note that the expression in (2.15) represents the cross-energy between the pseudo-inverse
filter A¥ and the sampled matched filter AT. For 7 equal to the timing parameter to be
estimated, the filter A# becomes a zero-forcing equalizer since the components of A% y
are intersymbol interference (ISD)-free (i.e., A¥ y = = + A¥ w, see [8]).
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2.4 Global Maximization of the Compressed Likelihood

Function

To perform maximum likelihood estimation, we have to maximize (2.15) with respect to
7. Unfortunately, a closed-form expression for this optimization problem is not analyti-
cally tractable since the objective function in (2.15) is extremely non-linear with respect
to 7. Therefore, many methods have been developed to numerically find the maximum,
but most of them are iterative [1-8]. We cannot deny that these methods provide good
performance in terms of error variance, but unfortunately they require, in counterpart, a
sufficiently close initial guess to converge to the global maximum of the likelihood func-
tion. Otherwise, the result may be a local maximum, which does not correspond to the true
time delay value. This is why a suboptimal algorithm needs to be applied firstly and then
its output is considered as an initial value for any iterative technique.

To avoid this challenging drawback of iterative methods, we propose in this paper an enti-
rely different technique which does not claim any initial guess of the time delay parameter.
We apply the global maximization method earlier proposed by Pincus [13] which provides
a powerful tool for accomplishing nonlinear optimization and guarantees finding the glo-
bal maximum without any initialization concerns. In fact, the theorem of Pincus states that
the maximum of L.(y; 7) is given by :

7= lim [ 7L, (r)dr, (2.16)

poo 5

where

iy xpipLe(y;T)}

Le (1) = T explpLo(y;7)}dr 2.17)
can be viewed as the normalized function of exp{pL.(y;7)}. Note that in (2.16) and
(2.17), J is the integration interval in which 7 is supposed to be confined. In a certain
way, L; ,(7) can be viewed as a pdf (since it verifies all the properties of a pdf), but since
T is actually deterministic, L::’ o (T) is more conveniently called a pseudo-pdf [9]. It is also
worth noting that, as p — oo, L () becomes a Dirac delta function centered at the
location of its original maximum. We leave broad details on this point in Appendix A.
The ML estimator for the time delay parameter, obtained from the location of the global
maximum of L.(y; 7) is given, for a large value of pg, by :

= /J L, (T)dr. (2.18)

Now, we need to evaluate the integral given in (2.18), although a direct integration remains
always difficult if not impossible. However, this integral is in a way the mean value of a
random variable distributed according to L/ (.). It was shown in [14] that this type of

¢,P0
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integral can be efficiently evaluated using Monte-Carlo simulations as follows :

1 R
== (2.19)
k=1

where {7;};_; are realizations of 7 distributed according to the pseudo-pdf, L., , (), and
hence the global maximization problem reduces simply to a generation of random va-
riables. Yet, since it is a non-linear function of 7, the direct generation of realizations

according to L/ , () is computationally hard. Thus, instead of pursuing a fruitless path,

¢p0
we use the importance sampling technique, as done in [9], [10] and [11] for the estima-
tion of the signal directions of arrival, the carrier frequency and the Doppler frequencies,

instead of directly using (2.17).

2.5 The Importance Sampling Technique

It has been shown that the importance sampling technique is a powerful tool to compute
multiple integrals ; in particular the one given in (2.18). In fact, it can be easily seen that
for any function® f(.):

/f(T ool T)dT—/f Cpo g(T)dT (2.20)
J

where ¢'(.), called the normalized importance function, is another pseudo-pdf which must
be chosen as a simple function of 7 so that realizations distributed according to g'(.) can
be easily generated. Then, the Monte-Carlo method is used to empirically compute the
integral in (2.20) simply via the following summation :

/ STV, (T)dr = = Z F(me C”O(Tk) 2.21)

Tk)

where 7y, is the kth realization of 7 according to the normalized importance function ¢'(.)
and R is the number of realizations. Typically, g'(.) and Ly, , (.) should be very similar to
reduce the variance of the estimates. However, Ly, , (.) remains a complex function and
in counterpart ¢(.) needs to be as simple as possible. Therefore, some trade-offs must be
found in the construction of the importance function. In fact, the inverse matrix (A7 A, )~!
in the actual compressed likelihood function, L.(y;T) (or equivalently L; , (.)), is very
non-linear with respect to 7. Intuitively, one can replace this inverse matrix by the diagonal
matrix g—;I k. Hence, a reasonable approximation of the compressed likelihood function
is:

Le(y;7) = 1yHA ATy, (2.22)

2In our case, we have f(7) = 7.
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The approximation of (A7 A, )~! with g—ZI ¥ is very reasonable for most of the conventio-
nal pulse shaping functions. For instance, it can be verified that for the widely used square
root-raised cosine pulse, the diagonal elements of (AT A.)~* are dominant compared to
its off-diagonal ones. In fact, as defined in (2.5), the columns of A are built upon shifted
versions of the shaping pulse h(.), therefore every element of A7 A, can be seen as the
convolution of two shifted versions of h(.) (the shift being an integer multiple of T'), which
value is maximum when the shift is the same, i.e., in the diagonal elements. Whereas, when
the shift is not the same, the value of the convolution is very low. See Appendix B for more
details about this observation. In the particular case where the pulse shape does not gene-
rate inter-symbol interference, the approximation becomes strict equality and (2.22) yields
the exact compressed likelihood function. Then, a reasonable importance function is given

by :
T 2
G (T) = exp {m Z A } (2.23)
k=

where p; is another constant different® from p,. Note that the normalization of g,, (.) by

[ 90, (x)dz yields the normalized importance function g, (.) (ie., g, (1) = T Z‘; 1 ((;)) -)-
1

M-
Z (1T )h(iTs — kT — 1)

1=0

But since the periodogram of the data evaluated at the time delay 7, Ix(7), is given by :

M-1 2

=)y UTHRGT, — kT — 7)|
=0

k=012 K—1, (2.24)

then, we rewrite the importance function as follows :

K-1
ex {pllk } (2.25)
k=0
with T
Pl = E—Zpl. (2.26)

The normalization of (2.25) leads to the pseudo-pdf ¢'(.) which will be used, hereafter, to
generate the realizations involved in (21) :

K-1
L[ exp{pil(7)}
gy (1) = ’;:01 . (2.27)
[ ewltwra
J k=0

It is also worth noting that the performance of the new maximum-likelihood estimator

3In our case, p; can be equal to py, unlike for the multiple parameters estimation where p; should be

different from po.




depends on the choice of p. In fact, our ultimate goal is to find the global maximum of the
function L.(y;7) = y7 A, (AT A )~1 ATy. However, this function exhibits many local
maxima even in the total absence of noise, and it is often difficult to distinguish between
the global and a local maximum. For this purpose, p] is chosen to render the objective
function in (2.27) more peaked around its global maximum which will have a relatively
higher peak compared to the local maxima. This behavior is illustrated in Fig. 2.1, which
plots the function g, (.) for p} = 10 and p} = 20, in the total absence of the additive noise.
Moreover, we show in Appendix C how this parameter renders g;),l (.) more peaked around
its global maximum.
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FIGURE 2.1 - Plot of g, . (.) for p} = 20 and p} = 10 using a root-raised cosine pulse and
for K = 100.

Based on this fact, it can be stated, a priori, that it is better to arbitrarily increase p] in
order to achieve better performance. But, this is much easier said than done since, in prac-
tice, this leads to numerical overflows. Actually, the best value of ] is the highest possible
without resulting in any overflow in the computation of g, / (.) as it will be seen in Section
VIIL. Same argument is valid for p. In fact, the approximation of (AT A,)~! by E—ZI K
means that the quantity L.(y;7) = y7A,(ATA,)"1 ATy is almost equal to g—:Lﬁa) (1)
where Lﬁa)(T) = y# A, ATy (note that the superscript (a) in LY (1) refers to the word
"approximate" where we approximate L.(y;7) with L (7) by replacing (AT A,)~! by
%I k). This means that py will results in an overflow in exp {poL.(y;7)} as far as p;
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results in an overflow in exp {plg—;L((;a) (1) } Therefore, the optimal value, pg”", of pg ve-

rifies p”* = p** where p{* is again the optimal value of p; = %p’l

We also note that the matrix A, in (2.22) exhibits an interesting structure since its columns
are simply shifted versions of the pulse shape. Hence, the matrix-by-vector operation ATy
can be viewed as a filtering operation of the received samples y with a filter h(.) whose
coefficients are the central row of AT Therefore, the computation of (2.27) is quite simple

and realizations distributed according to g;,l (.) in (2.27) can be easier generated than ac-
cording to L, , (.) in (2.17).

2.6 Estimation of the Time Delay

In the sequel, two scenarios will be proposed depending on the range of the unknown time
delay parameter. In the first scenario, we assume that the time delay parameter takes values
within [0, PT], where P is a strictly positive integer (i.e.,P > 1). In the second scenario,
we assume that the time delay parameter takes values within [0, T].

2.6.1 First scenario : 7* € [0, PT|

As already mentioned in the introduction, in many applications such as radar or sonar
transmissions, the actual time delay introduced by the channel may exceed the symbol’s
duration. In this subsection, we assume however that the time delay does not exceed PT,
where P is a given strictly positive integer, i.e., 7* € [0, PT’|. This upper limitation of the
interval is justified since, in each communication system, we always have an a priors idea
about the maximum range* of 7. As we have seen in the previous section, the maxima of
g;),l (.) are periodic, with period 7. Therefore, many secondary peaks may appear which
ultimately affects the estimate 7* of 7*. In fact, to obtain unbiased estimates of 7*, the
expected value of the estimation error 7, = 7* — 7* should be equal to zero, i.e. :

E{r.} =E{r* -7} =0. (2.28)

However, it may occur that the difference between 7 and 7* is very important. In fact, to
simplify, assume that g:,,l (.) has only 2 peaks and neglect the others. Then the generated
values will take values around 7* and T + 7*, with higher probability around 7* where the
highest peak is located. If we denote by ') the set of realizations taking values near 7*
and C the set of realizations taking values near 7* + T, then from (2.21) the estimated,
7*, can be approximated by :

~  card(Ch) card(C5)

* * 77 * T .
T 7 T+ B (" +T), (2.29)

“Note that P can be always chosen as large as desired to ensure that 7* € [0, PT)
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with card(C') denoting the cardinal of C, i.e., the number of elements of C. Therefore 7*
7* since R = card(C) + card(C5) and card(C3) is always not equal to zero. Moreover,
the bias is larger at low SNRs and/or short data records. This property was also previously
observed in the case of frequency estimation in [15].

To circumvent this problem, the pseudo-pdf, g;,,l (.), must be centered around 7*. To that
end, two intuitive methods may be envisioned. We may either eliminate the secondary
peaks to keep only the principal one, or we can generate other peaks in a way that the
number of secondary lobes on either side of the principal lobe is the same. The first idea
seems to be the most efficient, but it is unfortunately unrealizable and we opt for the
second alternative. Indeed, as we have seen, the estimation bias stems from the peaks
taking place after the principal lobe. Thus we have to modify g;,l (.) so that it becomes
quasi-symmetric around 7*. To that end, the simplest way is to suppose, virtually, that 7
takes negative values although 7 is always positive. We extend the interval of definition
of 9,/0'1 (.) from [0, PT] to [—-QT, PT], where Q) is a positive integer smaller than P. In
this way, virtual secondary lobes appear before as well as after 7*. Moreover, as it can be
seen from Fig. 2.2, the probability of generating realizations around 7* + 7" is almost the
same as the one of generating realizations around 7* — ¢7". Hence, the estimator becomes
unbiased and the estimate 7* is more accurate. So far, we have established an unbiased

o °
S »

Cululatuve Distribution Function G'(x)
o
>

FIGURE 2.2 — Plot of the cumulative distribution function (CDF), G'(7) whose pdfis ¢'(7),
SNR =5 dB.

estimator based on a linear average of the generated realizations. But through simulations,
we noted a performance change according to the constellation type. In fact, for a constant-
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envelope constellation such as phase-shift keying (PSK), the estimator works perfectly.
However, its performance degrades dramatically for non-constant-modulus constellations
such as pulse-amplitude modulation (PAM), quadrature amplitude modulation (QAM),
etc. In fact, as we have previously seen, the main problem that faces the new ML estimator
is the presence of secondary peaks. Although we have explained, in section V, how to
reduce the adverse effects of these peaks, they generate irreversible errors in the case of
non-constant-envelope constellations. To simplify the problem, without loss of generality,
we suppose again that g;,,1 (.) exhibits only two peaks, one located at 7* and the other
located at 7* + T'. From (2.25), g,/ (7*) and g, (7* + T') can be written as follows :

2 2

K—1|M-1 M-1
9o (T)=expq P4 Y |y (T)R(T, — kT — )| pexpq ph | Y y* (iT)R(Ts — )| ¢,
k=1 | +=0 i=0
(2.30)

and

K—1|M-1 2

gy (7" +T) = ex pz y (T )h(iTs — kT — ) X
k=1 | +=0
M-1 2

Y (iTHh(iT, — KT — 1)

2.31)

Noting that the samples of the received signal are limited in time to [0, K'T'] and the magni-
tudes of h(t — KT — 1) for t € [0, KT are very small compared to those of h(t — KT — )
fort € [KT, (K + 1)T], then, the term 3"~ y*(¢T,)h(iT; — KT — ) can be neglected.
Considering this result, we express g, (7*) as a function of g, (7* +T') :

9o, (T7) = gy (7" + T) exp{p} Io(7")}, (2.32)

where Io(7*) depends mainly on the amplitude of the first symbol. In practice, it may
occur that the amplitude of the first transmitted symbol is the smallest one. In this case,
the contribution of exp{p}Io(7)} in g, (7*) is far less important than the other terms, i.e.,
exp{p1lo(7)} < exp{pili(7*)} fori =1, 2,..., K — 1. As aresult, g, (7*) will be
closer to g, (7*+T'), which is a local maximum making the estimate 7 shift toward 7* 4T,
The same problem occurs when the last transmitted symbol has the smallest amplitude
with the only difference that the shift will be toward 7* — T.

To avoid these problems, Ip(7*) must be as large as possible. To that end, we slightly
modify the algorithm in the case of non-constant-modulus constellations by sending two
a priori known symbols : one at the beginning and one at the end of the frame. Moreover,
these two known symbols must be of highest energy among the constellation points. Then,
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Io(7*) is no longer negligible compared to [;(7*), for i # 0, and the difference between
the magnitude of g, (7*) and gy, (7" + T is large enough to avoid an important detection
error. The same thing holds for g, (7*) and g, (7* — T).

2.6.2 Second scenario : 7* € [0, T]

In many cases, the time delay does not exceed the symbol duration 7. Therefore, we must
look for the global maximum only in [0, T]. As previously explained, the maxima of the
importance function are periodically located, with a period equal to 7. Moreover, since we
know a priori that T does not exceed T, then we can more conveniently use the circular®
(instead of the linear) mean to evaluate the mean in (18). It will be seen in section VII
that the use of the circular mean provides considerable performance enhancements in the
low-SNR region. As it will be explained later, the use of the circular mean considerably
reduces the computational cost.

To introduce the concept of a circular mean, consider a circular random variable which
takes values in a finite interval that can be mapped into the unit circle. For instance, let
o be a random variable defined in [0, 1] with pdf P(«). Then, the circular mean of « is
defined as :

Efa} = %Z/exp{ija}P(a)da, (2.33)

where £/ denotes the angle in radians. Having R realizations of «, its circular mean is [16] :

=5 R Z exp{j2ra,}. (2.34)

In our case, if the time delay is not confined within the interval [0, 1], it can be easily trans-
posed into this interval by normalizing 7* by 7. Then, the resulting transposed estimate is

inversed to obtain an estimate in the original interval. Hence, the IS estimate of 7 using
(2.34)and (2.21) is :

R
~ T 1 L () 27Ty,
PR St i A LT == 2.35
= R;g’(n) exp{y =0 (2.35)
or finally :
R
~ T 1 2nT;
*=—/—% F(n; — 3, 2.36
o R; (r)exp{y T} (2.36)
where ' (@)
x
F(z) = =2 (2.37)
9,,/1(1')

SNote that the circular mean cannot be used in the first scenario when 7 may exceed T since it always
returns an estimate in [0, T'] by virtually bringing, into this interval, all the secondary lobes of the normalized
importance function.
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Note that we need to find the angle of a complex number, and thus, we can remove any
positive real factor taking place in (2.36) without affecting the final result. This means that
the two strictly positive normalization constants [, L'(v)dv and [, ¢'(v)dv can be simply
dropped. Moreover, an overflow may occur since both the numerator and the denominator
are exponentials. To circumvent this problem, we replace® F'(r;) by F'(r;) :

K-1 K—1
F'(1;) = exp {poLC(Ti) — P} Z Ix(mi) — max (poLc(n) -} Z Ik(n))} (2.38)
k=0 == k=0

where we multiply F'(7;) by a real scalar factor.

2.6.3 Summary of steps

In the following, we summarize the steps of the new algorithm for the two considered
scenarios.

1. Based on the sampled data y(iT),7 =0, 1,..., M — 1, evaluate the periodogram
Ii.(7) according to (2.24).

2. Compute the normalized importance function in (2.27). Note that, in practice, we

use a discreet model by substituting the integration in the denominator of (2.27) by

a summation as follows :

l:[ exp{p) Ik(7)}

g;/l (r) = ) (2.39)

K-1
N
et 1] exp{oili(m)}
k=0
where N is the total number of points in the time delay interval.

3. Generate R realizations of the parameter {r;}1 | using the inverse probability inte-
gration as detailed in Appendix D.

4. Evaluate the weight coefficient F(7;) defined in (2.37) (or F’(r;) defined in (2.38) if
we consider that 7 is in [0, T']) for each generated value 7.

5. Compute the mean of the generated variables multiplied by the weight coefficients
to find the ML estimate of the time delay.

SNote that the same simplifications have been used in [9] to estimate the signal DOA.
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2.7 Simulation Results

In this section, we will present numerical results to substantiate the performance of the
new ML estimator as a function of the SNR. We will also refer to our new IS-based ML
estimator as "IS algorithm". The normalized (by 7'%) mean square error (NMSE), defined
in (2.40), will be used as our performance measure :

"5 *x\2
NMSE(r) = —E-{(TTT)——} (2.40)

and computed over 1000 Monte-Carlo runs. The modified Cramér-Rao lower bound (MCRLB)
is also normalized by T2 and the total number of transmitted symbols, K, in the observa-
tion window is set to K = 100 and p} is taken equal to 28. Unless specified otherwise,
a root-raised cosine shaping pulse of roll-off factor of 0.5 is used. First, the effect of p;
(or equivalently p}) on the performance of our IS-based ML estimator is shown in Fig.
2.3 at an SNR of 10 dB. As it could be predicted, the mean square error decreases as p;
increases toward its optimal value and, for too large values, the performance deteriorates
due to numerical overflows. In the implementation, g} can be set as a function of the po-

10 15 20 25 30 35

FIGURE 2.3 — Performance versus p; for SNR=10 dB.

wer of the received samples y. Moreover, using computer simulations, we verify that for

a root-raised cosine filter the ratio L', , (7)/¢’(7) is almost equal to 1. Then to reduce the

C,P0

computational complexity, we can set this ratio to 1 in (2.21) and (2.36). In fact, Fig. 2.4
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shows the NMSE of the IS-based time delay ML estimator when this ratio is preserved
in the importance function and when it is set to 1. As it can be seen, this simplification
does not degrade the performance of the estimator while reducing the computational com-
plexity considerably. This simplification is also valid for any linear modulation scheme.

Therefore, in the following simulations we consider that :

Lo (7)

00 _
9;,/1 (r)
Note that this simplification remains valid when the intersymbol interference is not im-
portant (for high values of the roll-off factor). As the roll-off factor tends to 0, it appears
necessary to consider the ratio in order to achieve better performance of the estimator.
Moreover, we implement the iterative CML estimator, called CML-TED, proposed in [8]

1. (2.41)

~ #= without ratio
- Q- with ratio
— MCRLB

Normalized timing variance

FIGURE 24 - Estimation performance considering L, (7)/g'(r) and setting
L, ,,(7)/¢'(7) to 1 with QPSK modulation.

and compare its performance to the performance of our IS-based CML estimator. As far
as we know, among all the existing synchronization techniques, the CML-TED algorithm
achieves the best performance, but, as an iterative procedure, its performance depends
strictly on the initial guess. To corroborate our claims, we consider in Fig. 5 two initial
values of 7* for the CML-TED, which should be seen as the result of another estimator. In
Fig. 2.5, the small crosses represent the normalized variance where the initial value is very
close to the true time delay value, i.e., verifies |7 —7*| = T'/10, with 7* being the true time
delay value to be estimated and 7 is the initial guess. As it can be seen from this figure,
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even with a close-enough initial guess, our IS-based estimator outperforms the CML-TED
estimator in the high SNR region although the CML-TED achieves better performance at
low SNR values. We also note that, at high SNR values, the performance of our IS-based
estimator is close to the MCRLB. This means that, in this region, our new time delay esti-
mator exhibits performances equivalent to those that could be achieved if the transmitted
data were perfectly known to the receiver. However, if we consider |75 — 7*| = T/2, the
performance of the CML-TED deteriorates considerably over the entire SNR region. This
illustrates the fact that the CML-TED algorithm fails to estimate the time delay if the ini-
tial value is not appropriately chosen, while no initialization concerns are raised with our
new IS-based CML estimator. Moreover, the second variant of the IS algorithm, namely

® =1S algorithm 1st scenario
@ = 1S algorithm 2ed scenario |
= # = CMLTED [t |=TH0 [

« M = CMLTED fr-<|=T/2

Normalized timing variance

FIGURE 2.5 — Comparison between the estimation performance of the IS algorithm using
the two scenarios and the tracking performance of the CML-TED using QPSK modulation.

considering the time delay as a circular variable, is also represented in Fig. 2.5. We see
in this case that the variance error is reduced in the low SNR region. In addition, in both
cases, starting from an SNR value of about 5 dB, our IS-based algorithm surpasses the
iterative algorithm, even when assuming a sufficiently accurate initial guess.
Furthermore, in Fig. 2.6, the CML-TED algorithm exhibits a variance penalty for a
roll-off equal to 0.2. This penalty is higher for smaller excess bandwidth. It has been
shown in [8] that the CML-TED reaches the asymptotic compressed CRLB (CRLB,),
and the difference between the MCRLB and the CRLB, becomes more important as the
roll-off factor decreases. Then the performance of the CML-TED cannot approach asymp-
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totically the MCRLB for small roll-off factors. In contrast, the new IS-based algorithm
always reaches the MCRLB in the high SNR range, irrespectively of the roll-off factor
value.

= =0 = ISalgo

= =% = CMLTED

MCRLB

Normalized timing variance

FIGURE 2.6 — Comparison between the estimation performance of IS algorithm and the
tracking performance of CML TED using QPSK modulation and for a roll-off factor of
0.2.

In Fig. 2.7, performance curves are drawn for 16-QAM and 64-QAM, as examples for
non-constant modulus constellations. As explained in section VI, we force the first and
the last transmitted symbols to be of maximum energy. To illustrate the performance de-
gradation in the case of higher-order modulations, we also plot the NMSE for QPSK. As
we can see, the IS algorithm achieves close performance for the three modulations orders,
with, however, a small improvement for the QPSK modulation. To illustrate the perfor-
mance enhancement achieved by forcing the first and the last symbols to have maximum
constellation magnitude, we plot, in Fig. 2.8 the performance of the new IS-based ML
estimator without this constraint. As anticipated, the performance is strongly affected by
the two edge symbols since the curve corresponding to the non-forced symbols does not
approach the MCRLB. Therefore, for non-constant-envelope modulated constellations, it
is essential to force the first and the last transmitted symbols to have maximum energy, as
explained in section VI.
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Normalized timing variance

FIGURE 2.7 — Normalized MSE of the time delay estimate for different QAM modulation
order, using a root-raised cosine filter with a roll-off factor 0.5.

B
4 = 16-QAM with forced symbols
= 16-QAM without forced symbals

Normalized timing variance

FIGURE 2.8 — Comparison of the estimation performance with and without forced symbols
using 16-QAM modulation and for a roll-off factor of 0.5.

2.8 Conclusion

A computationally efficient technique has been developed to implement the CML estima-
tor of the time delay parameter. Based on aﬁserete—time model, the transmitted symbols




are supposed to be unknown and no restriction on their distribution was assumed. To avoid
iterative techniques and their drawbacks, the importance sampling method was used to
find the ML solution. Its main advantage over the iterative procedures is that it does not
require any initial guess of the time delay parameter and that it is far less computationally
expensive while retaining good performances. Moreover, its convergence to the global
maximum is guaranteed. Relative to other proposed methods such as the CML-TED, the
IS-based estimator exhibits better performance at high SNR. In practice, the choice of the
algorithm parameters po and p] is critical for the estimation performance and for a good
choice of these parameters, a small number of generated realizations can be sufficient to
achieve satisfactory performance and reduce the computation burden.

Appendix A

Proofof lim L. (7)=4;

pPo—>+00 &P0

In the following, we prove that L , (1) defined in (2.17) tends to a Dirac delta function
centered at the location of its global maximum as py — +o00. To do so, consider the
general case where f(z) is an integrable function having one global maximum, denoted
a:
a =arg max f(z). (2.42)
z €R

And denoting by F'(z) the following normalized function :

exp{pof(z)}
F(z) = , (2.43)
) Tresplool (o)
where / is the definition domain of F'(.). Then, for a given real number b # a, we have :

= Jrexplpof @)}dz  Jrexplpof (z)}dz

However, since f(a) is the maximum value of the function f(x), then f(b) — f(a)is a
negative number and, therefore, exp{po(f(b) — f(a))} tends to 0, as well as F'(b), when
po tends to co. As aresult :

lim F(z) =0, (2.45)

PO—00

for any real x # a. Moreover, if we consider that lim F'(a) = 0, then whatever z € R,

Po—00
+o0
we have lim F(z) = 0 and lim F(u)du = 0, which is in conflict with the as-
po—00 PO—=0 J_ o
sumption that [ '°° F(u)du = 1.
+o0
Finally, we conclude that lim F'(a) # 0 and since lim F(u)du = 1, F(z) be-
pPo—+00 PO J_ o

comes a Dirac delta function centered at a when p, tends to +-co.
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Appendix B

Justification of the approximation AT A, ~ —%I K

The diagonal elements of AT A are the convolution of the same shifted version of A(.)
([ATA.};; = a¥(r)ai(r) fori = 0, 1,... K — 1 where a;(7) is defined in (6)). Whe-
reas, when the shift is not the same (i.e., [ATA.];;; = al()a;(7), i # j), the value of
the convolution, a} (7)a;(7), is, according to the Nyquist criteria, equal to zero. However,
since we take some samples of h(.), [ATA.];.; = al(1)a;(7), i # j is not really equal to
zero but still very small and negligible in front of [AT A,],;. To clarify, we plotted in Fig.
2.9 the following three functions : go(z) = h(z) x h(z) = h(z)?, g1(z) = h(z) x h(z =T
and go(z) = h(z) x h(z — 2T) and we take for example [ATA,];» = af(1)ay(r) =
Zf\nt& g1(mTy). Then, notice from this figure that some samples of g;(.) are negative,
which will compensate for positive samples in Zf‘f;& g1(mTy) from the same function
thereby resulting in very low convolution. However, the samples of go(x) are always posi-
tive and there is no compensation effect in [AT A, ]1,; = 2% go(mT,) added to the fact
that go(x) > g1(z), this results in the following conclusion : [AT A |11 > [AT A, ).
Using the same arguments for the other off-diagonal elements of AT A leads to the follo-
wing approximation :

ATA, ~ %IK (2.46)

8

FIGURE 2.9 - Plot of go(.), g1(.) and go(.).
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Appendix C

Proof of the effect of o} on g / ()

In the following, we briefly show how p) (or equivalently p;) can render g;,l (.) more pea-
ked around its global maximum. Starting from 9;9’1 (1*), define the function H,«(p}) =

g;;'l (77):
s r(a) «
H(py) = 22l (T} 2.47)
/ exp{p, L' (v)}dv
J

where 7* is the true time delay value to be estimated and L (1) is the approximation

of L(y;7) defined in the right-hand side of (22), i.e., L (7) = y# A, ATy. The first

derivative of H(p)) with respect to p} is given by equation (2.48).

L& () exp{p L ()} / exp{pi L) (v) v —exp{p L (")} / L&) @)exp{p L (v) }dv
J J

([ etpirowna)

exp{ 0, L% (r* @) [ ex (L () dv — (@ () exp{p, L (v) }dv
D (AL >}(L o) [ explhLOe)as - [ 10w expiiL <>}d).

( [ et <v>}dv)2

And noting that 7* = arg max, L{*(r), it follows that

H'(py) =

(2.48)

[ L@ exp{ L)} < L) [ exp{pi 200w (2.49)
J J

Therefore H..(p}) > 0 Vp}. Hence, H,+(p}) is an increasing function with respect to pf,

(2) (1)

ie., for every 2 > p we have H,-(p”) > H,(p "), which means g’p,(2) (7*) >
1

g; (7). We conclude that p| renders the objective function more and more peaked
around its global maximum.

Appendix D

Method to generate [7;|,

In this appendix, we detail how to generate realizations according to ¢'(7). First, we ge-
nerate a vector w = [uy, ug,..., ug) of R realizations uniformly distributed in [0, 1].
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Then, we search 7; = G'~(u;), where G'~1(.) is the reciprocal function of the cumulative
distribution function (CDF) G’(z) of z defined as :

G'(z) = /x g:,,l (v)dv. (2.50)
0

Unfortunately, a closed-form expression of G'~1(x) is not analytically tractable. Moreover,
since G'(x) is a steep-slope function, a fine search to find 7; as arg min, |u; — G’(7)] is
required and makes the process computationally intensive. However, since G’(7) is an
increasing function of 7, the function S(7) = |u; — G’(7)| is unimodal. This observation
allows us to adopt the golden search [17] to find the location of the minimum of S(7). The
golden search is appropriate for this problem because it converges after a small number of
iterations and requires only one function evaluation per iteration.
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Abstract

Dans cet article, nous dérivons pour la premiéere fois les expressions analytiques des bornes
de Cramér-Rao pour I’estimation du retard pour les signaux a modulation par déplacement
de phase, modulation & déplacement minimum et modulation d’amplitude en quadrature.
Nous supposons que les données transmises sont inconnues au niveau du récepteur et que
la fonction de mise en forme satisfait le critere de Nyquist. De plus, la phase et 1a fréquence
porteuses sont considérées inconnues. Le retard reste constant sur I’intervalle d’observa-
tion et le signal recu est entaché de bruit additif. Les nouvelles expressions montrent que
les performances d’estimation ne dépendent pas de la vraie valeur du parametre. De plus,
ils concordent avec les résultats obtenus par calculs empiriques.

In this paper, we derive for the first time analytical expressions for the exact Cramér-Rao
lower bounds (CRLB) for symbol timing recovery of binary phase shift keying (BPSK),
minimum shift keying (MSK) and square QAM-modulated signals. It is assumed that the
transmitted data are completely unknown at the receiver and that the shaping pulse veri-
fies the first Nyquist criterion. Moreover the carrier phase and frequency are considered
as unknown nuisance parameters. The time delay remains constant over the observation
interval and the received signal is corrupted by additive white Gaussian noise (AWGN).
Our new expressions prove that the achievable performance holds irrespectively of the true
time delay value. Moreover, they corroborate previous attempts to empirically compute the
considered bounds thereby enabling their immediate evaluation.
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3.1 Introduction

In modern communication systems, the received signal is usually sampled once per-symbol
interval to recover the transmitted information. But the unknown time delay, introduced by
the channel, must be estimated a priori in order to sample the signal at the accurate sam-
pling times. In this context, many time delay estimators have been developed to meet this
requirement. These estimators can be mainly categorized into two major categories : data-
aided (DA) and non-data-aided (NDA) estimators. In DA estimation, a priori known sym-
bols are transmitted to assist the estimation process, although the transmission of a known
sequence has the drawback of limiting the whole throughput of the system. Whereas, in
the NDA mode, the required parameter is blindly estimated assuming the transmitted sym-
bols to be completely unknown. In both cases, the performance of an estimator affects the
performance of the entire system. In the case of an unbiased estimation, the variance of
the timing error is usually used to evaluate the estimation accuracy. The CRLB is a lower
bound on the variance of any unbiased estimator and is often used as a benchmark for
the performance evaluation of actual estimators [1, 2]. The computation of this bound has
been previously tackled by many authors, under different simplifying assumptions. For
instance, assuming the transmitted data to be perfectly known and one can derive the DA
CRLB. The modified CRLB (MCRLB), which is also easy to derive, has been introduced
in [3, 4], but unfortunately it departs dramatically from the exact (stochastic) CRLB, es-
pecially at low signal-to-noise ratios (SNR).

Actually, the time delay stochastic CRLBs of higher-order modulations were empirically
computed in previous works. Their analytical expressions were tackled only for specific
SNR regions, i.e., very low or very high-SNR values and the derived bounds are referred
to as ACRLBs (asymptotic CRLBs). In fact, in [S] the stochastic CRLB was tackled under
the lJow-SNR assumption and an analytical expression of the considered bound (ACRLB)
was derived for arbitrary PSK, QAM and PAM constellations. In this SNR region, the au-
thors of [5] approximated the likelihood function by a truncated Taylor series expansion
to obtain a relatively simple ACRLB expression. An analytical expression was also intro-
duced in [6] under the high-SNR assumption. This high-SNR ACRLB coincides with the
stochastic CRLB in this SNR region but unfortunately it cannot be used even for moderate
(practical) SNR values. Another approach was later proposed in [7] and [8] to compute
the NDA deterministic (or conditional) CRLBs, in which the symbols are considered as
deterministic unknown parameters. Then the conditional CRLB is derived from the com-
pressed likelihood function f(y; 8, Z) in which y stands for the observed vector, 8 is the
parameter vector of interest (including the unknown time delay) and Z is the maximum
likelihood estimate of the transmitted symbols . However, it is widely known that the
conditional CRLB does not provide the actual performance limit (unconditional or sto-
chastic CRLBs). In an other works, the stochastic CRLB was empirically computed [9]
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assuming perfect phase and frequency synchronization and a time-limited shaping pulse.
Later in [10], its computation was tackled in the presence of unknown carrier phase and
frequency and pulses that are unlimited in time. Both [9] and [10] simplified the expression
of the bounds but ultimately resorted to empirical methods to evaluate the exact CRLB,
without providing any closed-form expressions.

Motivated by these facts, in this work, we derive for the first time analytical expressions
for the stochastic CRLBs of symbol timing recovery from BPSK, MSK and square QAM-
modulated signals. We consider the general scenario as in [10] in which the carrier phase
and frequency offsets are completely unknown at the receiver, and we show that this as-
sumption does not actually affect the performance of a time delay estimator from perfectly
frequency- and phase-synchronized received samples. The derivations assume an AWGN-
corrupted received signal and a shaping pulse that verifies the first Nyquist criterion. The
last assumption is verified in practice for most of the shaping pulses.

This paper is organized as follows. In section II, we introduce the system model that will
be used throughout this article. In section III, we derive the analytical expression of the
stochastic CRLB for any square QAM modulation. Then, in section IV, we outline the de-
rivation steps of the CRLB in the cases of BPSK and MSK transmissions. Some graphical
representations are presented in section V and, finally, some concluding remarks are drawn
out in section VI.

3.2 System Model

Consider a traditional communication system where the channel delays the transmitted
signal and a zero-mean proper’ AWGN, with an overall power o2, corrupts the received
signal. In the case of imperfect frequency and phase synchronization, the received signal
is expressed as :

y(t) = VE, z(t — 7)ed 0 L), (.1)

where 7 is the time delay, # is the channel distortion phase, f. is the carrier frequency
offset and j is the complex number verifying j2 = —1. The parameters 7, § and f, are
assumed to be deterministic but unknown. They can be gathered in the following unknown

parameter vector :

v=I[r0,f]" (3.2)

In (3.1), w(t) is a proper complex Gaussian white noise with independent real and imagi-
nary parts, each of variance 02/2, and z(t) is the transmitted signal given by :

2A proper complex random process v(t) satisfies E{v(¢)?} = 0.
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K
()= a;h(t—iT), (3.3)
i=1

with {a; }X, being the sequence of K transmitted symbols drawn from a BPSK, an MSK
or any square-QAM constellation and 7" is the symbol duration. The transmitted symbols
are assumed to be statistically independent and equally likely, with normalized energy,
ie., F{|a;|*} = 1. Finally, h(t) is a square-root Nyquist shaping pulse function with
unit-energy which will be seen in sections III and IV, as would be expected, to have an
important impact on the CRLB and therefore on the system’s performance. The Nyquist
pulse g(t) obtained from h(¢) is defined as :

g(t) = /:LOO h(z)h(t + z)dz, (3.4)

oo

and satisfies the first Nyquist criterion :

g(nT) =0, n#0. (3.5)

Suppose that we are able to produce unbiased estimates, v/, of the vector v from the re-
ceived signal. Then the CRLB, which verifies E{(U — v)?} > CRLB(v), is defined as [1,
2]:

CRLB(v) = I"(v), (3.6)

where I(v) is the Fisher information matrix (FIM) whose entries are defined as :

@), = B {8L(V) OL(v)

8% 81/j

}, i, 7=1,23, (3.7

with L(v) being the log-likelihood function of the parameters to be estimated and {v;}3_,
are the elements of the unknown parameter vector v.

To begin with, we show in Appendix A that the problem of time delay estimation is disjoint
from the problem of carrier phase and frequency estimation. Indeed, we show that the FIM
is block-diagonal structured as follows :

CRLB™'(7) ©
I(v) = : (3.8)
0 L, f.)

where 0 = [0, 0]7, CRLB(7) is the CRLB of the time delay parameter and I»(9, f) is the
(2 x 2) FIM pertaining to the joint estimation of f. and §. Hence, we prove analytically
that we deal with two separable estimation problems ; on one hand time delay estimation
and on the other hand carrier phase and frequency estimation. Actually, this conclusion
has been already made in [10] but the authors resorted to empirical evaluations to find
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that the elements [I(v)]y.2 and [I(v)];.5 of the FIM are almost equal to zero. Now, since
the parameters are decoupled, we only need to derive the first element of the global FIM,
[I(v)]1.1 in order to find the CRLB for time delay estimation under imperfect frequency
and phase synchronization. Therefore, in the following, we consider the virtually derotated
received signal y(¢) given by :

y(t)y = y() eI @mfct+0)
= VE,z(t — )+ @(t), (3.9)

where @(t) = w(t)e It is also a proper AWGN with an overall power o2 since the
nuisance parameters are assumed to be deterministic.

We mention that |.|, R{.}, ${.} and {.}* return the magnitude, real, imaginary and conju-
gate of any complex number and E{.} is the statistical expectation. We also define the
SNR of the system as p = E,/o?.

3.3 Time Delay CRLB for Square QAM-Modulated Si-

gnals

In this section, we introduce the main contribution embodied by this paper which consists

in deriving closed-form expressions for the stochastic CRLBs of time delay estimation
when the transmitted data are unknown and drawn from any M -ary square QAM-constellation
(.e., M = 22P),

Before further development, it is important to emphasize that an exact representation of
y(t) requires an infinite-dimensional vector representation . But let us consider the N-
dimensional truncated vectors Yy, € and wy, representing the projection, over an ortho-
normal basis of N dimensions, of 3(t), z(¢) and w(t), respectively. Then, the pdf of yy
conditioned on the transmitted symbols a and parameterized by 7 is given by [4] :

P(@nla;7) = N_i_ _|Z7k*$k\2
nlair) =[] —sewy—=—"1. (3.10)

To derive the likelihood function which incorporates all the information contained in §(¢),

we should make N tend to infinity to get P(y|a; 7). However, convergence problems ap-
pear. To overcome these problems, P(yy|a; 7) is divided by 1/(ro?)Y exp { /023N |gjk\2}
to obtain :

= N N
—~ 2 ES ~ * ES
Ayla;7) = exp{ g Z R{Grxy} — — Z |$k|2} ; (3.11)
k=1 k=1

and as N tends to infinity, we obtain the conditional likelihood function :

A(Fla; ) = exp { 2\;5_3 /_ :o R{G()a(t) dt} — % /_ " |z(t)|2dt} . (312

oo
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To begin with, we note that since the transmitted symbols {a,}*; are equally likely, then
the desired likelihood function of the derotated observation vector ¢ can be written as :

A () {H F(al,y@))} (3.13)
where the expectation is performed with respect to the vector of transmitted symbols and

F(ai,g(t))=exp{2\/—/+oo§)?{y }h(t—z’T-T)dt—%\aiF}. (3.14)

It can be shown that (3.13) reduces simply to :

~ 1
A7) = 7 [T (), (3.15)

Hi(T):ZeXp{—%l 2 2\/_ +oo§‘£{~(tck}h(t—zT—T)dt} (3.16)

in which C' is the constellation alphabet. Actually, the main difficulty in deriving an analy-
tical expression for the stochastic CRLB stems from the complexity of the log-likelihood
function. Therefore, we will manipulate the summation involved in (3.16). In fact, consi-
dering only square QAM-modulated signals, we are able, by exploiting the full symmetry
of the constellation, to factorize H;(7) which in turn linearizes the global log-likelihood
function and ultimately linearizes all the derivations.

Indeed, denoting by C' the subset of the alphabet points with positive real and imaginary
parts (i.e., C = {(2i — 1)dy, + j(2k — 1)dp}i g=1,2,... 20-1), the constellation alphabet C is
decomposed as follows :

C=CUC*U (=C) U (=C*). (3.17)

Note that d,, is the inter-symbol distance derived under the assumption of a normalized-
energy square QAM constellation as follows :

2r—1

(3.18)

\/21’ 2ok 1)
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Using (3.17), we rewrite (3.16) as :

H(r)= 3" exp {—% ak|2} x (exp { 2B  ROE( T~ T)dt}

&el
exp { 2‘(5_ &e{ (0)(=e)Yh(t — iT — )dt}
+exp { E, §R{y( Ve th(t —iT — 7 dt}
+exp{ \/_/ R{Y(t)cx}h(t —iT — 1) dt}) (3.19)
Now using the hyperbolic cosine function defined by 2 cosh(z) = + 7% (3.19)
reduces simply to :
Es . 2VE, [T .
Hi(r)=2 Zexp{—ﬁ|0k|2} [cosh( t)eLth(t —zT—*r)dt)
el
+ cosh ( vFs / R{F()E h(t — iT — T)dfﬂ (3.20)

Moreover, using the fact that cosh(a) + cosh(b) = 2 cosh(%t2) cosh(252) and noting that
¢ + ¢ = 2R{é}and & — & = 2j3{é}, we obtain :

Hir) =2 exp {-%\aﬁ} cosh <2‘/_§R{ 5 _mm{ GOYR(L — iT — T)dt>

3 eC

cosh (

Recall that C = {(21-1)d,+7(2m—1)dp}; m=1,2,.. 20-1 and hence the previous expression

\s{y VHa(t — T — T)dt> (3.21)

of H;() is rewritten as :

Hi(t) = 4pzl2pzlexp{ (-1 :2(2m_ ) d’%} X

=1 m=1

cosh (2\/E (2l —-1)d, ‘+W§R{§(t)}h(t — T — T)dt) X

cosh (2\6{5_3 (2m —1) dp]oim%{g(t)}h(t —iT — T)dt) :

(3.22)

Then, splitting the two sums in (3.22), H;(7) is factorized as follows :

3Note that similar factorization was recently used to derive an analytical expression for the NDA SNR
estimation [11], [12].
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Hi(r) = 4 F(U(R)) FOG(r), (3.23)

where oo
Ui(1) = R{y()} h(t —iT — 7)dt, (3.24)
+o0
w@):/‘ S{H(E)} h(t — iT — 7)dt, (3.25)
and
or—1
Z exp {——— k 1)2d12,} cosh <2\§;ES - 1)dpx> . (3.26)

Now, injecting the expression of H;(7) in the likelihood function of the received signal
(3.15), we obtain :

AG; 7) ( ) HF () F(Vi(r)). (3.27)

Finally, the log-likelihood function of the received signal expands to :

Zln )+ Zln F(Vi(1))). (3.28)

Note from (3.28) that due to the factorization of Hi(T) in (3.19), the global log-likelihood
function of interest in (3.28) involves the sum of two analogous terms. This reduces consi-
derably the complexity of the stochastic CRLB derivation.

In fact, the first derivative of (3.28) with respect to 7 is obtained as follows :

OL(r) _ N~ F(UAr) aUi(r) | F(Vi(r)) 8Vi(r)
af_;mmm or T Ei) or (3:29)
where F'(z) = %2 is given by :
F(z) = 22 exp {—p(2k — 1)2d%} iﬁ(% —1)d, sinh <2\0/_(2k —1)d, ) (3.30)
k=1

Then the first diagonal element of the FIM matrix is expressed as :

OoL(T ; Ul T . .
[I(umﬂ:E{( o )} {EZF(U(T asr Ui(r>Ul<r>}+

=1 =1

F(U;(r (7)) - F(V(r Vi(1)) . .
5 R o (5 D ).

11=1 i=1 =1
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where U;(r) and V(r) are the derivatives of U;(7) and V() with respect to .

Starting from (3.31), the derivation of [I(v)];.; involves the evaluation of three expec-
tations. However, it is easy to verify that the first and the last expectations in the right-hand
side of (3.31) are performed with respect to two random processes having the same statis-
tical properties and they are therefore identically equal. Moreover, as shown in Appendix
B, the second expectation is equal to zero. Therefore, (3.31) reduces simply to :

) B
11_2ZZE{F(U7 Fa T )}, (3.32)

=1 I=1

First, we consider the case where 7 = [, and we show in Appendix C that U;(7) and U;(7)
are statistically independent. This results in :

. 2 . 2
FU)\ e FUi(r)) w2
E —_— ; =F —_— E<\U; . 3.33
(F(Uim) () FU,() (Gn) - @
These two expectations involved in the right-hand side of (3.33) are easily evaluated as
follows :

o)\ e (e
’ (W) */_ (F(Ui(r))> P(Us())dUs(7)

_ \/%—2\/%/_:0 %exp{—Ui(;)}dUi(T()}.34)

E {( i) } ZQ (G- K)T) - —29(0) (3.35)

where §(.) and §(.) are the first and second derivative of g(.), respectively. We simplify
(3.34) by changing v/2U;(7)/o by x and we obtain the following result :

E (F(g E:) ) \/;(72 / o) gy, (3.36)

where
ar—1
gpl@) = exp {~p(2k — 1)’d} V(2K — 1)d, sinh (\/%(Qk - l)dp:v) ,(3.37)
k=1

or—1

= 3" exp {—p(2k — 1)d2} cosh (1/20(2k — 1)dp) .



We now consider the case where i # . The intersymbol interference results in a statistical
dependence between U;(7) and the first derivatives U;(7) and U, (7) (likewise for Vi(r) and
the first derivatives V;(7) and V}()). Thus using a standard probobility approach to derive
the expectations involved in (3.32), we first average by conditioning on U;(7) and U;(7),
then average the resulting expression with respect to these two random variables. To that
end, consider the expectation of U;(7) and U;() conditioned on U;(7) and Uy (7) :

E{U( WUAT), Ui(7)} = Ui(7)g((@ — DT), (3.39)
E{U(7)|Ui(7), Ui(7)} = Us(r)§((L = i)T). (3.40)
Using (3.39) and (3.40), it follows that :

B(U) FU)) 4,
E{F(er»F(m(T)) (nU(m)|U

FU(r) F(Ui(7))
), it )} F(0:(r) FU(T)

Ui(m)Ui(m)g((E = DT)g((1 —BB})

and we obtain ;

E(Ui(r) FUT)) |, B O DA N A SV
E{F(U( ) F(U(r) ()Ul(”}— (E{ R0 )}) (- )TY342)

where the last equality follows from the statistical independence of U;(7) and U;(7) and :

F(Ui(r)) _ ]2 [T =2
E{F_(U_;(T_))UZ(T)} = m/_w zg,(z)e” 2 d. (3.43)

Finally, gathering all these results, we obtain the analytical expression of the stochastic

CRLB for symbol timing estimation. From square QAM-modulated signals in the presence
of carrier phase and frequency offsets as follows :

RiBE) = (22303 (m—mim) — 200y ) /2 [T B o
i a P9 M | G,(z)
2% oo r 2 K K , -1
— </OO zg,(x)e” 2 d:c) m_lz—:lg ((m —n)T) (3.44)
Note that for large values of K, one can use the following accurate approximation [10] :
K K +o00
YD F(m-nT)m K > §(mT). (3.45)
m=1n=1 m=-—00

It is worth mentioning that the new analytical expression in (3.44) allows the imme-
diate evaluation of time delay stochastic CRLBs, contrarily to the empirical approaches
presented in [9] and [10], and this is made possible for any square QAM modulation order.
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Second, the shaping pulse is involved only via §(0) and §*((m — n)T'), and is separate
from the factors resulting from the modulation order. Moreover, to the best of our know-
ledge, we show here for the first time, through our new analytical expression, that the true
value of the time delay parameter does not affect the actual achievable performance as in-
tuitively expected, i.e., the variance of the estimation error holds irrespectively of the time
delay value to be estimated.

3.4 CRLB for BPSK and MSK Modulated Signals

In this section, we consider the BPSK and MSK modulations. In BPSK transmissions,
the data symbols take values in {—1, +1} with equal probabilities. In MSK transmissions,
the symbols are defined as a1 = j axcr Where ¢ is a sequence of BPSK symbols and
ag is the original value drawn from the set {—1, —j, +1, 4+ }. For these two transmission
schemes, the key derivation steps of the NDA CRLB will be briefly outlined in the follo-
wing. All derivation details can be found in Appendix D.

First, the likelihood function of interest based on the received signal is :

IKI cosh <2\/_ / R{O:G(E)Ih(t —iT — 7)dt + —|b ]2> (3.46)

where b; is equal to 1 and j° laq for BPSK and MSK, respectively. Therefore, we show
that the useful log-likelihood function of ¥ is given by :

L(7) = éln (cosh <2\U/2E_ /_ :o R{b:(E) Mh(t — T — T)dt>> . (3.47)

Note that y(t) is defined in (3.9). After some algebraic manipulations, detailed in Appen-
dix D, it turns out that the analytical expression of the stochastic CRLB for time delay
estimation is the same for BPSK and MSK modulations, and it is given by :

CRLB = {4/){(1—\/—6 *B(p )(p;;g —§§(0)>
- pzzg } )

m=1 n=1

(3.48)

where ((.) is defined as :




3.5 Graphical Representations

In this section, we provide graphical representations of the time delay CRLBs and the
CRLB/MCRLB ratio for different modulation orders.zFirst, we mention that the even in-
tegrand functions é‘i%})e_%, xgp(w)e‘§ and ;Ef—(_%;;-;)— involved in (3.44) and (3.49),
respectively, decrease rapidly as |¢| increases. Therefore, the integrals over [—oo, +00]
can be accurately approximated by a finite integral over an interval [— A, A] and the Rie-
mann integration method can be adequately used. In our simulations, we note that A = 100

and a summation step of 0.5 provided accurate values for the infinite integral.

T
== (PSK
| 36— 16-QAM
—t— 256-QAM
= = =MCRLB
®  Empirical QPSK

10k s EEES : : o @ Empirical 16-QAM | o
Lo R ERE IS I EE ST SRS @  Empirical 256-QAM| -

SNR [dB]

FIGURE 3.1 — Compression between the empirical CRLB and the analytical expression
in (3.44) for different modulation orders using K = 100 and a raised-cosine pulse with
rolloff factor of 0.2.

First, we plot in Fig. 3.1 the CRLBs for different modulation orders and compare them
to the ones previously obtained empirically in [10]. We see a good agreement between
the two approaches thereby validating the developments above. Then, we confirm through
Fig. 3.2 that, at low SNR values, the MCRLB is a looser bound compared to the exact
CRLB. Indeed, this figure depicts the CRLB/MCRLB ratio as a function of the SNR. This
ratio quantifies the performance degradation that arises from randomizing the transmitted
data and it approaches 1 at high SNR values. Hence, in this SNR region, the MCRLB can
be used as a benchmark to evaluate the performance of unbiased time delay estimators
instead of the exact CRLB, since it is easier to evaluate. However, the gap between the
two bounds becomes important as soon as the SNR drops below 7 dB, even for QPSK-
modulated signals, where the stochastic CRLB quantifies the actual performance limit.
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Moreover, we consider in this figure two values of the rolloff factor, 0.2 and 1, in order to
illustrate the effect of the rolloff factor on timing estimation. Clearly, timing estimation is
less accurate at a lower rolloff factor (larger intersymbol interference).

Moreover, we see from Fig. 3.3 that the different CRLBs tend to ultimately coincide
with the MCRLB as long as the SNR gets increases. Actually, in the high SNR region, the
achievable performance of NDA estimation of the signal time delay is equivalent to the
one obtained when the received symbols are perfectly known since in this SNR range the
MCRLB coincides with the DA CRLB.

T
— BPSK

................. | e OPSK

CRLB / MCRLB

5
SNR [dB]

FIGURE 3.2 — CRLB/MCRLB ratio vs. SNR for different modulation orders using K =
100 and a raised-cosine pulse with rolloff factor of 0.2 and 1.

In the specific case where h(t) is time limited to the symbol duration, the corresponding
CRLB follows directly from the general expression in (3.44) by taking g(mT') = 0 for all

mei:
+00 2 -1
CRLB(T)=[ 2K pi(0)4/ JV[/ G (3: dac] . (3.50)

Note from (3.50) that the resulting CRLB becomes the product of two separate terms;

one depending on the shaping pulse function and the other on the signal modulation. This
special bound is plotted in Fig. 3.4. We see again a good agreement in this special case
between the CRLBs obtained from our analytical expression in (3.50) and their empirical
counterparts plotted in Fig. 1 of [9]. This particular expression still finds applications in
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FIGURE 3.3 — CRLB vs. SNR for different modulation orders using K = 100 and a raised-
cosine pulse with rolloff factor of 0.2.

many conventional systems and in the emerging impulse radio technology [13, 14] where,
precisely, synchronization stands today as a very challenging issue.

L] gt BPSK-MSK

QPSK
e 16-QAM
& 64-QAM
— 1024-QAM

CRLB/MCRLB

10 T L
=25 ~-20 -15 -10 -5 0 5 10 15 20
SNR [dB]

FIGURE 3.4 — CRLB/MCRLB ratio vs. SNR for different modulations and a time-limited
shaping pulse.
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3.6 Conclusion

In this paper, we derived, for the first time, analytical expressions of the Cramér-Rao lower
bound for symbol timing estimation in the cases of BPSK, MSK and square-QAM modu-
lations. We considered the stochastic CRLB where the transmitted data are unknown and
randomly drawn. The carrier phase and frequency offsets are also supposed to be unknown
(nuisance parameters). We showed that the knowledge of the phase and frequency does not
bring any additional information to the time delay estimation problem and that the latter
is decoupled from the joint estimation of the carrier frequency and phase offsets. Moreo-
ver, our analytical expressions for the CRLBs underline the fact that these bounds do not
depend on the time delay value, which used to be stated only intuitively. We confirmed
also that the modified CRLB is a valid approximation of the exact CRLB in the high SNR
region and that it can be used as a benchmark since it is easier to evaluate. Furthermore,
the derived analytical expressions corroborate previous works that empirically computed
the stochastic CRLBs via Monte Carlo simulations, and hence provide a useful tool for a
quick and easy evaluation of the CRLBs with BPSK, MSK and square-QAM modulations.

Appendix A

Proof of the Block-Diagonal Structure of the FIM

To show that 7 and u = [f,,d]7 are decoupled, we consider the actual received signal
y(1) instead of the virtually derotated signal y(¢). Then we follow the same derivation
steps from (3.13) to (3.28) to retrieve the log-likelihood function parameterized by v as

follows :
K

Lv) =Y I (F(Uiv)) + Z In (F (3.51)

i=1

The first derivatives of this function with respect to the I** element of u, {u;}!=2, and 7
are, respectively, given by :

L) _N~F(Uw) 3U(v) | FViw)) 9Vi(v)

=12 (3.52)

)
Oy ‘ F(U;(v)) 0w F(Vi(v)) o

and

8L I/) Z (v) 8U (v) " E(Vi(v)) Vi(v) (3.53)
F

(v)) or FVi(v)) or

where F'(.) is defined in (3.30). Then we average ﬂ"——L—(('—l’)l as in (3.31) to obtain the

following result :
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T = E { o) 0155';) }

5 & | EBUWw)) F(Unw)) 8Ui(v) 0Un(v)
2 Z Z E {F(Ui(ll)) F(Un(v)) ot Juy } - (354

i=1 m=1
In order to simplify the calculations, without loss of generality, we consider | = 1. To
begin with, we first differentiate U,, (v) with respect to f. and we obtain :

Um +o0 ]
WUn(v) _ 277/ S {y(t)e IO bt — mT — 7)tdt

a/e 5
K 400 +o00
=27 Z S{am} h(t —nT — 7)h(t — mT — T)tdt+/ S{w(t)h(t — mT — 7)tdt.
n=1 -0 -
(3.55)
OUm (v)

a7 1s a function of the imaginary part of the transmitted symbols and the derotated
noise, which are mutually independent from the real part of the transmitted symbols and
the derotated noise. As a result, %ﬁ is independent from U;(v), U,,(v) and Q—U(;—T(”—). This
allows us to split the expectations in (3.54) :

5 { E(Ui(w)) F(Un(v)) 0Ui() U (v) } 5 { E(Uw)) E(Un(v)) 0U:(v) }

FUW) FUnw)) o ou FU) FUnw)) o7

E {M} . (3.56)
811,1

Noting that the last expectation is equal to zero, it follows immediately that [I(v)];.2 is also
equal to zero. Thus, we show analytically that the two parameters 7 and f. are decoupled.
The same manipulations are used to prove that 7 and ¢ are also decoupled. Therefore, the
FIM is block-diagonal structured as given by (3.8).

Appendix B

FU) PG g7 (i) )
Proof of 15 { FpA LI U1 (7)Vi(r) | = 0

In the following, we briefly show that F {%% Uz(T)Vl(T)} = (. By definition,
U;(r) depends on the real part of y(¢), while V;(7) involves the imaginary part of y(¢),
which are statistically independent. It follows that U;(7) and Vj(7) are independent. The
same arguments hold to show the statistical independence of [;(7) and V(7). Then, it

immediately follows that :

FU) PV oo\ g (RO ) [V,
E {F(Ui(f)) F(W(T))Uz(r)Vz( )} =F { F(Ui(r))U’(T)} E { F(Vl(T))Vl( )}3.57)
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And since Ul(T) and U;(7) are statistically independent (see Appendix C), each with mean
zero, we obtain :

(UL (7)) F(Vi(r) - )
B {F(er)) Fn) Ve )} =0 (3.58)

Appendix C

C.1 - Pdfs of U;(7) and Vj(7)

In this Appendix, we establish the joint pdf of U;(7) and V;(7) defined, respectively, in
(3.24) and (3.25). To that end, we define the proper complex random variable Z;(7) =
fj;oﬂz(t) h(t — 4T — 7)dt. It can be easily seen that Z;(7) = U;(r) + jV;i(7) and that
P(Z;(1)) = P(Ui(7), Vi(7)). Using the same algebraic manipulations from (3.16) through
(3.23), we establish the pdf of Z;(7) as follows :

e e L1
~ s e { - LD pn ) Fvio)
= PW() P(V(r), (3.59
where
P(UL(r \/_\/> exp{ vitr } F(Ui(7)), (3.60)

PO = o {20

Note that the factorization of the joint pdf P(U;(7), Vi(7)) of U;(r) and Vj(7) to their
elementary pdfs confirms that these are two independent random variables.

b P (3.61)

C.2 - Proof of Statistical Independence of U;(7) and U;(7)

First, note that, U;(7) can be written as :

= \/Es%{ai} + Bi,

40

R{G(E) Yh(t — iT — 7)dt.
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Therefore, U;(7) is given by :

U(r) = Y R{am}i((i —m)T) - i N R{W(¢) Yh(t — T — 7)dt
= Z §R{am}g((Z - m)T) - ﬂl (3.64)

In addition, R{a;} and B; are independent since the noise and the transmitted symbols
are independent. Recall also that §(0) = 0 (the maximum of g(z) is located at 0). Then,
S R{am}§((i — m)T) and R{a;} are also independent. Moreover, 5; and §; are ob-
tained by a linear transformation of the Gaussian process R{w(t)}. Hence they are also
Gaussian processes. Then, since the cross-correlation of 3; and B; is equal to zero, as
shown below :
(i+1)T+r
E{Bzﬁz} = E{ / §R{w(t1)e_j(2”f°t1+9)}%{w(h)e—j(%fctﬁo)} X
iT+r
— R(ty~ 4T — T)h(ty — iT — T)dtldtg}

_ o / / 1 St — o) ()t dbrds

= —9(0)
= 0, (3.65)

then, §; and U,(T) are actually two uncorrelated Gaussian random processes and therefore
they are independent. Thus, U;(7) and Uz(T) are independent.

Appendix D

Derivation of the Analytical Expressions for the CRLBs in
Case of BPSK and MSK Modulations

Starting from the expression of the log-likelihood function given in (3.47), we will consi-
der the two cases of BPSK and MSK separately. Starting with BPSK-modulated signals,
we show that the log-likelihood function in (3.47) reduces to :

Zln (cosh ( \/FU (ﬂ)) , (3.66)

Ui(r) = m R{G(6)} h(t — iT — 7)dt. (3.67)

—0

where
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Then, the first derivative of the log-likelihood function with respect to the time delay pa-
rameter, 7, is given by :

OL(r ) WE, & s1nh<2\/E_sU-(T))

Us(7), (3.68)
or o 5 cosh(z‘/E_sU( ))

where U;(7) denotes the first derivative of U;(7) with respect to 7. It is easy to see that :
K 400 .
(M) = VE. Y amg((i —m)T) — R{ws(t)} h(t — iT — 7)dt. (3.69)
m=1

-0

Now injecting (3.68) in (3.7), we obtain :

I = 4%ilf;E{t nh<2\/_ (r ))t h(2\:;E;Ul(T)) Ui(T)m(T)}

b K K
= 40—522&,,. (3.70)

Note that (3.70) is similar to (3.32) (obtained in the case of square QAM modulations).
Thus, for the same reasons, it is more convenient to separate the cases wheni = [ and ¢ # [.

Moreover, it can be shown that the pdf of U;(7) is given by :

P(U(7)) = — exp{—Uiz(—;):_—Es—}cosh (2‘0{5_%(7)). 3.71)

o2

Thus, it can be shown that, after some manipulations, the expectations involved in (3.70)
reduce to :

oo . 2 2\/—E—s—
o (2E)) - ol [ sink?” (2770 Sy
o’ Vmo? - cosh (2 o’

€

V2r

= 1-

B(p), (3.72)

E{(U())?} = E, ZZQ ((m —n)T) ——g(O) (3.73)

m=1n=1

- +o0 2 2
By = —¢((i - DT) (\Z?_; U sinh (Q\CE}U) exp {—%} dU)
= pa((i = ). (3.74)
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Finally, we obtain the closed-form expression for the stochastic CRLB of BPSK-modulated
signals as follows :

CRLBgpsk = [4,0{(1 \/— )(PZZQ gé(o))

m=1n=1

K K -1

— 2> d(m=n)T)

m=1n=1

where 3(p) is defined in (3.49).

Now, consider an MSK-modulated signal. In order to find the derivative of (3.47) with
respect to the time delay 7, we need to separate the cases where b; is real or imaginary. To
do so, we assume, without loss of generality, that K is an even number (i.e., K = 2P) and
ap = 1. Using these assumptions, the log-likelihood function can be written as :

L(r) = iz:m (cosh (@U%_l(r))) +1n (cosh (20—‘/5’1_31/2,-(7)» . (3.76)

where .

Vi) = [ REGOY bt — iT = 7)dt, 3.77)
and .

Vi(r) = / S{G(D)} h(t — iT — 7)dt. (3.78)

Then, the first derivative of (3.76) with respect to 7 is given by :

U2i—1(7)> Usi_1(7) + tanh (2\;5“_5

AL(r) _ 2\;Fi <tanh (2\:?

- V%(r)) Vzi(r)>3.79)

with Ugi_l(T) and Vzi(T) being the derivatives of Usy;_1(7) and Va;(7) with respect to T,
respectively. Then, the first diagonal element of the FIM matrix is expressed as :

I(7)=E { (515(:))2}

L ii { i (2 @]%_1@) aat (2047 U%_l(%_l(ﬂ}

12)° iE{tanh Uzz (T)> tanh( ‘ﬁf_svzl(r)> U%_l(r)vm(r)}

}. (3.80)

VQ,(T)) tanh (2\0{?31/2,(7)) Vai(T) Vau(7)
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Note that (3.80) is equivalent to (3.31). Then for the same reasons, [I(7)];.; reduces simply
to:

o 2 y ..
[I(T)]l;l = 802 ZZE {tanh ( \/IBU%—l) tanh <U—\épU21—1> U2i—1U2l—1} (3.81)

2
g
i=1 =1

which is similar to (3.70) in the case of BPSK modulation. Thus we obtain the same
expression for the stochastic CRLB in case of MSK and BPSK transmissions as given by
(3.75).
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Abstract

Dans cet article, nous présentons une nouvelle implémentation du critére de maximum
de vraisemblance pour I’estimation du délai de propagation dans un milieu multi-trajet,
puis nous étendons la méthode proposée pour I’estimation de la différence du temps d’ar-
rivé quand le signal émis est inconnu. La nouvelle technique implémente le concept de
I""importance sampling” (IS) pour trouver le maximum global de la fonction de vrai-
semblance. Nous évitons la traditionnelle recherche multidimensionnelle et les méthodes
itératives pour maximiser la fonction de vraisemblance. Nous montrons par simulation
que cette méthode permet d’estimer des délais trés proches et offre de meilleures perfor-
mances que les méthodes sous-optimales telles que MUSIC. Le principal avantage de cette
méthode est que la convergence au maximum global est garanti contrairement aux algo-
rithmes itératifs qui dépendent étroitement de I’initialisation.

In this paper, we present a new implementation of the maximum likelihood criterion for the
estimation of the time delays in a multipath environment, and then we extend the proposed
method to the estimation of the time difference of arrival when the transmitted signal is
unknown. The new technique implements the concept of important sampling (IS) to find
the global maximum of the compressed likelihood function in a modest computational
manner. Thus we avoid the traditional multidimensional grid search or the iterative me-
thods to maximize the compressed likelihood function. We show by simulations that the
new technique allows the estimation of very close delays and surpasses suboptimal tech-
niques such as the MUSIC algorithm. The main advantage of our method is the guaranteed
convergence to the global maximum, contrarily to the popular iterative implementation of
the maximum likelihood criterion by the well known expectation maximization algorithm.

4.1 Introduction

Time delay estimation is a well studied problem with applications in many areas such as ra-
dar [1], sonar [2], and wireless communication systems [3]. Typically, to allow estimation
of the time delay, an a priori known waveform is transmitted through a multipath en-
vironment, which consists of several propagation paths, among which the dominant ones,
relatively few, are considered. If the transmitted waveform is unknown, only the difference
of arrival times can be estimated from the received signals at multiple separated sensors
{4]. In what follows, we will treat the two cases.

These two time delay estimation problems have been extensively studied in previous years
[5-7]. The maximum likelihood (ML) estimator is well known to be an optimal technique.
For the problem at hand, the likelihood function depends on the time delays and on the
complex channel coefficients making its solution intractable in a closed-form. A direct im-
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plementation of this criterion requires a multidimensional grid search, whose complexity
increases with the number of unknown delays. Therefore, many iterative methods, such
as the expectation maximization (EM) algorithm, have been developed to achieve the well
known Cramér-Rao lower bound (CRLB) at a lower coast. But their performances are
closely linked to the initialization values and their convergence may take many complex
iterative steps and therefore, a tread-off must be found between complexity and accuracy.
Hence, there is yet a need for developing a non-grid-search-based and a non-iterative ML
estimator. Alternatively, sub-optimal methods based on the eigen-decomposition of the
sample covariance matrix, which initially gained much interest in the direction of arrival
estimation, were later exploited in the context of time delay estimation [8-9]. While these
suboptimal techniques offer an attractive reduced complexity compared to the grid search
implementation of the ML criterion, they still suffer from heavy computation steps due to
the eigenvalue decomposition. Moreover, their performances are relatively poor compared
to the ML estimator, especially for closely spaced delays and/or few numbers of samples.
Motivated by these facts, we derive, in this paper, a new non-iterative implementation of
the ML time delays estimator which avoids the multidimensional grid search by applying :
1) the global maximization theorem of Pincus proposed in [10] and

i) a powerful Monte Carlo technique called importance sampling (IS) offering thereby an
efficient tool to find the global maximum of the likelihood function.

Note here that many other traditional Monte Carlo techniques (besides the IS method)
can also be successfully applied. However, unlike the IS method, they often require a lar-
ger number of realizations that are, in addition, usually generated according to a complex
probability density function (pdf). Hence they appear to be less attractive for practical
considerations. In this sense, the importance sampling technique lends itself as a powerful
alternative in which the required realizations are easily generated according to a simpler
pdf. Additionally, it offers a way to process the obtained realizations in a more judicious
manner [11]. This method has indeed been applied to the estimation of the direction of
arrival (DOA) [13], the joint DOA-Doppler frequency [12] and more recently to the es-
timation of the time delay in the context of modulated signals and a single propagation
path [14]. Based on the results of these works, the IS technique was shown to dramatically
reduce the computational complexity of the ML estimates while still providing high accu-
racy.

The remainder of this paper is organized as follows. In section II, we present the system
model for the active mode (i.e., known transmitted pulse) and derive the corresponding
compressed likelihood function to be maximized. In section III, we detail the global maxi-
mization method applied to our problem. In section IV, the importance sampling technique
is described and then applied to the estimation of the time delays both in active and passive
(unknown transmitted pulse). Simulation results are discussed in section V and, finally,

some concluding remarks are drawn out in section VI.
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4.2 System Model and Compressed Likelihood Function

Consider an a priori known signal z(t) transmitted through a multipath environment. The
received signal is a superposition of multiple delayed replicas of the known transmitted
waveform ; modeled as follows :

P

y(t) = am(t — ) +w(t), (4.1)
i=1

where P is the total number of multipath components, w(t) is an additive noise and a =

[1, @2,..., ap)t are the unknown complex path gains resulting from scattering and

fading through the propagation medium. In addition, {7;}Z ; are the unknown time delays

to be estimated and gathered in the vector 7 = [y, 7»,..., 7p]T. If Fy, = 1/T, is the

sampling frequency, the resulting samples, taken at instances {nT}}Y_; are :

P
y(nTs) = Zaix(nTs -1)+wnTs), n=0,1,..., N —1, 4.2)
i=1
where NV stands for the total number of available samples.
In general, the IS principle is suitable for the estimation of non-linear parameters in the
general linear models (GLM) described as :

y=®O)s+w 4.3)

where y = [y(0), y(T3), ..., y((N — 1)T,)]" is the received data vector which depends
linearly on some nuisance unknown parameters s and non-linearly on the delays 6. Ho-
wever, in contrast to the single-path scenario in [14], the formulation of the input-output
relationship in (4.2) cannot be directly transformed into a GLM analogous to (4.3). Here,
the received samples are transformed into the frequency domain where the model could
be expressed in a matrix form. In fact, taking the discrete Fourier transform of (4.2), we
obtain :

il j2mwkT;
Y(k) = Y aiX(k)e v +W(k), k=0,1,..., N-1, (4.4)
i=1

where {Y (k) }2 0, {X (k) }2! and {W (k) } are the discrete Fourier transforms (DFTs)
of y(nTs), z(nT) and w(nT}), respectively. Then, considering this transformation, the
channel coefficients vector c and the time delays 7 manifest themselves as the linear and
non-linear unknown parameters, respectively. Hence we transform the basic model in (4.2)
into the general form of (4.3), using a compact representation of (4.4) as follows :

Y = &, (r)a+ W, 4.5)
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in which Y = [Y(0), Y(1),..., Y(N — 1)]T is viewed as the received vector, o =
(@1, @z,..., ap|T and the matrix? ®,(7) depends only on the unknown delays gathered
in the vector 7 and is given by :

(I)G(T) = [¢a(7-l)v ¢a(7—2)7 ) ¢a(TP)]7 (46)
with the columns {¢,(7;)}£ ;| being defined as :

F2n2T; F2n(N—1)7;

ba(7) = [X(0), X(1)e ™ F*, X(2e "F",..., X(N-De~ 7T, @7

and X = [X(0), X(1),..., X(N—1)]Tand W = [W(0), W(1),..., W(N —1)]" are
the (V x 1)-dimensional vectors containing the DFT coefficients of samples corresponding

to the known transmitted pulse and the additive noise components, respectively.

First, we consider the active model where, in contrast to the passive model treated later
in section 4.4.3, the transmitted signal z(¢) is known to the receiver. Now, following the
same arguments of [15], the likelihood function of the active model (4.5) is given by :

Ar,a) xpY;7T,a) = —ﬁ exp { - % (Y — &, (1)) (Y — ®,(T)a) },(4.8)

where p(Y'; T, a) is the probability density function (pdf) of Y parameterized by = and
a and o? is the spectrum power of the noise. Actually, the ML solution Ty, is defined
as the global maximum of the likelihood function in (4.8) with respect to 7. However,
this formulation of the likelihood function imposes a joint estimation of T and o which is
computationally intensive. Therefore, it is of interest to obtain a likelihood function that
depends only on 7 that can be more easily handled. Observing that A(7, ) is quadratic
with respect to «, we consider the nuisance parameter, «, as deterministic but unknown
and substitute, in (4.8), o by the solution &(7) which maximizes the log-likelihood func-
tion L(7, ) = In {A(7, )} for a given 7. Indeed, it can be shown that &(r) is given
by :

a(r) = (8H(r)®,(r)) " ®H(r)Y. (4.9)
Replacing « in (4.8) by &(7) and omitting the terms that do not interfere in the maxi-
mization with respect to 7, we obtain the so-called compressed likelihood function of the

system as follows :

LC(T)ZB%YH@,I(T)(@;’ (r) (7)) BH(T)Y (.10)

4.3 Global Maximization of the Compressed Likelihood

Function

To find the desired ML estimate, we need to maximize the compressed likelihood function
in (4.10) over 7. Yet, L.(7) is non linear with respect to 7 ; hence, a closed-form solution

2Note that we index ®,(7) by a to refer to the active mode.
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seems analytically intractable. It is quite common in the current literature to solve this
maximization problem in an iterative way, as an alternative for the trivial multidimensio-
nal grid search. However, iterative approaches require an initial guess, usually taken from
the output of another suboptimal algorithm. The iterative quadratic ML (IQML) [16], the
simulated annealing technique [17] and the expectation maximization (EM) algorithm [5],
taken as example in our simulation, are some of the most famous iterative implementations
of the ML estimator. Naturally, the performances of these iterative algorithms depend se-
verely on the available initial guess and may even converge to local maximum reflecting
estimates which are completely different from the real values of the delays (corresponding
to the global maximum).

In this context, the global maximization theorem proposed by Pincus [4.11] offers an alter-
native to find the global maximum of multidimensional functions, such as the one at hand
in (4.10). Interestingly, it does not require any initialization and guarantees the conver-
gence to the global maximum. The idea is very simple and claims that the solution is given
by (4.11) :

[y fymiesp {pLo(r)bdr
L P e YR T @.11)

where J is the interval in which the delays are confined. Defining the pseudo-pdf* L, _(7),

C,po
for some large value of py, as :
exp {poLc(7)}
L, ()= — , 4.12)
#0(T) J;- [yexp{poLc(T)} dT
then, according to (4.11), the optimal value of 7; is simply given by :
a:/].../‘]TiL/c’po(T)dT, i=12,..., P. (4.13)

Intuitively, we can say that, as po tends to infinity, the function L, , (7) becomes a P-

dimensional Dirac-delta function centered at the location of the maximum of L.(7). Thus,
the ML estimate is simply obtained from the evaluation of the P-dimensional integral in
(4.13). Yet, this is a difficult task due to the complexity of the involved integrand function
[the pseudo-pdf L, , (.)]. One solution is to exploit the fact that L, , (.) is a pseudo-pdf and

.00
interpret 7; as the expected value of 7;, the it* element of a vector 7 distributed according

/
P0

zations of a random vector, {7 }1*_; according to L

to the multidimensional pseudo-pdf L/, (.). Therefore, if one is able to generate R reali-

/
€,P0

the expected value of 7 using Monte Carlo techniques [11] as follows :

(7), it is reasonable to approximate

7==5N"1. 4.14)

3L}, ,,(7) is designated as a pseudo-pdf since it has all the properties of a pdf although 7 is not really a

random variable.
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Hence, we substitute the complex integration in (4.13) by a simple samples average.
Clearly, as the number of generated values R increases, the variance of the sample mean
becomes smaller and 7 gets closer to the global maximum of the compressed likelihood
function Yet a practical issue remains as how to easily generate realizations according to

L. ,o(T). The proposed pseudo-pdf is a non-linear function of 7 and needs to operate in
a multidimensional space, which is not suitable for easy generation of realizations. One
solution is to approximate the actual pseudo-pdf by a one-dimensional function and trans-
pose the problem of generating a vector to the generation of P independent variables, then
resort to the concept of IS as described in the next section.

4.4 The Importance Sampling Based Time Delays Esti-

mation

4.4.1 IS Concept

Importance sampling is a Monte Carlo technique which makes use of an alternative distri-
bution (carefully designed) to generate realizations. It is usually applied when the original
distribution does not have a practical form, like L;, , (.) given in our problem.

The approach is based on the following simple observation on the integral involved in

(4.13) :
/ /’TL/CPO dT:/.../TMg’(T)dT, (4.15)
J s g(r)

where ¢'(7) is also assumed to have all the properties of a pdf, called normalized impor-
tance function (IF). Then, the left-hand side of (4.15) is interpreted as the mean of Ti—L—/fj’f;()T—)
when 7 is generated according to g'(7). Unlike L, , (.), it is of interest to choose g'(7)
to be a simple function of 7. Then, we use Monte-Carlo methods to numerically compute

the expectation as done in (4.14) :

‘. 13 L, (7

[ et =g iontes @
where 7y, is now the k" realization of 7 according to ¢(.).
Clearly, the choice of ¢'(.) affects the estimation performance. An inappropriate choice of
¢'(.) may need a large number of realizations R to reduce the estimation variance and re-
sult in a higher computational complexity. Therefore, the value of R depends on how much
g'(.) resembles L;, , (.). In the ideal case, generations according to g'(.) are the same as if
they were generated according to Ly, , (.). Therefore, ideally, the shapes of the two func-
tions ¢'(.) and L , (.) should be similar to reduce the variance of the estimator given by
(4.16) [13]. On the other hand, we should keep in mind that ¢(.) has to be simple enough
so that realizations can be easily generated. Thus some tradeoffs are required to choose a
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function as simple as possible yet similar to Ly, , (.). In what follows, we will show that
owing some simplifications of L, , (.), we can build an appropriate function g'(.) to pro-
perly generate variables.

Now, coming back to the expression of the actual compressed likelihood function (4.10),

the inverse matrix ((PH (T)(I)a(‘r)> makes the compressed likelihood function, and
consequently the pseudo-pdf L, , (.), very non-linear with respect to 7. One can approxi-
mate 7 (1)®, (1) by a diagonal matrix to avoid a heavy computation of the inverse. In
fact, the diagonal elements of ®(7)®,(7) are given by :

[(@H(+)®4(T))]i Z|X W 1=1,2,..., P (4.17)

and its off-diagonal elements are :

(@) = > X0 { 27,
k=0
m,n=1,2,..., Pm#n. (4.18)
It is easy to verify, for 7, # 7,,, that :
[((I)f(T)(I)a(T))]m;n < [(‘I)E(T)(I)a(T))]l;b 4.19)

Although this inequality does not give sufficient condition to approximate ®(7)®,(T)
by a diagonal matrix, we verify statistically that this inequality holds with very high pro-
bability for almost all possible values of the delay difference 7,,, — 7,,. To that end, we
consider 7,,., = T, — T, as a random variable uniformly distributed in* [-T, T] and we
define K (7p,.,) the ratio (4.18)/(4.17) as follows :

PO |X(k)|2eXp{M}
Yco [X (k)2 '

Then, we plot in Fig. 4.1 the complementary cumulative distribution function of K (7,,.,)

K(Tm;n) =

(4.20)

(randomized according to 7,,.,,), to verify that the diagonal elements of ®(7)®,(7) are
indeed dominant, with very high probability, compared to its off-diagonal elements. The-
refore, we adopt the following well-justified approximation :

&1 (r)®, (1 (Z X (k)] ) 4.21)

where I, is the p X p identity matrix.

4We consider here that the delays do not exceed a given real value T (see section 4.4.2 for further details
on this assumption).

72




0.8

Prob(K (Tmm) > )

E (z)

i i i i i i i i i
0.1 02 03 04 0.5 0.6 0.7 0.8 0.9 1
T

FIGURE 4.1 — Complementary cumulative distribution function of the ratio K (7,,.,).

Then, we define the importance function, g,, (.), without normalization, [i.e., ¢'(T) =
9o, (7)/ [ 9, (u)du] in the active case as :

P1 H H
- YH®, ()8! ()Y §, 422
9.(7) e"p{azziinxw (e } R

where p; is another constant different from py for some practical reasons. A further dis-

cussion on the appropriate choice of pg and p; is left to the end of this section.
After some easy algebraic manipulations, we express (4.22) as :

gpl(r)zl_[exp{ oS |X(k)|2 I{r )} (4.23)

=1

where I (7;) is the periodogram of the data in the frequency domain evaluated at each delay
7; as follows :

ZX(k: (k) exp {]ﬁ(—kjv;}ﬁ}‘ (4.24)

Now, we comment on the advantage of this choice in (4.23) for the importance function
(IF). First, we notice that the joint contribution of the different delays in g,, (.) is separable
into the product of their individual contributions as seen from (4.23). Hence, we substitute
the brute generation of realizations of the vector 7 according to a multi-dimensional pdf
to the generation of P independent scalar realizations (i.e., one realization for each entry
of 7) using the elementary IF, g, (), defined as :

— P .
oxp { NI (T’)}

g, (1) = (4.25)

Jyexp {a2 s xap! (7) } dr
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Note here that, the multiplicative terms X (k), £ =1, 2,..., N act as weighting factors.
They attenuate the contribution of the frequencies with low energy in the computation
of I(r;) and hence emphasize the high-SNR frequencies. In fact, this property improves
considerably the performance of the estimator compared to some other approaches where
the received signal is divided, in the frequency domain, by the DFT of the known trans-
mitted waveform [8]. Actually, this operation is not suitable for narrowband signals since
it results in some harmful effects by amplifying the additive noise in the low-energy fre-
quencies. It is suitable only for wideband signals, in contrast to our algorithm which is
also adapted to narrowband signals.

Finally, the normalized IF is given by :

/ Hil exp {p11(7:)}
o : | (4.26)
T = T T e (o)) di
with
p s 4.27)

02 Yy X (R)[2
We mention that the choice of the parameters p) and pg are of great importance since
its affects the performance of the new estimator. In fact, as already mentioned, g;,l (T)1is
separable as the product of P elementary IFs, 9y, (.), corresponding to each delay 7; (i.e.,
g;,l () = Hle 9, (7:)). Hence, in practice, we use the same g, (7) P times to generate
the P elements of the vector 7. Actually, for a noise-free observation, the function ypll ()
exhibits exactly P lobes centered at the locations of the true delays and at each run, a
realization is generated from the vicinity of one of the P lobes. However, in the presence
of additive noise, other secondary lobes appear and ultimately affect the generated values.
For this reason, the parameter p} should be increased to render the objective function Gy, ()
more peaked around the actual delays {7;}7_,. This behavior is illustrated in Fig. 4.2 where
we plot the function g, (.) for two values of p}.

Yet, we observe that p} cannot be increased indefinitely. In fact, very large values of p}
will ultimately destroy some useful lobes and so useful realizations may not be generated.
Obviously, proper choice of p] is of great importance. Its optimal value is the highest one
that makes at least® P main lobes appear in 9y, (.). Moreover, by attenuating the secondary
lobes, we reduce the probability of generating undesired realizations. Consequently a good
choice of p) reduces the number of necessary realizations R and hence the complexity of
the estimator.

Recall that the normalized IF g;/l (7) is built upon an approximation of the actual compres-
sed likelihood function which results in biased estimates of the delays, especially at low
SNR values. However, we emphasize here the fact that this bias can be reduced by the pre-

sence of the actual compressed likelihood function in the weighting factor L, , (7)/ g;,l (1)

5§p,l (.) should have exactly P lobes, but the additive noise makes other relatively small secondary lobes
appear.
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FIGURE 4.2 - Plot of gy (.) at SNR = 10 for (a) pj = 1 and (b) p] = 6.

in (4.16). Thus, we can maximize the contribution of L, , (.) in the weighting factor by
choosing p} smaller than p.

4.4.2 Time Delays Estimation in Active Systems

The IS-based estimator requires the generation of realizations according to g, (.) then
evaluating the following mean values :

Z 71.(4) ;”‘EZ’;) (4.28)

where 7 is the k** generated vector and 74 (7) refers to its 5** element.

Roughly speaking, the delays can actually take any positive value, but in practice, they
are confined in the interval [0, 7] where T is any positive real value that can be chosen
high enough® so that ; € [0, T fori = 1, 2,..., P. Therefore, since the parameters are
bounded from below and above, it is more convenient to use the circular mean instead of
the linear mean in (4.28). The advantages of this operation will be discussed later.

To introduce the concept of circular mean, define a random variable X taking values in
the finite interval [0, 1] and denote by G (X)) its pdf. The circular mean of X is defined as

8In network communications, the delays are usually confined in the symbol duration, whereas for radar
and sonar systems, the symbol duration does not really exist and the observation window must be longer
than the largest delay.
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[18]:

EAfX} = %4 /01 exp{j2nrz}G(z)dx (4.29)
where the operator /(.) returns the angle of its complex argument. Suppose that we have
asetof x1,..., xg generated via the pdf G(.), then the circular mean in (4.29) is :

1 1& ,
E{X} =547 ; exp{j2rx,}. (4.30)

In our time delays estimation problem, we first normalize the delays by T to transpose
them into the interval [0, 1]. Then we apply directly the circular mean in (4.30). In this
context, the alternative formulation of the IS-based estimator is given by :

R )
R 1 1 o Tr(1)
= ——— F 27— 431
Ti QWTZR; (Tk)exp{]ﬂ' T }, (4.31)
where F'(1y) is the weighting factor defined by :
L. (7
F(m) = c,’po—(k). 4.32)
9y, (Tk)

From the formulation in (4.31), we only need to find the angle of a complex number.
Therefore, any positive multiplicative term will not affect the final result. Thus, the two
strictly positive constants [ ... [, exp{poL.(x)}dx and [,... [, 1o, exp{ o1 (u;) }dus,
used in the normalization of L; , (.) and g/, . (x), respectively, can be dropped. However,
the exponential terms in both the numerator and the denominator of the weighting factor
F(.) may result in an overflow in the computation. To circumvent this problem, F(.) is

substituted by F’(.) :

1<I<R

F'(7y) = exp {pOLc(Tk) - rh Z I(4(i)) — max (pOLC(Tl) — Z I(Tl(i))) }(4.33)

Note from (4.33) that the arguments of the exponential terms are either negative or zero
and that the values of the exponential cannot exceed one.

Summary of steps

In the following, we recapitulate the different steps for the direct implementation of the
new algorithm :

1. Compute the DFT [Y(0), Y (1),..., Y(IN — 1)] of the received signal samples.

2. Use the Fourier transform coefficients to evaluate the periodogram according to
(4.24).
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3. Compute the samples of the one-dimensional pdf g, (.), used for the generation of
the required realizations, at K points as :

/
I
By(m) = o2y ke (4.34)

- Sl exp {pid ()}

where K is the total number of points in the interval J. Note that we substitute the

integration in the denominator of 9y, (.) by a summation over the discrete points of
the interval J.

4. Generate one realization of 7 using g;,l (.). To do so, we generate realizations ac-
cording to g/ (.) P times to retrieve one realization of the P-dimensional vector 7.
More details on this point are left to the Appendix. Repeat this step R times.

5. Evaluate the weighting factor F'(7;) for: = 1, 2,..., R and compute the cir-
cular mean of the generated values balanced by the weighting factors to find the
ML estimate of the multiple unknown delays. Note that we must evaluate the term
poLe(m) — oy S2F _ I(7(m)) for all generated vectors {7}/, before computing
F'(1;).

4.4.3 Time Delays Estimation in Passive Systems

In a passive system, the transmitted signal is considered to be unknown. In this case, only
the time difference of arrival (TDOA) can be estimated from multiple received signals at
spatially separated destinations [4]. In this section, we assume, without loss of genera-
lity, the presence of two separated sensors. The received signals at these two sensors are

modeled as :
Py
yl(t) = Z al;ix(t - Tl;i) + ’U}l(t), (435)
=1
Py
yg(t) = Z Oég;il'(t — TQ;i) + wWao (t), (436)
=1

where {Tn;i}fz"l and {an;i}fgl, for n = 1, 2, are the delays and the complex gains of
the received signal at the n'® sensor and {P,}2_, are the known numbers of multipath
components. For the sake of simplicity, suppose that y; (¢) has only one signal component
(Pr = 1). The received signal at this sensor is considered as a reference and hence it
is assimilated to a noisy known signal. Then, similarly to (4.4), we express the sampled
signals (4.35) and (4.36) in the frequency domain as :

j2ﬂ'k7’1;1

Yi(k) = c1a X (k) exp { N

} W k), (4.37)
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jQﬂ'kTg;i

Ya(k) = ZaQ;iX(k)eXp{— N }+W2(k),
k=01, . N—1 (4.38)

where {Y; (k) 1o, {Ya(k) 1o, {W1 ()}, and {Ws(k)}Y_, are N samples of the Fou-
rier transform of samples of y;(t), y2(t), w1(t) and wa(t), respectively. As mentioned
above, the TDOAs will be estimated by considering the received signal in the first sensor
as areference. This simplifies to the estimation of the P, delay differences Ag) = To,i—Ti;1

fori =1, 3,..., Ps. Therefore, we rewrite (4.38) as follows :
Py . (i)
J2mk A
Yy(k) = ; B:Y1(k) exp {__T—} + W, (k), (4.39)
in which
Q25 .
Gi=—,1i=1,2,..., P, (4.40)
1.1

NG
j2mkAr } . (4.41)

W (k) = Wa(k) — iﬂiwl(’“) exp {_ N

Doing so, we highlight the parameters of interest in the expression of Ys(k). Moreover,
there is an analogy between the formulation of the active case in (4.4) and the passive one
in (4.39). More precisely, the major difference is in the reference signal (X for the active
case and Y; for the passive case).

Then, gathering all the frequency samples, we obtain the following matrix representation :

Y, = [V2(0), Ya(1),..., Ya(N — 1)]F
= ®,(A)8+W,, (4.42)

where the matrix ®,(A) is function of the TDOAs defined as :

B,(A;) = [9,(AV), $p(AD),..., ¢ (AL)], (4.43)
- jorad jr(v —1)a®) "
dp(AD) = 1Y1(0), Yi(1)exp{ — ~ oY (N =1 exp! — ¥ :
i=17"'7P27 (444)

= |22, =22 O‘Q?PQ}T, (4.45)

01,1 0131 a1
and
A, =[AD, AD . APT (4.46)

is the vector of the TDOAs of interest. Considering these notations, it turns out that the
estimation of the TDOAs can be performed using the same algorithm developed above for
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the active system. We only have to substitute the vector ¢,(7) by ¢,(A-) and X (k) by
Y1(k) in the expression of the periodogram in (4.24). The remaining steps follow in the
same way.

Now we rediscuss the estimation problem when P, is different from 1. The problem then
consists of estimating P, x P, different parameters. To that end, we refer again to the results
of the active case. P, x P values are generated according to g, (.) by substituting X (k)
and Y (k) in the expression of I(.) by Yi(.) and Y;(.), respectively. Then, the generated
values are classified from the smallest to the highest and organized as follows :

Ay =[AN, AP Al (4.47)
where each vector {A( 2, is formed from P> TDOAs. The final step consists of evalua-

ting the following means as in (4.31) :

(m)
ﬁﬁ-(—”—)} . (4.48)

mmn __ (m) .
AT} ————ARZF(A )exp{y?w T

4.5 Simulation Results

To properly assess the performance of our new IS-based approach, we compare the per-
formance of the proposed method to the expectation maximization (EM) algorithm [5]
as one representative example of the iterative implementations of the ML criterion and
to the MUSIC algorithm proposed in [4] as one representative example of suboptimal
subspace-based methods. The estimation error of the three estimators is also compared
to the Cramér-Rao lower bound (CRLB) which reflects the theoretical achievable per-
formance taken as a benchmark for all the considered algorithms. In all simulations, the
transmitted pulse is a chirp signal which is widely used in radar and sonar applications.
The number of snapshots is set to N = 70. We consider 3 propagation paths with closely-
spaced delays [375, 6T, 87T,]. The multipath gain is assumed to be equal for the three
paths.

First, we study the influence of the parameters p, and p} on the estimation performance
of our new estimator. We verify that there is no dependence on py as far as it is chosen to
be higher than p (see section 4.4). However, as illustrated in Fig. 4.3, p} affects seriously
the estimation performance of the new IS-based algorithm. As already mentioned, small
values of p| may not reduce the effect of the additive noise involved in [ (.), while too
large values reduce the desired lobes revealing the actual delays in g, (.) thereby preven-
ting their generation. Therefore, an appropriate choice of p] is necessary in order to obtain
near-optimal performance. We see from Fig. 4.3 that for p} taking values between 2 and 7,
the performance is almost the same, and thus the optimal value of p can be freely selected
from this relatively large range.
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FIGURE 4.3 - Estimation performance as a function of g}

Now turning to the comparison of the different estimators, we recall that the EM and

IS-based algorithms are two different implementations of the ML criterion. They are hence
expected to exhibit the same performance since they both try to maximize the same objec-
tive function. Yet, it should be kept in mind that the IS-based and MUSIC algorithms do
not require any initialization while the EM algorithm is iterative in nature. Consequently,
we consider for the EM algorithm two scenarios in which the initial values are selected as
random variables, centered at the real time delays and having a variance of 477 and 1072
reflecting, respectively, relatively accurate and less accurate initializations. Fig. 4.4 depicts
the performance of the three estimators. As expected, the two ML estimators perform bet-
ter than the MUSIC estimator. However, for less accurate initialization, the performance
of the EM algorithm deteriorates considerably over the entire SNR range. We see also that
while the MUSIC technique approaches the CRLB only as far as the SNR is sufficiently
high ; the proposed algorithm performs close to the CRLB over the entire SNR range. This
is hardly surprising since the IS-based estimator is far more accurate implementation of
the ML criterion. Same conclusions hold for the passive case, also plotted in Fig. 4.6 for
P=1land P, = 3.
So far, comparisons have been performed as a function of the SNR. To study the resolu-
tion power of the different estimators, we consider two propagations paths and vary the
delay separation A7 = 7; — 75 at an SNR value of 10 dB. The results are shown in Fig.
4.5. Clearly, as the difference between the delays is small, the estimate is less accurate
for the three methods. The two ML-based estimators still perform better than the MUSIC
algorithm. For well spaced delays, all the methods perform the same.

Another important point to study is the effect of the signal bandwidth on the estima-
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FIGURE 4.4 — Estimation performance of the 1S-based, EM ML and the MUSIC-type
algorithms in an active system vs. SNR.

tion performance. In fact, since all the derivations are made in the frequency domain, the
signal bandwidth (defined in the given example here as the difference between the higher
and the lower frequency in the chirp signal) is expected to have an impact on the esti-
mation procedure. Therefore, we compare in Fig. 4.7 the three estimators under different
signal bandwidths. Clearly, the proposed method outperforms the MUSIC algorithm over
the entire bandwidth range, although the gap between the two methods decreases as the
bandwidth increases. Note that the EM algorithm is also less sensitive to bandwidth varia-
tions. Same results hold for the passive system but the simulations were not included for
the sake of conciseness.

Now we consider the case of time varying channels. While the proposed method is
primarily developed under the assumption of constant paths gains, we verify through si-
mulations that it is also robust to time variations and that the IS-based estimator outper-
forms MUSIC-type methods over relatively low Doppler frequency. Nonetheless, the per-
formances of the two estimators degrade considerably as the Doppler factor increases. In
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FIGURE 4.5 — Estimation performance of the IS-based, EM ML and the MUSIC-type
algorithms in an passive system vs. SNR.

fact, the time variations of the channel coefficients are not taken into account when deve-
loping these algorithms, and it was shown in [19] that, in this case, the estimates become
necessarily biased’. Note, in this case, that we are no longer able to obtain the estimates of
the channel coefficients using (4.9). It is for this reason that the EM algorithm was omitted
in this scenario since it is based, at each iteration, on an estimate of «, which cannot be
performed for time varying channels.

4.6 Conclusion

In this paper, we developed a new implementation of the ML-based estimator for mul-
tiple time delays based on the concept of importance sampling (IS). We considered the

"In [19], the effect of the time varying envelope has been treated in the case of frequency estimation with
the MUSIC and ESPRIT algorithms.
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FIGURE 4.6 — Estimation performance of the IS-based, EM ML and the MUSIC-type
algorithms in an passive system as a function of Ar.
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FIGURE 4.7 — Estimation performance of the IS-based, EM ML and the MUSIC-type
algorithms vs. signal bandwidth at SNR = 10 dB in an active system.

two cases of active and passive systems. The new algorithm is far less expensive in terms
of computational complexity than the traditional multidimensional grid search method.
Moreover, unlike the iterative methods, the IS-based algorithm does not suffer from ini-
tialization drawbacks. It performs well over the entire SNR range since its convergence
to the global maximum of the likelihood function is guaranteed. In addition, it avoids the
computation burden of the eigen-decomposition operation that is widely encountered in
classical subspace-based techniques in multiple parameters estimation. While these tradi-
tional methods perform well even for closely separated delays, at high SNR values, only
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FIGURE 4.8 — Estimation performance of the IS-based and the MUSIC-type algorithms
vs. Doppler shift at SNR = 10 dB.

the proposed IS-based technique provides accurate estimates at low SNRs and for chal-
lenging cases of more closely-spaced delays. In practice, an appropriate choice of the
parameters pg and p} can be performed to further optimize the estimation performance.

Appendix

Method to generate the vector T

In this appendix, we present some practical hints to easily generate a single realization of
the vector 7.

- First, define ¢ as a discrete representation of the interval [0,7] (i.e., £ = 0:1/s: T with
1/s beeing a given step for some s).

- Then, generate 7; according to g, (.) using the inverse probability integration method.
To do so, consider a vector u of random variables uniformly distributed over [0, 1]. Then
find 71 = arg max,c:G(2), where G(z) if the cumulative distribution function associated
10 gy (.) (for more details, see [14]).

- Then eliminate the generated value 7; from € so that it cannot be generated again.

- Repeat the last two steps P —1 times to generate 72, 73,..., 7p and obtain one realization
of the P-dimensional vector 7.
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Abstract

Dans cet article, nous considérons le probléme de synchronisation temporelle pour le
Direct-Sequence CDMA (DS-CDMA) dans un canal multi-trajet. Nous dérivons les ex-
pressions analytiques de la borne de Cramér-Rao pour I’estimation du retard dans les sys-
temes uni-porteuse DS-CDMA.. Puis nous développons deux algorithmes d’estimation ba-
sés sur le critére du maximum de vraisemblance. Le premier reprend la méthode itérative
"expectation maximization" (EM). Le second algorithme implémente le critére du maxi-
mum de vraisemblance d’une maniére non-itérative et retourne le maximum global de la
fonction de vraisemblance en utilisant I'IS. Nous généralisons aussi les deux algorithmes
et la borne de Cramér-Rao pour les systemes CDMA multi-porteuses. Les simulations
montrent que 1’algorithme EM est bien approprié pour les systeémes avec un grand nombre
d’antennes alors que 1’algorithme IS offre de meilleures performances en présence d’un
petit nombre d’antennes.

In this paper, we address the problem of time delay estimation from Direct-Sequence
CDMA (DS-CDMA) multipath transmissions. We derive for the first time a closed-form
expression for the Cramer-Rao lower bound (CRLB) of multiple time delay estimation in
single-carrier (SC) DS-CDMA systems. Then we develop two time delay estimators based
on the ML criterion. The first one is based on the iterative expectation maximization (EM)
algorithm and provides accurate estimates whenever a good initial guess of the parameters
is available at the receiver. The second approach implements the ML criterion in a non-
iterative way and finds the global maximum of the compressed likelihood function using
the importance sampling technique. Unlike the EM-based algorithm, this non-iterative me-
thod does not require any initial guess of the parameters to be estimated. We also extend
both the SC CRLB and the proposed SC algorithms to multicarrier (MC)-CDMA systems
by exploiting the frequency gain over subcarriers. In this work, the estimation process
can be performed using the channel estimate or directly from the received signal and thus
we cover all possible cases. By an adequate formulation of the problem, we are able to
exploit the time and frequency correlation if the channel estimate is used. We show by
simulations that the EM-based algorithm is suitable for CDMA systems with large receive
antenna arrays whereas the IS-based offers better performance for small array sizes.

5.1 Introduction

The most important challenge for wireless networks is the development of robust trans-
ceivers that are able to transmit at high data rates with a high bandwidth efficiency. Code-
division multiple access (CDMA) systems can satisfy this requirement. CDMA has been
adopted as the multiple access scheme for the third generation cellular mobile systems
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because of its flexibility in cell planning, user capacity, support for different rates and ro-
bustness to multipath channel. One of the most important motivations behind the use of
CDMA is to increase the number of simultaneous users (user capacity) with acceptable er-
ror performance. OFDM based CDMA systems, also called multicarrier (MC)-CDMA, is a
promising multiple access for high speed communication system due to robustness against
frequency selective fading channel and fully use the available bandwidth [1-2]. However,
the performance of these systems is closely linked to synchronization. In the following, we
focus on the CDMA array-receiver which has received much interest sequel to the perfor-
mance potential it carries [3, 4, 5]. Roughly speaking, the post correlation model (PCM)
of the despread data presents the signal in an interesting way to apply the researches done
in the field of array processing. A suboptimal Root-MUSIC-based estimator was initially
developed in [6] to recover the time delay and later refined in [1] to significantly reduce its
complexity. This paper also investigates multiple time delay estimation, yet in an optimal
way in which the ML criterion is adapted to the PCM.

The problem of high-resolution parameters estimation has been extensively studied in the
past. In this context, it is well known that the ML technique always outperforms the other
sub-optimal methods in the challenging cases of low signal-to-noise ratio (SNR) values
or small number of available data snapshots. However, a direct implementation of the ML
criterion requires a multi-dimensional grid search which is of course impractical. Alterna-
tively, eigen-decomposition methods (which reduce the problem to one-dimensional grid
search) [7, 8] have attracted much interest due to their simplicity and their high-resolution
capacity. Yet, they are mainly based on the sample covariance matrix and require therefore
a large number of data snapshots. However, as we will see later, the number of snapshots
in CDMA systems is equivalent to the number of receiving antenna elements. Thus ap-
plying a traditional suboptimal technique would require a very large number of receiving
antenna branches which is also impractical. Consequently, there is a need to derive an ef-
ficient implementation of the ML-based estimator that avoids the trivial multidimensional
grid search approach. To that end, iterative methods are usually envisioned to find the ML
estimates since a closed-form solution is, in most cases, deemed intractable. And to pro-
perly evaluate the performance of these estimators, we derive in the first part of this paper
a closed-form expression of the Cramer-Rao lower bound (CRLB).

Motivated by these facts, we develop in the second part of this paper an efficient scheme for
the estimation of the delays based on the expectation maximization (EM) algorithm. While
this method is widely used in multiple parameters estimation, especially for the estimation
of multiple time delay from an incoming waveform [9], it has not been yet adapted to the
context of CDMA systems. In few words, the EM method offers an interesting way to de-
compose the observed signal into different replicas, each one coming from one path, and
then treat each component separately. Therefore, the multidimensional optimization task is

interestingly transformed into multiple one-dimensional optimization problems, resulting
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in tremendous numerical advantages. Under good initialization, the likelihood function of
the estimated parameters is increased in each iteration and hence the algorithm converges
to its global maximum.

Alternatively, when a good initialization is not available, we resort to the concept of im-
portance sampling (IS) to derive, in the third part of this paper, another technique that
finds the global maximum of the likelihood function, in a non-iterative way. In our case,
the likelihood function depends on the time delay and the channel covariance matrix. To
obtain a function that depends on the unknown delays only, the channel covariance ma-
trix is replaced by its ML estimate (a function of the delays themselves). The resulting
objective function, called compressed likelihood function, is then maximized with res-
pect to the unknown time delay. To that end, we use the global maximization theorem
introduced in [10] that provides an efficient tool of finding the global maximum of mul-
tidimensional functions. However, it still requires the computation of a multidimensional
integral which is itself difficult to perform. Yet, this integral can always be tackled empiri-
cally using Monte Carlo (MC) methods [11]. Among these MC methods, the importance
sampling technique, in particular, has been shown to be a powerful method that reduces
considerably the computational complexity. Typically, it was successfully applied to the
estimation of direction of arrival (DOA) [12], the joint DOA-Doppler frequency estimation
[13] and, more recently, to the estimation of the time delay in the context of a single path
and linearly-modulated signals [14]. Compared with the EM ML estimator, this method
does not need any initialization and does not suffer from any convergence problem, yet it
is computationally more intensive. The contributions of this work cover SC-CDMA and
MC-CDMA as well. In the estimation process, we distinguish two major cases. In the first
one, we estimate the delay directly from the received signal over the antenna array. In this
case, we prove that time, frequency and space dimensions are mixed together to obtain one
dimension which is the product of the three. On the other hand, a channel estimate can be
obtained prior to time delay estimation [26] then we use the channel estimate to estimate
the delays.

This paper is organized as follows. In section II, we briefly introduce the post-correlation
model. Then, in section III, The analytical expression of the CRLB is derived. In section
IV, we develop the new EM-based ML time delay estimator. In section V, derivation de-
tails of the new IS-based estimator are discussed. In section VI, we extend the presented
work to the case of multi-carrier (MC)-CDMA. Section VII presents some simulation re-
sults that corroborate our findings and finally some concluding remarks are drawn out in
section VIII.
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5.2 System Model and Background

We consider a CDMA communication system where the receiver is equipped with M re-
ceiving antenna elements that capture signals travelling through a multipath propagation
environment consisting of P different paths. The signals received on the M antennas are
uncorrelated with the spreading code and sampled at the chip rate 7. Denoting the pro-
cessing gain by L (i.e., L = T/T, with T being the symbol duration), the resulting post-
correlation data of the spatio-temporal observation of the n** received symbol is modeled
by the following matrix form [6] :

Z, = G, X, D7 (7)s, + N, (5.1)

where s,, = b,1),, is a function of the unknown transmitted symbol b,, and the square root,
1, Of the total received power ¢2 and IN,, is the (M x L)—dimensional post-correlation
noise matrix. The p™ column of the matrix D(7) that gathers the time delay parameters,

T1, To,..., TP, 1S given by :

dy = [pe(=7p), pe(Te — Tp)s ooy pel(L = )Tt — Tp)]Ta (5.2)

where p.(.) is the correlation function of the spreading code. G,, is the M x P spatial
propagation matrix and Y, is a P X P diagonal matrix representing the normalized power
ratios over the different paths [i.e., trace(Y2 = 1)] [6]. These two matrices can be further
gathered in one single spatial-response matrix J,, (i.e., J, = G,Y,,) and by including the

scalar term s,, in the matrix? .J,,, a more compact form of Z,, is given by :
Z' =D(r)Jr + Nt (5.3)

Using the representation in (5.3), the original problem can be interpreted as the estimation
of the time delay, involved in the matrix D(7), from M snapshots observed on L antenna
branches. Each column of ZT represents an observation vector and the columns of JI
are interpreted as the transmitted signals from P different sources. If we suppose that the
delay vector 7 remains constant over NV transmitted symbols, a compact representation of
(5.3) over N symbols is given by :

Z=[zZf, ZFf, ..., Z%]
=D(r)J" + N7, (54)

with JT = [JT, JT,..., J5]and NT = [N{, NY,...,NE].
Usually, high resolution methods (when applied to time delay estimation) transform the

ZFor the sake of simplicity, we keep the same notation J,, for J,,s,,. Hence, please note that the following
formulation holds, unless specified otherwise, for both data-aided (i.e., s, is a known reference signal) and
non-data-aided transmissions.
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problem into the frequency domain in order to obtain a formulation that is similar to the
one encountered in frequency estimation [9], [17], [18], after which high-resolution me-
thods, such as Root-MUSIC can be applied to estimate the delays (as in [6]). Following
the same logic, we perform a column-by-column fast Fourier transform (FFT) of Z7 to
obtain :

Z=D(1)J" +WN, (5.5)

where A is the resulting transformed noise matrix and D(7) depends only on the unk-
nown delays and is given by :

D(T) = [d(Tl), d(TQ), ceey d(Tp)], (56)
where the columns {d(r;)}Z , are given by :

JomT, _ j2m(L-1)7,
d(r)) =lco, cle™ T, epe” T, (5.7)

and {¢;}/=, are the FFT coefficients of the spreading code correlation function. Note that,
for CDMA systems, the correlation function of a perfect spreading code is a Dirac func-
tion, and hence the corresponding FFT coefficients are constant in this ideal case. This
feature holds true as a very good approximation even with practical spreading codes [1],
[6].

Before exposing the main contributions of this paper, we mention that the following deve-
lopment is applicable on the estimate of the channel coefficients matrix. Actually, consi-
dering again the formulation in (5.1), Z,, can be written as follows :

in which H,, = J,DT(7) denotes the overall spatio-temporal propagation matrix. In-
terestingly, the model in (5.8) can be used to estimate the channel response, H,,, in an
efficient way. One can use any blind channel estimator to obtain an estimate, f{\n, of H,,.
More details on this subject can be found in [6]. Now, taking into account the estimation
error, f{\n is written as :

—,

H' = D(t)J! + ET, (5.9)

where ET is the corresponding channel error matrix. The variance of the entries of ET
depends of course on the noise variance in the received signal [15] and it has been stated
that the power of E,, is lower than the power of IN,,, which has the effect of increasing
the SNR. Clearly, time delay could be estimated form the column-by-column FFT of H, T
in (5.9) as well as from (5.5), with the only difference that the noise power is reduced in
(5.9). In the remain of this paper, we consider the formulation in (5.5) since an estimate of
the channel is not always available.
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5.3 The Crameér-Rao Lower Bound

Before we deal with the two estimators, we derive in this section a closed-form expression
for the CRLB for the problem at hand, which will be used as a benchmark, in addition
to the Root-MUSIC algorithm, against which we evaluate the performance of the new
estimators.

In fact, the Cramér-Rao lower Bound (CRLB) is a well known lower bound for the variance
of unbiased estimators of an intended parameter. Many works have so far dealt with the
evaluation of the CRLB for the time delay estimation problem but, as far as we know, no
contributions have been made yet in the context of multipath time delay estimation in DS-
CDMA systems. To that end, we assume that the multipath fading coefficients, gathered
in JT, are random variables with unknown covariance matrix R . Therefore, the vector
of unknown parameters involved in the estimation process is :

a = [T’ §R{RJ('mﬂn)}rljz,n=1v %{RJ(mrn)}rI;,nzl’ U2}T’ (5.10)

with 7 = [r, 72,..., 7p]7. In the following, we suppose that the different columns
of Z, denoted Z;, are mutually independent and the columns of A are also mutually
independent and Gaussian distributed. Under these assumptions, the probability density
function (pdf) of Z, parameterized by T and R (the covariance matrix of the columns of
JT), is given by :

1 1
D Z; T, R =
p( J) 7r-MNL (det(D(T)RJD(T)H+O'QIL))MN
MN
exp{—ZZzH (D(T)RJD(T)H —|—02IL)'1 Zi} , (5.11)
i=1
where det(.) returns the determinant of a given matrix and 7 = [y, To,..., 7p|7. Then

the log-likelihood function, L(7, Ry) = In (5(Z; T, R;)), reduces simply to :

L(T,Ry)=—In (det(D(T)RyD" () + o°I1))

MN
1 p—
“MN Z Z,(D(r)Rs D (1) + 0°I) 'z, (5.12)
=1

The entries of the Fisher Information matrix (FIM), denoted here I, are given by® :

., O0Rz __, ORz
I(m,n) = Mt ! ! 5.13
(m,n) race{RZ Fo(m) 1= 8a(n)}’ (5.13)
with Rz being the covariance matrix of Z; given by :
Rz = D(17)R;D (1) +o°I}. (5.14)

3Note that the CRLB of the joint estimation of all parameters is simply the inverse of the FIM I.
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However, the derivation of the FIM starting for (5.13) appears to be intractable. Alterna-
tively, the CRLB is asymptotically equivalent to the error covariance matrix, Cy(7) =
E{(7 — 7)(T — 7)T}, of the maximum likelihood estimate, as M tends to infinity [25],
which means that :

Cwm(T) = CRLB(7). (5.15)

Recall that the ML estimate 7 of T verifies the following equation :

OL(T,Ry)

5r 0, (5.16)

where OL(.)/Ot is the gradient of L(.) with respect to 7. Applying the Taylor series
expansion to the left-hand side of (5.16) and keeping only the first two terms of this deve-
lopment leads to :

OL(T,Ry) N 0?L(T,Ry)

oT o2 (:’: - T) =0, (517)

where °L(T, R;)/07? is a Hessian matrix. Hence, from (5.17) we obtain :

(5.18)

- [8%Le(r,Ry)] 7" OL(t,Ry)
oT? or ’

where 9% Lo(7, Rz)/07? is a Hessian matrix when Rz — Rz and G — o as M tends to
oo. It follows that :

6 Lo(r, RJ)} B ( lim B {aw, Ry) L(r, R»T}) {a%o(n R_ﬂ} 5.19)
or or ot?

M0

The analytical expressions of the gradient AL (7, R)/07 and the matrix 8*Lo (1, R;) /01>
(derived in [25]) leads to the following analytical expression for the CRLB of time delay
estimates :

-1

o {%R{ (U I - U) « (R;DY(r)R5z'D(7)R,)" }] ,(5.20)

CRLB(T) = SAIN

where * stands for the element-wise product, II is an orthogonal projector matrix defined
as I1 = D(7) (DH(’T)D(‘T))_l D (1) and the matrix U is defined as follows :

U = ['u,l, Us, ..., ’LLP], (521)
u, = 247 (5.22)
873
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5.4 Expectation Maximization Algorithm

The EM algorithm is a computational modest method to find the maximum likelihood
estimate when a closed-form solution of this one is intractable. Rewrite the log-likelihood
function in (5.12) in a more compact form as follow :

L(r,Ry) = — In (det(Rz)) — trace {Rgﬁz} : (5.23)

where ﬁz being an estimate of Rz computed from the columns of Z as follows :

1 MN
Ry = — ZH 5.24
Rz Mszlzl (5.24)

Note here that the log-likelihood function, L(7, R;), depends on the delays vector 7 of
interest and the covariance matrix R ;. Hence the problem can be formulated as follows :
maximize L(7, R;) with respect to 7 and R;. We also mention that while o? is usually
unknown, it can be easily estimated either by averaging the L — M smallest eigen-values
of Rz or simply by exploiting the estimated power carried out in a previous stage of the
recetver [6].

Unfortunately, the above expression of the likelihood function cannot lead to a closed-
form solution for its maxima. Thus, we resort as a first option to a well-known iterative
algorithm, namely the EM algorithm [16], to resolve this problem numerically. The pur-
pose is to decompose the observation, {Zz}f\i le into P complete-data, then estimate the
delays separately from each complete-data. This is equivalent to performing P parallel
maximizations over a one-dimensional space. This method reduces considerably the com-
putational complexity compared to the brute grid search solution. For this purpose, we
define the set of complete data as :

2P () = JT(i,p)d(7,) + n®P (i), p=1,2,..., P, i=1,2..., MN. (5.25)

where z()(i) can be seen as the received signal on the i** spatio-temporal snapshot from
the p** path. From (5.25), the covariance of () (i), E {2 (i)z ()7} is given by :

0_2

I 5.26
5L (5.26)

R.» = Eid(Tp)d(Tp)H +
with {2}/, being the diagonal elements of R; and n;(k) is an arbitrary decomposition
of the estimation error (i.e., N; = Z:::l n®)(4)). From (5.25), any column, Z;, of Z; can

be written as a function of the complete data as follows :

P
z =Y 2P(). (5.27)

p=1
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Now, we are in a position to describe the Expectation-step ([7-step) and the Maximization-
step (M -step) of the EM algorithm. The E-step consists in finding the conditional expec-
tations of the sample covariance matrices {Rz(p)} _, of the complete data defined as :

Ry = Zz(p (i) (2P(2)". (5.28)

Given qu_l} and 71—} (the previous estimates of Ry and 7 at iteration (¢ — 1) and ﬁz,
the expectation of R, can be computed from the classical formulas of the conditional
expectation with Gaussian distributed random vectors to yield :

ﬁi?g) =k {‘ﬁz(P) |ﬁz, Rt{lqél}; T{q—l}}

~R'9) ( R{g})—l R ( R{;}) RY gl _

z(P) z(l’)

R, (Rg}) R (529)

{q}

where the matrices are computed at each iteration from the estimates 7, {q ! and

ef,{q—l} computed in the previous iteration. Now, turning to the estimation of R{Q}, the
procedure is different from the one used in previous EM algorithms in [9] and [19] to esti-
mate the covariance matrix. In fact, in [9] and [19], the covariance matrix of the received
signal is simply diagonal, which is not the case in our work. Therefore, we resort to ano-
ther approach to estimate the covariance matrix Rg’}. First, suppose that R{q} is a Toeplitz
matrix* (case of stationary processes). We adopt the method proposed in [21] (briefly de-
tailed next) to the estimation of Toeplitz covariance matrices, which is also based on the
EM algorithm making it well suited to our algorithm. Then, we define the N, x N cir-
culant extended version of Rz, denoted as R,. The matrix R, represents the covariance
matrix of the extended vectors {Z }1 1, where ZNZ- consists of the vector Z; augmented
by (Ns — L)-dimensional null vectors. The covariance matrix R, is characterized by its
eigenvalues as follows :

R,=FYRyF, (5.30)

where F is the standard N, x N, discrete Fourier transform (DFT) matrix and R¢ is a
diagonal matrix constructed from the eigenvalues of R;. The DFT transform of Z, results
in the rotated vectors C; = FZ fore =1, 2,..., MN.Denoting by ﬁc the estimate of
R¢ using {C;}) (ie., Rc =1/MN MY e.cr ), the expectation of R conditioned
on Rz and Rz — applying the same formula used to find (5.29) — is given by :

E(Ro|Rz, Rz) = Rzc (R;'Rz (R3)" - R7') Rzc + Ro,  (531)

where Rz is the cross-covariance of C; and Z;. Noting that Z; = FH C;, with F =
F[I; 0]7 and O is the (L x N, — L) null matrix, the cross-covariance matrix Rz is equal

4This assumption implies that the covariance between Z,,, and Z,, depends only on the difference bet-
ween m and n, corresponding therefore to stationary processes.
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to Rc F. Then the estimate of R at iteration q is given by :
R — diag (REVF (RY™V) 'Rz(RY™) 7 — (RY™) ) FARE™V + RY Y )532)
and Rz is obtained using the transformation Z; = FH C; as follows :

RY — FIRYF. (5.33)

Finally, it has been shown in [21] that the stable point of (5.33) is equal to the maximum
likelihood estimate of R .

During the M -step of the EM algorithm, we aim to maximize the log-likelihood function
of the complete-data with respect to the parameters of interest {7;}Z,. It is the same ob-
jective function given in (5.12), with the true expectation of the complete data replaced by
the conditional expectation of z® (¢) ; in other words Rz substituted by R, ) and ﬁz by
RY - Thus we obtain the log-likelihood function of the complete-data, Ly (7, R, ), as
follows :

Ly(7y, Ran) = = In (det( Ryip)) — wace { R R 1. (534)

Then, at iteration ¢, the estimate 7, {Q}

and R, are those which jointly maximize L, (7, R ) ).
Using the eigen-decomposition’ of R, ), the log-likelihood function of the complete-data

can be expressed as :

0'2 0‘2
LP(TP7RZ(P)) = —In (612, + F) -~ (M —=1)In (-F) —

1 P
( o ——2> ()" REE, d(ry) — trace (R1Z)) . (539)
eetpm O

which emphasizes the dependence of L,(7,, R, ) on 7, and Ei. The closed-form expres-

sion of its maximum with respect to 5 , for a given 7 {q},

2

6121{11} d(r {q})HR{q} (TI;{‘I}) — %. (5.36)
Now, injecting this expression in (5.35) yields the following one-dimensional maximiza-
tion problem :

P ~
7 = argmax—In {d(r,) " R d(r,) } —d(r,)" R d(r,), (5.37)

Tp

or simply the problem of maximizing d(7,)" RY ~@(7p). This follows immediately from
the fact that the function f(z) = — In(z) + P/o*z is monotonic.

So far, the ML estimate has been found in an iterative way. However, this method needs
an initial guess of the parameters from which the algorithm starts operating. Alternatively,
to avoid all initialization hurdles and issues, we develop in the next section a non-iterative

algorithm to find the ML estimates without grid search based on importance sampling.

>Noting that the matrix e2d(7,)d(7,)¥ is of rank one with L — 1 null eivenvalues and one equal to &2,
the eigen-decomposition of R, (,) can be easily done.
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5.5 The Importance Sampling Technique

Similar to the above algorithm, we start from the expression of the log-likelihood function
in (5.12). A direct maximization of this function imposes joint maximization over T and
R ;. Therefore, it will be of interest to formulate an objective function that depends on
the time delay only. To that end, we first maximize the likelihood function with respect to
the nuisance parameters R ;. For this purpose, it can be shown that the value of R that

maximizes L(7, Rj) for a fixed vector T is :

RYL — (D (r)D(7)) " PH(r)R:D(r) (D (r)D(7)) ™ - o> (DH(r)D(r)) "

(5.38)
Then, injecting ﬁy L in (5.12) yields the so-called compressed likelihood function of the
system :

L(t) = %trace (Hﬁz) “In (det (Hﬁzn + oIy — H))) , (5.39)

where IT, introduced in (5.20), is defined as IT = D(7) (D" (7)D(7)) - DH(1). Now,
the maximum likelihood estimates of the time delay are obtained by maximizing the obtai-
ned compressed likelihood function (again, the most obvious optimization technique that
naturally comes to mind is to perform a P-dimensional grid search, whose complexity
increases with the number of delays) L.(7) with respect to 7. In this section, as an alter-
native to the iterative method already presented in section 5.4, we implement here the ML
criterion in a non-iterative way. We resort to the global maximization theorem of Pincus
[10] in order to find the global maximum of the multi-dimensional function at hand. In
fact, according to [10], the global maximum of L.(7) with respect to T is given by :

R [, [;pexp{pLc(T)}dT

7, = lim ,
Poeose [ [ exp{pLe(T)}dT

with J = [0, T] being the interval in which the unknown delays are supposed to be confi-

Sy [y exp{pLe(r)}dr
S Jyexp{pLe(T)}dr

sional Dirac function, centered at the global maximum of L.(.). Therefore, if we define

the pseudo-pdf L ,(.) as :

(5.40)

ned. Clearly, as p tends to infinity, the fraction becomes a multidimen-

exp {pLc(7)}
L ()= , (5.41)
o(T) [, [yexp{pLe(r)} dr
the ML estimate of {Tp}f::l, obtained by applying (5.40), can be reformulated as :
?p:/],,,/JTpLg,po(f)dT, i=1,2, ..., P (5.42)

where py is a sufficiently large number (whose optimal value is discussed later). The func-
tion L, , (.) is called pseudo-pdf since it has all the properties of a pdf, although 7 is not
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truly a random variable. We note from (5.42) that the ML estimate requires the evaluation
of the multi-dimensional integral, which is usually difficult to perform in practice. Howe-
ver, exploiting the fact that L , (.) is a pseudo-pdf, the involved integral can be simply
interpreted as the mean value of 7,, when the hole vector 7 is distributed according to

L, ,,(.). Therefore, one can easily evaluate this mean — and hence the integrals in (5.42)

— in order to obtain 7 = [71, 75, ..., 7p)T using Monte Carlo techniques [11] :
1R
T=z > 7, (5.43)
k=1

where {7,}f, are R realizations of 7, with 7 being distributed according to L , (.).

But another problem arises here : how to jointly generate {Tp}p:1 for a multidimensional
random variable. Actually, L, , (.) is constructed using the actual compressed likelihood
function in (5.39), which is a multi-dimensional function ; making the generation of the
vector 7T a very difficult task if not impossible. Therefore, it is of interest to find another
pseudo-pdf to generate the realizations instead of using Ly, , (.). To do so, we resort to the
concept of IS as detailed below.

First, we mention that IS is a powerful Monte Carlo technique [23] which allows genera-
ting realizations using another distribution that is simpler than the actual one. Through the
IS technique, the generated samples are weighted and averaged in a judicious manner to
obtain the desired estimates. This efficient weighting operation improves considerably the
performance achieved by the IS method compared to other Monte Carlo techniques. The
IS approach is based on the following simple observation :

/ /f(‘r .00 T)dT—/ /f Cpo (7')d7'7 (5.44)

where ¢'(.) is another pseudo-pdf called normalized importance function (IF), whose
choice is discussed later and f(.) is any given parameter transformation. Now, the pro-
blem is recast as the computation of the expectation of f(‘r)% with respect to the
distribution ¢’(.) ; which is simply performed via Monte Carlo methods as follows :

cpo Lo (T1)
/ / [ g(r)dr~ RZf( Ty (5.45)

in which the realizations {7} }£_, are now generated according to ¢'(.). Yet, a great atten-
tion should be given to the choice of ¢'(.). In fact, the accuracy of this method depends
on the similarity of the shapes of L/  (.) and ¢/(.). In the best cases, the global maxima

¢,P0
of L], (.) and ¢'(.) are the same. Still L], , (.) is a complicated function of 7 and ¢'(.)

P0
must be as simple as possible to easily generate the required realizations. Therefore, some
trade-offs must be found in the construction of the importance function. Moreover, an ap-

propriate choice of g'(.) reduces the number R of realizations since the generated values
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will appear as if they were generated according to the original pseudo-pdf L, , (.) when

€,p0

¢'(.) is faithful to L, , (.). Next, we discuss the appropriate choice of ¢'(.).

G,P0
First, as an alternative to the actual multidimensional compressed likelihood function, the

importance function should be a separable function in the different delays, {7,}f_;, to

p=1’
reduce the generation of a P-dimensional random vector to the generation of P scalar ran-
dom variables. We therefore simplify the expression of the compressed likelihood function
L.(.) to find ¢'(.). Indeed, it is seen from (5.39) that L.(.) involves the sum of two inde-

pendent terms. These two terms can be written as functions of the eigenvalues of HIA%ZH

as follows :
P
ln<det (HRZH + oI — n))) =In ((02)L-P I1 A,,)
p=1
P
=Zln (A—;> + Llno?,
g
i=1
(5.46)
and
1 -~ 1 5 - Ap
— trace (HRz) = ;trace (HRZH) = — 547
o — 0
where A1, Ag,..., Ap are the eigenvalues of Hﬁzﬂ. Clearly, the term Zf 1 ’\—5 is domi-

nant compared to the term ZP In (’\”) Consequently, in (5.39) we drop the term L ln o
independent on the delays, in In (det (HRZH + oI — II))) and it is reasonable ne-
glect the term In (det (HI?{ZH +o?(I, — H))) with respect to U—lztrace (Hﬁz> . Moreo-

ver, one can approximate the matrix D (7)D(7) by the diagonal matrix (Zfz_ol e \2) Ip
to avoid the computation of the inverse involved in II. This approximation is well justi-
fied since the off-diagonal terms of the matrix D (7)D(7) are negligible compared to its
diagonal elements (see the Appendix for further details). Using this assumption, the term
0—12trace (Hﬁz) is approximated by :

1 ~ 1 ~
— trace (HRz) o> trace (DH(T)RzD(T)) .. (548
o 2 L-14 .12

o (L1 lal?)
Lastly, considering all these observations, an approximation of the actual compressed li-
kelihood function, L(.), with unnecessary terms discarded, is given by :

L(t)= itrace ('D(T)DH(T)ﬁz>

S S s {2 2y

k=1 p=1

:Z (),




where

I(r) = — gévic ex —M}Z(k ) (5.50)
MNo? £~ | £ 9150 L i '

can be evaluated using the Fast Fourier Transform (FFT). Hence, the normalized IF is
selected as follows :

[, exp {pI (1)}
(fJ exp{p1I(1)} dT)P’

which is the product of P elementary functions, each of which depending on the delay

(5.51)

g (T) =

of a given single path. Here, we succeed in making the different delays separable and
distributed according to the same pdf p(.) given by :

e {nl)
0= e lpd(mydr

Hence, the joint pdf of the delays in g;, (.) is split into the product of P individual pdfs,

(5.52)

which transposes the problem of generating a P-dimensional random variable to the ge-
neration of P one-dimensional random variables according to a simpler common distri-
bution. Moreover, the constant term p; in (5.51) and (5.52) is different from py since it is
more advantageous to use two different values as explained later. We mention here that
the estimation performance depends on these two parameters. Actually, the pdf p(.) in
(5.52) exhibits P lobes centered at the location of the true time delay. But the estimation
error £, makes other undesired lobes appear which in turn biases the generated values
not faithful (spurious values) to the true delays. For this reason, p; is increased to make
the pdf p(.) more peaked around the actual delays {7,}_; so that the undesired lobes di-
sappear. However, very large values of p; may also destroy some useful lobes and hence
their corresponding delays will not be generated. Therefore, the optimal value of p; is
the highest one for which the pdf p(.) still exhibits at least P main lobes. Moreover, one
should keep in mind that the normalized IF in (5.51) is built upon an approximation of the
actual compressed likelihood function, which we aim to maximize. Consequently, a bias
will always appear in the mean of the values generated according to the normalized IF.
Fortunately, this bias is alleviated by the weighting factor L, , (.)/g'(.) introduced by the
concept of IS. Therefore, we maximize the contribution of the compressed likelihood in
the weighting factor rather than its approximation by making po higher than p;. Thus, an
appropriate choice of these two parameters reduces the number, R, of required realizations
and ultimately the computational complexity.

To summarize, the new IS-based ML estimator is given by :

R
.1 Ly 5o (Ti)
Tp = = Z Tk(p)—~————~’p°

, (5.53)
k=1 9. (Tk)
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where 71 (p) is the p** element of the vector 7. We also mention that in practice the delays
are confined in the interval [0, LT,] [6]. This allows us to further use the circular mean
instead of the linear mean given by (5.53), as detailed below.

In few words, to define the concept of the circular mean, consider a random variable X
taking values in [0, 1] according to a given distribution G(.). The circular mean of X is
given by [24] :

1
EAX} = %4/0 e*™ G (z)dx, (5.54)

where the operator Z(.) returns the argument of any complex number. Then, if we have a
set of R realizations, 1, ..., Tg, drawn according to the pdf G(.), the circular mean in
(5.54) is computed as :

R
1 1 .
FEAX}=—/= J2r Tk 5.55
X} = R;e (5:35)

Adopting the concept of circular mean in our problem, an alternative formulation of the
estimate in (5.53) is given by :

R .
LT, 1 J2mT(p)
Ty = Wéﬁgﬁ’(fk)exp{— , (5.56)

2 LT,

where the delays are transposed to the interval [0, 1] after being normalized by LT, and
F(.) is the weighting factor defined as :

/

F(r)= L;,p (07(_;) .

Note that the estimator in (5.56) relies on finding the angles of a complex number. There-

(5.57)

fore, we no longer need to compute the two positive real normalization factors [ ... [, exp {pL.(7)} dr
and ([, exp {p11(7)}dr) " since they can be dropped without ultimately affecting the fi-

nal result. Moreover, during the computation of the weighting factor F'(.), the exponential

terms in the numerator and the denominator of F'(.) may result in an overflow. To avoid

this overflow, we substitute F(.) by F’(.) given by :

1<I<R

F'(1;) = exp {pOLC(Tk) - p1 Z I(7(p)) — max <p0LC(~r,) — p1 Z I(Tl(p))> }(5.58)

by multiplying F'(.) by a positive number. In such a way, the exponential argument in
(5.58) no longer exceeds zero, alleviating thereby any computation difficulty.

Summary of steps

In the following, we summarize the entire steps of the new IS-based ML time delay esti-

mator.
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1. From the samples matrix, Z, compute the periodogram I(.) expressed in (5.50) at
discrete points of the interval [0, LT,]. Then evaluate the elementary pdf as follows :

exp(p11(7:)) .
PATi) = ,1=1,2,..., K (5.59)
)= S xplpal (7))

where we substitute the integral in the denominator by a summation over all the

discrete points in the integration interval.

2. Generate one realization of the vector T according to the pseudo-pdf g, (.). To sim-

plify, we exploit the fact that the delays are separable in g;, (.) and we generate P rea-

lizations {7;(p)}£_, according to p(.) using the inverse probability integration [20].
It is important to make sure that the P generated entries (1), 7:(2),..., T(P)
(in order to obtain one vector realization) are different. This condition is necessary
since the delays of the paths are in practice different thereby ensuring that the matrix

inverse (DY (7)D(7))" in L.(.) always exists.

3. Repeat step 2) R — 1 times then evaluate the weighting factors F’(7;) for i =
1,..., R.

4. Find the maximum likelihood estimate of the delays using the circular mean in
(5.56).

5.6 Extension To MC-CDMA Systems

In MC-CDMA transmitter, the original data are spread over different subcarriers using
a spreading code. Therefore, it is possible to transmit several DS-CDMA waveforms in
parallel. At time index n, the input information is first converted into N, = 2K + 1 parallel
sequences and modulated at rate 1/Ty,c, where Ty = N.T is the symbol duration after
serial/parallel conversion. Each of the parallel stream is then spreaded with a spreading
code at rate 1/7T, and modulated by the inverse discrete Fourier transform (IDFT).

At the receiver, a reformulation of the post-correlation model for MC-CDMA of the spatio-
temporal observation for the k%" subcarrier and the n'* observation is given by [26] :

Zin = SkndknDE (T) + Ni, (5.60)

where s, and Jy , are the signal component and the spatial response matrix on the kth

subcarrier, respectively. The column of the time response matrix Dy (7) = [d1, di 2, ..., dkp]
are given by :

oA T oA o ALk =1)
dip = ¢ NG [po(— 1), pelTofks — T))I2™TR L po((Lky — )T ky — 7)™ i ]T,

(5.61)
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where X determines the frequency spacing between two adjacent subcarrier® (fr = Ak/Tarc)
and k, is the oversampling ratio [26]. Note here that the propagation time-delays are suppo-
sed to be the same for all subcarriers. Unlike the single-carrier case, the received samples
Zyn cannot be directly used as an input to the algorithms. Therefore, we introduce the
intermediate transformation of the samples matrix, denoted Zj ,, given by :

in=2Zrn*(al])
= StndinDE (T) + Ni o, (5.62)

; . Lks
where 1y = [17 ey 1]T and a = [1> G_J%LS, ce 6_J27TJ_12]T

Di(r)is:

The p** column of

C
kpzdk,p*a

—e J27"k>‘TMc [Pc( Tp), Pc(Tc/ks — Tp), cee pc((Lk’s - 1)Tc/ks - TP)]T(563)

Hence we eliminate in D¢ (7) the dependence row-wise of the phase slope of each column
vector on k in the spectral domain. While the formulation in (5.62) seems to be adapted for

the estimation process, the phase shift e 7™ Tarc

Twe on each column of D; (1) set against
the direct use of the formulation in (5.62). To overcome this problem, we note that the

matrix D{(7) can be written as D{(7) = A D(7) where Ay is a diagonal matrix which

—J2mkX

P
diagonal elements are { TMO} . Then we insert the phase shift in the spatial-
p=1

response matrix Jj ,, to obtain a formulation similar to the one in (5.3). Finally, to exploit
the frequency gain, we gather the transformed observation over the different subcarrier
into the following compact representation :

zZ:=zZ{, Z5, ... Zg )
=D(1)J" + N, (5.64)
where JST = [A\J], AyJT,,..., AnJY, ] and NS© = [N{T, NgT. ..., Ni£. L.

The interesting thing with the formulation in (5.64) is that it increases the number of ob-
servations proportionally to the number of subcarrier used in the system. Considering N
transmitted symbols, we formulate a compact representation similar to (5.4) by concate-
nating the N observed symbols :

Z = (28 Z5,..., Z§)]
= D(1)J7" + N7, (5.65)

SWhen X is equal to 1, the transiver belongs to the class of multitone (MT)-CDMA, and if it is equal to
L, the transiver belongs to the family of MC-DS-CDMA.
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where JI = [JT, ..., J&] and NT = [N¢T, ..., N§F.

Compared to a schema that estimates the delays over each subcarrier separately, the pro-
posed model presents better performance. In addition, we are able to derive the correspon-
ding CRLB following the same steps as presented in Section II. This reveals that the CRLB
has a similar expression as in (5.20) by multiplying by a factor of 1/N,. If we denote by
CRLB, the CRLB when M = N = N, = 1, the resulting CRLB for the MC-CDMA is
given by :

CRLB = CRLBy. (5.66)

MNN,

As a consequence, the time delay estimation merges space, time and frequency.

To obtain an expression of the CRLB by using the channel coefficients matrix to estimate
the delays, some modifications to the model are needed and developed in Appendix III. In
this case, we see that the resulting CRLB depends on both time and frequency correlation.

5.7 Simulation Results

In this section, we compare the performance of the two proposed maximum likelihood es-
timators against the popular Root-MUSIC algorithm and the CRLB. In all the simulations,
we consider a multipath propagation environment with 3 propagations paths and we si-
mulate a challenging scenario of closely-spaced delays equal to 0.127", 0.157" and 0.18T.
The mean square error (MSE) — used as performance measure — of the three estimators
is compared to the CRLB. First, recall that the EM algorithm is iterative in nature ; hence
initialization is a critical issue. Therefore, the initial values for this estimator are selected
as random variables, centered at the real time delay and with a variance of 0.057". The
processing gain is fixed at L = 64 and the optimal values of the parameters py and p, for
the IS-based technique are equal to 20 and 10, respectively. We also assume that the power
is equally distributed between the three paths on average.

First, we consider a single carrier transceiver with M = 4 antenna branches at the receiver
and one received samples (/N = 1) and we compare the MSE of the two proposed ML al-
gorithms to those of the Root-MUSIC in Fig. 5.1. We also plot the performance of the EM
ML when the initial values have a variance of 0.187 reflecting less accurate initializations.
Clearly, both the IS-based and the EM algorithms, for good initializations, outperform the
Root-MUSIC technique over a large range of the SNR. While the two ML algorithms
present almost the same performance, it is suggested in practice to use, in this configura-
tion, the EM ML approach since it offers less computational complexity compared to the
IS-based algorithm. Indeed, the EM ML estimator has the advantage of performing P pa-
rallel maximizations. Therefore, as the number of paths P increases, there is no additional
noticeable computational time cost. On the other side, IS-based algorithm can guarantee
robustness to the initial estimates, contrarily to the EM ML.
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FIGURE 5.1 — Estimation performance of the IS-based, the EM-based and the Root-
MUSIC algorithms for closely-separated delays, M = 4.

So far, all the methods exhibit good performance, with remarkable improvements for
the two new ML estimators. However, a quick study of the EM algorithm and the Root-
MUSIC reveals that they are based on an estimate of the covariance matrix of the received
signal from the columns of the matrix Z, and the accuracy of this estimate depends on
the number of antennas (which plays the role of the number of samples). Therefore, we
simulate the performance of all these algorithms considering only one receiving antenna
element and keep the other simulation conditions the same as in Fig. 5.1. The results
are shown in Fig. 5.2. Clearly, Root-MUSIC estimator is very sensitive to the number
of receiving antenna branches. Its performance degrades considerably compared to the
previous case. It fails completely in estimating the delays which, indeed, is due to the poor
estimate of Rz. On the other hand, the EM and the IS-based algorithms are less affected,
in this challenging scenario. They still provide good estimates regardless of the challenging
operating conditions based on short data snapshots. Fig. 5.2 actually suggests that the IS-
based algorithm is even more robust than the EM ML estimator in this configuration.

To further investigate this issue, we fix the SNR value at 10 dB and vary the number
of antenna branches M from 1 to 8 with N = 1. The MSE of the three algorithms versus
M is plotted in Fig. 5.3. As expected, the IS-based methods attain the CRLB starting
from a small value of A contrarily to the Root-MUSIC algorithm and the EM ML. This
means that the IS-based estimator is well geared toward situations of reduced antenna array

106




MSE of the 1st path MSE of the 2nd path

2 . ? i
10 107 e " 4
o :
100 b I T g S T TEIRTETE TR I WU, o i
2 3 r
=10l i IR 2 107 SN
N ~
Lo : : CONS :
N N N N N N N N : A .
16| === 15-based o[RS ] T .
g EM ML : v ¢ emrfpnss EM ML e
—#—Roo-MUSIC| : I i ] ~f Root-MUSIC| @ & i
- - —CRLB [ = = = CRLB Lo
» oo 1 :
-9 -5 0 5 10 15 20 25 -0 -5 0 5 10 15 20 25
o* [dB] o* [d48;
MSE of the 3rd path mean MSE of the three paths
10° b . DT ol RTINS o N AU AR seey e ;
T TR ORI "I, PR 100 F e e
2 2
= 02k S g2 TN
1o~ [ = 15"based o[ o= 1sbased ] TR
s EM ML e EM ML : R ¢
~—@=—Root-MUSIC| @ I % —#— Root-MUSIC| : : B
= = = CRLB : : : . = = = CRLB : :
107 i i 10° i
-0 -5 0 5 10 15 2 25 -10 0 10 20
° [dB) o [dB]

FIGURE 5.2 — Estimation performance of the IS-based, the EM-based and the Root-
MUSIC for closely-separated delays, M = 1.

sizes. On the other hand, we plot in Fig. 5.4 the MSE versus NV, considering one antenna
branches in the receiver. Note here that to see the effect of the time channel variation, we
use the channel estimate matrix instead of the received signal to estimate the delays. More
details about the formulation used in the estimation process are presented in Appendix
2. Clearly, the performance of the three estimators is the same starting from N = 5.
But it is not suitable to increase N since the values of the delays may change from one
symbol to another. Usually, a tracking technique (as the one developed in [26]) is used
to continue estimating the delays that is why we prefer to use small number of N in
the estimation. In the region of small numbers of snapshots (/V is less than 5), the ML-
based methods perform better than the Root-MUSIC algorithm and the gap between these
methods increases as N decreases.

To evaluate the impact of the frequency gain in the multicarrier systems, we plot in
Fig. 5.5 the MSE versus the number of subcarriers V.. We fix M at 1 and NV at 1 to better
illustrate the influence of the number of subcarriers /N, on the estimation performance. As
N, increases, the estimation performance improves to saturate for high value of .. This
salutation can be explained by the increase of inter-carrier interference with N, due to
the loss of orthogonality between subcarrier in a multipath environment. We should also
mention the similarity between Fig. 5.3 - Fig. 5.5 which proove that the three dimensions
time, space and frequency have the same impact on the estimation performance of the
algorithms. This conclusion is further verified by the expression of the CRLB in (5.66)
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FIGURE 5.3 — MSE vs. number of antenna branches M for N = 1 symbol, K = 1
subcarrier, and SNR = 10 dB.
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FIGURE 5.4 — MSE vs. number of received symbols N for M = 1 antenna branch, K =1
subcarrier, and SNR = 10 dB.

which is inversely proportional to the number of receiving antenna, the number of symbols
and the number of subcarriers.

5.8 Conclusion

In this paper, we developed two implementations of the ML criterion for the estimation
of time delay both SC and MC air interface in multipath environment. We distinguish two
estimations process : either using directly the received signal or using the channel estimate
matrix. In the first option we show analytically, through the CRLB, and by simulations that
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FIGURE 5.5 - MSE vs. number of subcarrier with A/ = 1and N = 1.

the three dimensions : time, frequency and space have the same effect of the estimation
performance. Whereas basing on the channel estimate matrix, we exploit the time and fre-
quency correlation. While the two proposed methods are an implementation of the same
criterion, each one has its attractive advantages. We also derived a closed-form expression
for the corresponding CRLB in the context of DS-CDMA. The first estimator relies on
the iterative EM algorithm with a moderate computation cost compared to the grid search
technique since it transforms the problem of a multidimensional search into parallel easy
searches over one-dimensional spaces. Compared to other eigen-based methods such as
the Root-MUSIC, the EM approach exhibits better performance with a relatively good
initialization, which is an important issue for this algorithm that affects its estimation per-
formance.

The other algorithm is based on an entirely different approach. It relies on a global maxi-
mization theorem and the concept of importance sampling to directly find the global maxi-
mum. The IS-based approach also avoids the multidimensional grid search by approxima-
ting the actual compressed likelihood function; splitting it thereby into separable one-
dimensional functions of the delays. It does not require any initialization and hence it does
not suffer from performance degradation. Its performance is almost equal to that of the EM
algorithm (which requires good initialization), but at the expense of an increase in the com-
putational burden. Moreover, only the IS-based algorithm produces accurate estimates for
a small number of receiving antenna branches. The performance of the EM approach also
degrades considerably in the specific case of single antenna (SISO configuration) where
the Root-MUSIC algorithm fails completely to estimate the delays.
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Appendix 1

Justification of the approximation D" (7)D(7) ~ 3., |¢*T,

The diagonal and off-diagonal elements of D (7)D(7) are respectively given by :

t~
[any

PIODlmm =Y al>, m=1,2,..., P, (5.67)
!

Il
)

(D (PP (n =l exp { ZTE =T

m,n=12,..., P,m#n. (5.68)
While it is easy to verify that :
[P (1)D(T)lmin < [P (T)D(T)]mim: (5.69)

for m # n, the inequality in (5.69) does not guarantee that the diagonal elements are
indeed dominant compared to the off-diagonal elements. To that end, we define F'(.) the
ratio between (5.68) and (5.69) as follows :

L-1 2 32l ATy,
S e exp { 2t
=1 12
> 1o lal
where A7, = 7, — 7, is considered as a random variable uniformly distributed in

[-LT,, LT.]. We plot in Fig. 5.6 the probability of having F(Ar,,.,) > z for z € [0, 1]
and we verify that the diagonal elements of D” (7)D(7) are dominant, with very high

F(ATmp) =

; (5.70)

probability, compared to its off-diagonal elements. This justifies the following approxima-
tion :

L

DI (r)D(r)~ ) _ |al’L,. (5.71)

=0

—_

Appendix 2

Model used to estimate from the channel coefficients ma-

trix

The development presented in the main body of the article is based on the observation
matrix Z. In this case, the columns of Z are uncorrelated because of the presence of
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FIGURE 5.6 — Complementary cumulative distribution function of the ratio F/(A7,.,).

uncorrelated transmitted symbols. But if we went to use the channel coefficients matrix
H = [l/rf\lT , ff\g ey I/‘I\}\;], these symbols are no longer presents and the columns of
H are correlated. So we introduce a small modification on the formulation to remain the
two algorithms valid. This problem can be solved if viewed in the proper way. First, we
perform a column-by-column FFT of {ff\ w2, to obtain :

—~

H, = D(r)JI+E,
= D(7)[gal1), 9al2), ., ga(M)] + En, (5.72)

where the matrix €, is the resulting noise and g, (i) is the i** column of J7. From the
formulation in (5.72), we bring together all the channel coefficient in one matrix H defined
as:

H = Doaislg(1), 9(2),..., g(M)] + £, (5.73)

inwhich g(i) = [g:(0), g2()7, ..., gn(i)¥]T and Dyosir = In®D, where the operator
® stands for the Kronecker product. If we consider that the signal is transmitted through a
Rayleigh channel and we denote the maximum Doppler frequency by fp, the covariance
matrix of g(7) is given by :

Jo(0) oo Jo(@r(N = 1) fpT)
R, = 5 : ® Ry (5.74)

Jo@2r(N = 1)fpT) ... Jo(0)

Taking into account (5.73) and (5.74), the implementation of the two algorithms using the
channel information matrix is straightforward.
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Appendix 3

CRLB for MC-CDMA using the channel coefficients ma-
trix

We use a similar developments as presented in Appendix II, with the difference that here
we deal with time and frequency correlation. We define ’;ttzn as the column by column
FFT of the channel response matrix H, k.n, for the k" subcarrier and n'* observation which
is given by :

H,, = D)L+ Epn
= D(T)[gk,n(l) gk,n(2)a R gk,n(M)] + gk,n; (575)

where g (i) is the i** column of J¢7. Then we gather the channel coefficients in the
matrix given by :

H =Dlg(1), g(2),..., g(M))], (5.76)

with g(i) = [9{1(2), ..., 9i7,.1(0), 91200),- -, Gar2(),-- -, Gin(),- -, Giy n(0)] and
D = Iy ® I, ® D. Denote by ¢(Af, At) the autocorrelation of the channel transfer
function (we suppose here uncorrelated scattering where the autocorrelation transfer func-
tion in frequency is a function of only the frequency difference Af [27], the covariance
matrix of g°(¢) is Rge = ® ® R; where the elements of ® are function of ¢(Af, At).
Injecting R, and D in (5.20), the CRLB can be written in this alternative way :

(CRLB™Y(r)),, = i—ﬂf% {trace (ﬁf (1— Iy & Iy, ® I)D; R, D" R;{@Rgc) }

2M —H .
= =5 {trace (I ® L. ® (D} (1 - I)D,) Ry"D" R/ DRy ) }
597
where Ry is the covariance of H° and D, and D; are the derivative of D and D with

respect to 7, respectively. If we denote by By the k* P x P block on the diagonal of
R, DR, \DR,., we get :

. oM [, 4 -
(CRLB™!(7)), . = — R > (wf (1 - M) Be(i,j) ¢, (5.78)
k=1

then we obtain the following expression of the CRLB :

9 NM, -1
CRLB(7) = ;—M [éR { Z Uf(1-1mU * BkH . (5.79)
k=1
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Under certain conditions, ® can be easily expressed. In fact, ¢(Af, At) is given by
[27]:
+00
H(Af, At) = be(T, At)e ITAITdr (5.80)
—o0
where ¢.(7, At) is the autocorrelation function of the channel impulse response. If the
different paths have a Rayleigh distribution, ¢.(7, At) can be written as :

+o0
bo(T, At) = / P(T)JO(QWfDAt)e‘ﬂ”AdeT

o0

= Jo2r oA FHAY). (5.81)

Then & = J ® Fy where F(i,5) = Ft((i — )M/ Tmc)-
We verify that in the absence of time and frequency correlation, the expression of the
CRLB obtained in (5.79) is the same as in (5.66).
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Conclusion

Dans ce mémoire, le probléeme de synchronisation temporelle en communication numé-
rique a été traité. Nous avons développé des procédures d’estimation du délai de propaga-
tion basées sur le critére de maximum du vraisemblance pour divers systemes de commu-
nication. Le premier estimateur est développé pour les signaux modulés ou les symboles
émis sont inconnus. La méthode "importance sampling” (IS) est adaptée pour trouver I’es-
timé a maximum de vraisemblance. Bien qu’il soit développé sous 1I’hypothese d’un seul
trajet de propagation, il trouve des applications dans plusieurs systémes tels que les com-
munications satellitaires. Une extension au cas multi-trajets est aussi proposée. Dans cette
configuration, nous nous retrouvons face a plusieurs délais a estimer. Bien que la fonction
de vraisemblance soit multidimensionnelle, I’IS offre une procédure attirante pour trans-
former le probléeme multidimensionnel en un probleme unidimensionnel. Autre contribu-
tion, nous avons développé deux algorithmes de synchronisation pour les systtmes CDMA
mono-porteuse et multi-porteuses. Le premier algorithme reprend le principe de I'IS au ni-
veau du signal apreés désétalement. L autre algorithme se base sur la méthode "expectation
maximization" (EM) qui transforme le probleme multidimensionnel en de simples opéra-
tions unidimensionnelles dont le nombre augmente linéairement avec le nombre de trajets
détectés. Bien que les deux méthodes soient des implémentations du méme critére, cha-
cune possede ses propres points forts. La méthode EM estime des délais de propagation
avec une complexité relativement faible comparée a dSautres algorithmes puisque, tel que
démontrer dans ce mémoire, ’estimation des différents délais peut se faire en parallele,
ce qui réduit le temps de calcul. Les simulations montrent que cet algorithme présente de
meilleur performance que les techniques de sous-espace tel que le Root-MUSIC et ceci en
utilisant de bonne initialisations, qui doit étre souligné comme un point faible de 1’algo-
rithme. La performance de I’algorithme EM dégrade considérablement dans le cas d’une
seule antenne réceptrice alors que 1’algorithme Root-MUSIC échoue completement a es-
timer les délais. D’un autre coté, 1’algorithme IS ne nécessite aucune initialisation et offre
de bonne performance méme en présence d’une seule antenne réceptrice, et ceci au prix
d’une complexité accrue. Nous montrons aussi par simulations que les dimensions espace,
temps et fréquence (pour les systémes multi-porteuses) ont le méme effet sur les perfor-
mances de ces estimateurs.

L’ autre volet traité dans ce rapport est la dérivation des expressions analytiques des bornes
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de Cramér-Rao des estimateurs non biaisés du retard pour les modulation BPSK, MSK
et QAM carrées en estimation aveugle. Ces expressions analytiques révelent que les per-
formances d’estimation du délai ne dépendent pas de la valeur du parameétre en question,
chose qu’on ne pouvait pas confirmer auparavant en évaluant les bornes de Cramér-Rao
par des méthodes empiriques et que I’estimation du délai est independent de I’estimation
de la phase et de la fréquence. On dit que le délai est découplé de ces deux derniers pa-
rametres. Nous avons aussi dérivé les expressions de ces bornes pour les systémes SC- et
MC-DS-CDMA. Dans ce cas, nous constatons que les trois dimensions : spatiale, tempo-
relle et fréquentielle, agissent de 1a méme facon sur les performances d’estimation, se qui
confirme les résultats obtenus par simulations.

Cependant, plusieurs extensions restent a explorer. Dans ce mémoire, nous avons toujours
supposé que le bruit additif était blanc et Gaussien. Ce sera intéressant de voir les modifi-
cations 2 faire, que ce soit au niveau des estimateurs de des CRLBEs, si le bruit est coloré.
De plus, le canal de propagation dans les chapitres 1 et 3 est supposé constant. L’adapta-
tion d’un canal variable reflete mieux la réalité du canal de transmission. Aussi, la CRLB
est développée dans le chapitre 2 sous I’hypotheése d’un seul trajet de propagation. La
dérivation de la CRLB dans un canal a multi-trajets reste un bon sujet de recherche. En
ce qui concerne le 5em chapitre, nous avons supposé que les antennes sont décorrélées.
L’évaluation de la robustesse des estimateurs développés dans ce chapitre en cas dSan-
tennes corrélées reste a venir et le développement d’estimateurs qui tiennent compte de
cette corrélation serait peu €tre d’actualité si jamais nous remarquons une dégradation de
performance dans ce cas.
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