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Abstract 12 

Classification of rock types using geochemical variables is widely used in geosciences, 13 

but most standard classification methods are restricted to the simultaneous use of two or 14 

three variables at a time. Machine learning-based methods allow for a multivariate 15 

approach to classification problems, potentially increasing classification success rates. 16 

Here a series of multivariate machine learning classification algorithms, together with 17 

different sets of lithogeochemistry-derived variables, are tested on samples collected at 18 

the Lalor Zn-Cu-Au volcanogenic massive sulphide deposit, to discriminate volcanic units 19 

and alteration types. Support Vector Machine and Ensemble method algorithms give the 20 

best performance on both classification exercises. Untransformed chemical element 21 

concentrations with high classification power are the best-performing variables. 22 

Classification success rates are equal or better than those obtained using standard 23 

classification methods and are satisfactory enough for the use of the resulting predictions 24 

for 2D and 3D modelling of geological units. 25 

 26 



Highlights 27 

• Machine learning algorithms are used for multivariate geochemical classification. 28 

• Volcanic units and alteration types are discriminated using untransformed 29 

chemical element concentrations. 30 

• Support Vector Machine and Ensemble methods yield the highest classification 31 

success scores. 32 
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1. Introduction 37 

Machine learning is increasingly being used to aid interpretation of geological data (e.g., 38 

O'Brien et al., 2015; Rodriguez-Galiano et al., 2015; Sadeghi and Carranza, 2015; 39 

Kirkwood et al., 2016). Contrary to traditional geochemical classification diagrams, which 40 

are generally limited to two or three variables at a time (e.g., Pearce and Norry, 1979; De 41 

La Roche et al., 1980; Wood, 1980; Verma and Agrawal, 2011), machine learning 42 

algorithms such as neural networks and support vector machines allow for the 43 

simultaneous use of multiple variables. These approaches reduce interpretation bias and 44 

can outperform the traditional graphical or statistical classification methods (Friedman et 45 

al., 2001). The application of these algorithms however requires iterative and empirical 46 

tuning of weights and parameters for approximating an optimal classification function. As 47 

a result, their application can be considered as a ‘black box’ approach by some, mainly 48 



due to the lack of a simple link between the weights and estimated parameters, and the 49 

classification function being approximated. 50 

This study illustrates the power of multivariate classification methods applied on drillhole 51 

geochemical data from altered volcanic rocks hosting the volcanogenic massive sulphide 52 

(VMS) Lalor deposit in the Snow Lake area in Manitoba, Canada. VMS deposits generally 53 

consist of stratiform to stratabound ore lenses underlain by discordant sulphide stringer 54 

(feeder) zones. These deposits are closely associated with volcanic rocks (Franklin et al., 55 

2005; Galley et al., 2007a), and recognizing specific volcanic units, or volcanic horizons, 56 

is key in defining vectors towards favourable host rocks (e.g., Gibson et al., 1999). In 57 

addition, the formation of VMS deposits is associated with extensive, up to regional scale, 58 

hydrothermal alteration of the host rocks (e.g., Galley, 1993; Galley et al., 1993), and 59 

variations in alteration styles and mineral assemblages in space are critical exploration 60 

vectors toward ore at the regional and deposit scales. The Lalor deposit is an excellent 61 

area for testing the multivariate classification methodology. Lithologies, alteration, 62 

mineralization, and the metamorphic and tectonic contexts are well studied (e.g., Tinkham, 63 

2013; Caté et al., 2015; Schetselaar et al., 2017), and an extensive set of data has been 64 

collected by the company exploiting Lalor (Hudbay) and several scientific teams 65 

(Geological Survey of Canada, Laurentian University and Manitoba Geological Survey). 66 

Moreover, the local geology is complex, with a wide variety of volcanic lithologies 67 

overprinted by complex hydrothermal, deformation and metamorphic events (Caté et al., 68 

2015; Caté, 2016).  69 

Supervised multivariate classification can help categorizing and mapping volcanic rocks 70 

and alteration types that have been identified and discriminated on a well-studied subset 71 

(the training set) of geochemical drillhole data (e.g., Abbaszadeh et al., 2015). One 72 

significant challenge in such environments is to differentiate between the protolith 73 



signature (e.g., Ross et al., 2014) and the signal specific to the overprinting hydrothermal 74 

alteration (i.e. post-depositional geochemical modifications to the protolith signature) (e.g., 75 

Ross et al., 2016). Protoliths are finite, spatially and statistically coherent features for the 76 

most part, whereas alteration ‘units’ are gradational and irregular in nature. The 77 

performance of a series of classifiers and multivariate geochemical datasets, including 78 

variable transformations, are specifically tested for the classification of volcanic units and 79 

alteration types in this paper. The classification results are plotted in 3D space and on 80 

conventional classification diagrams to validate their geological significance and 81 

determine their success rates. Our results indicate that machine learning models based 82 

on lithogeochemical data can be efficient classifiers for lithostratigraphic units and 83 

alteration types. Both of these applications, however, necessitate to carefully select 84 

discriminative variables and algorithms to obtain high classification success rates.  85 

2. Geological setting 86 

Lalor is a Zn-Cu-Au VMS deposit located in the Snow Lake arc assemblage of the 87 

Paleoproterozoic Flin Flon greenstone belt (Galley et al., 2007b). The deposit is currently 88 

being mined by HudBay Minerals Inc. (Hudbay) and has been studied in detail (Bailes et 89 

al., 2013; Tinkham, 2013; Caté et al., 2014a; Caté et al., 2014b; Lam et al., 2014; Mercier-90 

Langevin et al., 2014; Bellefleur et al., 2015; Caté et al., 2015; Duff et al., 2015; 91 

Schetselaar and Shamsipour, 2015; Caté, 2016; Duff, 2016; Schetselaar et al., 2017). 92 

The Lalor deposit consists of stratigraphically and structurally stacked ore lenses 93 

(Bellefleur et al., 2015; Caté et al., 2015) hosted in volcanic and subvolcanic rocks 94 

informally categorized into units and groups of units (Figure 1 and Table 1; Caté, 2016). 95 

The host rocks of the ore lenses are known informally as the Lalor volcanic succession 96 

(Caté, 2016). This succession comprises the Footwall volcaniclastic unit, the Moore 97 



volcanics (composed of the Moore basalt and the stratigraphically younger Upper Moore 98 

mafic unit), the Lalor rhyolite, and the ‘Lalor’ Powderhouse dacite (Figure 1). These units 99 

dip 30 to the east-northeast and face upward. Below the Lalor volcanic succession and 100 

to the West of it, the Western volcanic succession is composed of the ‘Western’ 101 

Powderhouse dacite, which is interpreted as a structurally-distinct sliver of the 102 

Powderhouse dacite present in the Lalor volcanic succession (Caté, 2016). The Balloch 103 

volcanic succession structurally overlies the Lalor volcanic succession. It is composed of 104 

steeply dipping WSW-facing and overturned volcanic units (Bailes et al., 2013). These 105 

units are the North Balloch rhyodacite, the Balloch basalt, the Ghost Lake rhyodacite, the 106 

Threehouse volcanics (North Balloch mafic intrusive, Threehouse diorite, Threehouse 107 

mafic unit and Upper Threehouse mafic unit), and the North Chisel dacite. Mafic, 108 

intermediate and felsic dykes are present within all units. The Moore and Threehouse 109 

volcanic assemblages are two groups of volcanic and intrusive units sharing similar 110 

geochemistry and magmatic origin (Caté, 2016) but present at distinct stratigraphic 111 

positions. 112 



 113 

Figure 1: Section 5200N of the Lalor deposit, after Bailes et al. (2013) and Caté (2016). The North Balloch 114 

mafic intrusive does not appear in this section, but it is present within the North Balloch rhyodacite elsewhere 115 



in the study area. The location map of the section (view from above) is presented with the simplified traces of 116 

ore lenses. 117 

Hydrothermal alteration overprints the volcanic rocks in the deposit vicinity (Figure 1) and 118 

these altered volcanic rocks were subsequently affected by regional deformation and 119 

metamorphism, which makes it very difficult to reliably discriminate units and alteration 120 

types solely based on visual inspection. In these situations, lithogeochemical analyses 121 

provide additional, and often critical, insights on the nature of the protolith of altered rocks 122 

(e.g., Barrett and MacLean, 1994). A series of diagrams from the literature (Winchester 123 

and Floyd, 1977; Pearce, 1996; Ross and Bédard, 2009) have been used in Caté et al., 124 

2014a (Figure 2) to determine the geochemical signature of volcanic units in the Lalor 125 

area. The Zr/TiO2 versus SiO2 diagram (Figure 2A) gives insight on the magmatic 126 

differentiation and the alkalinity of rocks. However, SiO2 concentrations are affected by 127 

alteration, causing a noticeable spread in the data. The Nb/Y versus Zr/Ti diagram (Figure 128 

2B) gives similar information and is not significantly affected by alteration at Lalor, hence 129 

providing better clustering for discriminating volcanic rocks. The log Zr/Y versus log Th/Yb 130 

diagram (Figure 2C) classifies the magmatic affinity of volcanic units. The combined use 131 

of these diagrams allows naming and discriminating each volcanic unit despite some 132 

partial overlap. Despite being relatively widely used, these classification diagrams still use 133 

only a few major oxides and trace elements, which leads to partly subjective class 134 

definitions and potentially limits classification performance. 135 



 136 

Figure 2: Discriminant geochemical diagrams for the volcanic and intrusive units and groups of units of the 137 

Lalor area with samples from the training dataset (data from the Geological Survey of Canada; Caté et al., 138 

2017). A: Winchester and Floyd (1977) classification diagram; B: Pearce (1996) classification diagram 139 

modified from Winchester and Floyd (1977); C: Magmatic affinity diagram from Ross and Bédard (2009). Note 140 

that some lithostratigraphic units defined in the Lalor VMS camp plot in single fields whereas others straddle 141 

field boundaries in the diagrams.  142 

The Lalor volcanic succession is affected by extensive syn- and post-VMS alteration that 143 

has partly obliterated the primary textures, mineralogy and geochemistry of the volcanic 144 

rocks (Figure 1; Caté et al., 2015). Alteration styles have been grouped by their chemical 145 

affinity and intensity (Table 1; Caté et al., 2015). The intense K, K-Mg-Fe, Mg-Fe and Mg-146 



Ca alterations are present in the Lalor volcanic succession as haloes around the ore 147 

lenses and in the footwall. Zones of moderate-intensity alteration with variable chemical 148 

signatures are also present in the footwall of the deposit (moderate footwall alteration) and 149 

in the Western volcanic succession (distal alteration; Caté, 2016). They are grouped here 150 

as ‘moderate alteration’ for simplicity. Post-VMS Ca metasomatism is present in all 151 

volcanic successions and overprints syn-VMS alteration (Caté et al., 2015). The Snow 152 

Lake area has been affected by middle-amphibolite grade metamorphism (Froese and 153 

Gasparrini, 1975; Menard and Gordon, 1997) resulting in unusual metamorphic mineral 154 

assemblages in altered rocks comprising chlorite, amphiboles, muscovite, 155 

aluminosilicates, quartz, staurolite, garnet, cordierite, carbonates, talc and diopside 156 

(Zaleski et al., 1991; Galley et al., 1993; Caté et al., 2015). The geochemical signature of 157 

alteration in VMS deposits can be represented in a box-plot diagram modified from Large 158 

et al. (2001) (Figure 3). Least altered rocks mostly plot in the fields of unaltered basalt, 159 

andesite, dacite, and rhyolite. Moderately altered rocks plot in the least altered fields or at 160 

higher Alteration Index (AI) values. Most intensely altered rocks do not display AI and 161 

chlorite-carbonate-pyrite index (CCPI) values matching that of least altered rocks, and 162 

have extremely high AI (>80) and/or CCPI (>95) values. The high AI and CCPI values for 163 

altered rocks are in agreement with the mineralogical assemblages (Caté et al., 2015) and 164 

δ18O variations at deposit scale (Mercier-Langevin et al., 2014). Significant overlaps exist 165 

in the distribution of alteration types within the diagram, especially between least altered 166 

and moderately altered rocks. 167 



 168 

Figure 3: Box-plot diagram (modified from Large et al., 2001) showing the geochemical signature of samples 169 

from the training dataset affected by the different alteration types. The main alteration-related minerals present 170 

at Lalor are indicated. Fields representing the general distribution of least altered volcanic rocks (basalt, 171 

andesite, dacite and rhyolite) are from Gifkins et al. (2005). AI = 100(K2O+MgO) / (K2O+MgO+Na2O+CaO); 172 

CCPI = 100(MgO+FeO) / (MgO+FeO+Na2O+K2O). 173 

The Lalor deposit and its host rocks have been affected by polyphase deformation during 174 

the Trans-Hudson Orogen (Lucas et al., 1996; Kraus and Williams, 1999; Caté et al., 175 

2014b) dominated by the D2 event, which is characterized by a SSW verging fold and 176 

thrust tectonics with associated S2 foliation and L2 stretching lineation, the first being axial 177 

planar to F2 folds.  178 



Table 1: Volcanic and intrusive units and alteration types present at Lalor (compilation from Caté, 2016). 179 

Volcanic and intrusive units 

Lalor and Western volcanic successions: 

  Footwall volcaniclastic unit, Moore volcanics, Lalor rhyolite, 
Powderhouse dacite 

Balloch volcanic succession: 

  North Balloch rhyodacite, Balloch basalt, Ghost Lake 
rhyodacite, Threehouse volcanics,  North Chisel dacite 

Alteration types 

Unaltered: Least altered 

Syn-VMS hydrothermal alteration: 

  Moderate alteration, K, K-Mg-Fe, Mg-Fe, Mg-Ca 

Post-VMS metasomatism: Ca 

 180 

3. Materials and methods 181 

3.1. Lithogeochemical database 182 

The geochemical data used for the classification of lithostratigraphic and alteration units 183 

consist of major oxide and trace element analyses of 7335 drillcore samples acquired by 184 

Hudbay and the Geological Survey of Canada (Caté et al., 2017). A total of 54 elements 185 

were analyzed on most of the samples. The geochemical dataset contains a very small 186 

proportion (<0.3%) of analyses under the detection limit, which have been arbitrarily set 187 

to half the detection limit to avoid ‘zero’ values in the database. A total of 44 samples with 188 

missing data were discarded. 189 

Samples collected by the Geological Survey of Canada were individually described in 190 

detail and well constrained in terms of stratigraphic position, lithology, volcanic unit and 191 

alteration type (Caté, 2016). The samples consist of 20 cm-long full-core or half-core 192 

sections. They were analyzed by Activation Laboratories Inc., Ancaster, Ontario using a 193 

combination of methods that provide precise and accurate results for each element (see 194 

Caté, 2016 p. 27 for details on analytical procedure). Precision, accuracy and blanks were 195 



monitored by the authors. These analyses provide a training dataset for the classification. 196 

Two distinct training sets have been defined for the two series of classes (lithostratigraphic 197 

units and alteration types). For each training set, four series of predictor variables derived 198 

from elemental analyses were selected. 199 

 Samples collected by Hudbay were analyzed by Activation Laboratories Inc., Ancaster, 200 

Ontario. Sample length varies but each sample had to be uniform in texture and 201 

composition. Major elements were determined using metaborate-tetraborate fusion 202 

followed by inductively coupled plasma atomic emission spectrometry. Minor and trace 203 

elements were determined by a combination of metaborate-tetraborate fusion, four-acids 204 

digestion and two-acids digestion followed by inductively coupled plasma atomic emission 205 

spectrometry mass spectrometry or inductively coupled plasma atomic emission 206 

spectrometry. Duplicates, standards and blanks were analyzed, but monitoring was not 207 

performed by the authors. 208 

3.2. Labelling training sets 209 

A total of 922 samples from drillholes investigated by the Geological Survey of Canada 210 

were considered for the training of predictive models (Caté, 2016). These samples are 211 

well constrained and were acquired from carefully logged drillholes making them ideal 212 

candidates for training models. Analyses of veins and other heterogeneities potentially 213 

affecting results were removed from the database.  The training set of lithostratigraphic 214 

units contains 837 samples from drillholes investigated by the Geological Survey of 215 

Canada. A total of 85 samples with an uncertain lithostratigraphic assignation were not 216 

taken into account. A unit (or group of units) name as presented in the legend of Figure 1 217 

is attributed to each sample. Classes were attributed using a combination of: 1) 218 

geochemical signatures (i.e., Figure 2 and several other diagrams shown by Caté, 2016, 219 

and listed in Table 2); 2) volcanic textures and mineralogy preserved from the alteration 220 



and indicative of the physical and compositional nature of the units when present (Table 221 

3); and 3) the spatial distribution of volcanic units as presented in Figure 1 (see Caté, 222 

2016, chapters 3 and 4 for more details). 223 

Table 2: List of diagrams used to determine the geochemical signature of volcanic units and groups of volcanic 224 
units at Lalor. 225 

Name Elements Reference 

La/Yb vs. Zr/Ti La, Ti, Yb, Zr  

Th/Yb vs. Zr/Ti Th, Ti, Yb, Zr  

TAS K2O, Na2O, SiO2 Le Maître, 1989 

Zr/Ti vs. Nb/Y Nb, Ti, Y, Zr Pearce, 1996 

Th-Co Discrimination 

Diagram 

Co, Th Hastie et al., 2007 

Th/Yb vs. Zr/Y Th, Y, Yb, Zr Ross and Bédard, 2009 

AFM FeO, K2O, MgO, Na2O Kuno, 1968 and Irvine and 

Baragar, 1971 

Spider diagram Ce, Dy, Er, Eu, Gd, Hf, La, Lu, Nb, 

Nd, Pr, Sm, Ta, Tb, Th, Ti, Y, Yb, Zr 

 

 226 

Table 3: Typical mineralogical composition, volcanic textures and lithofacies for each volcanic unit and group 227 

of volcanic units at Lalor, for the least altered rocks. These features can be partially or totally obliterated in 228 

rocks affected by hydrothermal alteration. 229 

Unit Composition Textures and lithofacies 

Footwall 
volcaniclastic unit 

Intermediate Volcaniclastic 

Moore volcanics 
Mafic to 
intermediate 

Coherent with feldspar phenocrysts or 
volcaniclastic 

Lalor rhyolite Felsic Coherent to breccia 

Powderhouse dacite Felsic Coherent to volcaniclastic - feldspar phenocrysts 

North Balloch 
rhyodacite 

Felsic to 
intermediate 

Coherent to volcaniclastic 

Balloch basalt Mafic Volcaniclastic to coherent 

Ghost Lake 
rhyodacite 

Felsic Volcaniclastic to coherent 

Threehouse 
volcanics 

Mafic 
Volcaniclastic, intrusive or coherent - feldspar 
(rarely amphibole) phenocrysts 



North Chisel dacite Intermediate Volcaniclastic 

 230 

Alteration type is labelled on 680 training samples out of the 922. A total of 242 samples 231 

with unclear or undefined alteration type were not taken into account. The alteration type 232 

was attributed based solely on the mineralogical composition (based on a visual 233 

inspection) of samples using key minerals indicator of the geochemical signature of the 234 

alteration as discriminants (Table 4), as detailed in Caté et al. (2015) and Caté (2016). A 235 

subsequent verification of the validity of these types based on geochemical diagrams (see 236 

below) was completed. 237 

Table 4: Summary of the discriminative mineralogy of alteration types 238 

Alteration type Discriminant mineralogy 

Least altered 
Absence or trace amounts of metamorphosed alteration-
associated minerals (e.g., muscovite, Mg-Fe amphiboles, 
chlorite, cordierite, staurolite) 

Moderately 
altered 

Presence of metamorphosed alteration-associated 
minerals, >5% feldspar, preserved volcanic textures 

K >5% muscovite, <5% feldspar 

K-Mg-Fe 
>5% biotite, <5% muscovite, Mg-Fe amphiboles, 
cordierite, chlorite and/or Ca amphiboles, <5% feldspar 

Mg-Fe 
>5% chlorite, Mg-Fe amphibole or cordierite , <5% 
feldspar 

Mg-Ca >20% chlorite with >5% carbonate and/or Ca-amphiboles 

Ca 
Ca-amphibole and/or epidote assemblages overprinting 
other mineral assemblages 

 239 

3.3. Classifier variables 240 

The success rate of multivariate classification is strongly influenced by the input data and 241 

how it has been preprocessed (e.g., Domingos, 2012). For each classification exercise, a 242 

total of four distinct sets of predictor variables were built to test their effect on classification 243 

success. 244 

Magmatic rocks can be discriminated using a restricted set of elements that are dependent 245 

on the formation and evolution of magmas and less susceptible to hydrothermal alteration 246 



and metasomatism (Winchester and Floyd, 1977; Pearce et al., 1984; Pearce, 1996). 247 

These are known as immobile elements (Winchester and Floyd, 1977) and in a VMS 248 

setting, they typically include Al, Zr, Ti, Nb, Y, Hf, Ta, Th and heavy Rare Earth Elements 249 

(Gifkins et al., 2005). Ratios of immobile elements remain constant regardless of the 250 

hydrothermal alteration intensity. For the classification of volcanic units, a total of four sets 251 

of variables were created (Table 5). The first set corresponds to the element ratios (plus 252 

SiO2) used in binary classification diagrams used to determine the geochemical signature 253 

of volcanic rocks at Lalor (Figure 2). The second set (restricted set of elements) 254 

corresponds to the concentrations in elements used to derive the previous ratios in 255 

addition to the concentrations in elements utilized in extended spider diagrams in Caté et 256 

al. (2014a) for volcanic rocks classification. The third set of variables (extended set of 257 

elements) corresponds to an extended selection of 26 elements that were shown to have 258 

an important classification power in altered volcanic rocks (Pearce, 1996). Most of the 259 

elements and oxides in these three sets are immobile in most VMS settings, except SiO2 260 

and sometimes the light REE (e.g., MacLean and Kranidiotis, 1987). 261 

Because geochemical analyses are compositional data, they are affected by the closure 262 

problem, and element concentrations do not vary independently (Aitchison, 1982; 263 

Pawlowsky-Glahn and Egozcue, 2006). To test the effect of data closure on classification, 264 

the extended set of elements was converted in centered-log-ratios (CLR; Aitchison, 1982) 265 

in the fourth set of variables. This transformation opens the data and thus removes 266 

spurious correlations between elements related to the closure effect.   267 



Table 5: Sets of variables used for multivariate classification. Alteration indexes are from Ishikawa et al., 1976 268 

(AI), Large et al., 2001 (CCPI), Kishida and Kerrich, 1987 (Muscovite Saturation Index (MSI) and Carbonate 269 

Saturation Index (CSI)) and Gemmell, 2006 (Sodium-Sulphide Index (SSI)). 270 

Classification of volcanic units 

 1 Element ratios SiO2 (ppm), Zr/TiO2, Nb/Y, Th/Yb, Zr/Y 

 2 Elements 
(restricted) 

SiO2, TiO2, Nb, Zr, Y, Th, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Yb, Lu 
(in ppm) 

 3 Elements 
(extended) 

SiO2, Al2O3, TiO2, P2O5, Nb, Zr, Y, Th, Cr, Ni, Sc, V, La, Ce, Pr, Nd, Sm, 
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Co (in ppm) 

 4 CLR-
transformed 
elements 

Log of the elements (extended set) divided by their geometric mean 

Classification of alteration types 

 1 Alteration 
indices 

AI [100*(K2O+MgO)/(K2O+MgO+CaO+Na2O)],  
CCPI [100*(FeO+MgO)/ (FeO+MgO+Na2O+K2O)],  
MSI [(3*2*K2O/94.196)/(2*Al2O3/101.961276)],  
SSI [100*(S/32.066)/(S/32.066+2*Na2O/94.196)],  
CSI [(CO2/44.0095)/(CaO/56.0774+MgO/40.3044+FeO/71.8444)] 

 2 Elements 
(restricted) 

SiO2, Al2O3, MgO, Fe2O3, CaO, Na2O, K2O,  CO2, S (in ppm) 

 3 Elements 
(extended) 

SiO2, Al2O3, MgO, Fe2O3, CaO, Na2O, K2O, MnO, CO2, S, Ba, Sr, Rb, 
Ag, As, Bi, Cd, Cu, Pb, Sb, Zn, Ni (in ppm) 

 4 CLR-
transformed 
elements 

Log of the elements (extended set) divided by their geometric mean 

 271 

Geochemical discrimination of alteration types is mainly based on mobile major elements, 272 

volatiles and sulphur (e.g. MacLean and Kranidiotis, 1987; Barrett and MacLean, 1994; 273 

Piché and Jébrak, 2004). For the classification of alteration type, a total of four sets of 274 

variables were tested (Table 5). The first set corresponds to a series of alteration indices 275 

combining several elements used in Caté (2016) to illustrate the different alteration types 276 

at Lalor. The second set is composed of all the elements and oxides forming the alteration 277 

indices. The third set corresponds to an extended set of elements with major oxides, CO2, 278 

S, alkaline and alkaline-earth elements and trace metals. The trace elements added in the 279 

third set are typically mobile in VMS environments and/or related to mineralization (Gifkins 280 

et al., 2005). The last set of variables corresponds to the CLR-transformed third set of 281 

variables. 282 



3.4. Multivariate classification 283 

Multivariate classification is widely and successfully used in science (e.g., Haaland et al., 284 

1997), and has many applications in geosciences and mineral exploration (Schetselaar et 285 

al., 2000; Cracknell et al., 2014; Abbaszadeh et al., 2015; Carranza and Laborte, 2015; 286 

O'Brien et al., 2015) including lithological discrimination in VMS environments (e.g., Fresia 287 

et al., 2017). Multivariate classification resorts to using several variables (X1, X2,…, Xn-1, 288 

Xn) that describe a set of samples, and that will allow to discriminate between classes 289 

among these samples. In supervised classification, an algorithm will divide the n 290 

dimensional space into volumes attributed to each class using a labelled training set for 291 

which the class of each sample is already attributed. The rest of the dataset is then 292 

classified by subjecting all the remaining (or unlabelled) samples to the classification 293 

model based on the location of each sample in the n-dimensional space. A total of five 294 

classification algorithms have been tested using the Python Scikit-learn module 295 

(Pedregosa et al., 2011). 296 

K-nearest neighbour 297 

The supervised K-nearest neighbor (KNN) classification method is based on the selection 298 

of a number (K) of training samples closest in the Euclidean space from the sample that 299 

has to be classified. The classification criterion is the predominant class within the K 300 

samples (Peterson, 2009). The K variable is the main adjustable parameter of the method. 301 

A weighting function of the Euclidean distance between the classified sample and the 302 

training samples can be introduced. 303 

Gaussian naïve Bayesian 304 

The naïve Bayesian classifier (e.g. Androutsopoulos et al., 2000; Flach and Lachiche, 305 

2004; Zhang, 2004) is based on the Bayes theorem, which describes the probability of an 306 

event using one or several attributes with the equation  307 



𝑃(𝐴|𝐵) =
P(B|A) 𝑃(𝐴)

P(B)
 308 

where P(A) and P(B) are the probability of respectively A and B to occur. P(A|B) is the 309 

probability of A to occur if B is true. P(B|A) is the probability of B to occur if A is true. In 310 

this study, A is the discriminant class and B is the set of variables attributed to each 311 

sample. The Gaussian naïve Bayesian (GNB) classification is based on the ‘naïve’ 312 

assumption of independence between input variables, and of a normal distribution of these 313 

variables for each class, which is generally not true in geochemistry. 314 

Support vector machine 315 

Support Vector Machine (SVM) supervised classification is based on the construction of a 316 

set of multi-dimensional hyperplanes that separate classes (Hearst et al., 1998; Bennett 317 

and Campbell, 2000). Hyperplanes are optimized by achieving the largest distance from 318 

training points. Various functions can be used to trace the hyperplanes. In this study the 319 

Gaussian radial basis function (rbf) kernel is used. 320 

Random forest 321 

The random forest (RF) is an ensemble method algorithm (Breiman, 2001). It consists of 322 

the combination of a series of weak learners (here decision trees) to produce a more 323 

robust prediction. Each decision tree is built from a sample of the training set 324 

(bootstrapping) and a random portion of the discriminative variables are used at each split. 325 

Gradient tree boosting 326 

The gradient tree boosting (GTB) algorithm is an ensemble method using a boosting 327 

procedure (Friedman, 2001). Decision trees are built in sequence with an increasing 328 

weight attributed to misclassified samples. Several parameters can be used to monitor the 329 

size of each tree and the bias versus precision trade-off. Bias represent the accuracy or 330 



the average difference between the prediction and the true value, while precision 331 

represents the reproducibility of the prediction or the standard deviation of the estimator. 332 

Performance evaluation 333 

Due to the relatively small number of labelled samples that can be used as training data 334 

for classification models, no independent labelled testing dataset was drawn. Instead, the 335 

success rate of each model was estimated using cross-validation, which means dividing 336 

the dataset into a training and a testing set, building a classification model based on the 337 

training set and estimating its prediction score on the testing set. Parameter tuning was 338 

completed on a wide array of parameters for each algorithm using a stratified k-fold 339 

method. This cross-validation method requires to separate the dataset in k subsets (k-340 

folds), with the same distribution of each class in each subset (stratification). Each 341 

combination of parameters was tested k times, with training performed on k-1 subsets and 342 

testing of the prediction score on the kth subset. Classification f1 scores 343 

[2*(precision*recall)/(precision+recall) with precision being true positives divided by the 344 

sum of predicted trues and recall being true positives divided by the sum of all trues] were 345 

calculated with a stratified shuffle split method. The shuffle split method randomly divides 346 

the dataset into a training and a testing set n times, resulting in n f1 scores being calculated 347 

over the n calculated models and their corresponding test set. It allows the calculation of 348 

an average prediction score while limiting the reduction of the number of samples in the 349 

test dataset. The standard deviation of these prediction scores is an indicator of the model 350 

variability related to the training data. Confusion matrices (tables indicating the true and 351 

predicted repartition of samples for each class, with the associated precision and recall) 352 

were calculated with a stratified k-fold method. The risk of overseeing a significant 353 

overfitting of the models due to the lack of a completely independent test set is mitigated 354 

by the use of cross-validation. 355 



4. Results 356 

4.1. Performance of the algorithms 357 

Each algorithm was tested for the classification of volcanic units and alteration types. The 358 

third set of variables (Table 6) was used, since it was the most accurate (see below). For 359 

each algorithm, the classification of volcanic units is systematically more successful than 360 

that of alteration types by 9 to 16%. The success rate varies between the algorithms. The 361 

GNB yields low scores relative to the other algorithms. The KNN, SVM, RF and GTB 362 

algorithms yield success rates in a narrow range for both classification exercises, and the 363 

KNN algorithm systematically yields slightly lower scores than the SVM, RF and GTB 364 

algorithms. For the classification of volcanic units, SVM scores are significantly higher 365 

(difference higher than the standard deviation). For the classification of alteration types, 366 

SVM, RF and GTB yield similar success scores.  367 



Table 6: Classification success metrics for each algorithm with the average and standard deviation calculated 368 

with a shuffle split strategy (100 iterations with a random 90% of the training data used to build the model and 369 

10% to test it). The extended set of elements variables were used as training data. The success score used 370 

here is the average f1 score = (precision * recall) / (precision + recall) of all classes weighted by the number 371 

of instances of each class. The score varies from 0 to 1, with 1 corresponding to 100% classification success. 372 

Classes KNN GNB SVM RF GTB 

Volcanic units 0.83 ± 0.04 0.69 ± 0.04 0.91 ± 0.03 0.85 ± 0.04 0.88 ± 0.03 

Alteration types 0.69 ± 0.05 0.60 ± 0.05 0.75 ± 0.04 0.76 ± 0.05 0.76 ± 0.05 

 373 

4.2. Performance of the sets of variables 374 

All the sets of variables compiled for both labelled training sets were tested with the SVM 375 

algorithm. Both classification success score (f1 score, Table 7) and confusion matrices 376 

(Table 8 and Table 9) are used to compare performances. All sets of variables have a 377 

prediction f1 score in a close range for the classification of volcanic units (0.86-0.90) and 378 

the classification of alteration types (0.67-0.76). The range of score standard deviations 379 

varies between the classifications of volcanic units (0.03) and of alteration types (0.04-380 

0.05). The f1 score of the set of variables composed of ratios used on the classification of 381 

volcanic units is not significantly different (i.e., the difference is lower than the standard 382 

deviation) than that of the set of elements (restricted set of elements) from which the ratios 383 

were built. Alteration indexes used for the classification of alteration types yield 384 

significantly lower scores than the set of elements from which they were built. For both 385 

classification exercises, the restricted and extended sets of elements do not show 386 

differences in f1 score higher than the standard deviation. Similarly, the use of CLR-387 

transformed elements does not significantly increase the classification success rate. 388 

In the case of the classification of volcanic units, the extended set of untransformed 389 

elements and the CLR-transformed set of elements yield the best results (Table 7). F1 390 

scores are around 0.9, which is a relatively high success rate. The confusion matrix for 391 



the classification performed using the extended set of elements variables shows that 392 

misclassifications generally occur between intermediate to felsic units (Powderhouse 393 

dacite, Lalor rhyolite, Ghost Lake rhyodacite and North Balloch rhyodacite), between 394 

intermediate units (Powderhouse dacite, Footwall volcaniclastic unit and North Chisel 395 

dacite) and between mafic units (Moore mafics, Threehouse mafics and Balloch basalt). 396 

However, a significant number of misclassifications between the intermediate to felsic 397 

Powderhouse dacite and the Moore mafics occur. These two units have very distinct 398 

geochemical compositions (Figure 2) but are affected by intense alteration close to the 399 

deposit ore lenses (Figure 1; Caté, 2016). This suggests the classification of volcanic units 400 

is in part affected by alteration despite the use of chemical elements generally considered 401 

to be resistant to alteration. 402 

In the case of the classification of alteration types, the restricted set of elements yields the 403 

best performance, followed by the extended set of elements and the CLR-transformed 404 

elements (Table 7). The best scores are above 0.75, which is lower than for the 405 

classification of volcanic units. Most of the misclassifications occur between the least 406 

altered rocks and the moderately altered rocks (Table 9). A series of samples affected by 407 

intense syn-VMS hydrothermal alteration (K, K-Mg-Fe, Mg-Fe and Mg-Ca) are 408 

misclassified as moderate alteration. Misclassifications also occur between classes of 409 

intense hydrothermal alteration with close chemical affinity (between K and K-Mg-Fe, K-410 

Mg-Fe and Mg-Fe, and Mg-Fe and Mg-Ca). The Ca metasomatism can be falsely 411 

predicted from, or misclassified as, least to moderately altered rocks.  412 



Table 7: Classification success (f1 score) for each variable set using the SVM algorithm with the average and 413 

standard deviation calculated with a shuffle split strategy (100 iterations with a random 90% of the training 414 

data used to build the model and 10% to test it). The f1 score is weighted by the number of instances of each 415 

class. 416 

Classes 

1. Ratios / 
indexes 

2. Elements 
restricted 

3. Elements 
extended 

4. CLR 

Volcanic units 0.86 ± 0.03 0.88 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 

Alteration types 0.67 ± 0.05 0.76 ± 0.04 0.75 ± 0.05 0.75 ± 0.05 

 417 

 418 

Table 8: Confusion matrix of the classification of volcanic units using the extended set of elements and an 419 

SVM algorithm. Columns present instances of predicted classes and rows present instances of true classes. 420 

  PREDICTED  

 

Extended 
elements 
variables 

Foot. 
volcani. 

unit 

Moore 
mafics 

Lalor 
rhyolite 

Powd. 
dacite 

North 
Balloch 
rhyod. 

Balloch 
basalt 

Ghost 
Lake 

rhyod. 

Three. 
mafics 

North 
Chisel 
dacite 

Recall 

T
R

U
E

 

Footwall 
volcaniclastic 

formation 
51 2   1     1 3 2 0.85 

Moore mafics 1 309   12           0.96 

Lalor rhyolite     45 8           0.85 

Powderhouse 
dacite 

2 11 4 118           0.87 

North Balloch 
rhyodacite 

2   1 3 33   4     0.77 

Balloch basalt 1 2       48   6 1 0.83 

Ghost Lake 
rhyodacite 

1     1 3   45     0.9 

Threehouse 
mafics 

1 1       8   72 2 0.86 

North Chisel 
dacite 

6     1       2 23 0.72 

 Precision 0.78 0.95 0.9 0.82 0.92 0.86 0.9 0.87 0.82   

 421 

  422 



Table 9: Confusion matrix of the classification of alteration types using the restricted set of elements and an 423 

SVM algorithm. Columns present instances of predicted classes and rows present instances of true classes. 424 

  PREDICTED  

 

elements 
restricted 

Least alt. 
rocks 

Moderate 
alteration 

K K-Mg-Fe Mg-Fe Mg-Ca Ca Recall 

T
R

U
E

 

Least altered rocks 64 48 . 1 . . 5 
0.54 

Moderate alteration 54 90 . 7 6 . 1 
0.57 

K . 3 31 3 . . . 0.84 

K-Mg-Fe . 5 4 57 3 . . 0.83 

Mg-Fe . 7 . 3 185 4 . 0.93 

Mg-Ca . . . . 6 41 . 0.87 

Ca 8 7 . . 1 1 35 0.67 

 Precision 0.51 0.56 0.89 0.8 0.92 0.89 0.85   

 425 

4.3. Classification of unlabelled data 426 

The work done on labelled geochemical analyses shows that machine learning can 427 

reliably classify data, both for protoliths and alteration types. The algorithms can therefore 428 

presumably be applied to unlabelled samples, i.e. the Hudbay analyses for which the 429 

classification is not already known. All unlabelled samples were classified using SVM 430 

algorithms trained on the extended sets of elements for the classification of volcanic units 431 

and alteration types. Results have been plotted on a series of geochemical diagrams and 432 

in space, to estimate the classification success and interpret the geological significance of 433 

the results. 434 

Geochemical diagrams with prediction results on all samples (Figure 4A, B and C) show 435 

distinct distributions of volcanic units with significant overlaps. The Moore mafics and the 436 

Powderhouse dacite have a calc-alkaline affinity, the Threehouse mafics have a tholeiitic 437 

affinity, and the other units have a dominantly transitional affinity (Figure 4A). The 438 

Threehouse and Moore mafics and the Balloch basalt plot as mafic rocks in Figure 4B. 439 

Intermediate to felsic units mainly plot in the intermediate field, with only the Lalor rhyolite 440 



being dominantly distributed in the felsic field. The distribution of each unit in the Nb/Y-441 

Zr/Ti diagram (Figure 4B) is similar, but more widespread than that of training samples 442 

(Figure 2B). The Balloch basalt significantly overlaps with the Threehouse and the Moore 443 

mafics. Samples attributed to the North Chisel dacite and the Footwall volcaniclastic unit 444 

are distributed in the same area. Felsic units (Lalor rhyolite, Powderhouse dacite, North 445 

Balloch rhyodacite and Ghost Lake rhyodacite) plot in roughly distinct fields, and the North 446 

Balloch rhyodacite shows the same bimodal distribution observed in the training set of 447 

samples. 448 

The distribution of predicted volcanic units in space (Figure 5) closely resembles the 449 

geological cross section (Figure 1). In the lowermost part of the model, volcanic units 450 

(Footwall volcaniclastic unit, Moore mafics, Lalor rhyolite and Powderhouse dacite) are 451 

structurally and stratigraphically imbricated, similarly to the complex distribution shown in 452 

Figure 1. All volcanic units of the Balloch volcanic succession are well delimited with few 453 

“out of place” samples, except for the Ghost Lake rhyodacite. A significant number of 454 

samples located within the Ghost Lake rhyodacite are labelled as Powderhouse dacite or 455 

North Balloch rhyodacite, which suggests mislabelling. A number of samples labelled as 456 

Threehouse mafics within the Ghost Lake rhyodacite, the Balloch basalt and the North 457 

Chisel rhyodacite correspond to the intrusive units of the Threehouse mafics (North 458 

Balloch mafic intrusive and Threehouse diorite). 459 

 460 



 461 

Figure 4: Geochemical diagrams showing the results of the classification of unlabelled samples. A: Zr/Y-Th/Yb 462 

diagram from Ross and Bédard (2009) indicating the magmatic affinity of volcanic units; B: Nb/Y-Zr/Ti diagram 463 

from Pearce (1996), modified after Winchester and Floyd (1977) showing the differentiation and alkalinity of 464 

volcanic units; C: Box plot diagram from Large et al. (2001) showing the geochemical signature of the alteration 465 

types. Main minerals associated with alteration assemblages are indicated. Fields of unaltered volcanic rocks 466 

are from Gifkins et al. (2005). AI = 100*(MgO+K2O)/(MgO+K2O+Na2O+CaO) and CCPI = 467 

100*(Mg+FeO)/(MgO+FeO+Na2O+K2O) 468 

 469 



 470 

Figure 5: View on the spatial distribution of samples coloured by predicted volcanic unit generated with the 471 

Leapfrog Geo software. Approximate location of lithological contacts are presented as coloured lines. A total 472 

of 234 drillholes and the 7335 samples are plotted on this approximatively 1.5 km-thick section. 473 

The distribution of the predicted alteration types in a box-plot diagram (Figure 4C) 474 

illustrates the very distinct geochemical signature of alteration types with minor to 475 

moderate overlap. Predicted least-altered samples are mainly distributed within or close 476 

to the fields of least-altered rocks. Predicted moderately-altered samples have a 477 

distribution spanning from the least-altered samples to the intensely-altered samples with 478 

high CCPI and AI values, illustrating the transition between weak and intense alteration. 479 

Predicted Mg-Ca altered samples have high CCPI (>95) and high to moderate AI (>50) 480 

values illustrating the presence of chlorite, carbonates and Ca amphiboles. Predicted Mg-481 



Fe, K-Mg-Fe and K-altered samples have mostly high AI values (>80) with variable CCPI 482 

values reflecting the different mineralogical assemblages (Table 4). Mg-Fe altered 483 

samples are enriched in chlorite, cordierite and Mg-Fe amphiboles, K-Mg-Fe altered 484 

samples are enriched in biotite, and K-altered samples have significant concentrations of 485 

muscovite. Samples predicted as Ca-altered have high CCPI values (>80) with moderate 486 

to low AI values (<60). Ca-altered samples have a distribution distinct to that of samples 487 

affected by other alteration types. 488 

Most samples located in the hanging wall and to the SW of the deposit are predicted as 489 

least-altered, with a minority of moderately-altered samples (Figure 6). Intensely-altered 490 

samples (Mg-Ca, Mg-Fe, K-Mg-Fe and K alteration types) are located at depth, and to the 491 

NE, which corresponds to the location of the ore lenses and their footwall. Moderately-492 

altered samples form a diffuse halo around intense alteration zones. K alteration is more 493 

present at the top of the alteration zone, with Mg-Ca alteration located beneath it, and K-494 

Mg-Fe alteration forming the transition toward Mg-Fe alteration zone located to the NE. 495 

This geometry corresponds to that described in Caté et al. (2015). Predicted Ca-altered 496 

samples are located at the southwestern contact between altered and least-altered zones. 497 

 498 



 499 

Figure 6: View on the spatial distribution of samples coloured by predicted alteration type generated on the 500 

Leapfrog Geo software. Approximate location of alteration zones are presented as coloured lines. A total of 501 

234 drillholes and the 7335 samples are plotted on this approximatively 1.5 km-thick section. 502 

5. Discussion 503 

5.1. Classification results for each label 504 

The geochemical dataset was classified by two thematically-distinct training sets, one for 505 

volcanic units (the “protolith”) and one for the alteration assemblages. Classes defined for 506 

the training set of the volcanic units are based on geochemical signature, preserved 507 

volcanic textures and spatial distribution. Classes defined for the training set of the 508 

alteration units are based on visual differentiation of distinct mineralogical assemblages. 509 



The initial discrimination of volcanic units is partially based on the geochemical signature, 510 

and the classification pattern is well retrieved with a F1 score close to 0.9. This score is 511 

likely to be higher to what would have been obtained from a diagram(s)-based 512 

classification such as those presented in Figure 2. The use of a large spectrum of elements 513 

with a significant classification power instead of a restricted set of the best elements or 514 

ratios slightly increases the classification success. Contrary to a machine learning-based 515 

multivariate classification, the use of such a large number of elements would not be 516 

practical in “manual” classification, especially on a large number of samples, such as the 517 

7335 samples from this study. The confusion matrix for the classification of volcanic units 518 

(Table 8) and the related 3D view (Figure 5) demonstrate that accurate classification of 519 

spatially-coherent volcanic units was obtained, and that results are consistent with 520 

previously published geological cross-sections. 521 

The Powderhouse dacite, Lalor rhyolite and Moore mafics are sometimes misclassified or 522 

inverted in the confusion matrix. These three units have a distinct signature in geochemical 523 

diagrams (Figure 2), which should lead to only very few misclassifications. However, these 524 

units are hosting or are located immediately below massive sulphide ore lenses. They are 525 

thus affected by the most intense hydrothermal alteration. Such alteration produces 526 

important mass changes and potential modifications to the relative concentrations of 527 

“immobile” elements, leading to misclassifications. The introduction of a significant number 528 

of altered samples in the training set could help the model better predict volcanic units in 529 

altered lithologies. The use of variables unaffected by relative mass changes due to 530 

alteration (e.g., Pearce element ratios, Stanley and Madeisky, 1994; or other immobile 531 

element ratios Barrett and MacLean, 1994) can also limit the influence of alteration on the 532 

classification. However, these misclassifications represent a very low percentage of the 533 



total of samples from these units, and do not significantly affect the overall classification 534 

scores. A simple spatial analysis can help quickly identify such miss-classified samples. 535 

In Figure 5, a minority of samples are classified as part of the North Chisel rhyodacite or 536 

the Powderhouse dacite in the volume dominantly occupied by samples from the Ghost 537 

Lake rhyodacite. They can reasonably be considered as misclassified samples due to their 538 

location. The addition of location information as a predictor variable would potentially 539 

increase classification success rates in relatively simple geologic environments, but it 540 

could bias classification results and prevent previously unrecognized occurrences of 541 

volcanic units in more complex geologic environments. 542 

The initial discrimination of alteration types is based on visual estimation of the mineralogy. 543 

The mineralogical composition of rocks is directly related to their geochemical composition 544 

(e.g., Verma et al., 2003; Piché and Jébrak, 2004), which suggests a multivariate 545 

classification model based on lithogeochemistry should perform well on mineralogy-546 

derived alteration types. Classification success scores close to 0.75 validate this 547 

hypothesis, but these scores are significantly lower than that obtained for the classification 548 

of volcanic rocks. Misclassification occurs between compositionally adjacent classes, 549 

especially between least-altered and moderately-altered rocks. This can result from errors 550 

in the labelling of training data, related to the fact that mineral concentrations in rock 551 

samples are mostly estimated visually from macroscopic observations. Also, the 552 

geochemical composition of both least-altered and moderately-altered rocks is strongly 553 

dependant on the composition of the volcanic protolith. Both alteration types are 554 

heterogeneous and have gradational transitions, which leads to important overlaps of the 555 

geochemical compositions of both classes (e.g., Figure 3 and Figure 4C). Finally, the 556 

heterogeneous nature of the alteration, even locally, might induce further variability in the 557 



geochemical composition of samples of each class, even though samples were carefully 558 

chosen to be representative. 559 

5.2. Choice of the algorithm 560 

Overall, the SVM algorithm is the best performer for the classification of rock types from 561 

geochemical data, closely followed by ensemble methods (RF and GTB). The relative 562 

difference in success rate between algorithms changes from the classification of volcanic 563 

units to that of alteration types, which suggests that the best-performing algorithm might 564 

change for other classification exercises. The relative performance of algorithms might 565 

change with larger training datasets. 566 

5.3. Choice of variables 567 

Element ratios and alteration indices are used to facilitate the interpretation of 568 

geochemical data using diagrams. This transformation is necessary for “manual” 569 

classification as the human brain cannot process simultaneously more than two to three 570 

variables (with each variable representing one element or a combination of elements). 571 

However, by combining different elements and reducing the number of variables, the 572 

classification power of the data decreases. It is illustrated by the better performance of 573 

untransformed elements compared to element ratios and alteration indexes used in 574 

diagrams. As a general rule, the inclusion of more elements tends to increase the 575 

classification power of predictive models. Thus, the use of multivariate classification is 576 

likely to outperform diagram-based classification given a large enough training dataset. 577 

On the other hand, as shown by the similar success rates of predictive models using the 578 

restricted and extended variable sets, most of the classification power of chemical 579 

elements is concentrated within a restricted set of elements. The addition of more 580 

elements to the predictive variables does not significantly increase the classification 581 

success rate. Using previous work on geochemical classification of rock units or alteration 582 



styles (e.g., Irvine and Baragar, 1971; Pearce and Norry, 1979; Barrett and MacLean, 583 

1994; Verma and Agrawal, 2011), the best discriminating elements can be included in the 584 

set of predictive variables depending on the classification exercise. Further variable 585 

selection can be performed by calculating the contribution of each variable in predictive 586 

models (e.g., feature importance in RF models). 587 

Opening the compositional geochemical data using a CLR-transformation does not show 588 

a significant difference in classification success rates. Thus, untransformed elements 589 

seem the best suited for classification, as further interpretation of the results is more 590 

intuitive. 591 

For the classification of volcanic units, the relative concentration of least mobile elements 592 

is still affected by alteration, even though it is less significant than for mobile elements 593 

(e.g., Barrett and MacLean, 1994). This could have an effect on the classification success 594 

rates for the most intensely-altered rocks (e.g., Moore mafics and Powderhouse dacite at 595 

Lalor). Dividing all elements by an immobile element (e.g., TiO2 or Zr) would provide 596 

variables completely independent of the effect of alteration (Barrett and MacLean, 1994), 597 

and increase classification success rates in the most altered rocks. 598 

Alteration is based on enrichment/depletion of elements in rocks. Using Pearce element 599 

ratios instead of raw elements would provide variables more sensitive to relative 600 

concentration changes between elements resulting from the alteration. This could 601 

increase the classification power of predictive models. 602 

 603 

5.4. Success rate 604 

The f1 score for the classification of volcanic units is close to 0.9 (Table 7), and both 605 

precision and recall scores are above 0.7 for all volcanic units (Table 8). These scores 606 



can be considered as high enough for relying on the predictive model of the lithology for 607 

3D geological modelling. The low misclassification rate is unlikely to have a significant 608 

effect on further use of the classification results for 2D or 3D modelling (see Figure 5). 609 

The f1 score for the classification of alteration types is close to 0.75. This indicates scores 610 

high enough for classification results to be reliable for geological modelling, but around 611 

25% of the samples are likely to be misclassified. Thus, care should be taken in the 612 

interpretation of the results, and during 2D or 3D modelling of the alteration zones. 613 

Because of the misclassification of adjacent alteration types, and the progressive nature 614 

of hydrothermal alteration, boundaries between alteration zones should be seen as 615 

“progressive” or “soft” boundaries compare to the “sharp” or “discrete” boundaries 616 

between volcanic units. 617 

For both classification exercises, the significant standard deviations of the f1 scores 618 

obtained by cross-validation (Table 6 and Table 7) indicate that the small size of the 619 

training set introduces a significant bias in the classification models. These relatively high 620 

standard deviations are likely to decrease with an increasing training dataset size. Thus, 621 

a larger geochemical dataset would produce more stable prediction models and might 622 

increase success scores. 623 

6. Conclusions 624 

A series of supervised predictive models have been tested on rocks of the Lalor deposit 625 

by varying the target variable (i.e., volcanic units and alteration types), the predictive 626 

variables (Table 5) and the machine learning algorithms. The results have a series of 627 

implications for the use of multivariate supervised classification methods on 628 

lithogeochemical datasets. 629 



1. Using controlled training sets, classification models of lithologies and hydrothermal 630 

alteration using lithogeochemical data can be obtained with machine learning. High 631 

success rates can be attained, and the performances are probably higher than 632 

those achieved by manual classification based solely on lithogeochemistry. 633 

2. The classification success is strongly dependant on training data quality and 634 

quantity. The training data must be representative of the local geology and include 635 

enough occurrences of each class (i.e., volcanic units and alteration types). 636 

3. Several machine learning algorithms are suitable for supervised multivariate 637 

lithogeochemical classification. The best performing algorithm changes from a 638 

case to another, and a careful selection based on success scores should be 639 

completed. 640 

4. No complex feature engineering (transformation of the data) is necessary to obtain 641 

high predictive power from chemical element concentrations. A selection of 642 

elements adapted to the labels and based on knowledge of geochemical 643 

processes can be done to reduce the number of variables. 644 
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