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Historical and Projected Surface 
Temperature over India during the 
20th and 21st century
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M. J. Ouarda4,5 & Isabella Velicogna2

Surface Temperature (ST) over India has increased by ~0.055 K/decade during 1860–2005 and follows 
the global warming trend. Here, the natural and external forcings (e.g., natural and anthropogenic) 
responsible for ST variability are studied from Coupled Model Inter-comparison phase 5 (CMIP5) 
models during the 20th century and projections during the 21st century along with seasonal variability. 
Greenhouse Gases (GHG) and Land Use (LU) are the major factors that gave rise to warming during the 
20th century. Anthropogenic Aerosols (AA) have slowed down the warming rate. The CMIP5 projection 
over India shows a sharp increase in ST under Representative Concentration Pathways (RCP) 8.5 where 
it reaches a maximum of 5 K by the end of the 21st century. Under RCP2.6 emission scenarios, ST 
increases up to the year 2050 and decreases afterwards. The seasonal variability of ST during the 21st 
century shows significant increase during summer. Analysis of rare heat and cold events for 2080–2099 
relative to a base period of 1986–2006 under RCP8.5 scenarios reveals that both are likely to increase 
substantially. However, by controlling the regional AA and LU change in India, a reduction in further 
warming over India region might be achieved.

Global Surface Temperature (ST) has increased significantly during the last three decades. The recent report of the 
Intergovernmental Panel on Climate Change (IPCC)1 showed the anthropogenic footprint on the global warming 
of atmosphere and oceans, reduction in snow and ice, and increase in sea level. Climate change and variability 
comprise complex interactions between natural and external forcings at different temporal and spatial scales. 
However, quantifying the contribution of each component in the overall observed climate signal is very challeng-
ing. Climate models represent important tools to investigate the historical climate change due to anthropogenic 
forcings. With these models and controlled simulations, it is possible to decompose the contributions from indi-
vidual factors or assess their combined effects on regional or global climate. This allows exploring the possible 
causes and understanding the physical mechanisms behind climate change and variability1.

The World Climate Research Program (WCRP) has supported the development of the Coupled Model 
Intercomparison Project (CMIP), which provides simulation from state-of-the-art global climate models. 
CMIP model simulations have been used in the Assessment Reports of the Intergovernmental Panel on Climate 
Change (e.g., IPCC AR4 and AR5). The CMIP5 simulations include both historic (20th century) and future pro-
jections (21st century) under different Representative Concentration Pathways (RCPs)2. The RCPs represent 
different mitigation scenarios that influence the future emissions of greenhouse gasses, aerosols, ozone and 
land use change. The CMIP5 experiment simulates historical changes in temperature with forcings driven by 
Anthropogenic Aerosols (AA), Greenhouse Gases (GHGs), Land Use change (LU), Natural (NAT) forces (Solar 
Irradiance + Volcanic Activity), and Solar radiation (SL)3. Comparing these forcings with each other provides a 
better understanding of the contributors to climate change over a particular region or location4–8.

India is one of the fastest-growing economies in the world. The annual ST has increased since the 1950’s, 
particularly over India. Although, previous studies9–11 have shown a clear increasing trend in mean, minimum, 
and maximum temperatures over India during the last century, the contributing factors to this have not been 
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explored in detail. The observed climate change in India is due to the complex interactions between natural and 
anthropogenic forcings at different temporal and spatial scales. However, it is not well understood to what extent 
climate change in India during the past century, particularly the past several decades, can be attributed to human 
and natural forcings. In this study, we have utilized the CMIP5 simulation from the years 1860–2100 along with 
ground-based observational data sets (Climate Research Unit, CRU and India Meteorological Department, IMD 
gridded temperature) to quantify the historical (Natural + Anthropogenic), NAT, and external forcings (AA, 
GHGs, LU and SL) in the observed warming over India. We evaluate the 17 CMIP5 historical ST data with obser-
vational data sets along with future projections. We investigate the contribution of different natural and anthro-
pogenic forcings in the observed and expected future warming. We also evaluate trends in different simulations 
during different periods between the years 2006–2100. In addition, we discuss changes in ST extremes over India.

Results
Evaluation of CMIP5 ST with CRU and IMD. The ST simulation from the individual CMIP5 model is 
evaluated against the CRU and IMD data sets as shown in Figures S1 and S2, respectively. These simulations are 
compared for different periods: 1901–2005 (against CRU data) and 1969–2005 (against IMD data). From both 
figures, it is clear that the North Eastern part and Himalayan regions show a large bias for all models, possibly 
due to complexities in higher elevations also mentioned in other studies12. Further, the overall bias is even larger 
when CIMP5 simulations are compared with IMD relative to the CRU data set, mainly on the western coast 
of India. The models CSIRO-Mk3-6-0, GISS-E2-H, GISS-E2-R, HadGEM2-CC, HadGEM2-ES, MIRCO-ESM, 
MRI-CGCM3, and inmcm4 show larger biases compared to other models.

For further evaluation, we show the Taylor diagrams for representing the simulated mean STs relative to CRU 
(Fig. 1a) and IMD (Fig. 1b). The former covers 1901–2005, whereas the latter covers 1969–2005 over India. 
In these figures, the solid lines correspond to standard deviations, while the dotted lines represent the corre-
lations between simulations and observations. As shown, the correlation between 8 CMIP5 models (CCSM4, 
CSIRO-Mk3-6-0, GISS-E2-H, GISS-E2-R, HadGEM2-CC, HadGEM2-ES, GFDL-CM3, and MICRO-ESM) with 
CRU and IMD data sets is less than 0.5. To continue the analysis, we have discarded these models, and considered 
the ones that show high correlations (i.e., CNRM-CM5, CanESM2, GFDL-CM3, IPSL-CM5A-LR, MIRCOC5, 
MPI-ESM-LR, NorESM1-M, and bcc-csm1-1). The Taylor diagram presents the spread of the models in terms of 
their spatial correlation. The correlations between models and the two observational data sets are quite similar 
(Fig. 1a and b). The highest correlation score of about of 0.78 is observed for MIROC5 and IPSL-CM5-AL.

The climatological mean biases between CMIP5 simulations and the two observational data sets (i.e., IMD, 
CR) are shown in Fig. 2. Note that this bias and trends are estimated for the period of 1969–2005 when the two 
observational datasets overlap. The mean bias between IMD and CRU is less than ±1 K, as shown in Fig. 2a, 
except for the Northeastern part and the Himalayan regions. The climatological bias between IMD and the 
ensemble mean of the selected 8 CMIP5 models is shown in Fig. 2b. The bias over India varies around ±1 K, 
except over the Northeastern and Himalayan regions where the bias exceeds 4 K. Similar bias is observed between 
CRU and CMIP5 models. Higher bias in the Northeastern and Himalayan regions may be due to the fact that 
there are few observations available in these regions. In addition, we computed the spatial trends based on the 
historical climate model simulations and observations (IMD, CRU) - see Fig. 2(d–f). In Fig. 2(d–f), the solid 
black mark indicates the 95% confidence level, as determined at each individual grid point and was computed by 
using student’s t-test. Over India, there is a warming trend at the rate of ~0.2 K/decade from the year 1969–2005. 
Few parts (Northeastern and Himalayan regions) of India exhibit decreasing trends in IMD data (Fig. 2d). Recent 
studies also indicate relatively suppressed warming over India, with some cooling over the central regions, during 
the past century13. This feature is not shown in the CRU data and CMIP5 simulations. The central part of India 
shows the highest warming compared to other regions as shown by both CRU and CMIP5 simulations (~0.36 K/

Figure 1. Taylor diagram for mean surface temperature between CRU and CMIP5 individual model during the 
period 1901–2005 (a), IMD and CMIP5 individual model for the years 1969–2005 (b) over India. Solid lines 
correspond to standard deviation; dotted lines for correlations (Figure was created using the Interactive Data 
Language (IDL) version 8.2 software http://www.harrisgeospatial.com/docs/whats_new_in_82.html).
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decade). Overall, there are discrepancies in the warming trends. However, CRU observations and CMIP5 simula-
tions seem to be more consistent with one another compared to IMD data. We have also performed the seasonal 
trend analysis in ST over India as shown in Table 1.

Figure 2. Spatial temperature difference between (a) IMD and CRU, (b) IMD and ensemble mean of CMIP5 
models, and (c) CRU and ensemble mean CMIP5 models. Spatial surface temperature trends over India for 
(d) IMD, (e) CRU and Ensemble mean of CMIP5 models for the years 1969–2005 with 95% confidence level 
(hatched regions) (Figure was created using the Interactive Data Language (IDL) version 8.2 software http://
www.harrisgeospatial.com/docs/whats_new_in_82.html).

Name

Seasonal trends (K/decade)

Winter Spring Summer Fall All years

1860–2005

Historical 0.056 0.053 0.071 0.040 0.055

Historical_AA −0.029 −0.025 −0.019 −0.033 −0.027

Historical_GHG 0.121 0.092 0.115 0.099 0.106

Historical_LU 0.086 0.054 0.079 0.074 0.073

Historical_NAT 0.019 0.025 0.012 0.004 0.006

Historical_SL −0.014 −0.004 −0.015 0.005 −0.007

1901–2005

Historical 0.077 0.069 0.100 0.489 0.074

CRU 0.084 0.022 0.064 0.072 0.060

1969–2005

Historical 0.225 0.183 0.217 0.199 0.207

IMD 0.137 0.112 0.068 0.089 0.081

CRU 0.252 0.116 0.099 0.202 0.168

Table 1. Historical, CRU and IMD seasonal trends at 95% confidence level over the Indian region.
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Impact of different forcings on ST. The ensemble means of different historical forcings for the 19th and 
20th centuries (shown in Table S1) are plotted in Fig. 3. The forcing responses are computed and compared with 
the observed ST based on ground-based data. Figure 3 show temporal variation of mean ST over India from CRU, 
and historical simulation (GHG, NAT, AA, LU, and SL forcings) data. These temporal variations are calculated 
as the mean of all years over India (using data from Jan. 1860 to Dec. 2005) subtracted from the yearly ST values 
of each simulation. In each panel, the ensemble bounds (maximum and minimum values) are shown in shaded 
color. The results of the robust regression fitting, along with CRU ST are shown in Fig. 3 for each forcing. The 
increase in temperature due to GHGs forcing from 1900 onwards is clearly observed in Fig. 3b. The turning point 
(changing from negative to positive temperature anomaly) in the yearly time series of ST variation matches very 
well with the historical ensemble mean of the different forcings. The observed CRU ST is superimposed on the 
ensemble of historical model simulations (Fig. 3a). Both historical simulations and CRU ST show similar vari-
ability throughout the 20th century (Fig. 3a). Except for NAT, SL and AA, all other forcings show a remarkable 
increase in ST, some even higher than the observations (e.g., 3c and 3d). This shows that considering LU and GHG 
alone leads to an overestimation of the surface temperature warming in the historical period. However, increase 
in ST from the combination of all forcings closely follows the observed historical temperatures. The warming 
due to GHG shows a sharp increase after1960 over India, which is very much consistent with LU forcings. The 
combination of both direct and indirect AA forcings depicts the significant decreasing from 1960 onwards. The 
impacts of NAT and SL forcings on warming in ST are comparatively much smaller than those from GHG, and 
LU. These simulations with individual forcings are useful to compare the role of different forcings. Individually, 
they are not expected to reproduce historical observations. However, we have included the historical observations 
as a common reference for evaluation. Overall, the results show that AA, NAT and SL provided cooling effect 
and slow the warming rate, while the other forcings (GHG and LU) contributed significantly to the observed 
warming. The results show that AA has negative contribution to the warming when we considered both the direct 
and indirect forcings. When direct forcings alone is consider, there is a weak cooling trend. However, with both 
direct and indirect AA the cooling trend becomes highly significant. Under GHG forcings, only the warming 

Figure 3. Temporal variation of annual surface temperature anomalies during the years 1860–2005. ‘All’ 
indicates the historical forcing, which contains all types of forcings. Individual forcings include Anthropogenic 
Aerosol (AA), Greenhouse Gases (GHG), Land Use change (LU), Natural forcings (solar radiation + volcanic 
eruptions), and Solar radiation (SL). In each forcing the observed CRU temperature data is also plotted for the 
years 1901–2005. Robust regression analysis was performed at the 95% confidence level for trend analysis which 
is over plotted in each panel (Figure was created using the Interactive Data Language (IDL) version 8.2 software 
http://www.harrisgeospatial.com/docs/whats_new_in_82.html).

http://S1
http://www.harrisgeospatial.com/docs/whats_new_in_82.html


www.nature.com/scientificreports/

5Scientific RepoRts | 7: 2987  | DOI:10.1038/s41598-017-02130-3

trend of 0.16 K/decade is observed which is very strong compared to all other forcings. The seasonal variations 
of different forcings are depicted in Table 1. The largest seasonal variations in GHG and LU are observed during 
winter followed by summer, fall and spring. GHG variability is larger during winter and summer compared to 
the other seasons. The observed increasing trend is larger for GHG compared to LU. In case of AA forcings, the 
seasonal variation of decreasing trend is large during fall and minimum during summer. A small positive trend 
is noticed from NAT forcing in all the seasons. The SL radiation shows a significant negative trend, except during 
the fall season.

Figure 4 shows the box and whisker plot along with probability density functions of ST from different forcings 
relative to the base period of 1910–1940. The boxes indicate the interquartile model spread (i.e., 25th and 75th 
quartiles). The 75th quartile of the GHG forcing is highest among others and reaches 298.2 K. Figure 4 shows that 
the difference between GHG and NAT forcings is around ~3 K, which suggests the role of GHG alone relative to 
the natural variability. The highest ST values are found in GHGs followed by LU, AA, SL and NAT, respectively. 
The probability density functions of the historical temperature anomalies (relative to the period 1910–1940) show 
clear warming shifts of about ~0.15 K in GHGs, followed by LU. The AA forcings shows the negative shift in the 
probability distribution. The distributions of the remaining forcings fall between 0–0.2 K temperature changes 
in the historical period14. Showed the competing roles of GHG and AA with regard to Indian Ocean warming.

The spatial distribution of ST trends over India is estimated using 146 years of simulations (1860–2005) with 
different forcings (Fig. 5). Here, the ST trends are computed at each grid point using the robust regression tech-
nique12. In this process, we have tested the statistical significance at each grid cell and only considered trends 
that are significant at the 0.05 significance level (95% confidence) marked with ‘x’ symbol. Figure 5a shows the 
warming response over India at a 0.18 K/decade rate based on all forcings. The NAT forcings show a slight warm-
ing trend over central India and cooling trends in other parts, which, as expected, is not consistent with the 

Figure 4. (a) Box-and-whisker plots for temperature of different forcings along with observed CRU data 
sets from 1901–2005. The boxes indicate the interquartile model spread (range between the 25th and 75th 
quantiles), the black/grey solid marks within the boxes show the multimodel median and the whiskers indicate 
the total intermodel range. (b) Probability density distribution of surface temperature over the Indian region 
relative to the years 1910–1940 for different forcings (Figure was created using the Interactive Data Language 
(IDL) version 8.2 software http://www.harrisgeospatial.com/docs/whats_new_in_82.html).
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observations. The response of GHGs and LU forcing is very large and a warming trend is observed throughout 
the region. The warming (cooling) rate response to GHG (AA) forcing in North India is large compared to the 
South India (Fig. 5b and c).

Sensitivity experiments, such as correlation analysis with all forcings, are also performed in the present work. 
The correlation values are presented in Table S2. The observed ST from CRU shows good correlation with GHG 
forcings while historic data shows a very high correlation with GHG and LU. A negative correlation is detected 
between AA and SL with observed data. GHG emissions contributed to a warming of about 0.106 K/decade over 
the period 1860 to 2005 whereas the contributions LU to the warming trend are around 0.073 K/decade. The 
contribution from natural forcings is about 0.006 K/decade, very much less than external forcings. Solar radiation 
shows a negative trend, which means a cooling effect on ST. The contribution of natural and external forcings 
contributed to a mean surface warming of about 0.055 K/decade. It is extremely likely that more than half of the 
observed increase in average ST from 1950 onwards was caused by external forcings.

Future projections. For projecting climate change impacts on ST during the 21st century, we considered low 
and high RCPs (i.e., RCP2.6 and RCP8.5) emission scenarios. The evolution of ST changes relative to 1901–1960 
over India from IMD, CRU, historic simulations, and ensemble mean of 8 CMIP5 simulations are shown in Fig. 6. 
RCP2.6 and RCP8.5 show around 3.2 degrees temperature difference by the end of the century. During the last 
century, the change in surface temperature is well captured by all data sets. Temperature projections show consist-
ent increasing trends in RCP8.5 whereas the projected mean temperature from RCP2.6 increases up to 2050, and 
then slightly decreases, consistent with the radiative forcing under RCP2.6. The mean temperature over India is 
expected to increase over the 21st century under all the RCPs. Around the middle of 21st century, the rate of warm-
ing increases sharply depending on the scenario (e.g., RCP 8.5). On average, the projected change in temperature 
by the end of the 21st century relative to 1901–1960 is expected to be 1.8 K, 2 K, 3.5 K, and 5 K for RCP2.6, RCP4.5, 
RCP6.0 and RCP8.5 emission scenarios, respectively.

Figure 7 illustrates the spatial pattern of ST trends over India during the 21st century under RCP2.6 and 
RCP8.5 emission scenarios. The ST trends were estimated for different periods such as near future (2006–2035), 
mid-future (2046–2065), and far future (2080–2099) as well as for the entire time series of model simulations 
(2006–2099). Under RCP2.6, the temperature increases in near future and decreases in both mid- and far-future, 
but the entire time series shows an overall increase in ST of about ~0.15 K/decade. The far-future projections show 

Figure 5. Geographical distribution of surface temperature trends (K/decade) for historical data along with 
different forcings. (a) Historical surface temperature, (b) AA, (c) GHG, (d) LU, (e) NAT, (f) SL. Trends were 
estimated at the 95% confidence level (hatched regions) for each grid (Figure was created using the Interactive 
Data Language (IDL) version 8.2 software http://www.harrisgeospatial.com/docs/whats_new_in_82.html).

http://S2
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cooling all over India except for southern India (Fig. 7c). Continuous increases in ST are expected in near, mid-, 
and far future under the RCP8.5 scenario. Significantly, higher temperatures are expected in the late 21st century 
compared to near and middle future temperatures. The long-term (2006–2099) trends show warming of about 
0.2 K/decade over India. In addition, the warming increases rapidly toward the end of the 21st century, reaching 
a peak value of about 0.4 K/decade.

We have also analyzed the seasonal variations of ST trends over India from RCP2.6 and RCP8.5 as shown in 
Table S3 for different time periods. In the near future, under RCP2.6 the temperature increases sharply and is 
highest during the summer season, while ST decreases in mid- and far-future. Under RCP8.5, the ST increases 
during all periods. The far-future ST trend increases drastically (nearly 3 times the near and mid-future trends). 
The winter ST shows significant increase followed by spring over India. The entire time series indicates that ST 
can increase by ~4.5 K by the end of the 21st century.

Extreme Temperatures. Recent studies have shown the variability and mechanisms for occurrence of heat 
waves over India15, 16. Increasing trends in frequency, total duration and maximum duration of heat waves are 

Figure 6. Projected annual mean surface temperature from multimodel average CMIP5 data for the years 
1860–2100 relative to the base period 1901–1960. The period 2006–2099 represents the future projection 
scenarios from different RCPs. The shaded region represents the standard deviation of the ensemble mean of 
CMIP5 models. The observed data sets CRU (1901–2005) and IMD (1969–2005) are also plotted (Figure was 
created using the Interactive Data Language (IDL) version 8.2 software http://www.harrisgeospatial.com/docs/
whats_new_in_82.html).

Figure 7. Geographical distribution of surface temperature trends (K/decade) at the 95% confidence level 
(hatched regions) from RCP2.6 and RCP 8.5 for different periods over India for the 21st century. Different 
periods correspond to near (2016–2035), mid (2046–2065) and far (2080–2099) and for the whole period 
(2006–2099) (Figure was created using the Interactive Data Language (IDL) version 8.2 software http://www.
harrisgeospatial.com/docs/whats_new_in_82.html).

http://S3
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observed over the central and northwestern parts of India13. showed that the increase in heat wave activity is due 
to global warming over India. Here, the extremely high and low monthly temperatures (i.e. rare heat and rare cold 
events) from CMIP5 simulations are analyzed. The 20-year difference value of the annual maximum or minimum 
temperature is a measure of changes in rare temperature extremes17, 18. Figure S3 indicates the projected change 
in the 20-yr return value of the annual maximum and minimum daily ST over India by the end of the 21st century 
(2081–2100), relative to the recent past (1986–2005) from RCP2.6 and RCP8.5 emission scenarios. The annual 
maximum temperature extremes under RCP2.6 are projected to decrease by the end of the 21st century, except 
for the Eastern part of central India and the Himalayan region. Under RCP8.5, the Himalayan region is pro-
jected to face higher extreme temperatures by the end of the 21st century. Moderate increases are expected in the 
Northeastern, Central and Northwestern parts of India (Figure S3 top right panel). Figure S3 (bottom) shows the 
minimum temperature extremes (rare cold events) under RCP2.6 and RCP8.6 emission scenarios. The projected 
changes in rare cold events are higher under RCP8.5 than RCP 2.6. The northern part of India can expect larger 
changes than the other parts of the country.

Summary and Conclusions
The surface temperature (ST) changes over India are studied by using 109 simulations from global coupled cli-
mate models with different external forcings during the 20th and future projections under different RCP emission 
scenarios in the 21st century. Based on the CMIP5 multi-model simulations, the relative contribution of external 
forcings such as natural (solar radiation, volcanic emissions) and human activities (GHGs, AA, and LU) to the 
observed ST during the last 100 years were computed. In addition, we have also considered the individual and 
combined effects of direct and indirect AA forcings. The evaluation of CMIP5 historic data with observational 
data sets and future projections during the 21st century under different RCP scenarios is also presented. The 
long-term trends were estimated by using robust regression analysis. The main findings of the present study are 
summarized below:

•	 During the 20th century, the major contributors for the increase in ST are GHGs and LU over India whereas 
the AA has slowed the warming rate over India. The NAT and SL forcings shows slight negative warm-
ing trend. The warming rate from GHGs and Lu are estimated to be 0.14 ± 0.53 and 0.06 ± 0.2 K/century, 
respectively.

•	 The AA forcings show cooling effect when we considered both the direct and indirect forcings. The cooling 
effect is weekend when only direct effect of AA is considered.

•	 Human activities are highly responsible for the increase in warming over India. The warming is predomi-
nantly attributed to GHGs followed by LU. A sharp increase in warming is noticed from the 1960s onward 
from GHGs, whereas for LU the increase is observed from 198019, 20.

•	 The spatial variation of trends from different forcings over India indicates that the impact of GHGs is more 
severe over the Northern and Western parts of India.

•	 The trends estimated during the 20th century show highest warming in historic data followed by CRU and 
IMD data. The central part of India warmed severely compared to other regions. The observed warming is 
more pronounced during the summer followed by winter, monsoon season, and post-monsoon.

•	 The multi-model mean of CMIP5 captures the basic features of observed ST. The future protections under 
different RCP emission scenarios are very distinct. Rapid increase in warming is noticed under RCP8.5 where 
it reaches a maximum temperature of ~5 K by the end of the 21st century. In RCP2.6 emission scenarios the 
warming increases until 2050 and decreases afterwards.

•	 Future warming is larger during the winter season followed by summer, monsoon and post-monsoon seasons 
over India. By the end of the 21st century, both rare cold and heat events are expected to increase over India 
under RCP 8.5 emission scenario.

GHGs (water vapor, CO2, CH4, N2O) act to make the surface warmer by absorbing and emitting heat energy 
in all the directions. Addition of more GHGs to the atmosphere make more effective in preventing the heat from 
escaping into space. The GHG’s concentration increased significantly since the industrial revolution began. The 
atmospheric concentrations of CO2, CH4, N2O has increased by 40%, 150% and 20%, respectively. This increase 
in GHGs is due to emissions by human activities, which alter the Earth’s energy balance resulting in significant 
increase in ST thus global warming. The anthropogenic forcings plays a significant role in climate change hence 
global warming. Humans alter aerosols not only at the surface (e.g. industrial emissions) but also at the higher 
altitudes. Due to increase in populations, the natural vegetation decreases for thousands of years by deforestation. 
The largest changes occurred in 20th century. Hence changing land cover affects the climate by modifying the sur-
face reflectivity and the hydrological cycle. In addition to the direct radiative effects, LU can affect the sources and 
sinks of GHG’s and the amount of dust lifted into the atmosphere by the wind. For example, atmospheric CO2, 
CH4, and N2O concentrations are increased by deforestation, cultivation of rice and by use of nitrogen fertilizers 
in agriculture activity. Natural variability of aerosols, particularly due to volcanoes eruptions (e.g. Mt. Pinatubo 
in 1991) are recognized as a significant climate change indication, which alters the Earth’s radiation balance and 
thus tends to cause the increase in temperature. These and other lines of evidence point conclusively to the fact 
that the elevated CO2 concentration in our atmosphere is the result of human activities. It is well known that net 
global warming is very sensitive to the region of focus. Different local and regional topographical and meteor-
ological factors play an important role in determining global warming and climate change. India will observe 
changes in precipitation, cyclone occurrence, human health, agriculture, extreme events21. Although a sudden 
increase in ST was observed during the last century, the annual precipitation over India showed only moder-
ate increase. However, the extreme precipitation frequency and magnitude increased rapidly22, 23. Nevertheless, 
newly introduced forcing agents such as historical emissions of carbonaceous aerosols should be included in 
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future studies for a better understanding of global warming impacts. Uncertainties related to future warming 
in model analysis also need further investigation. CMIP5 coordinated climate models experiments had leads to 
better understanding of past, present, and future climate change and variability. However, the science gaps and 
outstanding questions have promoted to design new experiments known as CMIP6, which address the science 
aspects such as Earth system respond to forcings, sources and consequences of systematic biases and assessment 
of future climate changes given climate variability, predictability and uncertainties in scenarios. In recent years, 
the asymmetry of the forcing has been noticed and attracted more and more attention of scientists. For example, 
the asymmetric volcanic eruptions at different latitudes can affect the global climate differently24. In CMIP6, the 
latitude-dependent GHG concentration will also considered, that should have different effect on the Indian sur-
face temperature compared to CMIP5.

Data and Methodology
Historical and Future projections from CMIP5 models. In this article, we have analyzed 109 simula-
tions from 17 CMIP5 models, which include different emission scenarios, and historical simulations as shown in 
Table S1. Note that not all CMIP5 models simulate all the forcings. 17 CMIP5 models under different RCP 2.6, 
4.5, 6.5, 8.5 emission scenarios are used along with NAT forcings from 12 simulations, GHGs forcings from 15 
simulations, AA forcings from 5 simulations, LU forcings from 5 simulations and SL forcings from 4 simulations. 
The period 1860–2005, which is designated as the historic period, has been chosen for coordinated climate model 
experiments under CMIP52. In this simulation, varying atmospheric composition (e.g., CO2) resulting from solar 
forcing, anthropogenic, volcanic, emissions of short-lived species and natural and anthropogenic aerosols are 
forced to reproduce the historical climate. These experiments are part of the CMIP5 coordinated experiments, 
used in the fifth Assessment Report by IPCC1. In this study, we used multiple ensembles from 17 CMIP5 models 
with monthly mean ST outputs available for all four scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5)25, and his-
torical simulations (NAT, AA, GHGs, LU, and SL) with different forcing (see Table S1). The RCP4.5 corresponds 
to radiative forcing of 4.5 Wm−2 after the year 2100, which means that the CO2 emissions may exceed 650 ppm. 
Similarly, the RCP8.5 corresponds to 8.5 Wm−2 after the year 2100, which means that the equivalent CO2 exceeds 
1370 ppm.

Observational data sets. CRU data. The monthly gridded ST data from Climate Research Unit (CRU) 
version 3.22 is used in the present study for the years 1901–2005. This data is available with 0.5° × 0.5° latitude/
longitude grid over land regions only over the whole globe. This data is produced by CRU at the University of East 
Anglia making use of more than 4000 weather station data globally26.

IMD gridded data. The India Meteorological Department (IMD) developed gridded ST data at 1° × 1° resolu-
tion27. The observed data from 395 stations were selected for the development of gridded data. The observed data 
was subjected to quality checks such as rejecting values, which exceed known extreme levels, maximum temper-
ature less than minimum temperature, same temperature values for many consecutive days etc. The 395 station 
data were interpolated into grids with the modified version of Shepard angular distance weighting algorithm28. 
The data period spans between the years 1969–2005 and it is cross validated by estimating the root mean square 
error. The errors associated with the interpolation scheme were used in preparing gridded data over the plains, 
which was found to be 0.5 °C at the maximum.

Methodology. The ST data from different forcings and all the CMIP5 model data sets under various RCPs are 
brought to a common grid of 1° × 1° longitude and latitude by using cubic spline interpolation. For trend estima-
tion, the robust regression technique is used. This method is an important tool for analyzing the data affected by 
outliers and it is based on Iteratively Reweighted Least Squares Regression (IRLS)29. Robust regression is used to 
detect and provide results that are resistant to outliers30, 31. The t-test analysis is employed to calculate the statis-
tical significance of the temperature trends. In this process, we have estimated the confidence level at each trend 
grid point and only those spectral peaks with greater than 95% confidence level are considered.
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