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Abstract. Some regional procedures to estimate hydrolog-
ical quantiles at ungauged sites, such as the index-flood
method, require the delineation of homogeneous regions as
a basic step for their application. The homogeneity of these
delineated regions is usually tested providing a yes/no de-
cision. However, complementary measures that are able to
quantify the degree of heterogeneity of a region are needed
to compare regions, evaluate the impact of particular sites,
and rank the performance of different delineating methods.
Well-known existing heterogeneity measures are not well-
defined for ranking regions, as they entail drawbacks such
as assuming a given probability distribution, providing nega-
tive values and being affected by the region size. Therefore,
a framework for defining and assessing desirable properties
of a heterogeneity measure in the regional hydrological con-
text is needed. In the present study, such a framework is pro-
posed through a four-step procedure based on Monte Carlo
simulations. Several heterogeneity measures, some of which
commonly known and others which are derived from recent
approaches or adapted from other fields, are presented and
developed to be assessed. The assumption-free Gini index
applied on the at-site L-variation coefficient (L-CV) over a
region led to the best results. The measure of the percent-
age of sites for which the regional L-CV is outside the confi-
dence interval of the at-site L-CV is also found to be relevant,
as it leads to more stable results regardless of the regional
L-CV value. An illustrative application is also presented for
didactical purposes, through which the subjectivity of com-
monly used criteria to assess the performance of different de-
lineation methods is underlined.

1 Introduction

Regional hydrological frequency analysis (RHFA) is needed
to estimate extreme hydrological events when no hydrolog-
ical data are available at a target site or to improve at-site
estimates, especially for short data records (e.g. Burn and
Goel, 2000; Requena et al., 2016). This is usually done by
transferring information from hydrologically similar gauged
sites. Delineation of regions formed by hydrologically simi-
lar gauged sites is a basic step for the application of a number
of regional procedures such as the well-known index-flood
method (Dalrymple, 1960; Chebana and Ouarda, 2009).
Such a method employs information from sites within a given
“homogeneous” region to estimate the magnitude of extreme
events related to a given probability (or return period) at a
target site, which are called quantiles. Regional homogene-
ity is often defined as the condition that floods at all sites in
a given region have the same probability distribution except
for a scale factor (e.g. Cunnane, 1988). The present paper
focuses on the heterogeneity concept in hydrology derived
from this “regional homogeneity”, which is different from
the heterogeneity concept considered in other fields, such
as ecology, geology, and information sciences (e.g. Li and
Reynolds, 1995; Mays et al., 2002; Wu et al., 2010).

In order to delineate homogeneous regions, numerous
studies have proposed and compared similarity measures
entailing climatic (e.g. mean annual rainfall), hydrologic
(e.g. mean daily flow), physiographic (e.g. drainage area),
and combined descriptors (see Ali et al., 2012, and references
therein) to be used as input to statistical tools for group-
ing sites. The selection of these descriptors is carried out
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by stepwise regression, principal components, or canonical
correlation, among others (e.g. Brath et al., 2001; Ouarda
et al., 2001; Ilorme and Griffis, 2013). Traditional statisti-
cal tools, such as cluster analysis, or new approaches, such
as the affinity propagation algorithm, are considered to form
homogeneous regions based on the previously identified sim-
ilarity measures (e.g. Burn, 1989; Ouarda and Shu, 2009; Ali
et al., 2012; Wazneh et al., 2015). For further references on
regional flood frequency analysis, please see Ouarda (2013)
and Salinas et al. (2013), and references therein. Moreover,
many tests have been introduced and compared throughout
the literature to decide whether a given delineated region can
be considered as homogeneous (e.g. Dalrymple, 1960; Wilt-
shire, 1986; Scholz and Stephens, 1987; Chowdhury et al.,
1991; Fill and Stedinger, 1995; Viglione et al., 2007). The
homogeneity test proposed by Hosking and Wallis (1993) is
usually utilised. In this test the statistic H is related to the
variability of the at-site L-variation coefficient (L-CV) over
a region (e.g. Alila, 1999; Burn and Goel, 2000; Castellarin
et al., 2001; Shu and Burn, 2004; Smith et al., 2015; Ouarda,
2016).

In practice, apart from determining if a region can be con-
sidered as homogeneous by making a yes/no binary deci-
sion (e.g. Warner, 2008) generally based on a significance
test, the quantification of the degree of heterogeneity is also
necessary. Heterogeneity measures are required for such a
task. Two approaches can be considered in this regard: (i) the
use of heterogeneity measures for determining the effect of
the departure from the homogeneous region assumption on
quantile estimation; and (ii) the use of heterogeneity mea-
sures for ranking regions according to their degree of het-
erogeneity. Regarding the former, quantifying the degree of
heterogeneity provides a notion of the inaccuracy incurred
through the estimation of quantiles by a regional method, for
which homogeneous regions are assumed but a ‘non-perfect’
homogeneous region is used. This approach has already been
studied, being closely related to the homogeneity test notion
(e.g. Hosking and Wallis, 1997; Wright et al., 2014), which
is further explained below.

The second approach corresponds to the focus of the
present paper. Through this second approach, different re-
gional delineation methods can be properly compared to
identify the best one. This will be the method delineating
the “most homogeneous region”. Also, heterogeneity mea-
sures can be helpful in ranking potential homogeneous re-
gions formed by removing discordant sites. By analogy with
distribution selection (e.g. Laio et al., 2009), the concept of
heterogeneity measure considered here plays the role of a
“model selection criterion”, such as the Akaike information
criterion (Akaike, 1973), whereas the homogeneity test plays
the role of a “goodness-of-fit test”. The former ranks delin-
eated regions by providing unambiguous results to identify
the best one in terms of heterogeneity, whereas the latter in-
dicates if the given region can be considered as homogeneous
or not.

In relation to the use of heterogeneity measures as a proxy
for quantile error – approach (i), the test statistic H is indeed
considered by Hosking and Wallis (1993) as a heterogeneity
measure for which given thresholds are established. These
thresholds are obtained as a trade-off between quantile error
due to regional heterogeneity and gain obtained by consid-
ering the total regional information instead of that of a sub-
region or at-site data. Therefore, instead of providing a binary
decision based on a given significance level (α) (e.g. reject
the region as homogeneous when H > 1.64 for α= 5 %), as
a more general guideline the region is considered as “accept-
ably homogeneous” if H < 1, “possibly heterogeneous” if
1≤H < 2 or “definitely heterogeneous” if H ≥ 2. Recently,
Wright et al. (2015) compared the performance of five statis-
tics in this regard: the three L-moment-based statistics of
Hosking and Wallis (1993) and two non-parametric statistics,
the Anderson–Darling and the Durbin–Knott test statistic.

A number of studies have proposed and compared meth-
ods in which different combinations of similarity measures
and/or statistical tools are considered for delineating regions
(references below). These studies usually consider measures
based either on H or on errors from the quantile estimation
step. The reason is the non-availability of a well-justified het-
erogeneity measure for comparison purposes – approach (ii).
Shu and Burn (2004) utilised the percentage of (initially) ho-
mogeneous regions and the mean ofH over regions obtained
by each considered method for distinguishing the best one.
Farsadnia et al. (2014) identified the best grouping method
among those analysed as that leading to the lowest number
of “possibly homogeneous” and “heterogeneous” regions ac-
cording to H . Ilorme and Griffis (2013) used an H weighted
average regarding the data length of each region to compare
regions obtained by removing discordant sites based on dif-
ferent criteria.

However, H is not well-defined for ranking regions ac-
cording to their heterogeneity degree, as it possesses several
drawbacks. First, it is originally built as a significance test.
Thus, its value depends on specific assumptions that may not
be fulfilled in practice, such as assuming a regional kappa
distribution that, even though flexible, may not characterise
the data. Second, it may entail negative values for particu-
lar situations, which may distort results, making difficult the
suitable ranking of regions. Third, it is affected by the num-
ber of sites in the region, tending to obtain small heterogene-
ity values for small regions even if they are not homogeneous
(Hosking and Wallis, 1997, 66–67). This tends to complicate
comparison among regions with different sizes.

Instead of using measures based onH , other studies quan-
tified the performance of different delineating methods by
comparing quantile errors (e.g. Castellarin et al., 2001; Ouali
et al., 2016). However, comparing quantile errors implies
performing the last step of a regional analysis (i.e. quan-
tile estimation) when dealing with an initial step (i.e. re-
gion delineation), which involves additional calculations, un-
certainty due to the assumption of a given parent distribu-
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tion for the data, and a non-direct assessment of the delin-
eation method. A different approach was recently proposed
by Viglione (2010) and Das and Cunnane (2011) regarding
the use of the confidence intervals for L-CV to assess hetero-
geneity, for which details are given in Sect. 3.

Therefore, a general framework is needed to allow the defi-
nition and assessment of desirable properties of a heterogene-
ity measure in the regional hydrological context in order to
properly identify a suitable measure. Such a measure should
overcome the aforementioned drawbacks: it should be free
of assumptions, positive, and unaffected by region size. Fur-
thermore, the use of a heterogeneity measure should allow
direct comparison of the heterogeneity of regions delineated
by different methods. Indeed, it should allow ranking of the
heterogeneity degree of several regions to identify “the most
homogeneous region” or to assess the effect of some sites on
the “heterogeneity degree” of the region. In the present pa-
per, such a framework is proposed under an evaluation of the
heterogeneity measures based on Monte Carlo simulations.
Several measures extracted from literature in hydrology and
other fields are presented and/or adapted to be assessed as
well-justified heterogeneity measures. The present paper is
organised as follows. The procedure for the assessment of a
heterogeneity measure is presented in Sect. 2. The hetero-
geneity measures considered to be checked by the proposed
procedure are introduced in Sect. 3. Results of the assessment
are illustrated in Sect. 4. Discussion of results is presented in
Sect. 5. An illustrative application is shown in Sect. 6 and
conclusions are summarised in Sect. 7.

2 Assessment of a heterogeneity measure

A simulation-based procedure consisting of four steps is pro-
posed to study the behaviour of a given heterogeneity mea-
sure (generically denoted Z) regarding its desirable proper-
ties in the regional hydrological context. The steps of the pro-
cedure are as follows: (i) sensitivity analyses of varying fac-
tors involved in the definition of a region; (ii) success rate in
identifying the most heterogeneous region; (iii) evolution of
the variability for the Z average with respect to the degree
of regional heterogeneity; and (iv) effect of discordant sites.
The first step is applied to all the studied heterogeneity mea-
sures (presented in Sect. 3) and may be considered as pre-
liminary, while the remaining steps are applied to those not
entailing unacceptable results from the first step. Some ele-
ments of the procedure are inspired and adapted from stud-
ies where different aims were sought (e.g. Hosking and Wal-
lis, 1997; Viglione et al., 2007; Chebana and Ouarda, 2007;
Castellarin et al., 2008; Wright et al., 2015).

2.1 Synthetic regions

Before further describing the aforementioned steps and de-
sirable properties, elements of the framework needed for per-
forming the assessment procedure are presented. The proce-
dure is based on synthetic regions with flood data samples
generated through Monte Carlo simulations from a represen-
tative flood parent probability distribution commonly used
in frequency analysis, the generalised extreme value (GEV)
distribution. A region is defined by its number of gaug-
ing sites (N ), at-site data length (n), regional average L-
CV (τR), regional average L-skewness coefficient (τR

3 ), and
a unit regional sample mean. The heterogeneity of a given
region may be due to differences in any feature of the at-
site frequency distribution among sites. In particular the L-
CV, which is a dimensionless measure of the dispersion
of the distribution that is also related to the slope of the
associated flood frequency curve, has been considered as
representative of such differences (e.g. Stedinger and Lu,
1995; Viglione, 2010). In the present study, heterogeneous
regions are simulated using the heterogeneity rate γ , defined
as γ = (maxi(τ i)−mini(τ i))/τR (e.g. Hosking and Wallis,
1997; Das and Cunnane, 2012), where τ i is the L-CV at site i
with i= 1, . . . , N . Since in practice large values of the L-
skewness coefficient (τ3) are related to large values of the L-
CV τ , and based on studies in the literature (e.g. see Hosking
and Wallis, 1997, p. 68 and Table 4.1; Viglione et al., 2007,
Fig. 1), the same heterogeneity rate of τ is considered for τ3.
A region is defined as homogeneous for γ = 0 %, implying
that τ i and τ3i are the same for all the sites in the region
(i.e. τ i = τR and τ i3 = τ

R
3 ). The heterogeneity of a given re-

gion increases as γ increases from 0 to 100 %. This implies
that τ i and τ i3 vary linearly. We then have for the first site
τ i = τR

− τR/2 and for the last site τN = τR
+ τRγ /2. The

same can be written for τ i3. Note that this relation is com-
monly used in other studies (e.g. Hosking and Wallis, 1997;
Wright et al., 2015) as a plausible way of simulating varying
conditions over a region.

Finally, a given region consists of at-site data generated
from a GEV distribution with parameters obtained through
at-site L-moments. At-site data are standardised by their
sample mean to frame them in the regional context (e.g. Boc-
chiola et al., 2003; Requena et al., 2016). Note that hetero-
geneity measures directly based on L-moments lead to the
same results for standardised or non-standardised data. A re-
gion with N = 15, n= 30, τR

= 0.2, and τR
3 = 0.2 is consid-

ered as a reference for the simulation study. Hereafter, the
value of τ3 is (usually) omitted, as τ3 is considered to have
the same value as τ (e.g. Hosking and Wallis, 1997). The
number of simulations NS of a given region is taken to be
equal to 500, which is considered large enough to obtain ro-
bust results. These fixed values of the factors, as well as their
varying values used below, are selected according to the lit-
erature and with the aim of providing a general view of the
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behaviour of the measures without excessively complicating
the simulation study.

It is important to highlight that the use of simulated data
in the assessment of new techniques in regional frequency
analysis is a well-established approach, and it has been used
in a number of publications (e.g. Hosking and Wallis, 1997;
Seidou et al., 2006; Chebana and Ouarda, 2007).

2.2 Sensitivity analyses

The first step of the assessment of a heterogeneity measure Z
is the analysis of the effect of varying factors involved in the
definition of a region. This step is performed through sensi-
tivity analysis to identify if the behaviour of Z is acceptable
in relation to what is ideally expected from a heterogeneity
measure.

– Effect of the heterogeneity rate: The degree of hetero-
geneity of a region is the aimed value to be quantified
by Z. A surrogate of such a degree of regional hetero-
geneity is the heterogeneity rate γ , which is used to ini-
tially define the heterogeneity of the simulated region
to be evaluated by Z. Hence, Z should increase with γ .
This analysis is performed by obtaining Z for γ = 0,
10, . . . , 90, 100 % over NS= 500, keeping the remain-
ing values of the reference region (i.e. N = 15; n= 30;
τR
= 0.2).

– Effect of the number of sites: The size of a region, rep-
resented by the number of sites N , is a relevant factor to
the degree of its heterogeneity. A large N is required to
properly estimate quantiles associated with high return
periods, as more data are available; yet homogeneous
regions are more difficult to obtain for large N due to
more potential dissimilarities between sites (Ouarda et
al., 2001; Chebana and Ouarda, 2007). Nevertheless, by
definition Z should not be affected by N , as it should
provide the same results for regions with a different
size but the same degree of heterogeneity. Therefore,
the smaller the influence of N on Z is, the better Z is.
This analysis is performed by obtaining Z for N = 5,
10, 15, 20, 25, 30, 40, 50, 60, 70 overNS= 500, keeping
the remaining values of the reference region (i.e. n= 30;
τR
= 0.2). Two different values of the heterogeneity rate

(γ = 0 and 50 %) are also considered to identify if the
behaviour of Z changes depending on the degree of het-
erogeneity.

– Effect of the regional average L-moment ratios:
Z should ideally provide similar results for regions en-
tailing the same degree of heterogeneity, regardless of
the values of τR and τR

3 , in order to provide an appro-
priate comparison and ranking of the regions. For in-
stance, two regions with sites generated from a different
τR value but considering the same value γ = 0 % should
entail similar Z values, as both are “perfectly” homo-
geneous. However, such an output may not be easy to

obtain due to the fact that τR is associated with a mea-
sure of dispersion. Thus, the smaller the influence of τR

and τR
3 on Z the better Z will be. This analysis is per-

formed by comparing the results of τR
= 0.2, which is

related to the reference region, with those obtained by
τR
= 0.4. It is done by varying the heterogeneity rate γ

and by varying the number of sites N . Recall that τR
3 is

considered to have the same value as τR.

– Effect of the record length: The amount of available
at-site information, represented by the data length n,
is associated with the accuracy of the value of Z. The
longer n is, the better the information provided by each
site to determine the regional degree of heterogene-
ity will be. Therefore, the analysis of the effect of n
should be focused on identifying the minimum n re-
quired to obtain reliable values of Z. This analysis is
performed by obtaining Z for n= 10, 20, . . . , 90, 100
over NS= 500, keeping the remaining values of the ref-
erence region (i.e.N = 15; τR

= 0.2). Two different val-
ues of the heterogeneity rate (γ = 0 and 50 %) are also
considered to identify if the behaviour of Z changes de-
pending on the degree of heterogeneity.

2.3 Success rate

The second step in the assessment of Z is the evaluation
of its success rate (SR) for identifying the most heteroge-
neous region. Note that the SR notion is commonly used in a
number of fields such as biology (e.g. Canaves et al., 2004).
Without loss of generality, such an evaluation is performed
on two regions A and B. For γA<γB, SR is defined as the
ratio of the number of samples simulated from a given re-
gion A and a given region B, for which Z correctly identi-
fies γB as the most heterogeneous region, to the total number
of simulated samples. Thus, the larger SR is, the betterZ will
be. The aim is to verify the ability of Z to compare regions
with different degrees of heterogeneity, when entailing dif-
ferent characteristics or not (i.e., τA

6= τB or τA
= τB, and

NA 6=NB or NA=NB). A large set of 48 cases is considered
to obtain a wide view of the behaviour of Z, as combina-
tion of the following factor values: γA= 0, 30, 50, 70 % with
γB= γA+ 10 %, γA+ 20 %, γA+ 30 %;NA=NB,NA 6=NB
(for N = 10, 25); τA

= τB, τA
6= τB (for τR

= 0.1, 0.2, 0.3,
0.4) over NS= 500, keeping the remaining values of the ref-
erence region (i.e. n= 30).

2.4 Evolution of the variability for the Z average with
respect to the degree of regional heterogeneity

The third step of the assessment of Z is the analysis of the
evolution of the variability of the average value of Z as a
function of the degree of regional heterogeneity. The aim is
to determine the capability of Z to accurately rank regions
according to their degree of heterogeneity when it is sum-
marised as an average of the Z values obtained for several
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(sub)regions that are obtained by a given delineation method.
This provides an assessment of its capability to compare re-
sults from several delineation methods. This is a twofold
analysis. Firstly, a monotonic relation should exist between
the average Z and the degree of heterogeneity, as explained
in Sect. 2.2. Secondly, the variability of the average Z along
such a monotonic relation should be small enough to not af-
fect a proper ranking of the regions.

We consider two regions A and B, without loss of
generality. The idea is that (sub)regions delineated by a
given method should theoretically entail different τR values
(τA
6= τB), having similar or different values of other char-

acteristics (i.e. NA 6=NB or NA=NB). In order to be able to
evaluate the behaviour of the Z average, the same degree of
heterogeneity is considered for both regions (γA= γB= γ ),
as under this assumptionZ values should be similar. The pro-
cedure is the following:NS= 500 simulated regions A and B
with γA= γB= γ and given values NA, τA, and NB, τB are
generated, obtaining for each simulation the average of Z
over the two regions. These averages are aggregated into their
mean value over NS as representative value. The representa-
tive value is obtained for 22 cases as a result of combining
the following: NA= 10, 25; NB= 10, 25; and τR

= 0.1, 0.2,
0.3, 0.4 with τA

6= τB, keeping the remaining values of the
reference region (i.e. n= 30). Then, the variability of the set
of representative values of the Z average is analysed through
a box plot for the given γ . The aforementioned procedure
is performed for each γ = 0, 10, . . . , 90, 100 %, obtaining a
box plot for each γ value. For a given γ , Z is better as the
variability of the corresponding set of representative values
is smaller, since similar values of Z should be expected due
to γA= γB. Then, Z is better as the interquantile range is
shorter, where the interquantile range is the box of the box
plot. For varying γ , Z is better as it does not imply overlap-
ping of the interquantile ranges for different γ values, which
leads to a more appropriate ranking of the regions.

2.5 Effect of discordant sites

The fourth step of the assessment of Z is the analysis of the
effect of discordant sites in a region. The aim is to check the
capability of Z to show a progressive variation of its value
as a consequence of a progressive change in the degree of
regional heterogeneity, induced here by replacing given “ho-
mogeneous” sites with given “discordant” sites in a region.
Both the effect of the “nature” of the discordant sites, char-
acterised by the L-CV τ d and L-skewness coefficient τ d

3 of
their parent distribution, and the effect of the number of such
discordant sites (k) are considered.

The procedure is described below. Note that the values
of the factors used in this section are selected to facilitate
the graphical representation. Thus, a homogeneous region
(i.e. γ = 0 %) with N = 20, τR

= 0.25 and n= 30 is consid-
ered as the initial region. Then, k of its sites (with k= 1, . . . ,
N/2) are replaced by k discordant sites belonging to a par-

ent distribution characterised by τ d, with γd= 0 % within
the group of discordant sites. The analysis is performed for
τ d
= 0.1, 0.2, 0.25, 0.3, 0.4. Note that τR

= 0.25 is consid-
ered for the homogeneous region so that the discordant sites
are not “discordant” at the midpoint of the range used for
τ d (i.e. at τR

= τ d
= 0.25). The procedure is repeated for

NS= 500 simulations of the initial homogeneous region, es-
timating a mean value of Z over NS for each (τ d, k) pair. For
the region formed by “homogeneous” and “discordant” sites,
named as mixed region, Z is expected to be larger for larger
k values. Indeed, a larger number of discordant sites in the
region should increase the degree of regional heterogeneity.
Also, Z is expected to be larger as the difference between τR

and τ d gets larger, since the addition of sites with a “larger
discordance” should increase the degree of regional hetero-
geneity. On the other hand, for the sub-region formed by the
sites belonging to the initial homogeneous region, Z is ex-
pected to keep the same values regardless of the value of k,
which in this case is the number of initial sites removed. The
degree of regional heterogeneity should be relatively con-
stant in this case, since all the sites belong to the same initial
homogeneous region. Note that a mixed region can be seen as
a sort of bimodal region used in other studies (e.g. Chebana
and Ouarda, 2007).

3 Heterogeneity measures

The aim of this section is to present and develop heterogene-
ity measures based on different approaches to be assessed by
the procedure proposed in Sect. 2. Heterogeneity measures
are selected as a result of a general and comprehensive liter-
ature review in a number of fields, including hydrology. We
can distinguish three types of measures: (a) known in RHFA;
(b) derived from recent approaches in RHFA; and (c) used
in other fields and adapted here to the regional hydrological
context. Therefore, a total of eight measures are considered.

3.1 Measures known in RHFA

The first group consists of the well-known statisticsH , V ,H2
and V2 (Hosking, 2015), as well as the k-sample Anderson–
Darling (AD) statistic (Scholz and Stephens, 1987; Scholz
and Zhu, 2015).

Even though H is not properly defined as a heterogeneity
measure for ranking the degree of heterogeneity of several
regions (see Sect. 1), it is considered in this study because it
is commonly adopted in regional analysis. As the aim of this
study is to provide a general heterogeneity measure, its asso-
ciated distribution-free statistic V is also considered. Specif-
ically, V is a statistic of the dispersion of the sample L-CV
t in a region, expressed as follows:
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V =

√√√√√√√√
N∑
i=1
ni
(
t i − tR

)2
N∑
i=1
ni

, (1)

with

tR =

N∑
i=1
ni t

i

N∑
i=1
ni

, (2)

where t i is the sample L-CV at site i and tR is its associated
regional average. H is a measure of the variability of t in the
region compared with that expected for simulated homoge-
neous regions. It is built by normalising V by its mean µV
and standard deviation σV :

H =
V −µV

σV
, (3)

where µV and σV are obtained from NH= 500 simulated
homogeneous regions with the same n and N as the given
region, generated from a kappa distribution fitted to the re-
gional average L-moment ratios.

The extensions of V and H by considering not only t
but also the sample L-skewness coefficient t3, traditionally
known as V2 and H2, are also included in this study. Their
inclusion is motivated by recent results regarding the useful-
ness of H2 for testing homogeneity when considering differ-
ent thresholds from those of H (Wright et al., 2014):

V2 =

N∑
i=1
ni

√(
t i − tR

)2
+
(
t i3− t

R
3
)2

N∑
i=1
ni

, (4)

H2 =
V2−µV2

σV2

, (5)

where t i3 is the sample L-skewness coefficient at site i and
tR3 is its associated regional average. The value tR3 is defined
as analogous to tR in Eq. (2). In order to avoid results con-
ditioned on the given value of tR and tR3 , V and V2 are stan-
dardised here by their regional values, defining V ′ and V ′2
respectively as follows:

V ′ =

√√√√√√√√
N∑
i=1
ni

(
t i−tR

tR

)2

N∑
i=1
ni

, (6)

V ′2 =

N∑
i=1
ni

√(
t i−tR

tR

)2
+

(
t i3−t

R
3

tR3

)2

N∑
i=1
ni

. (7)

The AD statistic, which is a rank-based statistic based on
comparing the at-site empirical distributions with the pooled
empirical distribution of the data, is also included in this first
group:

AD=
1
M

N∑
i=1

1
ni

M−1∑
j=1

(
Mmij − jni

)2
j (M − j)

, (8)

where M =
N∑
i=1

ni and mij is the number of observations in

the ith sample not greater than yj , where y1< . . . <yM is
the pooled ordered sample of the data, which in the regional
context entails considering the data of each site first divided
by its corresponding mean and then ordered. The AD statis-
tic has already been considered in several studies. Viglione
et al. (2007) assessed its behaviour as a homogeneity test
statistic, recommending its use when tR3 > 0.23. Wright et
al. (2015) evaluated its performance as a heterogeneity mea-
sure regarding its ability to be a surrogate of the quantile er-
ror, yet obtaining a weak performance partially attributed to
a possible influence of the procedure used for estimating er-
rors.

3.2 Measures derived from recent approaches in RHFA

The second group is represented by a measure derived from
a relatively novel approach in which the confidence interval
for the at-site L-CV t i (with i: 1, . . . , N ) is estimated and
compared with tR. The focus is to evaluate how often the lat-
ter is included in such confidence intervals in order to assess
if differences between t i and tR can be attributed to sample
variability or to regional heterogeneity.

Viglione (2010) proposed a procedure for obtaining the
confidence interval for L-CV without considering a given
parent distribution of the data, applying it to a didactic il-
lustration for comparing several regional approaches. The
procedure is summarised below: the variance of the sam-
ple L-CV t , var(t), is estimated according to Elamir and Se-
heult (2004) which is implemented in Viglione (2014); sim-
ple empirical corrections are applied on t and var(t) based
on the values of t3 and n; and the confidence interval for t is
then obtained from a log-Student’s distribution considering
corrected values of t and var(t). For instance, for a 90 % con-
fidence interval, a region is considered as heterogeneous if
100− (P05+P95)� 90 %, where P05(P95) is the percentage
of sites for which tR is below (above) the confidence interval
for t i . The larger (P05+P95) is, the larger the regional het-
erogeneity will be. Das and Cunnane (2011) obtained such a
confidence interval based on simulations from a GEV distri-
bution, with the aim of evaluating if a usual method to select
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catchment descriptors for delineating regions in Ireland pro-
vided homogeneous regions. The number of sites for which
tR is outside the t i confidence intervals is considered as a
measure of heterogeneity, also expressed as a percentage of
sites.

In the present study, the heterogeneity measure considered
regarding this approach is named as PCI and defined as the
total percentage of sites in the region for which tR is outside
the 90 % confidence interval for t i . As the parent distribution
of the data is unknown in practice, such a confidence interval
is estimated following the aforementioned distribution-free
approach.

3.3 Measures used in other fields and adapted here to
the regional hydrological context

The last group consists of the Gini index (GI) (Gini, 1912;
Ceriani and Verme, 2012), which is a measure of inequality
of incomes in a population commonly used in economics,
and of a measure based on the entropy-based Kullback–
Leibler (KL) divergence (Kullback and Leibler, 1951), which
estimates the distance between two probability distributions
and is used for different purposes in a number of fields, in-
cluding hydrology (e.g. Weijs et al., 2010).

The definition of the GI is usually given according to the
Lorenz curve (Gastwirth, 1972), but it can be expressed in
other ways. Specifically, the sample GI

GI=

n∑
i=1

n∑
j=1

∣∣xi − xj ∣∣
2n2µ

, (9)

corrected for short sample sizes, can be defined as follows
(Glasser, 1962; Zeileis, 2014):

GI=

n∑
i=1
(2i− n− 1)xi:n

n(n− 1)µ
, (10)

where xi:n are the sample order statistics and µ is their mean.
Theoretically, GI ranges from zero to one. The former is ob-
tained when all the xi values are equal, and the latter is given
when all but one value equals zero (in an infinite popula-
tion). Note that although GI has not been directly applied to
hydrology, it is connected with the well-known L-moments
which do. Both are based on sample order statistics. Indeed,
GI=GMD/2µ (for µ> 0), where GMD is the Gini’s mean
difference statistic (Yitzhaki and Schechtman, 2012), and
GMD= 2l2, where l2 is the second sample L-moment (Hosk-
ing and Wallis, 1997). Hence, GI corrected for short samples
corresponds to the sample L-CV t (Hosking, 1990), which
implies that if GI is applied on the flood observations at site i,
the result is t i . Then, in order to adapt GI to the regional hy-
drological context, in this study GI is applied on t i over sites.
This provides a value of the inequality or variability of the
at-site L-CV t i in the region, and hence it can be seen as

a measure of the heterogeneity of the region. Therefore, the
measure considered in this study is GI(t i , i= 1, . . . , N ):

GI=

N∑
i=1
(2i−N − 1)ti:n

N(N − 1)t
, (11)

where ti:n are the sample order statistics, t is their mean,
and the number of sites N corresponds to the data length
of t . Note that GI(t i , i= 1, . . . , N ) is equivalent to t (t i ,
i= 1, . . . , N ). Also, note that this is somehow analogous
to the approach based on moments used in early studies
(e.g. Stedinger and Lu, 1995), where the coefficient of vari-
ation (Cv= σ/µ) i= 1, . . . , N ) was used for building simu-
lated regions, defining homogeneous regions for Cv(Cvi)= 0
and extremely heterogeneous regions for Cv(Cvi)≥ 0.4.

The KL divergence (so-called relative entropy) of the
probability distribution P with respect toQ is defined as fol-
lows:

KL(P ||Q)=
∫
p(x) ln[p(x)/q(x)]dx, (12)

where p and q are the density functions. The expression re-
lated to the discrete case is the following (e.g. Hausser and
Strimmer, 2009):

KL(P ||Q)=
∑
m

Pm ln
(
Pm

Qm

)
, (13)

for which nonparametric versions of the probabilities P
and Q may be considered, such as a kernel density function,
in order to avoid subjectivity in selecting a given parametric
probability distribution. KLij can then be defined as the KL
divergence of the probability distribution at site i with respect
to the probability distribution at site j , where KLij 6=KLji .
The dissimilarity matrix of the region is obtained by comput-
ing the KL divergence between sites as follows:

DKL =

 KL11 . . . KL1N
... KLij

...

KLN1 . . . KLNN

 . (14)

The degree of regional heterogeneity is then evaluated
by ||DKL||, which in this study is considered as the absolute
column sum normalised norm:

||DKL|| =

maxj
∑
i

||KLij ||

N
. (15)

4 Results

Simulation results obtained by the application of the pro-
posed assessment procedure (Sect. 2) to the considered het-
erogeneity measures (Sect. 3) are presented in this section.
Note that a summary of the results obtained from each step
is presented in Table 1.
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Table 1. Summary of the results of the studied measures for the four-step assessment procedure. The behaviour of a given measure for
each sensitivity analysis in step (i) is graded as follows: good (G), acceptable (A), bad (B), or unacceptable (U). Measures entailing an
“unacceptable (U)” behaviour are not assessed by the rest of steps; yet a complete assessment of H is performed for comparison purposes.
For steps (ii), (iii), and (iv), considered measures are ranked from the best results (1st) to the worst results (4th).

Measures (i) Sensitivity analyses (ii) (iii) (iv) Effect of

γ N τR n Success Variability discordant

γ = 0 % γ = 50 % rate (SR) evolution sites

H G G U B B 3rd∗ 4th∗∗∗ 4th
H2 A G U B B – – –
V ′ G A G A A 2nd 1st 3rd
V ′2 A A G U B – – –
AD A U U U B – – –
PCI G A A A B 4th∗∗ 2nd 2nd
GI G G A A A 1st 3rd 1st
||DKL|| A U U B B – – –

∗ High limitations for given circumstances. ∗∗ Favourable stable values regardless of τR. ∗∗∗ Unacceptable results.

Figure 1. Sensitivity analysis: (a, c) box plots of the heterogeneity measures forNs= 500 simulations of the reference region (N = 15, n= 30
and τR

= 0.2) varying the heterogeneity rate γ ; and (b, d) comparison of the corresponding mean with the one obtained by considering
τR
= 0.4.

4.1 Sensitivity analyses

Results of the effect of varying factors defining a region
(Sect. 2.2) are presented through box plots and mean values
of the heterogeneity measure over NS= 500 simulations of
the corresponding region, in order to show complete infor-
mation. Results for τR

= 0.2 refer to those related to the ref-

erence region. Figure 1 shows that all considered measures
seem to be positively correlated with an increasing hetero-
geneity rate γ . This means that their behaviour is appropri-
ate as they may indicate heterogeneity. This dependence is
less pronounced for H2 and V ′2, which are the measures that
depend on both t and t3, and for AD and ||DKL||, which are
based on all of the information.
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Figure 2. Sensitivity analysis: (a, c) box plots of the heterogeneity measures for Ns= 500 simulations of the reference region (n= 30 and
τR
= 0.2), with a heterogeneity rate γ = 0 %, varying the number of sites N ; and (b, d) comparison of the corresponding mean with the one

obtained by considering τR
= 0.4.

The effect of N on the considered measures is shown for
τR
= 0.2 when γ = 0 % (i.e. “perfect” homogeneous regions)

and γ = 50 % in Figs. 2 and 3, respectively. In both cases,
it is found that V ′, V ′2, PCI, and GI are unaffected by N , al-
though they show some departure from their constantZmean
value and a larger variability (i.e. larger box) when N ≤ 10.
In this regard, Das and Cunnane (2012) also found an effect
for N < 10 on quantile error measures (considering n= 35).
In general this effect is less marked for GI when γ = 0 %
(Fig. 2c and d) and for V ′ and V ′2 when γ = 50 % (Fig. 3a
and b).

It is also found that results for H , and to a lesser degree
for H2, change depending on the value of γ . These measures
do not depend on N for γ = 0 % (Fig. 2a and b); yet they
do for γ = 50 % (Fig. 3a and b). This is likely due to the
nature of H and H2 as homogeneity test statistics. Note that
this undesirable effect increases as γ increases (e.g. Fig. 4).
||DKL|| is affected byN for both γ = 0 % and γ = 50 %. The
same holds for AD, for which such dependence is higher.

The influence of varying regional average L-moments is
shown by comparing the Z mean values for τR

= 0.4 with
those previously obtained for τR

= 0.2. Z mean values vary-
ing γ are displayed in Fig. 1b and d. In this regard, V ′2 and
AD fail to compare regions with the same γ but different τR,
as results for τR

= 0.2 and τR
= 0.4 are far from each other.

Regarding H and H2, this effect is worse for higher degrees

of regional heterogeneity than for smaller ones, whereas V ′,
GI, and ||DKL|| show the opposite behaviour with an overall
better performance of V ′ and GI. PCI is better able to com-
pare regions with either small or high γ . Results for Z mean
values varying N are displayed for γ = 0 % in Fig. 2b and d,
and for γ = 50 % in Fig. 3b and d. In both cases V ′2 and
AD fail to compare regions with the same γ but differ-
ent N . A suitable performance is found for V ′, PCI and GI
for γ = 50 %, whereas a worse performance is found for H ,
H2 and ||DKL|| (Fig. 3b and d). This performance of H , H2
and ||DKL|| is also shown for γ = 0 % (Fig. 2b and d), for
which the remaining measures also present similar results. In
this regard, it is important to note that no “perfect” homoge-
neous regions exist in reality (Stedinger and Lu, 1995). And
that according to the practical threshold H < 2, commonly
used for considering a region as homogeneous enough to per-
form a regional analysis, even regions with γ = 50 % may be
taken as homogeneous in practice (see values of H for γ in
Fig. 1a). Hence, for the purpose of the assessment of the re-
gional heterogeneity degree, the behaviour of the measures
for γ = 50 % is more relevant than for γ = 0 %.

Finally, the effect of varying the record length n for
γ = 0 % and γ = 50 % is shown in Fig. 5. Recall that it is
expected that increasing n affects Z, as more information of
the at-site distributions is available in such a case. In this re-
gard, it is found that the measures H , H2, AD, and PCI are
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Figure 3. Sensitivity analysis: (a, c) box plots of the heterogeneity measures for Ns= 500 simulations of the reference region (n= 30 and
τR
= 0.2), with a heterogeneity rate γ = 50 %, varying the number of sites N ; and (b, d) comparison of the corresponding mean with the one

obtained by considering τR
= 0.4.

Figure 4. Sensitivity analysis: mean ofH andH2 overNs= 500 simulations of the reference region (n= 30 and τR
= 0.2) for a heterogeneity

rate γ = 100 %, varying the number of sites N .

not (or are slightly) affected by n when γ = 0 %, but they
highly increase their values as n increases when γ = 50 %.
Whereas V ′, V ′2, GI, and ||DKL|| are affected by n when
γ = 0 %, becoming less affected when γ = 50 % by decreas-
ing less their values as n increases. As a result, V ′ and GI
are the only measures that become relatively stable for a
given data length. Such a data length is around n= 30, which
is a value usually considered in practice (e.g. Hosking and
Wallis, 1997, p. 134; Chebana and Ouarda, 2009). It can be
mentioned that for a very small data length (n= 10), the ap-
proximation used in PCI for estimating var(t) was not reli-
able. Nevertheless, this issue is not relevant since such a data
length is too short to be considered in practice, and such val-
ues do not affect the overall interpretation of the results.

As a result of the aforementioned qualitative sensitivity
analysis results (see Table 1 for a summary), V ′, PCI, and
GI are considered as potentially suitable heterogeneity mea-

sures. Thus, the following steps of the assessment procedure
are only applied to these measures. Results of H are also in-
cluded for comparison purposes.

4.2 Success rate

The ability of the measures to identify the most heteroge-
neous region between two regions A and B is shown via the
success rate SR (Sect. 2.3). A summary of the results ob-
tained for τA

= τB and τA
6= τB (with γA<γB), when con-

sidering several values of N and γ for each region, is dis-
played in Table 2 to facilitate their interpretation. Note that
each combination τA vs. τB corresponds to a total of 48 cases
obtained by varying N and γ . Results for a small difference
between τR values, characterised by τA

= 0.2 6= τB
= 0.3

and vice versa, and for a large difference, characterised by
τA
= 0.1 6= τB

= 0.4 and vice versa, are displayed as repre-
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Table 2. Summary of the success rate (SR) minimum, average, and maximum of the considered measures (H , V ′, PCI, and GI), expressed in
percentage, when comparing the heterogeneity of two regions A and B. For a given τA and τB, such values are computed as the minimum,
average and maximum of SR over 48 cases, respectively. For each case, SR is obtained as the mean over Ns= 500 simulations of two
regions with n= 30 and given NA,NB, γA, and γB. Values in bold indicate the measure obtaining the largest SR minimum, SR average, and
SR maximum, respectively.

τA vs. τB τA τB Minimum Average Maximum

H V ′ PCI GI H V ′ PCI GI H V ′ PCI GI

τA
= τB 0.2 0.2 33 47 40 50 74.5 77.9 67.3 77.7 99 99 91 100

0.3 0.3 36 46 34 51 72.2 74.4 65.1 75.2 98 94 87 98

τA<τB 0.1 0.4 7 69 36 57 58.8 86.4 61.4 85.7 87 98 83 98
0.2 0.3 24 59 40 62 68.1 81.0 64.1 80.8 96 97 88 98

τA>τB 0.3 0.2 47 34 33 34 77.3 70.4 67.6 71.8 100 96 92 97
0.4 0.1 33 14 26 15 80.5 61.0 69.1 63.3 100 94 95 99

Total average 30 45 35 45 71.9 75.2 65.8 75.7 97 96 89 98

Figure 5. Sensitivity analysis: (a, c) box plots of the heterogeneity measures for Ns= 500 simulations of the reference region (N = 15 and
τR
= 0.2), for a heterogeneity rate γ = 0 % and γ = 50 %, varying the data length n; and (b, d) comparison of the corresponding mean for

γ = 0 % and γ = 50 %.

sentative of the behaviour of the measures. Note that the sum-
marised information reflects the main conclusions extracted
from the partial results.

The SR average is shown as a notion of the overall be-
haviour of the measures. Recall that the larger SR is, the bet-
ter Z will be. When τA

= τB the SR average of H , V ′, and
GI are comparable, with V ′ and GI leading to the largest val-

ues, while PCI leads to the lowest ones. When τA<τB the
largest SR average is obtained for V ′ and is very closely fol-
lowed by GI. Yet, in this case H presents worse behaviour,
which is similar to that of PCI. When τA>τB the situation
changes, with H leading to the largest values. Yet, the differ-
ence between the values obtained by V ′ (or GI) andH is less
marked than when τA<τB. Note that the larger the differ-
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ence between τA and τB is, the larger the difference between
the SR average of H and V ′ (or GI) is, whereas the value
of PCI remains almost constant. Therefore, although PCI does
not obtain the greatest values in any case, it outperformsH or
GI (and V ′) when τA

� τB or when τA
� τB, respectively,

i.e. for high differences between τA and τB. The best results
for the total SR average are obtained by GI, followed by V ′.

The SR minimum and SR maximum are displayed as a
notion of the variability of the SR results (Table 2). Results
related to the SR minimum are analogous to those obtained
by the SR average, with H having worse behaviour over-
all. This highlights the low ability of H to identify the most
heterogeneous region in certain circumstances. Note that the
overall behaviour of H regarding SR is partially due to ex-
isting trends regarding N and τR. H obtains larger hetero-
geneity values as N increases and as τR decreases (as shown
in Fig. 3b), entailing an “unfounded” better behaviour when
τA>τB and NA<NB, and vice versa. Also note that all
measures have difficulties obtaining a large SR minimum
when τA>τB. This also includesH , even though it obtained
a good SR average in such a situation. This arises from the
fact that, in such a case, the region with the lowest degree of
heterogeneity (region A) is associated with a larger τR entail-
ing a larger sample variability, and complicating its identifi-
cation as the less heterogeneous region. SR maximum values
show that even though the maximum difference between γA
and γB considered in the analysis is 30 %, all measures ob-
tain (in certain circumstances) a SR equal or close to 100 %.
In summary, GI obtains the best results for the SR analysis
followed by V ′.

4.3 Evolution of the variability of the Z average with
respect to the degree of regional heterogeneity

The variability of the heterogeneity measures as a function
of the degree of regional heterogeneity, represented by γ , is
shown in Fig. 6. The box plot of the 22 representative (mean
over NS= 500) values of Z obtained from cases, in which
a given region A and a given region B with the same γ but
different characteristics are considered, is shown for vary-
ing values of γ in the x axis (see Sect. 2.4). As expected
from the results of Fig. 1, heterogeneity measures in Fig. 6
increase with γ , showing a monotonic positive dependence.
Regarding their variability along such a monotonic relation,
H presents a different behaviour from the rest of the mea-
sures. It shows a strong increasing variability as γ increases.
Then, in this case, H overlaps its interquantile ranges from
γ = 70 % to 100 %. This behaviour may imply an unappro-
priated ranking of the regions with these high values of the
heterogeneity rate γ . Indeed, overlapped values cannot be
considered significantly different, whereas they correspond
to two different γ values. Such behaviour is not seen for
the other considered measures. In this regard, an overall
favourable larger distance between interquantile ranges is
found for V ′, followed by PCI and then GI. However, the

four considered measures present an overlapping for γ = 0
and 10 %. This may imply an unappropriated ranking of the
regions related to these very small values of γ , yet those re-
gions are less common in practice. In summary, V ′ obtains
the best performance for the variability evolution analysis.
It presents a small variability for a given γ value, and it al-
most presents no overlapping between interquantile ranges
for varying γ .

4.4 Effect of discordant sites

The effect of discordant sites (Sect. 2.5) is shown in
Fig. 7. The mean values of the heterogeneity measures
over NS= 500 are obtained when replacing k sites (with
k= 1, . . . , 10) in an initially homogeneous region (with
N = 20) with k discordant sites belonging to a given parent
distribution defined by τ d. Note that unlike Fig. 1, where the
heterogeneity value of two kinds of regions with the same
degree of heterogeneity but different regional L-CV may be
compared, in Fig. 7 progressive changes in the heterogeneity
of a single homogeneous region are assessed. For the mixed
region formed by sites from both τR and τ d, the overall re-
sults confirm that the considered measures involve larger val-
ues of Z for larger k values, as a result of replacing a larger
number of discordant sites in the region, and larger values
of Z as the difference between τR and τ d increases, as a re-
sult of replacing sites with a larger discordance (Fig. 7a).

However, when τ d>τR (Fig. 7b) the measures face some
difficulties in ranking the degree of heterogeneity for high
values of k. This is due to the larger sample variability en-
tailed by the discordant sites in such a case, which makes
the whole mixed region seem less heterogeneous. Note that
this is also the reason for the lack of asymmetry of the
results regarding the vertical line at the midpoint of the
x axis (i.e. τ d

= 0.25= τR). Nevertheless, not all measures
are equally affected by this issue. GI obtains the best results,
as for instance it is able to differentiate the degree of het-
erogeneity for k≤ 8 when τ d

= 0.35 and 0.4. It is followed
by PCI, which behaves properly for k≤ 8 when τ d

= 0.35 and
for k≤ 7 when τ d

= 0.4, and by V ′, which obtains adequate
results for k≤ 7 when τ d

= 0.35 and k≤ 6 when τ d
= 0.4.

The worst results are obtained by H , which only behaves
properly for k≤ 6 when τ d

= 0.35 and k≤ 4 when τ d
= 0.4.

Results for the sub-region formed by the remaining (N − k)
sites of the initial homogeneous region (Fig. 7a) support the
results in Fig. 2, as H and GI are practically not affected by
the number of sites of the homogeneous region, while V ′ and
PCI present a slight decrease in their heterogeneity values
as the number of sites (N − k) decreases. In summary, GI
presents the best results for the analysis of discordant sites.
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Figure 6. Box plots of representative values of the heterogeneity measure average obtained for 22 cases, varying the heterogeneity rate γ in
the x axis. For each case, such a representative value is obtained as the average between a given region A and a given region B over Ns= 500
simulations of the given regions, entailing the same γ (i.e. γA= γB) but different characteristics (i.e. NA 6=NB or NA=NB with τA

6= τB).

5 Discussion

Overall, GI can be considered as the best heterogeneity mea-
sure among all the evaluated measures, closely followed
by V ′ (see a summary in Table 1). However, as expected,
none of the measures are perfect, due to their inability to
perfectly fulfill all the desirable properties in practice. GI
presents the advantage of being computed as a measure of
the standardised mean distance between pairs of t i values.
Hence, it does not depend on any assumptions concerning
parameters or parent distributions. V ′ is similar but it specif-
ically depends on the estimate of the regional average tR, as
it compares it to each t i value. Thus, due to the similar but
slightly better results obtained by GI and its widely accepted
use in other fields, the use of GI would be preferable in prac-
tice.
H is by nature the statistic of a homogeneity test. Hence,

it is defined to identify whether a given region can be con-
sidered as homogeneous or not, not to compare the hetero-
geneity degree of several regions. Note that this is also valid
for other test statistics (e.g. AD). As a consequence of the
intrinsic disadvantages of H (see Sect. 1) and the obtained
results, the use of H as a heterogeneity measure for ranking
regions is not recommended. The unsatisfactory results ob-
tained for V ′2 and H2 could be related to the way in which
t and t3 are combined (see Sect. 3), which may not be appro-
priate for assessing the degree of regional heterogeneity. The
unsuitable results associated with ||DKL||| could be related
to considering all of the information of the data, which may
mask the effect of factors favouring heterogeneity. It should
be noted that other norms aside from the one in Eq. (15)
were considered, but they did not lead to better performances.

Further research could focus on the development of a better
adaptation of the entropy-based measures to estimate the de-
gree of regional heterogeneity.

The PCI measure is obtained without assuming a given
parent distribution of the data, although it considers a log-
Student distribution for estimating the L-CV confidence in-
terval. Also, even though it depends partially on the selected
confidence level, mean PCI values over NS= 500 for differ-
ent confidence levels (90 and 95 %) were found to be highly
correlated (not shown). This fact removes subjectivity from
the use of PCI as a heterogeneity measure, as for such a pur-
pose only the ranking of values is needed. It is also important
to highlight the stable performance of PCI regardless of the
value of τR. This makes PCI outperform GI and V ′ for identi-
fying the most heterogeneous region when such a region has
a much lower τR than others to be compared with (see Ta-
ble 2). As a consequence, PCI and GI could be used together
in practice as two different and complementary criteria. This
is common in other applications; for instance several criteria
are commonly applied when ranking candidate distributions
(e.g. the Akaike information criterion and the Bayesian in-
formation criterion). It is important to mention that the use
of PCI as a homogeneity test in practice may lead to the false
rejection of homogeneous regions. Indeed, even when a re-
gion is “perfectly” homogeneous (γ = 0 %) the mean value
of PCI may indicate slight heterogeneity (e.g. it is slightly
larger than 10 % in Fig. 1).

As indicated in Sect. 1, the heterogeneity measures se-
lected in this study may be used for the assessment of the
degree of heterogeneity of regions obtained through the use
of different delineation methods. When a region is divided
into several sub-regions by a given delineation method, the
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Figure 7. Mean values of the heterogeneity measures over Ns= 500 simulations of a given homogeneous region with N = 20 sites, n= 30,
and τR

= 0.25, for which k sites are replaced by k discordant sites generated by a GEV with L-Cv τd, varying τd in the x axis: (a) full plot;
and (b) zoom to the right part of the x axis.

GI (or PCI) value can be evaluated at each sub-region. Then,
the average value can be used to compare several delineation
methods applied on the given region. The best delineation
method will be the one with the lowest GI (or PCI) value
for the region of study (see Sect. 6 for an illustrative appli-
cation). It is important to note that a heterogeneity measure
should not be used as a decision variable for the delineation
of regions, as it would imply using redundant information
at different steps of the regional analysis. The heterogene-
ity measure can also be used for evaluating the heterogene-
ity of a given region when particular sites are removed, with
the aim of helping in the identification of homogeneous re-
gions. For instance, if a region is found to be heterogeneous
by using a given test and by entailing a number of discordant
sites, the heterogeneity measure can help in the identifica-
tion of the “most homogeneous region” as a result of remov-
ing different combinations of sites. However, it is important

to highlight that physical reasoning has to be provided for
removing a given (discordant) site. Thus the heterogeneity
measure serves only as a facilitator for the identification of
the site(s) to be further analysed (e.g. Viglione, 2010; Ilorme
and Griffis, 2013).

6 Illustrative application

An illustrative application on observed data is presented for
didactical purposes. The considered case study consists of
44 sites from the hydrometric station network of the southern
part of the province of Quebec, Canada (for more description
of the data and the region see Chokmani and Ouarda, 2004).
The flow data are managed by the Ministry of the Environ-
ment of Quebec Services. Descriptors and at-site spring flood
quantiles are available for the considered sites (Kouider et
al., 2002). A summary of the statistics associated with spring
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Table 3. Summary of the statistics of descriptors, spring maximum peak flow series, and available at-site quantiles for the 44 sites considered
in the illustrative application.

Variables Unit Min Mean Max SD

Descriptors

Catchment area km2 208 1062 5820 1075
Catchment mean slope % 0.99 2.67 6.81 1.29
Fraction of the catchment controlled by lakes % 0.1 1.63 5 1.38
Annual mean total precipitation mm 932 1057 1195 62
Annual mean degree days below 0 ◦C degree day 8589 11 769 14 158 1432

Spring Data length years 15 36 80 16.7
maximum At-site mean m3 s−1 46.7 235.1 1137.4 209.7
peak flow At-site L-CV (t) 0.145 0.199 0.319 0.036
series At-site L-skewness (t3) −0.032 0.139 0.404 0.098

At-site 10-year spring flood quantile m3 s−1 70.8 342.49 1616.08 298.93
quantiles 100-year spring flood quantile m3 s−1 107.8 469.11 2006.38 375.52

Table 4. Results of the illustrative application: heterogeneity measures H and GI, and RRMSE. RRMSE values are associated with the GLO
regional distribution; RRMSE values within parentheses are associated with the GEV regional distribution. Bold values indicate the best
result for each criterion.

Clustering Sub- Nbr H GI RRMSE (%)

region sites Value Average Value Average T = 100 T = 10

Value Average Value Average

Whole region 44 2.21 2.21 0.092 0.092 17.81 17.81 5.81 5.81

A
A1 31 2.06

1.23
0.101 0.087 18.03 14.94 6.26

5.64
A2 13 0.4 0.074 (11.85) (5.01)

B
B1 25 0.49 1.21 0.077

0.094
16.34

18.26
5.22

5.93
B2 19 1.93 0.111 20.18 6.63

C
C1 26 2.05

1.39
0.100

0.091
18.46

16.92
6.22 5.48

C2 18 0.73 0.082 (15.38) (4.74)

maximum peak-flow data, relevant descriptors for flood fre-
quency analysis (e.g. Shu and Ouarda, 2007), and at-site
spring flood quantiles is shown in Table 3. Note that due to
the data used in this application being observed instead of
simulated, the real degree of heterogeneity of the regions, as
well as the real parent distribution of the data, is unknown.
Thus, it is not possible to truly compare the performance of
the different heterogeneity measures. In this regard, it is im-
portant to note that the purpose of this illustrative application
is then to show that commonly used criteria for identifying
the best method for delineating regions may be subjective,
as well as to guide practitioners in the use of heterogeneity
measures.

The heterogeneity of the whole study region is evaluated
by using a homogeneity test (Hosking and Wallis, 1997),
resulting in a heterogeneous region (H > 2, see Table 4).
Hence, the region is then divided into sub-regions by using
cluster analysis (e.g. Burn, 1989) with the Ward’s method,
as it is one of the most applied in hydrology (e.g. Hosking

and Wallis, 1997; Mishra et al., 2008). Because of the illus-
trative character of this application, three simple clustering
settings are considered as the different delineation methods.
Clustering A consists of applying cluster analysis based on
catchment area, annual mean total precipitation, and annual
mean degree days below 0 ◦C (see Table 3). Clustering B ap-
plies it only based on catchment mean slope, and Cluster-
ing C applies it based on catchment slope and fraction of the
catchment controlled by lakes (see Table 3).

The results obtained by applying the best heterogeneity
measure found in the present study, the GI, are shown in
Table 4. For comparison purposes, the results obtained by
applying commonly used criteria for identifying the best
delineation method are also shown. They are H , and the
quantile error calculated as the relative root mean square er-
ror (RRMSE) (see Sect. 1). No more results are shown for
space reasons and simplicity. Note that the lower the hetero-
geneity measure or RRMSE value is, the better the delin-
eation method will be. Note that in this case study, identify-
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ing the best delineation method implies identifying the best
clustering setting. Two distributions commonly used in re-
gional flood frequency analysis are considered when apply-
ing the index-flood method (Dalrymple, 1960) for estimating
the quantiles to be evaluated through the RRMSE. These dis-
tributions are the GEV and the generalised logistic (GLO)
distribution, and the quantiles to be evaluated are the 10- and
100-year return period (T ) spring flood quantile. RRMSE re-
sults related to a given distribution are only shown in Ta-
ble 4 if the regional distribution is accepted by a goodness-
of-fit measure (Hosking, 2015). For comparison purposes,
RRMSE results are obtained even if the given region is not
“homogeneous” according to the homogeneity test.

According to the results in Table 4, the H average identi-
fies Clustering B as the best delineation method. Neverthe-
less, due to H being based on simulations, the H values for
the sub-regions change slightly if the procedure is repeated.
In this particular case study, this implies that in some cases
H average in Clustering B becomes larger thanH average in
Clustering A, and then Clustering A may be selected as the
best one. Moreover, although it is not happening in this case
study, it may occur that H has negative values which may
also complicate the evaluation of its average.

RRMSE average for T = 100 identifies Clustering A as
the best delineation method. However, RRMSE average for
T = 10 identifies Clustering C as the best one. Hence, a dif-
ferent decision is taken depending on the quantile considered
for the assessment. Besides, it is also relevant to indicate
that the selection of the best delineation method based on
RRMSE may also depend on the regional distribution used.
For instance, different distributions could be accepted for a
given sub-region, resulting in different RRMSE values which
could affect the final decision. In this regard, it is important
to note that when observed data are used, it is not possible to
know either the real regional parent distribution of the data,
or the real parent distribution to be used in obtaining the at-
site quantiles used for evaluating RRMSE.

In the present application, the GI identifies Clustering A
as the best delineation method. The GI seems to be a more
objective criterion for identifying the heterogeneity of a re-
gion than criteria commonly used in practice. Besides, its
use as heterogeneity measure is supported by the four-step
simulation-based assessment procedure performed in the
present paper. It is worth mentioning that Clustering A could
be ideally assumed to be the best setting for forming sub-
regions, as it is based on relevant descriptors for flood fre-
quency analysis. However, this would just be an assumption
that cannot be verified due to the use of observed data.

7 Conclusions

Delineation of homogeneous regions is required for the ap-
plication of regional frequency analysis methods such as the
index flood procedure. The availability of an estimate of the

degree of heterogeneity of these delineated regions is neces-
sary in order to compare the performances of different de-
lineation methods or to evaluate the impact of including par-
ticular sites. Due to the unavailability of a well-justified and
generally recognised measure for performing such compar-
isons, a number of studies have relied on measures that are
not well-defined or approaches that involve additional steps
during the delineation stage of regional frequency analysis.

In the present paper, a simulation-based general frame-
work is presented for assessing the performance of poten-
tial heterogeneity measures in the field of regional hydro-
logical frequency analysis (RHFA), according to a number
of desirable properties. The proposed four-step assessment
procedure consists of the following: sensitivity analysis by
varying the factors of a region; evaluation of the success rate
for identification of the most heterogeneous region; estima-
tion of the evolution of the variability for the heterogeneity
measure average with respect to the degree of regional het-
erogeneity; and study of the effect of discordant sites. The
procedure is applied on a set of measures including com-
monly used ones, measures that are derived from recent ap-
proaches, and measures that are adapted from other fields to
the regional hydrological context. The assumption-free Gini
index (GI) frequently considered in economics and applied
here on the L-variation coefficient (L-CV) of the regional
sites obtained the best results. A lower performance was ob-
tained for the measure of the percentage of sites (PCI) for
which the regional L-CV is outside the confidence interval
for the at-site L-CV. However, this measure was considered
relevant because of its stable behaviour regardless of the re-
gional value of L-CV. The application of both measures may
be recommended in practice. The use of different criteria to
determine the degree of regional heterogeneity can help ade-
quately identify the sites to be further analysed for obtaining
homogeneous regions. Further research efforts are necessary
to develop robust and general heterogeneity measures in the
field of RHFA. In this study, an illustrative application is also
included for didactical purposes. The subjectivity related to
commonly used criteria in assessing the performance of dif-
ferent delineation methods is underlined through it. In this
regard, further research may also focus on the application of
heterogeneity measures to a variety of case studies in order
to analyse practical aspects.

Data availability. Simulated data may be reproduced by follow-
ing the indications given over the paper. Raw observed hydrolog-
ical data, as well as raw catchment descriptors used in the illustra-
tive application may be obtained from the Environment Ministry of
the Province of Quebec (http://www.mddelcc.gouv.qc.ca/), and the
website of Environment Canada (http://climate.weather.gc.ca/), re-
spectively.
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