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Abstract: A reliability approach referred to as the point estimate method (PEM) is presented to assess
the uncertainty of a two-dimensional hydraulic model. PEM is a special case of numerical quadrature
based on orthogonal polynomials, which evaluates the statistical moments of a performance function
involving random variables. When applied to hydraulic problems, the variables are the inputs to
the hydraulic model, and the first and second statistical moments refer to the mean and standard
deviation of the model’s output. In providing approximate estimates of the uncertainty, PEM appears
considerably simpler and requires less information and fewer runs than standard Monte Carlo
methods. An example of uncertainty assessment is shown for simulated water depths in a 46 km
reach of the Richelieu River, Canada. The 2D hydraulic model, H2D2, was used to solve the shallow
water equations. Standard deviations around the mean water depths were estimated by considering
the uncertainties of three main input variables: flow rate, Manning’s coefficient and topography.
Results indicate that the mean standard deviation is <27 cm for the considered flow rates of 759, 824,
936, 1113 m3/s. Higher standard deviations were obtained upstream of the topographic shoal at the
municipality of Saint-Jean-sur-Richelieu. The PEM method adds further value to the H2D2 model
predictions as it indicates the magnitude and the spatial variation in uncertainties. The effort required
to complete an uncertainty analysis using the PEM method is minimal and the resulting insight is
meaningful. This knowledge should be incorporated into decision-making in the context of flood
risk assessment.

Keywords: uncertainty analysis; point estimate method; shallow water equations; reliability; 2D
hydrodynamic model (H2D2)

1. Introduction

Flood inundation models numerically transform discharge rates into predictions of water depth,
flow velocity, etc. [1]. The products of hydrodynamic models are often taken as inputs into other
models studying pollutant or sediment transport. Also, studies have applied such models in both
rural and urban environments [2,3]. Although deterministic, they involve numerous uncertainties,
mainly from the input variables, which are due to the cumulative nature of the models and can lead to
considerable uncertainty in the results. The origin of the uncertainty is in the simplifying nature of
models and our inability to precisely define the required input quantities for the models. Knowledge
of the type and magnitude of the uncertainties is crucial to understand and interpret a model’s results.
Therefore, uncertainty analysis, conducted to quantify the uncertainty in the model’s outputs values
induced by the uncertainty in the inputs, increases the confidence in hydraulic model predictions [4].
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It indicates the magnitude and spatial variation of the uncertainty associated with model results,
and helps hydrologists and decision makers to identify the needed improvements. Uncertainty in
flood inundation models has been addressed in several studies, focusing on reviewing uncertainties in
the input data, model parameters and model structure [5-10]. The uncertainties in the model structure
are often neglected as there is no general agreement on the best approach to consider model uncertainty.
On the other hand, uncertainties in the input data and model parameters are generally taken into
consideration, as is the case in this study. There are a number of simplified approaches to flow routing
that have been applied to flood modelling, as well as to the contaminant transport problem [11-16].

Uncertainty analysis provides additional information to the computations performed by the model.
The value of the hydrodynamic modelling outputs is increased by the description of the uncertainty in
those outputs. It is possible to place an uncertainty measure (standard deviation or confidence interval)
around the computed water depth. This information adds value to the hydrodynamic modelling
output and summarizes all of the knowledge that the engineer has on the model output. Uncertainty
analysis may help to improve model inputs and model parameters before it is applied the problem.
It can be used to complement model calibration by providing insights into how good the model
actually is. Better decisions can be made in hydrology and water resource management by taking into
account the uncertainties in hydrodynamic modeling.

The source of the uncertainty can be attributed to different aspects of the modelling process.
In this study, the contribution of the three most commonly considered potential sources of uncertainty
by flood inundation models is analyzed: discharge rate, Manning’s coefficient and topography. Each of
these input variables and parameters is subject to measurement, modelling errors and/or sampling
errors [17,18]. Uncertainty in the flow rate originates from the stage—discharge relation and the flood
frequency analysis. The estimation of flood frequencies is well known as a key task in flood hazard
assessment. Flood frequency analysis is based on the presumption that the observed flood discharges
come from a parent distribution and can be described by a probability distribution. Water levels
are a crucial type of data required for hydrodynamic modelling. Water levels are used as boundary
conditions and also as observation data in the calibration of a model. The uncertainty associated
with the measured water level is not evaluated in the uncertainty analysis because it is measured
with very high accuracy. Based on the literature, the errors reported in the literature for water levels
have an accuracy of 1 cm [19]. To generate the probability of a given flood level and its respective
flow rate, the flood frequency analysis focuses on the statistical analysis of peak discharge by fitting
a statistical model directly to the observed sample of peak flow data [1]. The uncertainty in a T-year
event discharge is estimated using the confidence intervals. The T-year event is assumed to be normally
distributed, which is asymptotically true for most quantile estimators [20]. The uncertainty is then
expressed with the following confidence interval:

XT — Z1_ps2y/var(xr); xr + Zy_p/4/var(xr), ey

where Z, is p-th quantile of the standard normal distribution and var(xr) is the variance of the T-year
event xt. Some studies have attempted to quantify boundary condition uncertainty in hydraulic
modelling [21].

Manning’s coefficient is usually used as the calibration parameter in hydraulic modelling [1,22].
This coefficient represents the resistance to flood flows in channels and floodplains. Various studies
point out that hydraulic models can be very sensitive to these coefficients [23]. As it cannot be measured,
it is estimated empirically or indirectly by laboratory and field methods, which necessarily imply
a significant degree of uncertainty [24,25]. Remotely sensed data may provide ways of estimating
physical components of the friction term [24]. The variance in Manning’s n was estimated using
a reference that investigated the uncertainty in hydraulic parameters [26]. Based on experiments and
field observations, different error probability distributions and variation coefficients are suggested
in the literature to characterize Manning’s coefficient, such as normal [27-29], lognormal [30,31],
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or uniform distributions [26,32]. The authors concluded that coefficients of variation for Manning’s n
can range from 0.1 to 0.3.

Knowledge of the surface topography is probably the most important for the accuracy of
hydraulic models [33]. Lack of adequate topographic data can lead to problems for the description of
flooded areas provided by the hydraulic model [8,34,35]. Riverbanks and floodplains are commonly
identified by digital elevation models (DEM), cross section, or geometrical description of hydraulic
structures [19,36]. DEM provides continuous elevation information in 2D models, including floodplain
morphology and river bathymetry [37]. The errors in the DEM can span a few orders of magnitude,
e.g., low precision DEMs show standard deviations ranging from 5 m to 50 m, whereas for high
precision LiDAR data (light detection and ranging) the error is decreased between 0.15 m and
0.3 m [38]. The elevation errors are generally assumed to follow a normal distribution [39—-41].
The topographic uncertainty in the study [33] used only vertical accuracy as the source of uncertainty.
Other topographically-derived model attributes such as geometry and spatial resolution can also have
significant impact on the overall hydraulic model output [42—45]. Hunter and Bates [24] pointed out
that modern LiDAR DEMs are sufficiently accurate and resolved for simulating floods in urban areas.

The uncertainty of any model output (water surface elevations and inundation extent) is
obtained by combining the standard deviation of the following variables: discharge rate, Manning’s
coefficient and topography [46,47]. Numerous approaches exist to quantify the resulting model
uncertainties [48,49], including analytical methods [50], generalized likelihood uncertainty estimation
(GLUE) [51,52], parameter estimation [53], approximation methods (e.g., first-order second-moment
method), Melching [54], simulation and sampling-based methods [55], Bayesian methods [56],
analytical methods, methods based on the analysis of model errors, methods based on fuzzy
sets [57,58], etc. The selection of a suitable method depends on the knowledge of the river’s
hydraulics, the availability of data, and the modelling approach, as suggested in the code of practice
by Pappenberger and Beven [59]. Hydrodynamic models involve differential equations that are too
complex to solve analytically and therefore analytical uncertainty analysis methods are not applicable.
When using complex models or functions, approximate uncertainty analysis methods are practical.

Until now, in open channel hydraulics, uncertainty analysis has been limited to models that are
not as complex as two-dimensional hydrodynamic models [60]. The majority of the approaches for
uncertainty analysis are stochastic and most commonly based on the Monte Carlo method. However,
this type of analysis requires significant computer processing time, which can become impractical
for complex models like a two dimensional hydrodynamic model [22,61]. The simulations solve
the more complex equations of mass continuity and conservation of momentum in two-dimensions
using numerical methods. The data requirements are more extensive and have greater potential
to create uncertainty in the output. There are methods capable of quantifying the uncertainty in
two-dimensional hydrodynamic models with cheap, efficient computing power readily available.
In such cases, the point estimate method (PEM), which gives approximate results of the uncertainty
with significantly less computational effort, seems to be a promising alternative. PEM represents
a special case of numerical quadrature based on orthogonal polynomials, allowing the evaluation of
the low order of performance functions of independent random variables. For normal variables, the
point estimate method corresponds to Gauss—Hermite quadrature. The difficulty is that PEM does
not provide the tails of the output variable’s distribution, whereas the Monte Carlo analyses usually
generate continuous probability distribution functions [26,62]. The probability distribution functions
for each of the model inputs were specified by assuming that the uncertainty in each model input is
normally distributed. Normal distribution has been utilized in other similar studies [7].

There has not been research undertaken to quantify the uncertainty in hydrodynamic modelling
outputs and to identify the sources of the uncertainty. It is favorable to the decision maker to have
the uncertainty in the model output quantified. The objective of this paper is to demonstrate the
applicability of the PEM for computing of the mean and standard deviation of the simulated water
depths. Intrinsic uncertainties of three main input variables were considered: flow rate, Manning’s



Water 2018, 10, 272 40f19

coefficient and topography, for four different flow rates. An uncertainty assessment was conducted
for a 46 km long reach of the Richelieu River, Canada. The finite-element 2D hydraulic model, H2D2,
was used to solve the shallow water equations. A discussion of how the uncertainty results can be
used is provided at the end.

2. Methods

The uncertainty analysis method proposed involved the following steps: (i) define the probability
distribution for each of the input variables: X; (flow rate), X; (Manning’s coefficient) and X3
(topography); (ii) generate sampled inputs for the identified variables by using PEM; (iii) run the
hydraulic model based on these input parameters (recalculate the model for each sampled input);
and (iv) quantify the uncertainty of the model outputs by computing the mean and standard deviation
of the water depths (Table 1).

Table 1. General procedure for uncertainty analysis based on point estimate method (PEM) simulations.

Preprocessing Processing Postprocessing

PEM approach sampling H2D2 model Propagation of uncertainty

p
[ Parameter sampling H Inundation modelling }—V Result analysis ]
— 1

Uncertainty Analysis

2.1. Study Area

The source of the Richelieu River is Lake Champlain in the USA and it empties northward into
the St. Lawrence River, Canada. The discharge at which Lake Champlain drains at increased rates is
controlled mainly by an area of rocky shoals located at St-Jean-sur-Richelieu, about 36 km downstream
(Figure 1). A constriction in the Richelieu regulates the outflow from Lake Champlain and dictates
the upstream water level variations. The flow contributions from tributaries were ignored during the
calibration process because of the significant storage capacity of Lake Champlain, which contributes
to more than 95% of the Richelieu River’s flow into the St. Lawrence River [63]. The model covered
a 46 km long reach of the Richelieu River from Rouses Point on the US-Canada border to the Fryers
Island Dam, approximately 10 km downstream of the municipality of St-Jean-sur-Richelieu (Figure 1).
A longitudinal profile developed from the LiDAR data was performed for the Saint-Jean-sur-Richelieu
shoal area (Figure 2).
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Figure 1. Location of the study area within the Richelieu River watershed together with the shoal
at St-Jean-sur-Richelieu.
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Figure 2. Longitudinal profile from LiDAR data for the Saint-Jean-Sur-Richelieu shoal area.

2.2. Hydraulic Model of the Richelieu River

The simulations are based on a two-dimensional finite element hydraulic model of the
Richelieu River using the H2D2 software [64]. H2D2 solves the 2D depth-averaged shallow-water
equations (SWE) based on the conservative form of mass Equation (2) and the two equations of
momentum conservation (3) and (4) under steady-state flow conditions with special treatment of
drying-wetting areas.
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where q, and q, are the flow rates in x and y direction (m3/s), h is the water level (m), H is the depth
of water, ¢ is wave velocity (m/s), r is the water density, p is the density, u(u, v) are the components of
the of velocity vector (m/s), fc is the Coriolis force, Tj; is the Reynolds stresses (m/ s’m), T2 and Tl;, are
the bottom frictions in the x and y directions (kg/s’m), 1§ and Ty are the surface frictions in the x and
y directions (kg/s?m), and x(x, y) are the components of coordinate orientation of X(m). The model
does not take into account the influence of the wind and the Coriolis force. The continuous fields h, u
and v are discretized over a structured mesh of finite element triangles of six nodes, referred to as T6L.

The H2D2 model is based on the assumptions of incompressibility, hydrostatic pressure, and
stable riverbed. The finite-element discretization has been detailed by [65,66]. The H2D2 model
calculates the flow velocity, discharge and water levels in a 2D domain using an implicit time scheme
and direct Newton Raphson steps. In doing so, it also takes into account the wetting and drying of
the river banks, based on the water flow and level [67]. The finite element mesh stores all of the input
variables needed for the resolution of St-Venant equations, as well as the resulting variables for the
2D flow simulation (water level and velocities). The advantage of using this software is its simplicity
in terms of data requirements and most particularly the possibility of modifying the river geometry,
qualities that have been demonstrated in several flood inundation studies [68-70].

First, H2D2 was applied in the Richelieu River watershed located about 20 km east of Montreal,
Canada (Figure 1). The model had been pre-calibrated by Environment Canada with the high water
event of 6 May 2011, under steady-state flow conditions without wind forcing [71]. The flow during
the survey was at an approximate rate of 1550 m3/s at the Fryers Rapids gauging station. Calibration
was carried out by adjusting the Manning’s coefficient. There was a difference between simulated and
measured water levels at Saint-Jean-sur-Richelieu of 1cm. The results for the calibration for this high
event on 6 May 2011 are presented in Figure 3.

29
27
E 25
E 23 —#—Measured level
3 ~@-Simulated level
21
19

14 19 24 29 34 39 44 49
Number of points measured (downstream to upstream)

Figure 3. Profile of measured and simulated levels for 6 May 2011.

The Richelieu River model developed for this analysis covered a 46 km long reach of the Richelieu
River from Rouses Point on the US-Canada border to the Fryers Island Dam, approximately 10 km
downstream of the municipality of St-Jean-sur-Richelieu. The model domain was discretized over
a structured mesh of 47,643 finite elements and 97,261 nodes, with a regular size of 25 m. The model
input consisted of DEM, with coordinates X, y and z interpolated and projected to the hydraulic mesh,
and the boundary conditions and Manning’s coefficient as the calibration parameters. The influence
of the wind forces and the Coriolis effect were not considered. This is because there was insufficient
information to describe the uncertainty in the wind data available for the Richelieu River. The resulting
water depths were calculated by subtracting water surface elevations from river bed elevations.
The model was used to evaluate the water levels and flow in the Richelieu River. The water level
information could then be utilized by other studies relating to the impact of water levels in the river.
In all of these applications no quantification of uncertainty in the model outputs was made. The model
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took approximately one hour to provide a steady-state solution on a computer with a core i7 processor
of 3.6 GHz and 16 Gigabytes of RAM (Random access memory).

The topography data for the model was determined using a DEM with a cell size of 1 x 1 m?
and an accuracy of £0.3 m derived from LiDAR datasets obtained in 2008, 2010, and 2011, provided
by Environment Canada (EC). Based on the various classes of point from the data sources, EC used
only the ground class, which represents 85% of the LiDAR points surveyed. The other classes, such as
the building and vegetation, were not used in the DEM. A set of orthophotos from the 2009 database
for the administrative region of Montérégie, Quebec was used to validate the limits of the water
courses. The elevations of the points below the water surface came from bathymetry data. Bathymetric
information describes the geometry of a river. The bathymetry of the riverbed was taken from the
Canadian Hydrographic Service (low river) and bathymetric transects were provided by Parks Canada
(mid river). To import topobathymetry into the model, the individual soundings were interpolated
onto the finite element grid nodes. The interpolation of each individual sounding reduces the amount
of uncertainty in the bathymetry in the model. Uncertainties in the bathymetric data were not explicitly
dealt with in this study. The range of calibrated Manning’s coefficients between of 0.02-0.036 was
used as the mean value of the random field over the study area. The substratum upstream consists
of fine sand and silt. The substrate is much coarser with some boulders, approaching the shoal
in Saint-Jean-sur-Richelieu.

The upstream boundary condition of the model is the flow rate at Rouses Point and stage
conditions used at the downstream limit of the model near the Fryers Rapids station (EC 020]007).
The water level was estimated using the established stage—discharge relationships. Q and H are,
respectively, the discharge (m3/s) and water level (m)

H = Q/303.37(1/1727) 4 255 (5)

2.3. Point Estimate Method

Knowledge of the mean and the standard deviation of each input variable at each of the model’s
grid cells is necessary to compute the combined uncertainty of the outputs using the PEM. The method
estimates the mean and standard deviation of a performance function using statistical moments of the
random input variables. Originally proposed by Rosenblueth [72], the method has been improved in
the past decade [73,74]. The objective is to evaluate the model at a discrete set of points in the uncertain
parameter space and to combine uncertainties of the random variables with proper weighting in order
to calculate the mean and standard deviation of the output, which is the water depth in this case. These
outputs provide useful information for researchers and managers, but in the absence of uncertainty
information, the mean values alone do not show the expected range of possible water depth values.

The standard PEM considers a set of random variables X; (X1, Xy..., Xn) with a probability
distribution function fx;(x), and a performance function Y, obtained from the deterministic relationship
of X (Y = g(Xj)) to represent the output variable Yi. In this application, the considered independent
random variables include the flow rate as the upstream boundary condition, Manning’s coefficient,
and topography. In this case, the performance function is the water depth, g(x). The input variables
are stochastic, i.e., they can be described in terms of their mean and variance. The PEM method is
used to approximate the mean, variance, and/or higher moments of the outputs. The accuracy of
the prediction of the uncertainty in the model outputs depends largely on the ability to estimate the
uncertainty in the inputs.

The statistical moments of the model output can be calculated in terms of the respective moments
of the input as follows:

axm = [ (x = )" (x)dx, (6)

where uy, is moment of order m and py is the first moment of fx(x). The integrals given in Equation (4)
are solved by applying the approximate integration with PEM. The continuous random variable X is
replaced by a discrete random variable with a probability mass function (pmf) of the same moment
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order m as fy(x). The pmf p, (x) is transformed using g(X) to obtain another discrete function with
pmf py(y). In the continuous case, py(y) is used to calculate the moments of Y. In the case of a 1D
integral, the mth central moment of fx(x), {xy, is obtained as follows:

Uxm = /(X — ux) Mx (x)dx = Z(X —ux)"px (%), @)

The optimal coordinates are those at which the integral and the corresponding weights are selected
by the Gaussian quadrature procedures. In fact, the PEM can be considered as an application of the
Gaussian quadrature procedures [75]. Table 2 shows the coordinates along the abscissa and weights
for the three first quadrature formulas based on the normal distribution as the weight function.

Table 2. Coordinates and weights for the standard normal distribution (x = /2 0z).

Number of Node (N) Coordinate x; Weights A;

0 0 1
1 -1,1 i1
2 —v3,0,V3 iz 1

For a case in which the performance function involves n independent random variables assumed
to be approximately Gaussian, Rosenblueth suggested that x can be estimated at more than two points.
The three-point method applied herein considers a central point at x = p, and two points x; and x_
symmetrically distributed around the mean. Designating the weight of the central point as P and of
the other two points as P_ and P+, the respective weights can be written as:

2P, +P =1, 8
2P (xy — 1ty)” = 0%, )
2P (x4 — 1)t =30%, (10)

The solutions of these equations gives the following results:

2 1
P=;P,=P_=_, 1
3 Tr G (11)

X+ = px £ V3ox, (12)

In most cases, the calculations are made at two points and the expected value of the k-th power of
the probability distribution of Y is determined by:

E[Y™) =P (y )" +P(y,)" +P: (y,)" (13)

where Y is a deterministic function of X = g(X); E[Y™] is the expected value of Y to the power m;
y_. is the value of Y at the upper point x;, which is greater than the mean y,; y_ is the value of Y at
the lower point x_, which is less than the mean ,; y,, is the value of Y at the mean p,. If m is large,
the method requires a considerable computational effort, as is the case with 2D SWE models.

To assess the uncertainty propagation, the performance of the model is evaluated through (n + 1)P
simulations, where: p is the number of uncertain variables and n is number of nodes. Each simulation
corresponds to the perturbation of a given random variable with a -£/3 standard deviation about its
mean value. The point estimate method needed only 27 calculations of the H2D2 model for each flow
case. The PEM method is relatively simple in formulation when compared to other uncertainty analysis
methods, such as the Monte Carlo Method. The disadvantage of Monte Carlo analysis is that it can be
computationally demanding. This can be an issue for complex models that require a significant amount
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of time to compute. Figure 4 shows the procedure applied to estimate the statistical moments of the
model output for three input variables. For the purpose of numerical computation, the random fields
of the uncertain parameters are represented in terms of uncorrelated random variables. The H2D2
model of the Richelieu River calculates values for Equation (13) at all the nodes within the model
domain. PEM simulations were conducted by using three variables with the proper weighting (Table 3).
The sum of the all weights is equal to 1. The disadvantage of PEM is that it loses precision as the
nonlinearity of the model increases and if the moments higher than the second moment are to be
obtained, and the fast growing of the number of calculations needed if the number of random variables
increases, which increases the complexity of the analyses and the computation time [74]. This is
especially the case if the input parameters are correlated, requiring the computation of covariance for
each pair of variables and inclusion of the co-variances in the uncertainty calculations Therefore, PEM
gave reliable and accurate results with the third lowest moments. It is relatively easy to run with the
bulk of the effort required to utilize the method. The disadvantage of the PEM method, is that it does
not provide a measure of the influence of each random variable to the overall variance, so it is not an
adequate method to filter the most relevant random variables. Also, the PEM method does not take
into account the distribution of the input parameters. It relies only on the mean and the variance to
describe the parameter. Some of the shortcomings of the method arise from the reality that the PEM
method is an approximate uncertainty analysis method.

Input Output

Input variable 1:

Flow 2D hydraulic model Output Distribution Calculate moments of performance
)i

H=f{x,3,7) Lo

Compute 33 solutions
for combinations of
estimations points

on= T2, P12~ [T, AT

HI=f{P,,P;, P3)

Input variable 2: H2=HP[, Py, P3)

Manning's n HI=HP,, P}, P3)
7.7+/%, g )

Combine the solutions with proper
weighting fo approximate the
output variable

H5=f{P,,P;, P;)
H6=FP] PF,P)

H27=f{P{ P}, P

Input variable 3:
Topography
£ 2430,

Figure 4. Basic principles of the point estimate method for estimation of the statistical moments of the
output parameter based on three independent normal random input variables (H, op) are the mean
and the standard deviation of water depth.

Table 3. The conditions for uncertainty analysis of topography, Manning’s and flow rate using the

PEM method.
Case Topography Manning’s Flow Rate Weight
Case H1 Min Min Min #
Case H2 Min Min Mean @
Case H3 Min Min Max 2%—6
Case H4 Min Mean Min 108
Case H5 Min Mean Mean %
Case H6 Min Mean Max 12?
Case H7 Min Max Min iz

N
=
[e)
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Table 3. Cont.

Case Topography Manning’s Flow Rate Weight
Case H8 Min Max Mean 12?
Case H9 Min Max Max 2&76
Case H10 Mean Min Min 108
Case H11 Mean Min Mean 514
Case H12 Mean Min Max 1?@
Case H13 Mean Mean Min 51
Case H14 Mean Mean Mean %
Case H15 Mean Mean Max 514
Case H16 Mean Max Min f@
Case H17 Mean Max Mean 51
Case H18 Mean Max Max 12@
Case H19 Max Min Min ?
Case H20 Max Min Mean @
Case H21 Max Min Max ?
Case H22 Max Mean Min @
Case H23 Max Mean Mean 51
Case H24 Max Mean Max @
Case H25 Max Max Min %
Case H26 Max Max Mean @
Case H27 Max Max Max PATS

3. Quantification of Uncertainty

3.1. Flow Rate

The reference flow rates for the hydraulic model were determined by analyzing the frequency of
daily recordings at the Fryers Rapids station (between 1972 to 2011). To fully investigate the uncertainty
in potential flood events, four flow rates were imposed to constrain the model: 759, 824, 936, 1113 m3/s.
These values are related to four return periods: 1.25, 1.4, 2, and 5 years used by Quebec’s public safety
ministry. The hydrologic uncertainty was determined with the standard error of the design flow rate,
assuming that its distribution is normal [20] (Table 4). The perturbed discharge Q; is calculated as the
mean discharge Qp,qe + /3 standard deviation.

Q; = Qpase £ V30 (14)

The set of three values for each flow rate Equation (14) was used to obtain the perturbed flow rate
considered as an upstream boundary condition for assessment of the performance function (Table 4).

Table 4. Flow rates used to evaluate the performance function with the point estimate method.

j o xX; — \/50' x; + \/50'
759 394 690.75 827.24
824 36 761.64 886.35
936 33.7 877.62 994.37
1113 394 1044.75 1181.24

3.2. Manning’s n Coefficient

The basic roughness parameters were derived from tabulated values [76] and further modified
during the calibration the model. The Manning’s n coefficient is assumed to be normally distributed
about the mean values calibrated during the calibration process of the model [26-28] and not through
field measurements or observations. The mean n values vary spatially across the domain within the
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range of 0.02 to 0.036, inferred from substrate samples, and the standard deviation was calculated
based on the 3¢ rule as 0.0026 (s/m!/3) [77].

o= (Mmax - Mmin)/6r (15)

The uncertainty in the Manning’s n is likely smaller. The reason for this is the calibration process,
which makes use of river water levels to indirectly determine the appropriate Manning’s n value.
Still, the calibration process is not exact and even though these parameters are optimally determined
through calibration, they could still be incorrect or have some degree of uncertainty in them. There are
alternative parametrization methods that perform almost as well as the optimal Manning’s n values.
There is also the possibility that the Manning’s n parameters may be compensating for errors in other
aspects of the model, such as channel bathymetry.

The three random fields generated by the input of the Manning’s coefficient in the H2D2, used
to evaluate the model’s performance, are provided Figure 5. It involves changing the Manning’s
coefficient along the river by the v/3 error. For example, this change happens in the area with sills or
where the bathymetry suggested a coarser substrate. An increase in the coefficient (upper scenario)
yields a lower flow and a higher water level. However, the decrease in the coefficient (lower scenario)
includes shallow water depth, faster velocities, and supercritical flows.

Manning

. 0.0405

- 00225

Manning

. 0.0405

- 0.0325

. 0.0245

Manning

0.0405
[ |

- 0.0325

. 0.0245

Figure 5. Three images of the random field of Manning’s coefficient: (a) lower scenario (1 — v/30);
(b) nominal scenario (jt); and (c) higher scenario (u + \/30) .



Water 2018, 10, 272 12 0of 19

3.3. Topography

To investigate the effect of topography uncertainty on model predictions, a standard deviation
related to each grid cell was generated by kriging the DEM used as the mean value. As was the case in
the evaluation of the Manning’s coefficient, it was hypothesized that the errors related to the estimation
of topography follow a normal distribution and are independent [39-41]. Kriging was performed by
applying a locally adaptive exponential variogram to the entire study area with a sill value of 0.8 m?
and nugget effect of 0.03 m? (0.18% = 0.03). The sill implies the variance of the data. The nugget
could represent the measurement error or some variation at small scale. The error represents the
vertical accuracy DEM (%15 cm), and the vertical error specific to the airborne positioning system
(8 cm). The kriging variances were then transformed into standard deviation (i.e., the square root
of estimation variance). Figure 6a shows the highest standard deviation with a maximum value
of 0.21 m. These changes are incorporated in the steady-state hydraulic model. To quantify the
topography’s uncertainty, the kriged standard deviation was added to and subtracted from the
DEM (mean topography) to obtain the upper and lower confidence levels (/3 standard deviation).
With this change, the topography behaves as a flexible body because it will move up or down from
a normal distribution and therefore lead to the change in the simulated water surface elevations from
the hydraulic modelling. The random topography fields generated by perturbing the mean topography
by the /3 error are given in Figure 6b—d. With these perturbations, the topography was moved up
and down from the mean values, which resulted in a change of the simulated water surfaces (without
varying the flow rate and Manning’s coefficient in the hydraulic model).

i g

Elevation Elevation
(m} (m})

"
.§ Standard

e ——— ; ]

10 g
km ;‘ fdeviation } Ele:vr:;lon
B (m)
Lek 022 2.0 20 a0
5 | g [ [ ] [ |
j 018 .27 .27 227
[ i [_FYe

J - 7.8 J . 7.8 J - 178

(a) ) (c) (d)

Figure 6. Topography (a) standard deviation, and representations of the random topography fields:
(b) lower topography scenario; (c) mean topography scenario; and (d) upper topography scenario.
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4. Uncertainty in the Model Output

Having defined the individual uncertainty in the three input variables, PEM simulations were
performed in combination with H2D2 to assess the uncertainty which is propagated into the output
values. For a given flow rate, the hydraulic model was only run 27 times, in agreement with the
3 x 3 x 3 combinations associated with the p and p £ /30 random fields of the three input variables.
The mean and the standard deviation of the water depth for each grid cell were calculated with
Equation (11). Therefore, to fully investigate the uncertainty distributions, 108 model runs (4 x 27)
were sufficient to obtain the expected mean and standard deviation of the water depth for the four
reference flow rates 759, 824, 936, 1113 m3/s. The H2D2 model was prepared to explore the transfer of
variability from the Manning’s coefficient, flow rate and topography to water depth under steady-state
application, without non-linear perturbations. Each run of the H2D2 model had an average time
duration of 1 h, which makes flood uncertainty analysis with Monte Carlo unfeasible from a practical
point of view in engineering. Still, an approximate uncertainty analysis can be performed with the help
of the point estimate method. The mathematical operations defined in Equation (13) were performed
within the GIS using the simulated layers with H2D2. The resulting spatial distributions of the mean
and the standard deviation of the outputs are shown in Figures 7 and 8, respectively, which were
obtained by implementing the point estimate calculations within the GIS software. The expected
value or mean of the water depths was determined by running the model with the mean input
parameter values.

~L>Z

10
km

0

Water Depth (m)
Bl s33- 1209

Bl sss-s32 r
B sos-632 | 0%
I ss-467  §
[ 165-3.29
P o-164

Rouse point .

Figure 7. Mean values of the water depths predicted with the point estimate method for four flow
rates: (a) 759 m3/s ; (b) 824 m3/s; (c) 936 m>/s ; and (d) 1113 m3/s.
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Figure 8. Standard deviations of water depth predicted with the point estimate method for four flow
rates: (a) 759 m3/s; (b) 824 m3/s; (c) 936 m3/s; and (d) 1113 m3/s.

It can be observed in Figures 7 and 8 that the expected water depths were below 12.06 m deep,
whereas the overall standard deviations were less than 27 cm for the four flow rates. The highest water
depths were located downstream of Saint-Jean-sur-Richelieu. At Saint-Jean-sur-Richelieu, the river
becomes narrower and the bottom rises to the head of the rapids near the shoal. In this reach the
slope of the river is quite steep where the riverbed is composed of a coarser substrate. Below the
shoal, the slope of the river becomes flatter until the downstream limit is reached. The upstream
reach, from Rouses Point to Saint-Jean-sur-Richelieu, is characterized by lower water depths. The river
is wide and the impediment to flow is not great, it is a lake-like section of the river with a very
minor gradient. This region can be considered as an extension of Lake Champlain. The spatial
distribution of the standard deviations shows higher standard deviations in the upstream close to
the shoal in Saint-Jean-sur-Richelieu, and lower standard deviations in the far upstream (Figure 8).
The increase in uncertainty in water depth is directly proportional to the increase in uncertainty in these
model parameters. This finding is expected due to the equation used for calculating the uncertainty,
Equation (12). Water depth upstream of Saint Jean is therefore influenced almost entirely by the shoal.
The lower standard deviation near the model boundaries is probably in part due to the fact that the
water level is controlled at these locations directly at the downstream boundary and indirectly by the
influence of the upstream boundary defined by the constant flow rate. It can also be observed that
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an increase of the flow rate from 759 m>/s (Figure 8a) to 1113 m>/s (Figure 8d) slightly decreases the
standard deviations of the water depth values. This can be explained by the hydraulic model for the
Richelieu River, which was solely calibrated for the high-water event of 6 May 2011, using a flow rate
of 1550 m*/s.

These findings indicate that the water depths upstream of Saint-Jean-sur-Richelieu are therefore
highly sensitive to the shoal’s topography at Saint-Jean-sur-Richelieu. The upstream water slope
therefore remains a function of the streambed roughness, since the rivers primary level and rate of
discharge is limited to its capacity at the shoal. From the point of view of the engineer that has to build
a model, the location of these zones with higher variability can be useful to make decisions such as
where to direct efforts to efficiently improve the model. The higher uncertainty located at the reach
upstream may be explained by the presence of the Saint-Jean-sur-Richelieu shoal. The latter contains
some anthropogenic submerged structures such as steel traps for fishing nets and mill races (Figure 9).
At low flow rates, these structures fill with water without contributing to the flow because the velocities
are very low, and probably act as a natural sills at low flow rates. Therefore, they are a significant
contributing factor to the hydraulic response of this basin. The submerged structures would require
relocation because of increased water depths and generally unsuitable conditions for trapping created
by dredging and structure operations. The important effect of the shoal on low flow regimes was the
reason that the hydraulic model for the Richelieu River was calibrated for the high water event of
6 May 2011. For this reason, and in order to build an accurate 2D hydraulic model, the topography
of the model should be carefully considered, especially in the shoal, possibly by acquiring a new
river bathymetry.

Source - Google Earth Imagety

Figure 9. Submerged structures in the Saint-Jean-sur-Richelieu shoal area.

5. Conclusions

Water depth uncertainties were quantified as the output of the two-dimensional hydraulic model.
The uncertainty propagated from the input variables to the model’s output was calculated using the
point estimate method (PEM). To demonstrate the practical applicability of the PEM for uncertainty
analyses, the hydraulic model H2D2 was applied over a 46 km long reach of the Richelieu River,
Canada. Three random variables were considered to be sources of uncertainty: flow rate, Manning’s
coefficient and topography. The combined uncertainty was calculated using the PEM analysis method.
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Reasonable estimations of the mean and standard deviation values of water depths were obtained
with much less effort using PEM method. Also, the results revealed a standard deviation ranging
from 0 cm to 27 cm for the Richelieu River. Regarding the maximum standard deviation, a maximum
uncertainty of 27 cm was found mostly upstream of the Richelieu River near the shoal. This is
an indication that the model needs to be improved in this area. The results presented showed that the
PEM method can be applied with the H2D2 model to perform uncertainty analysis. The PEM method
requires less information to describe the model input, fewer model executions, and the resulting insight
is meaningful.

Independently of the method used to determine the output’s uncertainty, the uncertainty of
the model’s inputs must be accurately estimated. Although this study does not offer a method for
assigning uncertainties to Manning’s coefficients, the value ranges provided in the reference tables
represent a good starting point. Additional research is needed to verify the PEM analysis results,
by comparing the results of flood estimates obtained with a 2D hydraulic model to the results obtained
by more accurate methods, such as first-order second-moment (FOSM) and Monte Carlo analysis.
Some simplification hypotheses were considered in the analyses. The hypothesis of independence
between the input variables was considered to facilitate the estimation of the mean and standard
deviation as descriptors of the uncertainty.

The results obtained with the PEM should be considered as approximate values and it should
be kept in mind that this method provides a rough estimate of the uncertainty. It is an interesting
alternative to computationally more demanding methods in terms of time and money in the risk
analysis context. The method is simpler to apply, requiring less information to describe the model
inputs and fewer model executions and computations to calculate uncertainty. The method required
only the mean and variance of the model inputs in order to complete the analysis.

The uncertainty analysis presented in this study provides a general method for better
understanding the H2D2 model. It provides useful information for researchers and managers,
particularly if computations are conducted in near real time during an inundation event. It can
raise awareness of the main uncertainties of models.
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