A01- Échanges conformationnels subits par la xylanase B2 de *Streptomyces lavidans* dans sa forme libre et liée

Nhung Nguyen-Thi⁠¹, Donald Gagné⁠¹, Louise Roux⁠¹, Jean-François Couture²,³,⁴, Pratul K. Agarwal⁵,⁶ & Nicolas Doucet⁷,³,⁴*

¹INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
²Institut de Biologie des Systèmes d’Ottawa, Département de Biochimie, Microbiologie et Immunologie, Université d’Ottawa, Ottawa, Canada
³PROTEO, le Réseau Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Université Laval, Québec, Canada
⁴GRASP, le Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Canada
⁵Département de Biochimie, Biologie Cellulaire et Moléculaire, Université du Tennessee, Knoxville, USA
⁶Institut de Biologie Computationnelle, Division Science de l’Informatique et Mathématiques, Laboratoire National d’Oak Ridge, Oak Ridge, USA
*Auteur de correspondance : Email : nicolas.doucet@iaf.inrs.ca ; Tél. : (450) 687-5010, ext. 4212

Les xylanases catalysent l’hydrolyse du xylane, une source de carbone très abondante à fort potentiel commercial. Les efforts continus consacrés à l’amélioration catalytique de ces enzymes ont été limités par le peu de connaissances de leurs propriétés moléculaires. Des études cristallographiques et de simulations de dynamique moléculaire ont suggéré que certaines xylanases GH11 comptent sur un mécanisme d’ouverture-fermeture du site actif pour remplir leur fonction catalytique, via une boucle conservée appelée « pince ». Cependant, ces résultats ne fournissent pas d’informations dynamiques sur l’échelle de temps de la catalyse, c’est-à-dire de la microseconde à la milliseconde. Dans cette étude, nous avons utilisé une combinaison d’expériences de dispersion de relaxation ¹⁵N-CPMG, de mutagenèse dirigée et de titrage RMN pour étudier les mouvements de la xylanase B2 de *Streptomyces lavidans* et son mutant non-fonctionnel (E67A) à l’échelle de temps de la catalyse. Dans la forme libre, les résidus dynamiques sont essentiellement regroupés dans les « doigts » et le sillon catalytique. Un modèle bioinformatique de dynamique moléculaire suggère que le « pince » et les « doigts » initient un mouvement dans la direction opposée lors de la liaison des ligands, permettant à l’enzyme d’ouvrir et de fermer son site de liaison. Ce mouvement nécessite la contribution de Thr120, un résidu situé à la base du « pince », qui agit comme une charnière. Ces résultats fournissent une preuve expérimentale qui valide le mécanisme d’ouverture-fermeture précédemment postulé et offrent de nouvelles perspectives sur le mécanisme catalytique des xylanases GH11.