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Highlights: 

 Highlight the importance of treating MD in multivariate hydrological frequency analysis  

 Reviewing and applying multivariate imputation methods and by comparing univariate 

and multivariate imputation methods.  

 An application is carried out for multiple flood attributes on three sites in order to 

evaluate the performance of the different methods based on the leave-one-out procedure.  

 The results indicate that, the performance of imputation methods can be improved by 

adopting the multivariate setting, compared to mean substitution and interpolation 

methods, especially when using the copula-based approach. 
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Abstract 

Water resources planning and management require complete data sets of a number of 

hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced 

with the problem of missing data (MD) in hydrological databases. Several methods are used to 

deal with the imputation of MD. During the last decade, multivariate approaches have gained 

popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). 

However, treating the MD remains neglected in the multivariate HFA literature whereas the focus 

has been mainly on the modeling component. For a complete analysis and in order to optimize 

the use of data, MD should also be treated in the multivariate setting prior to modeling and 

inference. Imputation of MD in the multivariate hydrological framework can have direct 

implications on the quality of the estimation. Indeed, the dependence between the series 

represents important additional information that can be included in the imputation process. The 

objective of the present paper is to highlight the importance of treating MD in multivariate 

hydrological frequency analysis by reviewing and applying multivariate imputation methods and 

by comparing univariate and multivariate imputation methods. An application is carried out for 

multiple flood attributes on three sites in order to evaluate the performance of the different 

methods based on the leave-one-out procedure. The results indicate that, the performance of 

imputation methods can be improved by adopting the multivariate setting, compared to mean 

substitution and interpolation methods, especially when using the copula-based approach. 
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1 Introduction 

The availability of hydrological data of adequate quality and length is vital for optimal water 

resources planning and management. In practice, hydrological studies suffer from missing data 

(MD) caused for instance by equipment failures, errors in measurements, budget cuts, and natural 

hazards (Kalteh and Hjorth 2009). This is generally the case for hydrological variables such as 

rainfall and streamflow, particularly for extreme conditions such as in remote watersheds where 

equipment failures are often detected and fixed with a significant delay. 

Generally, hydrological data are characterized by several correlated variables, such as Q and V 

(e.g. Ouarda et al. 2000; Zhang and Singh 2006; Chebana and Ouarda 2011a). These correlated 

variables are considered simultaneously in a multivariate framework, see e.g. Chebana (2013) for 

an explanation of the importance and the justification of jointly considering all variables 

associated to an event such as in hydrological frequency analysis (HFA). 

HFA, is an essential and commonly used approach for the analysis and prediction of hydrological 

extreme events. In HFA, we are frequently faced with the MD problem which can affect the 

reliability of the results if it is not correctly handled. Generally, before proceeding with any 

hydrological analysis, it is relevant to ensure that the quality of the data is adequate through an 

exploratory analysis, outlier detection and MD estimation. The presence of MD was highlighted 

for several hydrometeorological variables such as streamflow (Ng et al. 2009) and precipitation 

(Makhnin and McAllister 2009).  

Given two hydrological variables X and Y, in general three multivariate MD situations may 

occur: (i) only the X set contains MD and the Y set is complete and vice-versa; (ii) both X and Y 

series contain MD but not for the same event; and (iii) X and Y contain MD for the same event. In 
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addition, when a data gap exists in a given station, associated data are generally observed in one 

or more neighboring stations, such as in other tributaries of the same river. However, for 

particular applications and variables, some of the situations listed above are more common. A 

typical case is for flood peak (Q) and volume (V) where MD are usually caused by missing 

streamflow observations during the flood event. Therefore, the situation where only Q is missing 

is less common.  

Multivariate HFA is composed of four main steps: (a) carry out the exploratory analysis 

including outlier detection, MD estimation and descriptive analysis, (b) verify HFA assumptions, 

(c) model the extreme events and estimate the corresponding parameters, and (d) estimate and 

analyze the risk (see Table 1 for an overview). Recently, Chebana et al. (2013) described these 

steps and focused on testing multivariate trends in HFA. Under the framework of step (a), the 

statistical features and the shape of the data are investigated in a multivariate setting by Chebana 

and Ouarda (2011b). However, MD estimation is generally ignored in multivariate HFA. 

Consequently, MD estimation in the multivariate setting of HFA is currently a missing step. 

Ignoring the MD estimation in multivariate HFA may lead to a loss of information which may 

result in inappropriate decisions regarding, for instance, the design of hydraulic structures. 

Consequently, it is necessary to estimate MD in multivariate HFA to avoid or reduce the 

unnecessary construction costs associated with overestimation and the potential loss of human 

lives associated with underestimation. 

The present paper is organized as follows. The literature review concerning missing data is 

presented in Section 2. Section 3 deals with the general technical considerations associated  to 

MD including the uncertainty in their estimation. Descriptions and definitions of the considered 
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imputation methods are presented in Section 4. Section 5 contains the applications of these 

methods. Conclusions are reported in Section 6. 

2 Literature review 

The MD estimation is also called infilling (e.g. Abudu et al. 2010), reconstruction (e.g. Kim and 

Pachepsky 2010), completion (e.g. Ramos-Calzado et al. 2008), patching (e.g. Hughes and 

Smakhtin 1996) or imputation (e.g. Schneider 2001). It is largely studied in the time domain 

analysis, i.e. analyzing the data over a time period (see e.g. Gyau-Boakye and Schultz 1994; 

Hughes and Smakhtin 1996; Abebe et al. 2000; Han and Li 2010; Marlinda et al. 2010). 

However, in frequency analysis, the MD handling problem has received less attention (e.g. 

Peterson et al. 2011). Table 2 summarizes the different MD frameworks. 

Several imputation methods have been developed to treat MD in both time domain analysis and 

frequency analysis. In time domain analysis, the use of imputation methods has received 

considerable attention in hydrology and elsewhere in statistics (see e.g. Gleason and Staelin 

1975; Jeffrey et al. 2001; Ng et al. 2009; Honaker and King 2010). However, the imputation of 

MD in frequency analysis has received less attention (see e.g. Kelly et al. 2004; Erol 2011; 

Peterson et al. 2011). In frequency analysis studies, MD estimation is largely treated in the 

univariate setting (e.g. Kodituwakku et al. 2011, in a health study) whereas in the multivariate 

setting, studies are relatively rare (e.g. Kelly et al. 2004, in a biological study).  

Handling MD in multivariate HFA is generally ignored or treated separately for each series. The 

most common practices in HFA are to ignore missing observations (see e.g. Overeem et al. 2009; 

Westra et al. 2012) or to impute each missing value by the mean of the variable (see e.g. Özçelik 

and Benzeden (2010) and Peterson et al. (2011)). Fleig et al. (2011) used more sophisticated 
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univariate methods, such as, interpolation and regression to estimate MD in HFA. Consequently, 

MD estimation in multivariate HFA has not yet been adequately studied. Multivariate imputation 

methods are useful, in particular in hydrology, to improve the quality of the estimation and to 

provide more accurate imputed values that take variable dependence into account.  

In hydrology, imputation techniques of time domain analysis are extensively treated in the 

univariate and multivariate setting. Table 3 shows an overview of the main imputation techniques 

in missing hydrological data with a number of references, as well as the advantages and 

disadvantages of each method. Univariate methods are largely treated in hydrology and include 

mean or subgroup mean imputation (e.g. Linacre 1992), time series analysis (e.g. Lettenmaier 

1980), spatial or temporal interpolation (e.g. Filippini et al. 1994), regression (e.g. Kuligowski 

and Barros 1998), hot-deck imputation (Srebotnjak et al. 2012) and inverse distance heightening 

method (ASCE 1996). 

In time domain analysis, multivariate techniques of MD estimation are largely considered in 

hydrology and can be gathered in three groups: (1) multivariate versions of univariate methods 

including, for instance, the multivariate version of the regression model (e.g. Simonovic 1995) or 

the time series analysis approach (e.g. Bennis et al. 1997); (2) data driven methods including 

Artificial Neural Networks (ANNs), e.g. Raman and Sunilkumar (1995) and the k-nearest 

neighborhood (K-NN) approach, e.g. Kalteh and Hjorth (2009); and (3) model-based approaches 

including the Expectation-Maximization (EM) algorithm and the Multiple Imputation (MI) 

approach (e.g. Ng et al. 2009). In HFA, handling MD is generally treated in the univariate setting 

using, for instance, mean substitution (MS) or linear interpolation (LI). A number of multivariate 

imputation methods have been applied in hydrological time domain analysis but they have not 

been used in the HFA multivariate setting. In the case of streamflows, some authors resorted to 
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streamflow estimation techniques at ungauged sites (Vogel and Fennessey, 1994; Shu and 

Ouarda, 2012) to fill in missing values, based on a number of source stations, and into several 

target stations. The approaches are often based on the use of the Flow-Duration-Curve (FDC) 

approach. These methods are not considered in the present study because of their lack of 

generality (specific to streamflows). Copula-based methods are well known to be very efficient in 

modeling the dependence structure and have been used in various applications, in particular in 

hydrology (e.g. Dupuis 2007, Chebana and Ouarda 2011, Requena et al. 2013, Hamdi et al. 

2016). In the multivariate context of MD imputation, one can find a number of recent studies 

(Bárdossy and Pegram 2014, Ding et al. 2016, Käärik et al. 2009 and Marta L. Di Lascio et al. 

2015). Several families of copulas are developed, such as Gaussian and Archimedean copulas, 

and can be used to impute missing values for an incomplete dataset. 

Several studies focused on comparing MD imputation methods in multivariate time series 

analysis, such as Kalteh and Hjorth (2009) and Coulibaly and Evora (2007). Kalteh and Hjorth 

(2009) compared five multivariate methods to impute missing values in precipitation-runoff 

databases. The considered methods are self-organizing maps (SOM) which is an unsupervised 

ANNs method, multilayered ANN, multivariate K-NN, regularized EM algorithm (REGEM) and 

MI method. They found that SOM and the multivariate K-NN methods provide the most robust 

and reliable results. The ability of SOM to produce reliable estimates of missing hydrological 

data is also demonstrated in Adebayo and Rustum (2012) and Mwale et al. (2012). On the other 

hand, Coulibaly and Evora (2007) compared six ANN methods to impute missing daily weather 

records. These methods are the multilayer perceptron (MLP) network, the time-lagged feed 

forward network (TLFN), the generalized radial basis function (RBF) network, the recurrent 

neural network (RNN) and its variant the time delay recurrent neural network (TDRNN), and the 
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counter propagation fuzzy-neural network (CFNN). They found that MLP, TLFN and CFNN 

methods can provide the most accurate estimates of the missing precipitation values. 

In the present study several univariate and multivariate methods are used to investigate the 

performance of multivariate methods against univariate ones in the case of several types of MD 

patterns and different dependence levels. In the univariate context several methods can be used 

(Table 3). The MS and LI methods have been used in HFA studies such as Fleig et al. (2011) and 

Peterson et al. (2011). Another method that is used is the stepwise regression tree method (SRT) 

which is a regression model in several nodes. This method was shown to be an efficient 

technique to impute univariate MD (see e.g. Kim and Pachepsky 2010).  

According to Table 3, five multivariate imputation methods are generally used in hydrology in 

time domain analysis. The first method is the ANN method and its several variants (see e.g. 

Coulibaly and Evora 2007). According to Kalteh and Hjorth (2009), Adebayo and Rustum (2012) 

and Mwale et al. (2012), among the ANN methods, the SOM method leads to good 

performances. The second one is K-NN which is not recommended in the context of this paper 

since it consists in replacing MD by observed data from the same vector of the series (i.e. in 

(Q,V,D) series, replace MD in Q by observed values in V or D is not realistic). As a third method, 

we have the EM algorithm. It was originally developed by Dempster et al. (1977) and received 

some modifications such as the Expectation Conditional Maximization (e.g. Meng and Rubin 

1993), the Expectation Conditional Maximization Either (e.g. Liu and Rubin 1994), Alternating 

Expectation Conditional Maximization (e.g. Meng and Van Dyk 1997), Parameter-Expanded 

expectation-maximization (e.g. Liu and Rubin 1998) and the REGEM algorithm (e.g. Schneider 

2001). The latter is the most commonly used in hydrology (e.g. Kalteh and Hjorth 2009). The 

next method is the MI which consists in the imputation of several values (usually 3-5 times) for 
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each MD using an appropriate imputation model (e.g. Patrician 2002). The MI method is rarely 

used in hydrology (e.g. Kalteh and Hjorth 2009). Finally, the copula-based method is among the 

recent ones and required the fitting of a multivariate distribution to the available data (including 

the copula and the margins). 

Several softwares handling MD imputation in the multivariate context are available. In particular, 

a number of R-packages can be used depending on the imputation method, for instance AMELIA, 

CLASS, MICE, NORM, VIM, MI or CoImp. A number of other packages have also been 

developed for other environments for example: S+MissingData for S-PLUS, ice for Stata, 

PROCMI for SAS and the SOM toolbox for Matlab. 

3 General MD considerations 

Based on the previous literature review, seven imputation methods are used in the HFA 

framework in this paper (MS, LI, SRT, SOM, REGEM, MI and Copulas MD). These methods 

are described in the next section. 

Let    (1) (2) (d)

1,..., 1,...,
, ,...,i i i ii n i n

X X X X
 


   be a continuous d-dimensional sample from a 

stochastic process ( 1, )d n d  , where ―’‖ denotes the matrix transpose. Let 

   (1) (2) ( )

1,..., 1,...,
, ,..., d

i i i ii n i n
x x x x

 


  be an observation from iX , such as flood peak Q and volume 

V, at time i. Each series ( ) , 1,...,kX k d  can be written as  ( ) ( ) ( ),k k k

obs misX X X where ( )k

obsX  

represents the observed part and ( )k

misX  denotes the missing part. Before imputing MD it is 

important to know how and where the MD occurred in the series. For this we refer respectively to 

MD mechanisms and MD patterns.  
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3.1 Missing data mechanisms 

The MD mechanism determines how the MD is produced. It is a potential factor that could affect 

the imputation results (Zhu et al. 2012). There are three types of MD mechanisms (Little and 

Rubin 2002): 

 Missing completely at random (MCAR) 

In this case, MD is unrelated to both the observed or unobserved values in the series. Let ( )k

ix  be 

the value of  
( ) , 1,...,kX k d , at time  and ( )( )k

ip x  the probability that ( )k

ix is missing. Under 

MCAR assumption, ( )( )k

ip x can be expressed as  

    ( ) ( ) ( ) ( ),Xk k k k

i obs mis ip x X p x       (1) 

meaning that  ( )k

ip x  is independent of both the observed ( )k

obsX  and unobserved ( )k

misX  parts of 

( ).kX  

 Missing at random (MAR) 

It refers to the case where the incomplete data depends on the observed values but not on the 

unobserved ones. The probability ( )( )k

ip x  can be expressed as 

   ( ) ( ) ( ) ( ) ( ),Xk k k k k

i obs mis i obsp x X p x X
     (2)

 

The MAR mechanism occurs when the probability of an observation having a missing value for a 

component may depend on the available values, but not on the MD themselves. 

 Not missing at random (NMAR) 

In this mechanism, the probability of an observation having a missing value could depend on the 

observed values as well as the unobserved ones. 

i
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Most of MD in hydrological modeling may be attributed to MCAR or MAR cases (Gill et al. 

2007; Kalteh and Hjorth 2009). They are also called ignorable response mechanisms because the 

reasons for MD can be ignored during the analysis. Model-based methods require the MCAR or 

MAR assumption (Kalteh and Hjorth 2009).  

3.2  Missing data pattern 

MD imputation methods depend also on the MD pattern which describes where data are observed 

or missed in the series. Some of these methods apply to any pattern of MD, whereas others are 

limited to special ones. Several MD patterns exist in the literature such as multivariate 

nonresponse where a set of series are all observed or missing on the same set of cases, monotone 

pattern where the series can be arranged so that all (j 1) (k),...,X X  are missing for cases where (j)X

is missing, for all j = 1,…, k-1 and general pattern where the MD typically have a random pattern 

(see e.g. Little and Rubin 2002 for more details). 

The methods for handling MD in the case of multivariate nonresponse, or monotone patterns can 

be easier than the methods for general pattern. In the present study, we consider multivariate 

hydrological datasets where MD are inside the series. Figure 1 illustrates three possibilities of 

MD patterns in the bivariate case. The three possibilities are: (i) only one missing value is present 

in one of the two series, (ii) two missing values are present and are located at the same event, and 

(iii) two missing values are present but are not at the same event. These three different 

possibilities are not treated using the same methods. 

3.3 Uncertainty in MD estimation 

As indicated above, missing values are a reality in hydrology and hence they can be either 

imputed or ignored. In the latter case, given the short data records commonly available in 
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hydrology, not imputing missing data may have more impact on the analysis than in other 

application fields. The impact of missing data on HFA depends on their frequency and their 

(unknown) magnitude.  For instance, a single ordinary missing value can probably have little 

impact on an analysis. In addition, the magnitude of the impact may depend on the objectives of 

the study. For instance, in a regional HFA a missing value in a given site may lead to discarding 

the corresponding values in all sites. 

Not imputing missing data may have a negative impact on the analysis. On the other hand, 

imputed values have an uncertainty associated to their estimates. The issue of uncertainty in the 

context of missing data is important and should not be neglected as demonstrated in a number of 

studies. For instance, recently, Frazier et al. (2016) indicated that the process of estimating 

missing data is a major source of uncertainty. Indeed, the imputed values are not observations but 

a statistically plausible set of estimated values based on other information (Dziura et al., 2013). 

Bárdossy and Pegram (2014) indicated that uncertainty on those estimated values should be 

considered for any subsequent application. They highlighted the importance of quantifying this 

uncertainty. Indeed, handling inappropriately missing observations can bias the statistical 

inference and lead to possibly incorrect hydrological models because the obtained inference fails 

to reflect any uncertainty due to missing data (Schafer, 1997 and Ng et al., 2009). Schafer and 

Olsen (1998) argued that any analysis that ignores the uncertainty of missing-data prediction will 

lead to standard errors that are too small, p-values that are artificially low, and rates of Type I 

error that are higher than nominal levels. 

Even though the missing data uncertainty is important, it is generally not treated or only 

mentioned in a number of studies. In some papers, the issue is discussed very briefly such as in 

the above cited references. However, this topic is rarely treated in depth. For instance, to the best 
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knowledge of the authors, Little and Rubin (2002) may be the only reference dedicating a whole 

chapter to this issue. In the multivariate setting, the topic of the uncertainty associated to missing 

data is not mentioned, and even less in the copula-based approach, except in Bárdossy and 

Pegram (2014). 

Evaluating uncertainty due to missing data can be done through bias, standard deviation 

(variance) or confidence intervals. The multiple imputation methods are advantageous in this 

way. The copula method can also provide uncertainty since it is based on a distribution (copula). 

However, not all imputation methods allow to get uncertainty. In Little and Rubin (2002, chapter 

5), the authors focused on deriving estimates of uncertainty that incorporate the added variance 

due to missing values. However, they indicated that in many applications the missing value bias 

is often more crucial than that of the variance. They presented four general approaches to account 

for the additional uncertainty. The first approach employs explicit variance formulas whereas the 

second one involves modified imputations. The third approach is represented by the use of 

resampling methods.  In this approach, uncertainty is estimated from the variability of point 

estimates of the parameters from a suitable set of samples drawn from the original sample. It 

includes in particular the bootstrap and jackknife methods. Finally, multiple imputed data sets, 

such as a multiple imputation (MI) method, is the approach consisting in creating multiple 

completed data sets. This idea provides consistent standard errors under broad classes of 

imputation procedures. Because of the uncertainty issue, the MI approach is preferred in a 

number of studies, e.g. Schafer and Graham (2002) and Dziura et al. (2013). 

Bárdossy and Pegram (2014) discussed briefly the importance of the uncertainty issue and its 

evaluation using copulas. One of the most important advantages of the copula based approach, 
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compared to the other procedures, is that it delivers not only expected values but also full 

conditional distributions for the missing values.  

It is worth it to underline that the uncertainty can be assessed for the missing value itself as an 

estimated quantity, but also for any other statistical parameter or any subsequent inference. In the 

multivariate setting, the uncertainty can be obtained either for each component separately as in 

the univariate setting, or jointly for all components including their dependence. Even though, the 

latter is more realistic, it may be more complex to obtain since it involves complex notions 

without a unique definition, such as multivariate versions of quantiles (see Chebana and Ouarda 

2011a) or multivariate scales (see Chebana and Ouarda 2011b). The results would be confidence 

zones instead of intervals. 

3.4 Employed Softwares 

In the present paper, Matlab codes are developed for MS, Li and SRT methods. The SOM 

imputation method was carried out by the SOM toolbox which can be downloaded from the site: 

http://research.ics.aalto.fi/software/somtoolbox/. The Matlab code used for the REGEM method 

can be downloaded from the site: http://www.clidyn.ethz.ch/imputation/ index.html. Finally, for 

the MI and Copula methods, the R-packages NORM and CoImp are used respectively.  

3.5  Performances of imputation methods 

To evaluate the accuracy of the imputation methods, their performances are evaluated through a 

jackknife resampling procedure. It consists in considering each value as a missing one by 

removing it temporarily from the series. The criteria employed to evaluate the performances are 

the Relative Root-Mean Squared Error (see e.g. Chebana and Ouarda 2008) and the 

mean relative bias  (see e.g. Beaulieu et al. 2012) defined by: 

 RRMSE

 MRB
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2

1

ˆ100
, 0

n
i i

i

i i

x x
RRMSE x

n x

 
  

 
     (3) 

  
1

ˆ100
, 0

n
i i

i

i i

x x
MRB x

n x

 
  

 
      (4) 

where ˆ
ix  is the imputed value and ix is the observed one. 

These performance measures were chosen to provide a measure for the deviation of the estimated 

values from the observations (RRMSE) and to indicate whether the imputation method may tend 

to overestimate or underestimate the observations (MRB). These measures are also widely used 

in HFA. However, a variety of other measures can be considered, such as those where one can 

remove more than one value at a time. 

4 Considered imputation methods 

4.1  Mean substitution (MS) 

The MS method is the simplest imputation technique. It consists in replacing each missing value 

in the series X
(k)

, k=1,…,d by the corresponding mean of each component. This imputation 

method has been used in multivariate HFA studies (see for instance Wang et al. (2009) and Kao 

and Chang (2012)). 

4.2  Linear Interpolation (LI) 

One of the simplest methods to impute MD is the LI method. It consists of drawing a straight line 

between observed values before and after the gap and then estimating MD values by 

interpolation. In univariate regional HFA, this method was used by Fleig et al. (2011). However, 

to the authors’s best knowledge, it was not used to estimate MD in multivariate HFA.  
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4.3  Stepwise Regression Trees (SRT) 

The SRT algorithm developed in Huang and Townshend (2003) consists in fitting, in each node 

of a regression tree, a stepwise regression model (e.g. Miller 2002). Initially, all the data are in 

the first node of the tree and the partition of the samples into subsets is made recursively until no 

remaining nodes can be further split. The split of a node into two subsets is made when splitting 

reduces the residual sum of squares (RSS), such that:  

 
2

1

ˆ ,
n

d

i i

i

RSS x x x R


        (5) 

where n is the number of observations in the subset; and xi and ˆ
ix
 
represent the observed and 

predicted series from fitting a stepwise regression model. The RSS in a given node, before 

splitting, is noted RSSN. The RSS of the left and right node after splitting are computed and 

denoted RSSL and RSSR, respectively. The sum of RSSL and RSSR is the total residual sum of 

squares denoted by RSST. The RSST is computed for all possible splits, and the one leading to 

the smallest RSST is conserved and noted RSSM. If the split improves the predictions, it will be 

conserved. Therefore, a measure of the improvement (I) from splitting is  

 100%
RSSN RSSM

I
RSSN


       (6) 

The split is conserved if I is larger than the fixed minimum improvement values (Imin) and if there 

are as many observations in the nodes resulting from splitting as the predefined minimum node 

size (nmin). This procedure of splitting continues recursively until all nodes are considered 

terminal, i.e. the number of observations in that node (n) is smaller than nmin or I is smaller than 

Imin. To split a node, Imin is fixed to 1%. This value was also used in Huang and Townshend 
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(2003) and Beaulieu et al. (2012). We use nmin of : 3, 4, 5, 6, 7, 10 or 15 observations. The value 

of nmin leading to the model with the best performance is chosen. 

When SRT is used, the MDs are estimated using a regression model into the corresponding node.  

4.4  Self-Organizing map (SOM) 

The SOM method, also called feature map or Kohnen map, is the most widely used of the ANN 

algorithms designed for unsupervised pattern recognition applications (Kohonen et al. 1996). The 

ability of the SOM technique in the estimation of missing univariate and multivariate 

hydrological data was demonstrated in several studies, see e.g. Adebayo and Rustum (2012) and 

Mwale et al. (2012). However, these applications were made in time domain analysis. In the 

present study, this method is applied in the HFA context. The principal goal of the SOM is to 

transform, in a nonlinear way, a high dimensional input layer to a two dimensional discrete map. 

A typical structure of a two-dimensional SOM consists of a multi-dimensional input layer and the 

competitive or output layer. Both of these layers are fully interconnected. The neurons in the 

input layer are connected to all output layers via weight vectors. Therefore, similar input patterns 

are represented by the same output neurons, or by one of their neighbors (Back et al. 1998). The 

SOM can be viewed as a tool for reducing the amount of data by clustering nonlinear statistical 

relationships between high dimensional data into a simple relationship on a two dimensional 

display (Kohonen et al. 1996). This method preserves the most important relationship of the 

original data elements. This implies that, during the mapping, not much information is lost which 

makes the SOM method a very good tool for prediction. Note that, for prediction values outside 

the range used for the extrapolation, the SOM method cannot be used. This is mainly due to the 

fact that, as it is the case with most data-driven methods, SOM is a very poor extrapolator 
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(Adeloye et al. 2011). It has a limited capacity to predict values which have not been observed in 

the past (rarely large magnitude for instance).  

The training of the SOM is iterative and is hence similar to a sequential training algorithm. In the 

training algorithm, the whole database is presented to the map before any updates are made while 

in the sequential training, the weights are updated vector by vector. The SOM procedure can be 

summarized as follows: at the beginning of the training, weight vectors must be initialized to 

each neuron and the input vectors are compared with the SOM neurons to find the closest 

matches which are called the best matching units (BMUs). The Euclidean distance is the most 

commonly used criterion. This procedure must be iterated several times until the optimal number 

of iterations is reached or the specified error criterion is attained. The MDs are obtained as their 

corresponding values in the BMU. 

4.5  Regularized Expectation-Maximization algorithm (REGEM) 

The Expectation Maximization (EM) algorithm is a very general iterative method for Maximum 

Likelihood (ML) estimation in MD problems (Dempster et al. 1977). The EM algorithm is 

proposed for several contexts. The REGEM method (Schneider 2001), as a particular form of the 

EM algorithm, is based on estimated regression models between missing and available data. The 

REGEM method is an iterative algorithm based on E step (Expectation) and M step 

(Maximization). This method consists of: (1) replacing MD by estimated values; (2) given the 

observed data and current estimated regression parameters, estimating the mean vector and the 

covariance matrix of the data; (3) Re-estimating the MD assuming the new parameters are 

correct. The algorithm consists in iterating these 3 steps until convergence i.e. when the 

variations of the mean vector and the covariance matrix are lower than a predefined threshold. 
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The initial estimates of the model parameters are obtained from the complete database after 

substituting the missing values with the mean.  

During the past few decades, the REGEM algorithm was intensively used for MD imputation on 

multivariate normally distributed series (e.g. Little and Rubin 2002). However, the literature 

dealing with the application of the REGEM algorithm in hydrology is very sparse (e.g. Kalteh 

and Hjorth 2009). The REGEM algorithm has not yet been applied in HFA. 

4.6  Multiple imputation (MI) 

MI is a fairly straightforward procedure for imputing multivariate MD (Rubin 1987). It provides 

a useful strategy for dealing with datasets that have MD (Klebanoff and Cole 2008; Sterne et al. 

2009). It has been and continues to be developed theoretically and adapted and implemented in 

numerous statistical problems such as measurement error (e.g. Yucel and Zaslavsky 2005; Reiter 

and Raghunathan 2007). The basic idea of this method is to first generate several completed data 

sets by generating several possible values for each MD, and then to analyze each dataset 

separately. The number of completed datasets to be generated depends on the extent of the 

missing data. However, according to Schafer (1997), five completed datasets typically provide 

unbiased estimates. The Schafer’s (1999) NORM software, which was used in the present study, 

uses the data augmentation algorithm to generate five possible values for each MD. The 

multivariate normal distribution is used to generate imputations. The data augmentation 

algorithm treats parameters and MD as random variables and simulates random values of 

parameters and MD from their conditional distribution. 
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Like the REGEM method, the MI technique has been used intensively for MD imputation on 

multivariate normally distributed variables (e.g. Little and Rubin 2002). However, its application 

in hydrology remains very limited (e.g. Kalteh and Hjorth 2009) especially in multivariate HFA. 

4.7 Copula-based methods 

An appropriate approach to deal with this MD issue is using the conditional distribution because 

it contains all information about the history of measurements and about marginal distributions. 

Let H(k - 1) = (X1, X2,…,X(k – 1)) be the history data which has no missing values and assume that 

there is a missing value Xk at time point k. The conditional density function of Xk given the 

history is 
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where fH(k-1),Xk is the joint density function of the data and fH(k-1) is the density function of history. 

The MD are imputed from generated values from (7) as their mean or mode (see Käärik et al. 

2009, for more details). However, it is very difficult to obtain the joint and conditional functions. 

Therefore, the use of copulas is necessary where the joint distribution can be decomposed into a 

copula to deal with the dependence structure as well as marginal distributions for each variable. 

Käärik et al. (2009) handled the missing values with the Gaussian copula which is part of the 

elliptical family of copulas. The use of this type of copula is justified by its common usage for 

simple dependence structure, its simplicity and its analytical expression. The Gaussian copula for 

missing data imputation has been also considered, for instance, by Bárdossy and Pegram (2014) 

to the infilling of precipitation records. They have found that, for the daily data, the copula-based 
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imputation method is clearly unbiased and superior to other methods (e.g. linear regression, 

multilinear regression) in terms of point estimation based on the mean absolute error and the root 

mean squared error. 

Alternative models to the Gaussian copula, such as the Archimedean family, have been examined 

in Di Lascio et al. (2015). It was shown that the copula-based method can be successfully applied 

on multivariate missing data, independently if the missing pattern is monotone or non-monotone 

and where the data is characterized by a complex dependence structure. It also outperforms other 

methods (e.g. EM algorithm). 

5 Applications  

In this section, the previously developed imputation methods are applied to a case study of three 

stations dealing with a number of hydrological variables. It is given for illustrative purposes in 

order to emphasize the MD aspects.  

In this application, the main flood characteristics are considered, i.e. Q, V and D (duration) on 

three stations characterized by their natural regime. These stations are located in the Cote Nord 

region of the province of Quebec, Canada. The first station, namely Moisie station (reference 

number 072301), is located on the Moisie River at 1.5 km upstream of the QNSLR bridge with a 

drainage area of 19 012 km
2
. Data series of Q, V and D are available from 1979 to 2004 with 

missing values in 1999 and 2000. The Magpie station (reference number 073503) is the second 

station and is located at the outlet of Magpie Lake. The drainage basin of the Magpie station has 

an area of 7 201 km
2
 and complete data are available from 1979 to 2004. The third station is the 

Romaine station (reference number 073801) located at 16.4 km from the Chemin-de-fer bridge on 

the Romaine River, with a drainage area of 12 922 km
2
. The Q, V and D series are available from 
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1979 to 2004 with no MD. Figure 2 and Table 4 present respectively the location and general 

information about the considered stations. The correlations between Q, V and D for each station 

are presented in Table 5.  

For each station, the univariate imputation methods, i.e. MS, LI and SRT are applied to each 

series of Q, V and D. For the multivariate imputation methods, the considered series are , 

 and . The performance of the imputation methods is evaluated using the two 

stations with no MD, i.e. Magpie and Romaine stations, and the imputation methods are applied 

to estimate MD in Moisie station. The latter is considered not to evaluate the methods but rather 

as a real situation with MD. Note that even though it is mentioned above that the situation (V 

known and Q unknown) is not realistic, here these variables are treated as if they are generic. 

This is done to ensure that we represent the general situation. 

To evaluate the performance of an imputation method, it is assumed that only one value can be 

missing in each series. For the copula-based method, in order to determine the best copula to fit 

the data, we considered the appropriate goodness-of fit test and the AIC criterion (see Chebana 

2013). To keep the focus on MD, the corresponding detailed results are not presented. Briefly, the 

best copulas for (Q,V), (Q,D) and (V,D) are respectively Gumbel, Clayton and Gumbel. 

The obtained RRMSE and MRB values of imputation methods are given in Table 6. The table 

indicates that the MRB is generally positive and relatively low. Hence, the imputation methods 

can be seen as slightly overestimating the MD. In terms of the RRMSE, the methods can be 

gathered in three categories. The best results are obtained with the copula-based method where it 

ranges from 6 to 11% for one copula and from 6 to 14% for the other one. This performance can 

be attributed to the fact this methodology employs all the available information through the 

 VQ,

 DV ,  DQ,
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conditional joint distribution (copula and margins). The second category is composed of the three 

other multivariate methods (SOM, REGEM and MI) as well as the univariate SRT approach 

where the RRMSE is ranging from 13 to 18% except for SOM which reaches 28%. The 

exception to find the univariate approach SRT in this category could be related to the recursive 

error minimizing process of the approach. The SOM as a multivariate approach is not performing 

well especially for high dependencies (from 18 to 28%). A reasonable explanation could be that 

the SOM, as other ANN method, is not performing well in extrapolating or when the missing data 

are out of the range of those employed in the training phase. The last category is composed of the 

remaining univariate approaches (LI and MS) where the RRMSE is very high (from 22 to 46%) 

compared to the other two categories without no crossing (except with SOM). Their lower 

RRMSEs correspond to low dependencies (also higher RRMSEs for higher dependencies). This 

is not intuitive since we expect better imputation when variables are more dependent. This show 

the lack of the univariate methods to take into account the dependence information. Note that for 

the copula, REGEM, MI and SRT, it is not possible to discriminate high and low dependencies 

mainly because of the short RRMSE variation range. Figure 3 summarizes the above obtained 

results.  

Given the small sample size usually encountered in HFA applications (here n = 26), the selected 

copula may have an impact on the obtained results. In order to check this point, four different 

copulas are considered (all commonly employed in HFA) and the corresponding performance 

measures (RRMSE and MRB) are evaluated. The obtained results in Table 7 show that the 

performance measures are almost in the same range as those of the selected copulas in Table 6. 

Hence, in the present study, the choice of the copula seems to have little impact on the 
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performance of the copula-based imputation method. However, this result is not general and 

requires further developments. 

As an illustration, the missing data for the years 1999 and 2000 from the Moisie station data are 

imputed by the different methods. They are presented in Figure 4. Even though it is not possible 

to check which method is providing the right MD, the obtained values seem to be in accordance 

with the previous leave-one-out results. Indeed, all methods fellow almost the same pattern, 

except for the two univariate methods (MS and LI) which had the worst performances.  

6 Conclusions  

The main objectives of this study are to show the importance of MD imputation in multivariate 

(multi-variable and multi-site) hydrological series, to compare univariate and multivariate 

imputation methods and to present imputation methods that can be considered in multivariate 

HFA. Imputation methods reduce the loss of information which may lead to suboptimal results 

and hence to inappropriate decisions regarding, for instance, risk estimation of extreme event. 

A number of univariate and multivariate imputation methods are presented and applied to the 

multivariate HFA context. These methods are generally used in time domain analysis. The 

application of these methods on flood variables of Quebec datasets indicates that overall the 

multivariate approaches are generally performing better than the univariate ones and the copula-

based approach presented the clearly best performance especially in terms of the RRMSE. 

Note that in the present study we focused on the bivariate case which is the most considered case 

in multivariate HFA. However, more variables could be employed to characterize hydrological 

events. In this case, it is expected that the use of high dimensional data can improve the 
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performance of multivariate imputation methods since more information would be available and 

used for the imputation. 
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Tables  

Table 1: Main HFA steps in the univariate and multivariate frameworks with some references 

Main HFA steps Framework 

Univariate Multivariate 

(i) Exploratory analysis: 

- Outlier detection 

- Missing data imputation 

- Descriptive analysis 

For instance: 

Cuanne and Singh (1987) 

Rao and Hamed (2000) 

Kite (1988) 

 

For instance: 

Chebana and Ouarda (2011) for outlier detection in descriptive analysis 

The specific aim of the present paper: missing data imputation in the multivariate setting 

(ii) Checking the HFA assumptions For instance: 

Yue and al. (2002) 

Khaliq et al. (2006) 

 

For instance: 

Chebana et al. (2013) for testing multivariate trends in HFA 

(iii) Modeling and estimation For instance: 

Cuanne and Singh (1987) 

Bobée and Ashkar (1991) 

 

For instance: 

Shiau (2006) 

Zhang and Singh (2006) 

(iv) Risk evaluation and analysis For instance: 

Rao and Hamed (2000) 

For instance: 

Shiau (2003) 

Chebana and Ouarda (2011) 
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Table 2: Summary of missing data frameworks with some references 

 

 Framework  Fields 

 Statistic Hydrology 
Univariate Time series 

analysis 

Large body of literature: 

Gelason and Staelin 

(1975) 

Chow and Lin (1976) 

Azen et al. (1989) 

 

Large body of literature: 

Lettenmayer (1980) 

Jefferey et al. (2001) 

Teegavarapu and Chandramouli 

(2005) 

 

Frequency analysis Large body of literature: 

Erol (2011) 

Kodituwakku et al. (2011) 

 

Sparce body of literature: 

Fleig et al. (2011) 

Peterson et al. (2011) 

 

Multivariate Time series 

analysis 

Large body of literature: 

Frane (1976) 

Hopke et al. (2001) 

Honaker et al. (2010) 

 

Large body of literature: 

Ng et al. (2009) 

Kalteh et Hjorth (2009) 

 

Frequency analysis Sparce body of literature: 

Kelly et al. (2004) 

 

The specific aim of the present 

paper 
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Table 3: Overview of imputation methods in MD context 

Techniques Description When to be used Avantages Disadvantages References (e.g.) 

Univariate setting 

 Mean substitution Missing data are replaced by 

the mean 

Less than 10% of data are 

missing 

Easy to use Underestimates the variance 

and the degree of freedom 

Linacre (1992) 

 Subgroup mean 

substitution 

Missing data are replaced by 

the mean of a subgroup 

When it is easy to define 

subgroups 

Gives better estimates when 

compared to mean substitution 

Underestimates the variance, 

subgroups are defined 

arbitrarily 

Linacre (1992) 

 Time series 

analysis 

Determines the model and the 

corresponding parameters and 

then estimates missing data 

High autocorrelation Takes into consideration the 

temporal variability in the data 

The necessity to define, a 

priori, the functional form of 

the relationships 

Lettenmaier (1980) 

 Interpolation Interpolate two points of data, 

one immediately before the 

gap and the other soon alter 

the gap and interpolating the 

missing data 

Only suitable in stable 

periods and short length of 

the gap 

Gives better estimates of 

statistical inference when 

well used 

Limited to special cases that 

rarely occurs 

Filippini et al. (1994) 

 Regression Estimate parameters of the 

regression and use them to 

estimate tnk«tng data 

Data sets exhibiting 

significant temporal 

patterns 

Estimated data preserves 

deviation from the mean and 

the shape of the available 

Could distort the number of 

degrees of freedom. Difficult 

to use in noisy data sets 

Kuligowski and Barros 

(1998) 

 Hot-deck 

imputation 

Replace missing data with 

value from a similar case 

Data are missing in certain 

patterns 

Missing values are replaced 

by real values 

Problematic if no other case 

closely related to the missing 

value 

Srebotnjaketal (2012) 

 Inverse distance 

weighting 

Define the neighborhood and 

the weighting parameters. 

Then estimate missing data by 

spatial interpolation using 

weighting 

Stations are highly 

correlated 

Gives better estimates of 

statistical inference when 

well used 

Problematic with the 

existence of negative 

autocorrelation 

ASCE(1996) 

Multivariate setting 

 k-nearest neighbor Estimate the missing data 

based on the closest training 

examples in the feature 

space 

When the feature space does 

not require the selection of 

a predetermined model 

Flexible and missing values 

are replaced with real 

values 

Low accuracy rate in 

multidimensional data and 

computation cost is quite high 

Kaltehand Hjorth (2009) 

 Artificial neural 

networks 

Determine the architecture of 

the ANN, estimate 

parameters and estimate 

missing data 

When assumptions about the 

missing data mechanism 

cannot be made and in case 

of nonlinear relationships 

between variables 

Ability to model complex 

patterns without a prior 

knowledge of the underlying 

process 

Numerous parameters to 

estimate and gives unrealistic 

results when such noise is 

available in the data 

Raman and Sunilkumar 

(1995) 

 Expectation 

minimisation 

Estimate model parameters by 

iterative process that 

continuous until convergence 

When distribution 

assumptions are realistic 

Increased accuracy if model 

is correct 

Strict assumptions, complex 

algorithm and takes time to 

converge 

Ng et al. (2009) 

 Multiple Specify and appropriate When assumptions are The variability of the Strict assumptions and takes Ng et al. (2009) 
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imputation imputation model, estimate 

more than one imputed value 

for each of the missing data 

realistic imputed values can be 

considered 

time to converge 

 Copula-based Determine the conditional 

distribution given the 

historical data. Generate the 

missing values from the 

obtained distribution 

Both variables are 

continuous. Complex 

pattern of dependance 

Flexible. Superior 

performance with 

highlighting the dependence 

Requires fitting of a copula. 

Not developed for all copulas 

Käärik et Käärik (2009) 
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Table 4: General characteristics of Moisie, Magpie and Romaine stations 

Station 

name 

Station 

number 
Latitude Longitude 

Period of 

records 

(#years) 

Missing data 
Area 

(Km
2
) 

Mean 

streamflow 

(m
3
s

-1
) 

Moisie 072301 50 21 09 -66 11 12 1979-2004 (26) 1999, 2000 19 012 391.62 

Magpie 073503 50 41 08 -64 34 43 1979-2004 (26) - 7 201 163.56 

Romaine  073801 50 18 28 -63 37 07 1979-2004 (26) - 12 922 282.89 
 

Table 5: Correlations between Q, V and D 

 

Stations 

Variables 

Q V D 

Moisie     

 Q 1 0.59 -0.07 

 V  1 0.66 

 D   1 

Magpie     

 Q 1 0.70 -0.20 

 V  1 0.44 

 D   1 

Romaine     

 Q 1 0.77 -0.36 

 V  1 0.18 

 D   1 
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Table 6: RRMSE and MRB of univariate and multivariate imputation methods  

                                                                                                             RRM SE                                              MRB 

Method                             Magpie                  Romaine          Magpie       Romaine 

                                                                                         Q 

MS 41.09 46.26      9.73 11.93 

Univariate LI 32.33 30.73      5.65 4.63 

SRT 16.65 17.68      2.94 2.12 

SOM 28.24 27.40      5.13 4.18 

Multivariate REGEM 16.85 17.77      3.05 2.27 

MI 16.14 17.31      0.83 -4.08 
Copula (Q,V) 8.93 8.34      4.26 14.36 

Copula (Q,D) 12.62 8.54      9.28 15.18 
 
                  V 

MS 

Univariate        LI 

SRT 

    42.54  

    37.64  

    17.31 

    39.25  

    31.08  

    15.26 

12.81  

  8.94    

  1.63 

  11.49  

    6.52  

    2.10 

SOM 19.37 17.88     -1.07     2.69 

Multivariate REGEM 17.33 15.31      1.71     2.16 

MI 16.98        14.69     -0.17    -2.20 
Copula (Q,V) 10.67 7.91    12.88      4.38 

Copula (V,D) 13.59 12.43    34.62    25.52  
   D  

MS 28.21 22.59 5.70 6.41 

Univariate LI 28.67 22.58 5.48 5.01 

SRT 17.54 13.81 1.94 3.31 

SOM 15.04 17.52 -1.58 5.05 

Multivariate REGEM 17.75 13.77 2.07 3.45 

MI 17.21 13.38 -0.12 -2.50 
Copula (Q,D) 6.06 7.71 -0.71 16.12 

Copula (V,D) 6.36 9.28 0.36 24.51 

     

     

Gray color indicates the methods with smallest RRMSE or MRB for each variable.  

 

 

 

Multivariate 
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Table 7: Comparison of RRMSE and MRB for the Magpie and Romaine stations 

using Gaussian, Clayton, Gumbel and Frank copulas 

 

        Magpie                                                                         Romaine 

      Q                                                                 Q 

Copula RRMSE      MRB Copula           RRMSE    MRB  

Gaussian 6.11 3.98 Gaussian 8.89 11.69 

Clayton 12.62 9.28 Clayton 8.54 15.18 

Gumbel 8.93 4.26 Gumbel 8.34 14.36 

Frank 8.19 10.16 Frank 9.69 15.05 

      V                                                                   V 

RRMSE       MRB                                     R R MS E    M R B  

Gaussian 15.89 33.84 Gaussian   9.31 4.44 

Clayton 9.86 15.40 Clayton 9.52 12.77 

Gumbel 10.67 12.88 Gumbel 7.91 4.38 

Frank 10.19 30.10 Frank 12.60 14.66 

        D                                                                      D 

RRMSE       MRB                                     R R MS E    M R B  

Gaussian 6.20 6.51 Gaussian 10.33 26.78 

Clayton 6.06 -0.71 Clayton 7.71 16.12 

Gumbel 6.36 0.36 Gumbel 9.28 24.51 

Frank 6.28 3.96 Frank 8.24 17.13 
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Figures 

 

Figure 1: Examples of missing data patterns. Gray color indicates available observed data. 

 

   

Figure 2: Geographical locations of Moisie, Magpie and Romaine stations. 
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Figure 3: Summary of the RRMSE results of the considered methods. 

 

 

Figure 4: The Q series of the three studied stations and the estimation of MD in Moisie 

station. 
 


