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Highlights 
 

 Functional regression is proposed for flow duration curve estimation.  

 Framework and benefits of functional approach are provided.  

 The approach is recommended to estimate a number of flow duration curve quantiles.  

 Insight into descriptor influence on flow duration curve quantiles is supplied.  

 Improved daily streamflow estimates are obtained for most sites.  
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Abstract 

Flow duration curves (FDC) are used to obtain daily streamflow series at ungauged sites. In 

this study, functional multiple regression (FMR) is proposed for FDC estimation. Its natural 

framework for dealing with curves allows obtaining the FDC as a whole instead of a limited 

number of single points. FMR assessment is performed through a case study in Quebec, Canada. 

FMR provides a better mean FDC estimation when obtained over sites by considering 

simultaneously all FDC quantiles in the assessment of each given site. However, traditional 

regression provides a better mean FDC estimation when obtained over given FDC quantiles by 

considering all sites in the assessment of each quantile separately. Mean daily streamflow 

estimation is similar; yet FMR provides an improved estimation for most sites. Furthermore, 

FMR represents a more suitable framework and provides a number of practical advantages, such 

as insight into descriptor influence on FDC quantiles. Hence, traditional regression may be 

preferred if only few FDC quantiles are of interest; whereas FMR would be more suitable if a 

large number of FDC quantiles is of interest, and therefore to estimate daily streamflows. 

 

Keywords: Ungauged site; functional data analysis; functional multiple regression; flow duration 

curve; daily streamflow estimation; quantile. 
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1. Introduction 

Stream gauges provide streamflow information needed for the adequate management of 

water resources. However, stream gauges cannot be installed at every location where daily 

streamflow series are required. Daily streamflow estimation at ungauged sites is often carried out 

by using statistical approaches based on the use of these available series at gauged sites (e.g. 

Archfield et al. 2013). Among the various statistical approaches used for this purpose, the flow 

duration curve (FDC) based approach (e.g. Smakhtin et al. 1997; Mohamoud 2008) has gained 

popularity due to its good performance (e.g. Shu and Ouarda 2012). The FDC is used to 

represent the variability of the daily streamflow series at a given site. Once the FDC is estimated 

at the ungauged site, it may be incorporated into a transfer procedure through which the daily 

streamflow series is obtained (e.g. Mohamoud 2008; Ssegane et al. 2013).   

Over the literature, many studies presented and evaluated methods for estimating FDC at 

ungauged sites (e.g. Castellarin et al. 2007; Mendicino and Senatore 2013; Li et al. 2010; 

Ssegane et al. 2013; Zhang et al. 2015). According to Castellarin et al. (2004), these methods 

may be classified into: i) statistical approaches based on probability distributions (e.g Fennessey 

and Vogel 1990); ii) parametric approaches based on analytical expressions (e.g. Mohamoud 

2008); and iii) graphical approaches (e.g. Smakhtin et al. 1997). Shu and Ouarda (2012) 

suggested extending the definition of graphical approaches to methods that do not assume a 

given FDC distribution or shape. A regression based logarithmic interpolation method included 

in this category was proposed in their study. An important drawback of graphical approaches, 

which include traditional multiple regression (MR) (e.g. Shu and Ouarda 2012), is the fact that 

the FDC is obtained as a number of separately estimated FDC quantiles instead of a whole curve 

(e.g. Castellarin et al 2013). Statistical and parametric approaches have the limitation of focusing 
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respectively on a given probability distribution or equation to represent the FDC (e.g. Fennessey 

and Vogel 1990). 

Given the “curve or functional” character of the FDC, functional data analysis (FDA) is a 

natural framework to deal with FDC estimation. FDA methods were introduced by Ramsay 

(1982). These methods allow obtaining a function as a whole, without imposing specific 

analytical equations with limiting assumptions on its shape. The main reference on FDA theory 

is Ramsay and Silverman (2005), and material related to its application by using R and Matlab 

can be found in Ramsay et al. (2009). FDA has been recently introduced in hydrology and its use 

is increasing. For instance, Chebana et al. (2012) presented the framework for studying 

streamflow hydrographs by using FDA, and further investigated issues related to exploratory 

analysis and outlier detection. Adham et al. (2014) used FDA to interpret mean catchment runoff 

patterns from runoff values estimated through the Soil Conservation Service method. Ternynck 

et al. (2016) investigated streamflow hydrograph classification by using FDA-based methods. 

Masselot et al. (2016) focused on forecasting flow volume and the whole streamflow hydrograph 

from precipitation curves by using functional linear regression models. 

The aim of the present study is to propose a FDA-based approach for estimating the FDC at 

ungauged sites in order to overcome the drawbacks of traditional approaches. In particular, 

functional multiple regression (FMR) is considered within the FDA context (e.g. Ramsay and 

Silverman 2005) since it allows obtaining the whole FDC as a relationship with scalar covariates. 

This approach makes possible the straight use of commonly available catchment descriptors at 

ungauged sites. Thus, FMR may be seen as the natural functional extension of traditional MR 

when dealing with FDC estimation at ungauged sites.  
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The use of FMR for FDC estimation is supported by a number of conceptual and general 

advantages. Firstly, the FDC is estimated as a whole, where all FDC quantiles are connected, as 

opposed to the common point-wise estimation based on traditional regression models. The 

proposed approach overcomes problems of inferential multivariate MR techniques when using 

vectors of high dimension to approximate functional data (see Faraway 1997 for details). 

Furthermore, it provides large fitting flexibility in estimating the FDC due to the use of a 

combination of basis functions, which avoids restriction to the shape of a given curve or 

function. In this regard, the proposed approach may be considered as a graphical approach if 

accounting for the aforementioned extended definition. In the literature, FDA is commonly 

applied over the argument “time”; yet it may also be applied to other ordered indices (e.g. 

Faraway 1997). In the present study, as a novelty and due to the focus on FDC estimation, FDA 

is applied over the argument “probability of exceedance” (p) which ranges from 0 to 1. 

Moreover, monotone smoothing, which is not commonly considered in usual FMR applications, 

is used to ensure monotonic decreasing FDCs.  

Apart from proposing a FMR approach for FDC estimation at ungauged sites, the present 

study focuses also on a further application consisting in using the “fully” estimated FDC to 

obtain the daily streamflow series at the ungauged site. This is done by incorporating the FMR-

based FDC into a commonly adopted transfer procedure. The proposed FMR-based approach is 

assessed and illustrated by its application to a case study in the province of Quebec, Canada. 

Several FMR settings are evaluated for identifying the best one in dealing with FDC estimation 

at ungauged sites. FDCs and daily streamflow series obtained through the approach are 

compared with those of a traditional MR approach for the case study.  
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The structure of the paper is the following. Mathematical FMR concepts and background are 

summarised in Sect. 2. Description of the FMR approach for FDC estimation at ungauged sites is 

introduced in Sect. 3. Results for the case study are shown in Sect. 4. Discussion is presented in 

Sect. 5 and conclusions are provided in Sect. 6. 

2. Functional multiple regression: concepts and background 

This section aims at providing a summary of the FMR concepts and theoretical background 

through a generic notation. Further details can be found in Ramsay and Silverman (2005). Note 

that the specific application of FMR to FDC estimation at ungauged sites is presented in Sect. 

3.2; yet some connections are briefly given here for didactical purposes.  

2.1. Preliminary data smoothing by using B-Splines 

In the FDA framework, observed data need preparation to be represented as functions. In our 

case, this is necessary for the set of point-wise FDCs at the gauged sites. To this end, preliminary 

data smoothing is the common method used (see e.g. Masselot et al. 2016). It consists in 

expressing the unknown function      as a sum of analytically known basis functions 

           
   : 

      ∑        

  

   

                  (1) 

where    are the coefficients of the basis functions and   is the space (in particular an interval) 

where the argument t ranges. Fourier basis functions are used in case of broadly periodic data, 

such as in annual streamflow series (e.g. Chebana et al. 2012). B-Spline functions, which are 

piecewise polynomial functions, are usually used otherwise. B-Spline functions may be defined 

by their order, which is commonly 4 (i.e. cubic splines), and either (i) the number of basis 
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functions, or (ii) a sequence of knots. Both ways (i and ii) are investigated in this study. It is 

important to note that in FMR, B-Splines are not only used for preparing the data as functions, 

but also for representing estimated coefficient functions within the FMR model. Although these 

two applications refer to different steps of the FMR analysis, the theoretical background remains 

the same. Preliminary data smoothing for FDCs at gauged sites is performed by a weighted 

penalized least square estimation (see Sect. 2.2 for details). 

2.2. Functional multiple regression  

Among the existing functional linear models (see Ramsay and Silverman 2005), FMR is 

selected for FDC estimation in the present study. This is due to the fact that the FMR model 

entails a functional response and scalar covariates (e.g Faraway 1997), which makes it applicable 

to FDC estimation. Indeed, FDCs may be considered as functional response (output), and 

descriptor values such as basin area as scalar covariates (input). Note that although FDCs are 

often considered as point-wise curves in practice, their nature is continuous as they may be 

understood as probability curves. It is important to note that the FMR approach used in this study 

is a functional linear model different from the ones considered in Masselot et al. (2016). The 

latter are based on a functional covariate. Also note that FMR is also called functional analysis of 

variance (FANOVA) (e.g. Brumback and Rice 1998) when the covariate values are categorised 

as 0 or 1 instead of being measured values (Mingotti et al. 2013). See Table 1 of Masselot et al. 

(2016) for details regarding the different types of functional regression models. 

The FMR model decomposes the variation in the functional response into functional effects 

using a scalar design matrix Z, and is given by: 
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             ∑        

 

   

                            (2) 

where       is the functional response over t and n is the sample size,     are the entries of the 

    scalar design matrix        ,       is the intercept function,       are the coefficient 

functions of the FMR, and       are the residual functions. For instance,       may represent the 

preliminarily smoothed FDCs over the percentile points p at n sites; and   may represent the 

values of k descriptors at n sites. Therefore, it is important to note that the scalar coefficients in 

traditional MR (e.g.   ) are functions       over t in FMR.  

Eq. (2) may also be expressed in matrix notation as                . The unweighted 

least square fitting criterion then becomes: 

         ∫                           

 ∫                              

(3) 

where      and      are vectors containing linearly independent basis functions, and   is the 

     matrix and   is the      matrix of coefficients with    and    the number of 

respective basis functions. The quality of the smoothing results through the regression depends 

on the chosen basis system. A large number of basis functions may lead to a better data fitting, 

yet a small number may improve computational efficiency and avoid fitting noisy data. Penalized 

basis function expansion allows smoothness of      despite a high number of basis functions, 

and leads to the penalized least square fitting criterion: 

PENSSE(β)  ∫                                 ∫                     (4) 

where L is a linear differential operator traditionally chosen as the second derivative of     . The 

coefficient    may be determined by generalized cross-validation (Stone 1974), and controls the 
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severity of the penalization and hence the amount of smoothing to be applied to     . 

Additionally, it is also possible to consider a weighted least square fitting criterion. However, it 

is also important to evaluate the trade-off between computational efficiency and prediction 

performance. In the present study, the penalized estimation of the coefficient functions did not 

significantly improve the results while being computationally inefficient. Thus, their estimation 

is performed through a weighted unpenalized least square criterion. 

3. Proposed approach 

The proposed approach for FDC estimation by FMR, and daily streamflow estimation at 

ungauged sites comprises three main steps. First, the FDC at each gauged site is constructed 

from observed daily streamflow series by identifying empirical FDC quantiles at selected 

percentile points. This results in a point-wise FDC at each gauged site. Second, the FDC at the 

ungauged site is estimated as a whole by using FMR, for which FDCs from the previous step are 

represented as functional response inputs (whole curves), and available descriptors as covariates. 

Decreasing monotonicity of the predicted FDC is assured by monotone smoothing. Third, a 

transfer procedure is applied to obtain daily streamflow series at the ungauged site. An overview 

of the procedure is shown in Fig. 1. Steps and the assessment criteria used for evaluating the 

performance of the proposed approach are further described below.  

3.1. FDC at gauged sites 

The FDC at each gauged site is built from the corresponding observed daily streamflow 

series. Specifically, it is obtained by representing the sorted daily streamflow values in the y-axis 

and their corresponding empirical probability of exceedance in the x-axis. This probability of 

exceedance (or percentile point p) is usually obtained from the Weibull plotting formula (e.g. 

Fennessey and Vogel 1990). In order to have a consistent database from all sites, FDC quantiles 
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are identified at a number of fixed percentile points for characterising the FDC. As a result, a set 

of point-wise FDCs with 17 unevenly spread percentile points are obtained (e.g. Shu and Ouarda 

2012).  

3.2. Functional multiple regression for FDC estimation 

The second step of the proposed FDA-based approach is the FDC estimation at ungauged 

sites by using FMR (see Fig. 1), which is summarised below:  

- The point-wise FDCs at the gauged sites need to be represented as functions to be 

considered as the functional response in the FMR model. This is done by using preliminary 

B-Spline smoothing, as indicated in Sect. 2.1;  

- Functional FDCs and catchment descriptor values at the gauged sites, such as 

physiographic or climatic variables, are used to estimate the coefficient functions in the 

FMR model. Estimated coefficient functions, as well as descriptor values at the ungauged 

sites are then used to obtain the FDC at the ungauged site. Decreasing monotonicity of the 

predicted FDC at the ungauged site is ensured by monotone smoothing if this condition is 

not preserved during the FMR estimation process (Sect. 3.2.1);  

- This FMR analysis is performed by considering several practical settings (Sect. 3.2.2).  

3.2.1. FDC estimation  

The application of FMR to estimate FDCs at ungauged sites, as well as differences between 

traditional MR and FMR are described below. In traditional MR, the regression equation used for 

estimating FDCs at ungauged sites is commonly logarithmically transformed into the following 

linear equation (e.g. Shu and Ouarda 2012): 

    
 

                                                   (5) 
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where   
 
 is the FDC quantile associated with a given percentile point p in       at site i and 

          are the k physiographic or climatic descriptors for site i. The coefficients         are 

the model parameters,    is the intercept term, and    is the residual term. Therefore, as a given p 

is associated with a given   , a regression equation needs to be performed for each p in 

traditional MR. 

Eq. (5) may be expressed as follows when considering FMR: 

                                                            and    (0, 1) (6) 

where       are the FDC quantiles, as functional response, associated with the percentile points p 

in (0,1) at site i. In other words, they represent the preliminarily smoothed FDCs at the gauged 

sites.           are the k scalar physiographic or climatic descriptors for the site i, the coefficient 

functions               are the model parameters expressed as functions over p; and       and 

      are respectively the intercept and the residual term as a function over p. Therefore, only a 

single regression equation containing all the information needs to be performed in FMR, instead 

of multiple equations as in MR. 

As it can be seen, the structures of Eq. (2) and Eq. (6) are equivalent. The argument t in Eq. 

(2) corresponds to the percentile point   in Eq. (6) for        . Thus, the FDA-based approach 

in this study is not performed over the usual time t but over the percentile point p, which is the 

probability of exceedance of the FDC quantile. The coefficient functions to be estimated by 

FMR in Eq. (6) are then expressed hereafter as       for each descriptor variable j with   

      . Analogously to traditional MR, the coefficients       are assumed to be common for all 

sites in a region. They are then estimated and used for predicting the whole FDC at the ungauged 

site, which is done by supplying its catchment descriptor values into Eq. (6). Also note that since 

the coefficients       are functions over p, they may also be used to better understand the effect 
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of each descriptor considered in the regression model over p (see Sect. 4.2.2). Finally, it may 

happen that the predicted FDC does not fulfil the decreasing monotonicity condition. A common 

method for assuring monotonicity in FDA is monotone smoothing (Ramsay et al 2009), which is 

considered in the present study. This is done by explicitly expressing the derivative of the target 

function as the exponential of a previously estimated B-Spline.  

3.2.2. Settings 

In the present study, several FMR practical settings are assessed to identify the best one for 

FDC estimation at ungauged sites. The settings are defined based on two factors: the number of 

FDC quantiles initially identified at the gauged sites, and the way in which B-Spline functions 

are defined. Two cases are considered for each factor, leading to four settings A, B, C and D. 

They are summarised in Table 1 and described below. 

FDC quantiles associated with a number of unevenly spread percentile points are usually 

considered to characterise the whole FDC. In traditional approaches, the number of quantiles is 

kept small due to the need to perform a regression equation for each quantile. Nevertheless, in 

FMR, the interest resides in the whole curve and a single regression model is performed. Thus, 

the use of more FDC quantiles is expected to improve the FDC estimation, while no more 

complexity is added to the model. Two cases are considered in this regard: the use of 17 

percentile points; and the use of a larger number such as 50 percentile points. Note that FDC 

quantiles are directly obtained from the hydrological information at gauged sites and hence, 

obtaining 50 instead of 17 points does not entail a drawback. 

Order 4 B-Spline functions may be defined by specifying either the number of basis 

functions or a sequence of knots. Both cases are considered in the present study, leading to 

“equidistant knots” and “uneven spread knots”, respectively. For the former case, 10 basis 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

functions are considered since the FDC does not generally exhibit strong variations. For the latter 

case, a given sequence of 14 knots among the 17 percentile points of the traditional approach is 

selected after a preliminary analysis (i.e. 0.1%, 95% and 99.9% were excluded). This results in a 

total of 16 basis functions (Ramsay et al. 2014).   

3.3. Daily streamflow estimation by a transfer procedure 

The transfer procedure commonly used to obtain daily streamflow series at ungauged sites is 

the nonlinear spatial interpolation technique (e.g. Hughes and Smakhtin 1996). This streamflow 

transfer procedure is named in different ways over the literature (see e.g. Archfield et al. 2013), 

and assumes that the probability of exceedance of the streamflow value for a given day is the 

same at destination and source sites. The destination site corresponds to the target ungauged site, 

and the source site corresponds to a gauged site selected by a given criterion, which is explained 

below in this section. The procedure is based on the use of daily streamflow series and FDC at 

the source site, and predicted FDC at the destination site. Regarding the FDA-based approach, 

this is then performed by using the smoothed FDC as the FDC at the source site, and the FDC 

predicted by FMR at the destination site (see Fig. 1).  

The transfer procedure for a given day may be summarised as follows: 

- First, the streamflow value at the source site is identified through its FDC, and the 

corresponding percentile point is obtained; 

- Second, this percentile point is used in the estimated FDC at the destination site for 

evaluating the corresponding FDC quantile, which is selected as the streamflow value 

for the given day.  

In the traditional MR approach, logarithmic interpolation is used for obtaining intermediate 

points of the FDC that are needed during this procedure. Regarding the FMR approach, the 
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second part of the procedure can be directly carried out analytically through Eq. (6), but not the 

first part. This is due to the fact that FMR builds the functional FDC but not its inverse, hence 

the percentile point p cannot be directly obtained from the daily streamflow value. To avoid this 

issue and without loss of generality, logarithmic interpolation is considered in that case. Note 

that the FDA-based approach, although analytical, constructs functions point-wisely. Thus, FMR 

has the advantage of considering a much larger number of points, during interpolation, than the 

traditional MR approach which is only based on 17 points.  

According to the literature, it is preferable to use several source sites in the transfer procedure 

(e.g. Hughes and Smakhtin 1996). Shu and Ouarda (2012) performed a sensitivity analysis to 

identify the number of source sites and weighted scheme to be considered regarding the present 

case study. The use of four source sites, identified and weighted based on geographical distance, 

was found to be the best choice, and is hence also considered in the present study. This implies 

that for a given day, the streamflow value at the ungauged site is obtained as a weighted average 

of the streamflow value obtained by applying the transfer procedure by using each source site. 

For additional procedures to select source sites and weight schemes, see e.g. Archfield and Vogel 

(2010), Ergen and Kentel (2016) and Patil and Stieglitz (2012). 

3.4. Assessment of the approach 

The assessment of the proposed approach is evaluated at two stages: first on the estimated 

FDC, and then on the estimated daily streamflow series. For both stages, the evaluation is based 

on the commonly used jackknife (or leave-one-out) technique (Nezhad et al. 2010) that consists 

in performing the estimation at each site without temporarily considering its information in the 

multi-site transfer procedure. This implies that one site at a time is considered as temporarily 
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“ungauged”. Classical assessment criteria such as NASH, RMSE, RRMSE, BIAS and RBIAS 

are considered in this study (e.g. Ouarda and Shu 2009).  

In particular, FDC estimation performance is evaluated “per site” and “per quantile”. Note 

that for comparison among approaches, both assessments are carried out on the M percentile 

points traditionally considered (M = 17). Per quantile mean performance entails obtaining the 

mean value of the assessment criteria for a given FDC quantile over N sites (N = 109 in the 

application below), and then calculating its mean value over M quantiles. Per site mean 

performance entails obtaining the mean value of the assessment criteria for a given site over M 

quantiles, and then calculating its mean value over N sites. Note that per quantile and per site 

results are only equivalent for BIAS and RBIAS criteria. Additionally, the number of sites with 

an initially non-monotonic FDC over the whole estimated curve is also considered as a criterion 

for per site evaluation. Daily streamflow estimation performance is evaluated per site, as daily 

streamflow series are estimated at each “ungauged” site.   

4. Application 

4.1. Case study  

The proposed approach is applied to a case study consisting of 109 sites in the hydrometric 

station network of the province of Quebec, Canada (Fig. 2). Daily streamflow information, as 

well as physiographical and meteorological descriptors are available at the sites. Selected sites 

have a minimum period of record of 10 years, through which the FDCs are built at the gauged 

sites. The mean record length of the set of sites is larger than 25 years. Additional information on 

the case study can be found in Shu and Ouarda (2012). For coherence and comparison purposes, 

the same descriptors and transformations as in the aforementioned reference are considered in 

the present study. Considered descriptors are catchment area (BV), fraction of catchment area 
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controlled by lakes (PLAC), fraction of catchment area occupied by forest (PFOR), catchment 

mean slope (PMBV), annual mean degree-days below 0°C (DJBZ), annual mean total 

precipitation (PTMA), summer mean liquid precipitation (PLME), annual mean degree-days 

over 13°C (DJH13), average number of days with temperature over 27°C (NJH27) and curve 

number (NCM). If available, additional variables, such as geological or lithological descriptors, 

could provide useful information when estimating low flows. 

4.2. Results  

4.2.1. FDC estimation performance  

The performance of the four FMR settings (see Table 1) considered for FDC estimation at 

ungauged sites is evaluated by the assessment criteria in Sect. 3.4. Per site mean performance of 

the FDC estimation is shown in Table 2. The use of 50 instead of 17 FDC quantiles extracted 

from the observed daily streamflow series (setting C vs. A, and setting D vs. B) provides better 

(mean) NASH and BIAS, and (for setting D vs. B) a remarkably lower number of initially non-

monotonic predicted FDCs; yet a worse RRMSE. The use of a sequence of unevenly spread 

instead of equidistant knots for defining B-Splines (setting B vs. A, and setting D vs. C) provides 

a better NASH, RMSE and RRMSE; yet it increases the number of non-monotonic FDCs 

especially when fewer FDC quantiles are used. As a result, setting D which consists of 50 FDC 

quantiles and uneven spread knots may overall be considered as the best setting for per site FDC 

estimation. This setting obtains the largest NASH and the lowest RMSE among all settings, and 

only one non-monotonic FDC. 

An analogous analysis is carried out on per quantile mean performance of the FDC 

estimation (Table 3). In this case the use of 50 instead of 17 FDC quantiles (setting C vs. A, and 

setting D vs. B) leads to a better RMSE and BIAS; yet also a worse RRMSE. The use of a 
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sequence of unevenly spread knots instead of equidistantly distributed knots (setting B vs. A, and 

setting D vs. C) leads to better RMSE and RRMSE. As a result, setting D may overall be 

considered as the best setting for per quantile FDC analysis also. In this case, the setting also 

provides the largest NASH and the lowest RMSE among all settings. Note that extracting a 

number of FDC points larger than 50 did not lead to relevant per site or per quantile performance 

improvements. 

Per quantile and per site mean FDC results after monotone smoothing on the predicted FDC 

are shown within parenthesis in Table 2 and Table 3. Recall that monotone smoothing is applied 

when a predicted FDC does not initially meet the decreasing monotonicity condition. As shown 

in both tables, FDC estimation performance is affected by the application of monotone 

smoothing. In some cases, such as for the non-monotonic curve in setting D, the predicted FDC 

after smoothing is closer to the measured FDC (not shown) and hence, performance results are 

improved. However, monotone smoothing does not in general allow improving performance 

results (see setting B results with 52 non-monotonic curves in Table 2 and Table 3). This is due 

to the fact that the curves that depict a non-monotonicity decrease usually do it at the very 

beginning or at the very end of the curve, and the effect of monotone smoothing is often large in 

modifying these curves that were initially almost suitable. This supports the preference for 

settings that directly provide a low number of non-monotonic FDCs through the FMR model, 

which is in accordance with the selection of setting D as the best setting for FDC estimation. 

Note that performing monotone smoothing after the functional estimation process may be seen as 

a fine-tuning that ensures decreasing monotonicity for all resulting curves. Ensuring decreasing 

monotonicity is also an issue in traditional MR, where FDC points are estimated separately. For 

instance, decreasing monotonicity is addressed in Shu and Ouarda (2012) by considering 
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logarithmic interpolation or extrapolation. Note that estimating the extreme points of the FDCs is 

usually problematic regardless of the approach considered, due to being associated to higher 

uncertainty than centered points. 

Finally, FDC results for the FMR model with setting D are compared with the results 

obtained by the MR approach proposed in Shu and Ouarda (2012). Results by applying the latter 

approach are broadly reproduced in the present study to allow comparing intermediate stages in 

the daily streamflow estimation process, such as the present FDC estimation. Per site mean FDC 

results (Table 2) are better for the FMR approach (setting D) for NASH, RMSE, BIAS and the 

number of non-monotonic FDCs; yet worse for RRMSE and RBIAS. This better overall per site 

performance of the FMR approach may be due to taking into account the fit of all FDC quantiles 

at the same time. On the other hand, the traditional MR approach obtains better per quantile 

mean FDC results (Table 3) for RMSE, RRMSE and RBIAS; yet worse for BIAS and the same 

NASH. This better overall per quantile performance of the traditional MR approach may be due 

to fitting given FDC quantiles separately, instead of fitting all quantiles at once. 

4.2.2. Coefficient functions estimation 

The focus of the present section is the estimation of the coefficient functions       in Eq. (6). 

The functional response (left argument in Eq. (6)) is formed by FDCs at gauged sites after 

preliminary data smoothing. According to the selected setting D (see Table 1), FDCs at gauged 

sites are formed by 50 quantiles, and B-splines in the smoothing are defined by uneven spread 

knots. Eq. (6) is built by following a jackknife procedure. This implies that FDCs and catchment 

descriptor information for all gauged sites, except the site considered as “ungauged”, is used in 

the regression model. Note that each set of estimated coefficients       will be later used for 
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predicting the FDC at the corresponding ungauged site by supplying its descriptor values in Eq. 

(6).  

With the aim of analysing the effect of the descriptors     in the FDC estimation for the study 

region, the estimated coefficients       are multiplied by their corresponding descriptor value    

at the “ungauged” site. For instance, the scaled coefficient function associated to the catchment 

descriptor BV may be expressed as           , where “BV” represents the catchment area at 

the ungauged site and “ln” shows the logarithmic transformation considered for the descriptor. 

Scaling       allows visually comparing the effect of all descriptors in the FMR model. For this 

purpose, the 50th point-wise percentile (median) and the 25th-75th point-wise percentile interval 

(confidence interval) of the scaled       values over the 109 sites are displayed regarding the 

percentile point p in Fig. 3c. Similar scales are considered for facilitating the interpretation of the 

results. The median provides information about the influence of each descriptor (in general and 

over p) in FDC estimation; whereas the confidence interval provides information about the 

variability of the estimated FDC over sites. This analysis is first carried out for all descriptors, 

and then variable selection is considered based on it.  

 Catchment area (BV) has the strongest influence on the estimated FDC quantile with respect 

to all p values, as its median is large and stable over p (see Fig. 3c). The also large and stable 

confidence interval over p indicates that BV is very important in representing the variability of 

the estimated FDC over sites. This is consistent with common knowledge about the relevance of 

this descriptor regarding streamflow size. Different is the case of the catchment mean slope 

(PMBV), for which the median and confidence interval over p are always close to zero. Thus, 

PMBV is expected to have a very small influence for the case study. This may be related to the 

fact that PMBV ranges from 0.19 to 6.95% in the study region, which are small values for 
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implying large differences among catchment responses. Other descriptors, such as PLAC, 

NJH27, DJH13 and PLME also contribute to FDC estimation, and to characterisation of its 

variability over sites. However, their effect changes over p. For instance, DJH13 shows less 

influence for very low p (floods); and PLAC presents more influence for very low (floods) and 

for moderate to high p (low flows). The FDC variability over sites is less represented by PTMA, 

DJBZ, PFOR and NCM, where the influence of the latter slightly increases as p increases. 

Therefore, aside from helping to better understand the behaviour of the descriptors in the 

regression model, this information could also be useful if additional analyses on a specific range 

of the FDC need to be performed. This insight cannot be directly obtained from the traditional 

MR approach. 

 The median and confidence interval over p are also shown to compare point-wise FDCs 

obtained from observed daily streamflows and estimated FDCs (after smoothing if needed). As 

shown in Fig. 3a, results from measured and estimated FDCs are close to each other. Median and 

confidence interval related to the estimated intercept function after being transformed into 

streamflow scale (     ), and as obtained by the FMR model (l       ) are also plotted in Fig. 3b 

and Fig. 3c, respectively. In this regard, it is important to note that in a particular FMR model 

where descriptors are categorised as 0 or 1 (i.e. in FANOVA), the intercept       in Eq. (2) is 

indeed the mean, and then each coefficient       is able to clearly show its effect on this mean 

(e.g. Ramsay et al. 2009). However, in a general FMR model this is not that straight, and as seen 

in Fig. 3b, the shape of       may not be that similar to the one of a plausible monotonic FDC.  

If variable selection is considered within the FMR model, by only using the descriptors 

previously identified as presenting a relevant variability over the study region (i.e. BV, PLAC, 

NJH27, DJH13 and PLME), the shape of       becomes similar to that of a plausible monotonic 
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FDC (Fig. 4b). As seen in Fig. 4c, scaled coefficients       experience some changes in 

comparison to the ones shown in Fig. 3c; yet the previous discussion about their overall 

influence holds. The median and the confidence interval over p from measured and estimated 

FDCs are also close to each other (Fig. 4a). Therefore, plots of scaled coefficients       are 

useful to select relevant descriptors in the FMR model. Corresponding per site and per quantile 

FDC estimation results are shown at the end of Table 2 and Table 3, respectively. Note that the 

model using all descriptors is referred to as FMR-D, and the model using five descriptors is 

referred to as FMR-D5. As expected, FMR-D results for which more information is used are 

overall better than FMR-D5 results. Nevertheless, the FMR-D5 model is more appropriate, 

entails estimating fewer coefficients      , and directly obtains monotonically decreasing FDCs 

at all sites. Previous discussion about comparison of FMR and MR results also holds for FMR-

D5, with the exception of FMR-D5 obtaining worse per site mean NASH and RMSE than MR. 

Note that the MR approach considers all descriptors. 

4.2.3. Daily streamflow estimation performance 

Assessment criteria results of daily streamflow estimation for FMR by using all (FMR-D) or 

five descriptors (FMR-D5), as well as for traditional MR are shown in Table 4. Note that results 

from the latter approach do not exactly correspond with the ones shown in Shu and Ouarda 

(2012). They are broadly reproduced in this study to allow comparing intermediate stages of the 

daily streamflow estimation process, such as the FDC estimation; and a 30-year study period 

from 1971 to 2000 is considered for daily streamflow estimation. As seen in Table 4, overall 

results for both MR and FMR approaches are very similar. In particular, FMR-D obtained the 

largest NASH, both FMR-D and MR provided the smallest RRMSE and RBIAS, and MR 
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obtained the smallest RMSE and BIAS. Recall that FMR-D5 only uses five descriptors, whereas 

FMR-D and MR uses all of them.   

Given the similarity in the obtained daily streamflow results, a deeper at-site analysis is 

carried out to further explore the behaviour of the various approaches. For this purpose, the 

difference in performance results for daily streamflow estimation between FMR and MR is 

computed. Absolute instead of regular at-site BIAS and RBIAS are obtained to allow identifying 

the approach leading to best results. An overall better behaviour of FMR-D in comparison to the 

one of MR is found. FMR-D performs better in 58, 58, 51, 46 and 53% of the sites for NASH, 

RMSE, RRMSE, |BIAS| and |RBIAS|, respectively. Results regarding FMR-D5 are in general 

less impressive, with the exception of an improvement in |BIAS|. In this case, FMR-D5 performs 

better than MR in 45, 45, 38, 50 and 45% of the sites for NASH, RMSE, RRMSE, |BIAS| and 

|RBIAS|, respectively.  

As illustration, the difference in daily streamflow assessment criteria results between FMR-

D5 and MR is shown in Fig. 5. After examining the obtained results, several sites (sites 1, 34, 

102 and 106) identified as representative of different behaviours are further analysed for 

illustrative purposes. Measured and estimated FDCs, as well as a scatter plot of observed and 

estimated daily streamflow values are also shown for these sites in Fig. 6. The flexibility of FMR 

to build monotonic decreasing FDCs with different shapes may be seen in the figure. Note that 

the streamflow for a given day is not shown when either its observed or estimated value is 

unavailable. Also note that estimated daily streamflows may not reach the largest values shown 

through the associated estimated FDC (Fig. 6), since these events may not happen over the study 

period for daily streamflow estimation. Assessment criteria results for FDC and daily streamflow 

estimation for these sites are displayed in Fig. 7.  
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Site 1 is identified as a regular site. It does not entail large differences between approaches 

(Fig. 5); and its FDC and daily streamflow estimations may be considered as suitable based on 

graphical and assessment criteria results (see Fig. 6 and 7). FMR-D5 presents an overall better 

performance for this site. Site 106 has large differences in several assessment criteria results such 

as in NASH and RMSE (Fig. 5); yet it presents bad FDC and daily streamflow results for both 

approaches due to a large overestimation of the FDC in both cases (Fig. 6 and 7). The latter may 

be related to the fact that this site has a large catchment area, which is expected to be associated 

with larger observed daily streamflows than the ones measured at the site. Thus, as both 

approaches are regression-based models, they fail to provide a suitable FDC estimation for this 

site. Note that regression-based models usually obtain better results at moderate sites. On the 

other side, site 102 with the largest catchment area in the region is better estimated thanks also to 

having the largest daily streamflows (Fig. 6 and 7). MR provides the best performance in this 

case, obtaining for both approaches high NASH and small RRMSE and RBIAS. The large 

RMSE and BIAS of site 102 is due to its large daily streamflow values (Fig. 6 and 7). The case 

of site 34 is quite different: its large RRMSE may be related to its small daily streamflow values 

(Fig. 6 and 7). The performance of the approaches for this site depends on the assessment criteria 

considered.  

5. Discussion 

The advantage of the MR approach for FDC estimation is the use of simple regression 

models; yet it implies estimating each FDC quantile separately which is not conceptually 

appropriate. Therefore, its use may be preferable if only few quantiles are of interest for a given 

region. This is also supported by per quantile FDC estimation performance results in Table 3. 

The benefit of the FMR approach resides in the use of a flexible and conceptually supported 
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framework that allows estimating all FDC quantiles jointly. Although FMR requires more 

complex statistical tools, it also has the advantage of providing information about the influence 

evolution of the descriptors over the percentile points in the FDC. The use of FMR may then be 

recommended if a large number of FDC quantiles is of interest for a given region, and if “per 

site” analysis is the focus, which is supported by per site results in Table 2. This is the focus 

when daily streamflow series are estimated at ungauged sites, and hence FMR would be more 

appropriate in such a case. Indeed, although similar mean daily streamflow estimation 

performance is obtained by FMR and MR for the case study (see Table 4), FMR is able to 

provide a better performance for a larger percentage of sites.  

Among the considered descriptors, catchment area (BV), fraction of catchment area 

controlled by lakes (PLAC), average number of days with temperature over 27°C (NJH27), 

annual mean degree-days over 13°C (DJH13) and summer mean liquid precipitation (PLME) 

were found as relevant catchment descriptors for representing the variability of FDCs over the 

study region. Their influence may vary over the FDC (Fig. 4c). For instance, floods (low p 

values) would be more influenced by BV, PLAC and PLME; whereas low flows (high p values) 

would be more influenced by BV, PLAC, DJH13 and PLME. Through the application of the 

proposed FMR approach, the practitioner is provided with both the FDC and the daily 

streamflow series at the target ungauged site. This information may be used in a number of 

applications, such as water supply planning, hydropower generation or flood protection. 

As a regression-based model, the present FMR approach has the limitation of often obtaining 

better results at moderate sites in terms of range of values of considered descriptors, especially 

regarding BV. This limitation can be seen through the bad results obtained for site 106 that is 

associated to a large BV but not very large observed daily streamflows (Fig. 6). The estimation 
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of FDCs at ungauged sites is done by considering the information of all gauged stations in the 

study area, as also considered in.Shu and Ouarda (2012). However, it should be noted that the 

selection of a subset of gauged sites based on similarity measures and homogeneity could 

improve the obtained results (e.g. Castellarin et al. 2004; Mendicino and Senatore 2013; Requena 

et al. 2017).  

Future research could be related to a wider assessment of the benefits and performance of the 

present approach. This could be done by the application of the approach to a number of case 

studies, as well as by the comparison of its results with those obtained by different statistical or 

parametric approaches over the literature. In this regard, it would be relevant to evaluate the 

performance of the approach when considering intermittent regimes (e.g. Mendicino and 

Senatore 2013). Further research regarding the improvement of the proposed FMR approach 

could be related to variable selection, which is an emerging topic in FDA (e.g. Brockhaus et al. 

2015; Mingotti et al. 2013). In the present study, this is done through scaled coefficient function 

plots due to the multi-site transfer context of the analysis. Additional statistical tools for 

improving FMR results could entail, for instance, the use of functional principal component 

analysis for defining new variables as combination of existing variables (e.g. Chebana et al. 

2012).  

Future research should also explore the impact of adopting the FMR approach on the 

performance of the Regional Streamflow Estimation Based Frequency analysis (RSBFA) 

approach, recently proposed by Ouarda (2016) and developed by Requena et al. (2017). RSBFA 

is an approach for regional frequency analysis at ungauged sites. It is based on the regional 

estimation of daily streamflow series at the ungauged site, through an FDC procedure, and then 

the estimation of desired quantiles through local frequency analysis. Finally, it would be 
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important to evaluate the performance of a FMR based RSBFA procedure as a simple approach 

to combine local and regional information in the case of partially gauged sites, in opposition to 

complex Bayesian statistical models (e.g. Seidou et al. 2006). This analysis will provide 

information about the real merits and potential of this approach. 

6. Conclusions 

Flow duration curve (FDC) estimation is often needed to obtain daily streamflow series at 

ungauged sites. In the present study, given the functional nature of FDC as curves, functional 

multiple regression (FMR) is proposed for FDC estimation at ungauged sites. Daily streamflow 

series based on such a FDC estimation are then obtained through a well-known transfer 

procedure.  

Better per site FDC estimation performance is found for the FMR approach; whereas better 

per quantile FDC estimation performance is found for a traditional multiple regression (MR) 

approach. Mean daily streamflow estimation performance of both approaches is found to be 

similar; yet the FMR approach is able to provide a better performance for a larger percentage of 

sites when considering all the available descriptors. Furthermore, the FMR approach has 

conceptual and practical advantages, such as the use of a flexible framework for a proper 

estimation of the whole FDC. This is done by jointly estimating all the FDC quantiles through a 

single regression model, instead of by building several separate regression equations according 

to the number of FDC quantiles as in traditional MR. Moreover, the FMR approach provides 

relevant insight into the influence of the considered descriptors within the overall regression 

model, as well as over the FDC quantiles. Note that the latter cannot be directly obtain by 

traditional methods. For the case study in the province of Quebec, Canada, it was found that 

among the considered descriptors, catchment area (BV), fraction of catchment area controlled by 
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lakes (PLAC), average number of days with temperature over 27°C (NJH27), annual mean 

degree-days over 13°C (DJH13) and summer mean liquid precipitation (PLME) were relevant in 

representing FDCs over the region. Their influence changes over the FDC. 

While the traditional MR approach may be of interest if the focus is the estimation of few 

FDC quantiles in a region, the FMR approach would be more appropriate if the focus is a large 

number of FDC quantiles or the whole FDC for a given site, and hence to daily streamflow 

estimation at ungauged sites. In the same line as traditional methods, FDC and daily streamflow 

series may be obtained at the target ungauged site through the application of the proposed FMR 

approach to be used in water supply planning or flood assessment activities, among others.  
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FDA Functional data analysis 

FDC Flow duration curve 
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Table 1. Functional multiple regression settings.  

Setting 
No. of FDC quantiles at 

gauged sites 
Percentile points (%) B-Splines  

A 17 0.01, 0.1, 0.5, 1, 5, 10, 20, 30, 40, 50, 60, 70, 

80, 90, 95, 99, 99.99. 

Equidistant knots 

B 17 Uneven spread knots 

C 50 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, 10, 13, 

15, 17, 20, 23, 25, 27, 30, 33, 35, 37, 40, 43, 

45 ,47, 50, 53, 55, 57, 60, 63, 65, 67, 70, 73, 

75, 77, 80, 83, 85, 87, 90, 93, 95, 97, 99, 99.5, 

99.9, 99.99 

Equidistant knots 

D 50 Uneven spread knots 
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Table 2. Per site assessment criteria results of FDC estimation by a jackknife procedure.  

Approach 

Setting 

(or 

model) 

NASH RMSE RRMSE BIAS RBIAS Non-

mon. 

curves 
Mean 

% sites > 

0.75 
Mean Mean Mean Mean 

FMR 

A 0.77 87.2 82.27 0.34 -7.77 -0.07 0 

B 0.81 (0.80)* 89.0 65.82 (69.80)* 0.31 (1.83)* -3.21 -0.04 (-0.62)* 52 (0)* 

C 0.79 86.2 82.75 0.38 1.07 -0.07 0 

D 0.82 89.9 63.33 (63.26)* 0.36 -1.49 -0.08 1 (0)* 

MR 0.80 89.0 67.43 (66.73)* 0.31 3.16 (2.99)* -0.05 16 (0)* 

FMR D5 0.79 90.8 75.91 0.41 -1.85 -0.09 0 

*(.) Smoothed results are shown within parenthesis if non-monotonic FDCs are initially obtained, and if smoothed 

and unsmoothed results present differences by considering two decimals. 

FMR settings A, B, C and D are described in Table 1. Model FMR-D5 corresponds with setting D by using five 

instead of all descriptors. MR refers to traditional multiple regression. 
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Table 3. Per quantile mean assessment criteria results of FDC estimation by a jackknife 

procedure.  

Approach Setting (or model) NASH RMSE RRMSE BIAS RBIAS 

FMR 

A 0.92 95.21 0.38 -7.77 -0.07 

B 0.92 88.03 (88.99)* 0.35 (3.02)* -3.21 -0.04 (-0.62)* 

C 0.92 91.80 0.41 1.07 -0.07 

D 0.93 82.86 (82.84)* 0.40  -1.49 -0.08 

MR 0.93  78.12 (77.15)* 0.35 3.16 (2.99)* -0.05 

FMR D5 0.93 88.49 0.46 -1.85 -0.09 

*(.) Smoothed results are shown within parenthesis if non-monotonic FDCs are initially obtained, and if smoothed 

and unsmoothed results present differences by considering two decimals. 

FMR settings A, B, C and D are described in Table 1. Model FMR-D5 corresponds with setting D by using five 

instead of all descriptors. MR refers to traditional multiple regression. 
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Table 4. Assessment criteria results of daily streamflow estimation.  

Approach   Model 
NASH RMSE RRMSE BIAS RBIAS 

Mean % of sites > 0.75 Mean Mean Mean Mean 

FMR  
D 0.70 60.6 55.94 0.61 -3.04 -0.16 

D5 0.68 58.7 56.32 0.62 -2.35 -0.17 

MR  0.69 58.7 54.73 0.61 -0.84 -0.16 

Model FMR-D corresponds with setting D as described in Table 1. Model FMR-D5 entails using five instead of all 

descriptors. MR refers to traditional multiple regression. 
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Fig. 1 Overview of the proposed procedure for FDC estimation by using functional multiple 

regression, and daily streamflow estimation at ungauged sites. 
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Fig. 2 Location of the 109 sites considered in the case study (Quebec, Canada).  
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Fig. 3 Functional multiple regression results for model (or setting) D displayed by the median 

and [25th-75th] confidence interval over 109 sites regarding p: (a) measured vs. estimated point-

wise FDC; (b) intercept function in streamflow scale; (c) intercept function, and 10 coefficient 

functions scaled by their descriptor value. 
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Fig. 4 Functional multiple regression results for model D5 displayed by the median and [25th-

75th] confidence interval over 109 sites regarding p: (a) measured vs. estimated point-wise FDC; 

(b) intercept function in streamflow scale; (c) intercept function, and five coefficient functions 

scaled by their descriptor value. 
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Fig. 5 Difference in daily streamflow assessment criteria results between multiple regression and 

functional multiple regression (model D5). Marked sites are further analysed. 
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Fig. 6 Measured and estimated FDC (top), and daily streamflows (bottom) at several sites for 

multiple regression and functional multiple regression (model D5). 
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Fig. 7 Assessment criteria results of FDC and daily streamflow estimation at several sites for 

multiple regression and functional multiple regression (model D5). 

 

 


