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Abstract

The acid extractable organics (AEOs) containinghtfagnic acids (NAs) in groundwater
overlying undeveloped shale gas (Saint-Edouarcdmgind tight oil (Haldimand sector, Gaspé)
reservoirs in Québec, Canada, were analysed ugghmgrésolution Orbitrap mass spectrometry
and thermal conversion/elemental analysis — isot@p@ mass spectrometry. As classically
defined by GH2n+-0,, the most abundant NAs detected in the majoritgrolindwater samples
were straight-chain (Z = 0) or monounsaturated (Z2y Gg and Gg fatty acids. Several
groundwater samples from both study areas, howes@mained significant proportions of
presumably alicyclic bicyclic NAs (i.e., Z = -4) e Go-C,5 range. These compounds may
have originated from migrated waters containingiféerent distribution of NAs, or are the
product of in situ microbial alteration of shale organic matter anetr@eum. In most
groundwater samples, intramolecular carbon isot@ees generated by pyrolysi&;”(prr) of
AEOs were on average around 2-3%. heavier than theserated by bulk combustios{C) of
AEOs, providing further support for microbial reworg of subsurface organic carbon.
Although concentrations of AEOs were very low (8 ghg/L), the detection of potentially toxic
bicyclic acids in groundwater overlying unconventb hydrocarbon reservoirs points to a
natural background source of organic contaminamisr g0 any large-scale commercial

hydrocarbon development.

Keywords. Acid extractable organics; Orbitrap; Carbon isesydJnconventional hydrocarbons;

Bicyclic acids; Principal Components Analysis
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Highlights:

* NAs were found in groundwater overlying undevelopbkdle gas and tight oil plays.
* Most abundant NAs were straight-chain or monoumasgd Gs and Ggfatty acids.
» Alicyclic bicyclic NAs (Z = -4) were detected inws&ral groundwater samples.

* Natural background source of organic contaminants o hydrocarbon extraction.

1. Introduction

Naphthenic acids (NAs) are a complex mixture ofyk#ubstituted acyclic and
cycloaliphatic carboxylic acids described by the@eal chemical formula (2,.20,, where n
indicates the carbon number and Z is zero or ativegaven integer that specifies the hydrogen
deficiency resulting from ring formation (Clememted Fedorak, 2005). Found naturally in crude
oil deposits, NAs are toxic to a wide range of aguarganisms including microalgae (Debenest
et al.,, 2012), fish (Marentette et al., 2015; Saarét al., 2013), and amphibians (Melvin and
Trudeau, 2012), and also pose a problem duringebiling due to their corrosivity (Jayaraman
et al., 1986; Laredo et al., 2004; Tomczyk et2001). Due to their high abundance in bitumen,
most recent research into the environmental bebawaod fate of NAs has been focused on
northern Alberta’s Athabasca oil sands region, whee alkaline water hot extraction process
used in surface mining concentrates these compoundsl sands process-affected water
(OSPW). Potential seepage of the large volumesSPW stored in tailings ponds (Ahad et al.,

2013; Frank et al., 2014, Oiffer et al., 2009; Resal., 2012; Savard et al., 2012) poses a risk to
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local ecosystems and is one of the main environahenhcerns associated with oil sands mining

operations.

Spurred on by the need to better understand thmplex group of emerging
contaminants (Headley et al., 2013), the past dedab seen significant advances in the
characterization, identification and quantificatioh NAs in environment samples. High and
ultrahigh resolution mass spectrometry (MS) analgsirried out using Orbitrap MS and Fourier
Transform lon Cyclotron Resonance (FTICR) MS hasalestrated that the acid extractable
organics (AEOs) fraction of most samples from the sands region contain not just the
classically defined NAs as described previouslyt bther compounds which incorporate
nitrogen and/or sulfur atoms, and have various I¢ewé unsaturation and aromaticity (see
Headley et al., 2016, and references therein). rOtfeek carried out using multidimensional
comprehensive gas chromatography mass spectrof@@yx GC-MS) has identified individual
compounds in OSPW such as adamantane diamondods gBlowland et al.,, 2011la),
monoaromatic C-ring steroidal acids (Rowland ef aD11b) and bicyclic aromatic acids

(Bowman et al., 2014; West et al., 2014).

Microbial degradation of petroleum hydrocarbons egates carboxylic acids (Atlas,
1981; Barth et al., 2004; Meredith et al., 2000pffhand Aiken, 1998; Watson et al., 2002);
consequently, highly biodegraded, viscous crudedeibosits such as Athabasca oil sands
bitumen generally contain a significant compondrABOs. Other organic-rich sediments such
as coal and shale, however, may also contain N#aigit-chain fatty acids, which fall within
the definition of NAs described by,B2n+70z(i.€., Z = 0), were detected in supercritical gad a
solvent extracts of lignite and sub-bituminous sd&nape et al., 1981). Using FTICR-MS, Scott

et al. (2009) detected a range of NAs in distilledter leachates percolated through crush
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samples of lignite and sub-bituminous coal. In shfabm the Green River formation in the
western USA, normal (E1,,0,) and isoprenoid ((H2n-204) acids were found to be the major
extractable acidic constituents (Eglinton et a@68; Haug et al., 1971). Naphthyl-carboxylic
acids and cycloaromatic acids were also partlytiied Haug et al. (1971). Exploiting the much
higher resolution afforded by FTICR-MS, Salmon let(2011) reported a series of polar CHO,
CHOS and CHON compounds betweegy @nd G+ in Green River shale. The major series
(CHO) confirmed the abundance of normal and isagckacids found in earlier studies, whereas
the CHOS and CHON series contained sulfoxide graumasnitrile-type compounds. FTICR-MS
analysis has also revealed a wide array of nitramgeriaining compounds in Chinese and

Russian shale oils (Bae et al., 2010; Chen €2@12; Tong et al., 2013).

Although the geochemical properties of bitumen #mel processes involved with its
extraction can account for the environmental sigaifce of AEOs in the Athabasca oil sands
region, as outlined above, the development of umeotional fossil fuels may also release
potentially harmful NAs into the subsurface. Recgotk has reported a wide range of organic
compounds in hydraulic fracturing fluids, producedaters and formation waters from
unconventional natural gas extraction throughoatUW$A (Drollette et al., 2015; Hoelzer et al.,
2016; Orem et al., 2014; Stringfellow et al., 201M)e organic compounds detected in produced
waters included straight-chain fatty acids (e.gz, ©14 and Gg) thought mainly to be the
biodegradation products of geopolymeric substapcesent in the shale (Hoelzer et al., 2016;
Orem et al., 2014; Orem et al., 2010). Despitepibtential for naturally-occurring NAs in shale
to be released into produced waters during uncdioreal hydrocarbon extraction, to the best of
our knowledge, no attempt to characterize theserwatpecifically for these compounds has

been reported in the literature.
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In this study, AEOs in groundwater overlying undeped shale gas (Saint-Edouard) and
tight oil (Haldimand sector, Gaspe) reservoirs tedan the province of Québec, Canada, were
analysed using high resolution Orbitrap MS andrtfarconversion/elemental analysis — isotope
ratio mass spectrometry (TC/EA-IRMS). The intrancalar carbon isotope ratios generated by
online pyrolysis &13prr) using TC/EA-IRMS were previously used to distiisfu bitumen-
derived sources of AEOs in the Athabasca oil saagi®n (Ahad et al., 2013; Ahad et al., 2012).
AEOs extracted from unprocessed oil and naturatlyuaring oil seeps from the Haldimand
sector and crushed samples of Upper Ordoviciaresiedm the Saint-Edouard region were also
characterized. The main objectives of this studyewe 1) confirm the presence of NAs (as
defined by the @species class in AEOSs) in groundwaters from tlgeseerally pristine aquifers,
2) carry out a Principal Components Analysis (P@Q8ing all samples’ species data to compare
AEOQ distributions in groundwater with those fromtgxatial NA sources, and 3) evaluate the
potential of §"°C,y, values to discriminate sources of AEOs in uncotiveal hydrocarbon
deposits from other locations than Canada’s oitlsargion. We have opted to use the classical
definition of NAs (GH2n+202) since much of the paper focuses on thesfecies. The term
AEOs is used when discussing the S and N heteresoamd aromatic components in these

samples.

2. Materialsand methods
2.1. Study sites and samples

The Haldimand sector, Gaspé, Québec, Canada (Figureontains a tight sandstone

petroleum reservoir (York River and Battery Pointniations, Middle Devonian) underlying a
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shallow fractured rock aquifer system (Raynauldlgt2014; Raynauld et al., 2016). The drilling
of a horizontal exploration well was halted in Dateer 2012 by a municipal regulation aimed at
protecting the local groundwater, although seveeatical exploration wells had been previously
drilled in the region. One unprocessed oil (Haldichaoil) and two naturally-occurring seep
samples (POT2 and S1) from the Haldimand sectoe wellected during autumn 2012, and
groundwater samples (12 L) from three observatietisf(PH-02, POH-11-10 and POH-11-14)
and one municipal well (SJ/PE-02) were collectedndusummer 2013. Oil and seep samples
were collected using pre-combusted (45 for hours) amber glass jars with
polytetrafluoroethylene (PTFE)-lined lids. Groundera samples were collected using
fluorinated HDPE carboys. Further information ore tgeology and hydrogeology of the
Haldimand sector and sampling methodology and ieektions can be found in (Raynauld et

al., 2014) .

The Saint-Edouard region (southern Québec, Carfédare 1) contains at depth (> 2
km) units of the Upper Ordovician Utica Shale, whitas been considered as an excellent source
rock for conventional hydrocarbon exploration areswecently evaluated for its unconventional
reservoir potential (Chatellier et al., 2013; Lavaat al., 2014; Rivard et al., 2014). Recent
interest in the area has focused on potential tigkecal aquifers due to potential future shale
gas development (Lavoie et al., 2014; Bordeleaal.e?015; Lavoie et al., 2016) and recent
research results have documented the presencebefrgpping hydrocarbon-loaded Utica-
equivalent or younger Late Ordovician shales (Lavet al., 2016). However, as with the
Haldimand sector of Gaspé, the current governme@ueébec moratorium on fracking has thus
far prevented further exploration and the assessmwkethe commercial shale gas production

potential. Groundwater from observations wells eixah here were obtained from wells drilled
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in the shallow fractured rock aquifer (< 60 m dépththe Lotbiniere (F1), Les Fonds (F2 and
F4) and Nicolet formations (F3, F5, F7 and F8) @12 2014 and 2015 (Lavoie et al., 2016).
Two shale samples were collected from the Nicdi&@t énd F8), one from the Lotbiniere (F20)
and one from the Les Fonds formations (F21) wdisce drilling mud was not used to collect
these cores, the drilling process is not expectettave introduced a significant amount of
hydrocarbon contamination into the wells. Core dasmpvere wiped down with 70% ethanol
after collection, wrapped in pre-combusted (460for 4 hours) aluminum foil and stored in the
freezer at -20°C until analysis. The Lotbiniére and Les Fonds fations have significantly
higher total organic carbon (TOC), hydrogen inde),(genetic potential and transformation
ratios compared to the Nicolet formation (Lavoiakt2016). Groundwater samples (12 L) from
observation wells and local residential wells (INB&, Zone 10R, Zone 11S, Zone 12R, Zone
2S, Zone 5R and Zone 9R) were collected during 20034 and 2015 using fluorinated HDPE
carboys. Further information on the geology andrbgdology of the Saint-Edouard area and
sampling methodology and well locations can be ébun Lavoie et al. (2014), Lavoie et al.

(2016) and Bordeleau et al. (accepted).
2.2. Extraction of acid extractable organics (AEOS)

Prior to crushing, shale cores were split into agpnately 1 cm thick “disks” using a
stainless steel hammer and chisel rinsed with methaichloromethane (DCM) and hexane.
Around 1 cm from the edges of the disks were cldppié and discarded. Samples F7 and F8
were homogenised using a metallic mortar and pestteereas samples F20 and F21 were
homogenised using a SPEX SamplePrep (Metuchen85lX) Shatterbox grinding mill. The

stainless steel grinding container and puck werared with solvents between samples.



175 The AEOs containing NAs in groundwater, seep, ol &@rushed shale samples were
176 extracted following protocols similar to those désed by Ahad et al. (2012). For aqueous
177 samples, approximately 0.5 L (seeps) and 12 L (ghaater) was acidified to pH 4.5 and
178 extracted using loose Strata-X-A solid phase etacsorbent (Phenomenex, Torrance, CA,
179 USA). Crushed shale samples (~ 140 to 1000 g) wetacted in a soxhlet apparatus using a
180 mixture of 9:1 DCM to methanol. Following a subsenure-dissolution in about 30 mL alkaline
181 solution, AEOs in shale were extracted in the samaner as aqueous samples. The Haldimand
182 oil sample (~ 200 g) with relatively high volattedrocarbon content was evaporated in a rotary
183 evaporator for 10 min at 4C to remove volatile hydrocarbons and then dissbime300 mL of
184 cold hexane while stirring. Asphaltene, the hexiaseluble fraction, was filtered off to recover
185 the maltene fraction. The extraction was repeatecetto remove most of the asphaltenes. The
186 maltene fraction was then dissolved in 100 mL hexamd extracted with 4 x 100 mL 1N NaOH
187 in water. The aqueous phase was further extracidd2:x« 100 mL hexane. The hexane fraction
188 was discarded. The aqueous fraction containing A&&s acidified to pH 2 and extracted with
189 10% methanol in DCM (5 x 100 mL). Process blanksewaarried out using 12 L of Mill-Q
190 water for aqueous samples and an equal amounthw#ngs as used for extraction of oil and

191 crushed shale samples.
192  2.3. High-resolution mass spectrometry (MS)

193 Qualitative and semi-quantitative analysis of suysles of AEOs were completed at
194 Environment and Climate Change Canada (SaskatéqriC&ada) by fL loop injection (flow

195 injection analysis) using a Surveyor MS pump (TherRisher Scientific Inc.) and a mobile
196 phase of 50:50 acetonitrile/water containing 0.1%4,8H. Mass spectrometry analysis was

197 carried out using a dual pressure linear ion trapittap mass spectrometer (LTQ Orbitrap Elite,
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Thermo Fisher Scientific, Bremen, Germany) equippath an ESI interface operated in
negative ion mode. Data was acquired in full scadenfrom m/z 100 to 600 at a setting of
240,000 resolution. The majority of ions were syngharged, and the average mass resolving
power (MAm50%) was 242,000 at m/z 400. Mass accuraciesseftlean 1 ppm were obtained
using a lock mass compound (n-butyl benzenesulfaenfor scan-to-scan mass calibration
correction. Concentrations of AEOs were determimsthg a five point external standard
calibration of Athabasca oil sands OSPW-derived AEDknown concentrations as described

elsewhere (Frank et al., 2014; Hughes et al., 2017)
2.4. Intramolecular and “bulk” stable carbon isotefy**C) analysis

The carbon isotope ratio of the ¢@enerated by the pyrolytic decarboxylation of AEOs
(6'%C,yr) was determined by TC/EA-IRMS (Delta+ XL, Thermimufigan) at the Delta-Lab of
the Geological Survey of Canada (Québec, QC, Can&dd details of the protocol for these
analyses are found in Ahad et al. (2012). As naiggnt variability in intramolecular carbon
isotope values was observed across the entire nlateweight range of AEOs (Ahad et al.,
2012), here we repoﬁlg’Cpyr values from samples not separated into differeasafractions.
The “bulk” or non-intramolecular carbon isotopeigatof AEOs generated by combustion were
analyzed by EA-IRMS using a Costech EA (Valenci&, OSA) interfaced with the Delta+ XL
IRMS system. Based on replicate standard and saamallyses, the uncertainty f&Pprr and

bulk §'*C analyses was +0.6 and +0.3%o, respectively.

3. Resultsand Discussion

3.1 Distributions of AEOs

10



220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

At 0.01% by weight of petroleum, the amount of AE@ Haldimand oil was around 10
times lower than that determined in Athabascaanids bitumen (Ahad et al., 2012). The amount
of blank-corrected AEOs in the two shales from ltb&iniere (F20; 0.51 pg/g dry weight) and
the Les Fonds (F21: 0.49 ug/g dry weight) formatiarere greater than the Nicolet formation
shales (F7 and F8; 0.19 and 0.27 pg/g dry weightjile this discrepancy may be largely
attributed to the higher TOC and hydrogen indexieglin the F20 and F21 cores (Lavoie et al.,
2016), the more robust homogenization techniquel ueeprepare these two samples (i.e.,

electric mill versus manual grinding) may have aleatributed to this difference.

The concentrations of total AEOs in all groundwat@mples were low, ranging from 0.1
to 1.0 mg/L in the Haldimand sector and from 0.11t8 mg/L in the Saint-Edouard region
(Supplementary data, Table S1). The concentrabbmstal AEOs in seeps from the Haldimand
sector were slightly higher at 2.1 and 4.0 mg/Ldamples POT2 and S1, respectively. The low
levels of AEOs in groundwater observed here werglai to those found in background surface
water and groundwaters in the Athabasca oil sasgism not significantly impacted by bitumen,
whether mining-related or naturally occurring (Ahetdal., 2013; Frank et al., 2014; Ross et al.,

2012).

Naphthenic acids, as classically defined hji4.-0., were detected in all the samples
analysed here. As a percentage of the total AH@s(Qt species class (Table S1) was highest in
oil (39.4%), seep (16.7 to 59.4%) and shale sam@éd to 73.8%) compared to groundwater
samples from both Saint-Edouard (3.7 to 12.3% aBdd®9.7% in observation and residential
wells, respectively) and Gaspé regions (0.7 to 4.8Phe most common compounds found
within the G species class in shale and the majority of groateéwsamples were straight-chain

(Z = 0) or monounsaturated (Z = -2)¢Gand Gg fatty acids (Table 1). These ubiquitous
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265

compounds are two of the most abundant biologigaibduced lipids and thus typically
comprise a main component of naturally-occurringckground” AEOs (Headley et al., 2011,
Ross et al., 2012). Process blanks were also deedirey straight-chain g and Gg fatty acids
(Figure S1), however, since the blank comprised/<df the total AEO mass in oil, seep and
groundwater samples, it is considered a negligddmponent in these samples’ profiles. In
contrast, the concentrations of AEOs in shale m®ttanks were between 6 to 20% of the total
AEO masses. The higher shale process blank ibated to trace fatty acid contamination in the

DCM used during extraction.

The distributions of NAs as a function of carbanmber, Z value and percentage of the
total O, species class are plotted in Figure 2 for fouresgntative samples from each of the
Gaspé and Saint-Edouard regions. Due to their pneggmtly high levels in many of the
samples, Z =0 (all) and Z = -2 {£and Gg) fatty acids were excluded from most of the pesfi
to better illustrate the distribution patterns e$d abundant NAs, in a manner similar to that
carried out in another study examining natural gaokind levels NAs (Ross et al., 2012). The
two exceptions are the oil and seep samples froen Haldimand sector, for which the

distributions of all NAs are presented on Figure 2.

Comprising almost half of the total,@lass, straight-chain NAs in the @ C, range
centred on & dominated the Z series distribution in the Haldichan (Figure 2). Significant
abundances of NAs with Z = -2 (one cycloalkyl riregid Z = -8, likewise centred onLCwere
also detected. The dominance of light moleculagivestraight-chain or monocyclic NAs points
to a low degree of degradation in the Haldimandderoil (Hughey et al., 2008; Kim et al.,
2005). The representative seep sample (POT2) csntaihigher component of Z = -2 to -12

NAs, and a slightly heavier distribution centredvieen Gg to Cig. This shift in NA distribution

12
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is expected as crude oil undergoes degradationnéiugt al., 2008; Kim et al., 2005) and thus

points to natural weathering in the surface oipseeer time.

Regardless of geological unit, the distributionsalh four Saint-Edouard region shale
samples were similar and dominated by G Cs NAs ranging from Z= -2 to Z= -16 (Table 1
and Figure 2). The compounds included a suite o MAth Z = -8 and -10 in thegdo G
range, which given the number of carbon atoms pdmtcompounds containing aromatic rings
(Figure 2). Relatively smaller proportions of mopcda NAs or monounsaturated fatty acids
(i.e., Z = -2) and presumably alicyclic bicyclic NAZ = -4) in the & to G range were also
detected (Figure 2). With the exception of a micmmponent of g€to G Z = -8 NAs, none of

the compounds shown on Figure 2 were found in gtraleess blanks (Figures 2 and S1).

Bearing in mind the dominantgand Ggfatty acid peaks found in most samples, the NA
distributions in the majority of groundwaters (apnresented by wells F7 and PH-02 on Figure
2), irrespective of regional origin (Saint-EdouardGaspé) or well type (observation, residential,
municipal), could in general be characterized againing very low amounts of a narrow range
of NAs. The exceptions to this pattern were thredisMfrom the Saint-Edouard region (F2, F4
and Zone 10R) and one from the Gaspé region (POB4)1all four of which contained
noticeably more significant levels of presumabigyallic bicyclic (Z = -4) Go-Ci1s NAs (Figure
2). Interestingly, in the Saint-Edouard region, esaV of these wells (Zone 10R and F2) were
situated near fault zones (Bordeleau et al., aedgptsuggesting the migration of waters
containing a distribution of NAs different from thextracted from the shale samples examined
here. Another possibility is that bicyclic acidsreigenerated frorm situ microbial alteration of
shale organic matter (Saint-Edouard) and petrol@Baspé), as was inferred for the POT2 seep

sample from the Haldimand region (Figure 2). Fatance, Wilde et al. (2015) has suggested

13
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that the bicyclic acids identified in OSPW reprdséme biotransformation products of the
initially somewhat more recalcitrant bicyclanespetroleum. Synthetic bicyclic acids in the;C

to Ci3 range were found to be acutely toxic (Jones et2éll1); thus the occurrence of similar
NAs in groundwater from the Saint-Edouard and Gaspgéns indicates a potential background

source of organic contaminants.
3.2 Principal Components Analysis (PCA)

Principal Components Analysis (PCA) was carried ontlog-transformed (log(x+1))
species percentagesx(NN«Sx, NxOyx, NxOLS,, OSs, O to Opand §) in AEOs using SigmaPlot
13.0 (Systat Software Inc., San Jose, CA). The dat log-transformed to improve normality
and to avoid the inherent bias in compositiond. (iclosed) datasets consisting of proportions
that sum up to a constant such as 100% (Filzmdsa,e2009). The PCA loadings (Figure 3a)
and scores (Figure 3b) for the first (PC1) and 8dd®C?2) principal components accounted for
51.50 and 15.44% of the total explained varianespectively. PC1 was strongly (r > 0.5)
positively correlated with i NiS,, and @Q to O,0, and strongly (r > 0.5) negatively correlated
with OS;, O, and Q. PC2 was strongly (r > 0.5) negatively correlatgth N,O,S,, OS;, Oy,

04 and S.

As illustrated on Figure 3b, the PCA scores péerled several distinct groupings for
the samples analysed as part of this study. Thditdahd oil, shale samples, shale process blank
and one of the groundwater process blanks werepgrbulosely together on the left side of the
plot and away from most of the other samples chi&sl a result of their greater component gf O
and Q species (Figure 3a). Another groundwater procémskbcontaining a high amount of

OS« plotted in the lower left section of the graph svim any other samples. Groundwater
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samples plotted to the right as a reflection ofgresater components of more oxygenatedain
NxSx species (Figure 3a), with the four groundwater @amfrom the Gaspé region grouped
together further to the right than most samplemfthe Saint-Edouard region. Amongst Saint-
Edouard region samples, as a result of greater cpemts of N- and S-containing species in
residential wells, these samples generally plolbeeer on the y-axis than groundwaters from
observation wells (Figure 3a). The two seep sanfpbes the Haldimand region plotted between
the oil/shale and groundwater groupings, with the seep sample (POT2) containing a
naphthenic acid profile suggestive of degraded(lijure 2) plotting further to the left and

closer to the oil/shale grouping (Figure 3b).

The wide range of highly oxygenated and nitrogend aulfur-bearing compounds
present in both pristine and contaminated grounensge.g., Ahad et al., 2013; Longnecker and
Kujawinski, 2011) reflects both the origin and koghemical processing of dissolved organic
matter. Given the variability in water types andllwmnditions found in the Saint-Edouard
region (Bordeleau et al., accepted), thereforis, ot surprising that groundwater samples from
this area were plotted across a wide spectrum erP@®2 axis (Figure 3b). An additional PCA
carried out using only observation and residentigls from the Saint-Edouard region, however,
suggested an important geological role in contigllAEO distributions (Figure S2). A greater
number of samples from the Lotbiniere and Les Fdadsations are needed to further examine

this influence.
3.3 Stable carbon isotope analysis
Stable carbon isotope ratios of AEOs (Figure 4)egated by pyrolysisS(“?’prr) ranged

between -35.2 to -19.5% and were on average ardi3ého heavier compared to those
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generated by bulk combustios™{C; -31.7 to -27.2%.). The one noticeable excepti@s the
Haldimand oil sample, whose buk’C value (-28.5%0) was significantly more positiveuthits
813prr value (-35.2%o). The first and previous applicatafnintramolecular isotopic analysis of
AEOs, carried out on environmental samples fromAti@abasca oil sands region, found an ~9%o
enrichment in samples containing predominantlyrbéa-derived AEOséSC‘3prr around -21%o)
compared to those comprised of non-bitumen-deriy@dnt and soil organic matter,
demonstrating the ability of this technique to diminate certain sources of NAs (Ahad et al.,
2013; Ahad et al., 2012). In contrast, b&lRC values of AEOs showed no systematic variation
between sample types and thus were not considertble for source apportionment (Ahad et
al., 2012). Samples containing mostly bitumen-d=tiAEOS were also strongly correlated with

O, and QS species classes (Ahad et al., 2013).

In groundwater samples from the Saint-Edouard aadgp€ regions, neither systematic
trends in813prr values (Figure 4) nor significant linear relatioiprshbetweert‘SBCpyr and key
species classes were evident (Figure S3). Otharttieadistinct offset betweet*C andé‘>l3prr
values, the lack of any discernible trends in ipmodata is attributed to the overall low
proportions of @ and dominance of {g and Gg fatty acids in most groundwater samples.
Although the proportion of @is relatively high in shale and petroleum samgkgure 3, Table
S1), the organic matter in the Saint-Edouard andp&aegions has not been subjected to the
same geological processes which has resulted irh mare enriche(ﬂil?’cpyr values (i.e., ~ -
21%o) in oil sands bitumen AEOs. For instance, fgaiticantly more depleted"C,,, compared
to bulk 8*3C value in the Haldimand oil sample (Figure 4) confs to the notion of petroleum
that has not undergone extensive degradation, serb®xyl group carbon is generally presumed

to be isotopically lighter than the rest of thebmar atoms in the molecule (Sun et al., 2004).
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Given that biodegradation of fatty acids involvedexarboxylation step (Sun et al., 1997), the
enrichment in3**C,: relative to bulkd*>C values found in groundwater and oil seep samples
from the Gaspé region and in groundwater samplas fihe Saint-Edouard region suggests
microbial reworking associated with isotopic frac@tion of carboxyl group carbon in AEOs.
Significant isotopic fractionation was previousBported in linear fatty acids (Dai et al., 2005)
and could potentially explain the most enricfﬁé&:pyr value of -19.5%. found in well F7, a

sample that contained high percentages of Z = 02/@k and Gg (Table 1).

4. Conclusions

Naphthenic acids were detected in groundwater wweyl two undeveloped,
unconventional hydrocarbon reservoirs in the proginf Québec, Canada. The concentrations
of total AEOs were low and characterized by hightygenated and N- and S-containing species
classes. The distribution patterns of NAs in mashgles were dominated by straight-chain (i.e.,
Z = 0) Gg and Gg fatty acids — ubiquitous compounds found in pland soil organic matter.
However, a range of gto Gg, Z = -4 to Z = -12 NAs were also found, with salesamples
containing relatively greater proportions of potaih toxic alicyclic bicyclic acids (i.e., Z = -4)
The occurrence of these compounds points to a alatoackground source of organic
contaminants prior to large-scale hydrocarbon dgrakent. Moreover, their detection in wells
near fault zones implies a potential for migrat@nNASs during extraction activities such as
hydraulic fracturing, as has been reported for rotinganic contaminants in the Marcellus Shale
region (Llewellyn et al., 2015). In the Saint-Edoliaegion, however, recent work has shown

that faults are not likely to offer a fluid flow-ffareaching all the way to the Utica Shale
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(Ladeveze, 2017). It is uncertain whether the pregaly bicyclic acids (Z = -4) and other NAs
in groundwater samples originated from mixing watklifferent water source or were generated
by in situ microbial transformation of shale organic matt&aift-Edouard) or petroleum
(Gaspé). The latter is supported by the 2-3%o enrarit iné‘>13prr compared to bulk**C values

of AEOs which suggests a possible isotopic fractiimm due to biodegradation.

In light of the findings reported here in the Sdtalouard and Gaspé regions, routine
screening for NAs in environmental samples fromaareindergoing shale gas or tight oil
development may be warranted. In addition, futuneestigations into the origins and
distributions of NAs in these regions should inaygte the use of other analytical techniques
such as GC x GC-MS to identify and quantify indiwadl compounds, in particular those which

are toxic and pose a risk to the environment.
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623 Table 1. The percentage of linear (Z = 0) and monounsatdrgie= -2) Gsand Gg fatty acids
624 comprising the @ species class for eight representative samplen thee Gaspé and Saint-

625 Edouard regions (Figure 2).

626
C16 Cc18
Sample Type Name Z=0 Z=-2 Z=0 Z=-2
Gaspé Region
Reservoir oll Haldimand Oill 2.8 1.3 1.0 0.6
Surface oil seep POT2 6.1 6.8 5.2 2.4
Groundwater (observation well) PH-02 18.7 14.4 10.9 0.9
Groundwater (observation well) POH-11-14 1.2 0.4 0.0 0.0
Saint-Edouard Region
Rock core F7 Shale 25.9 2.1 124 1.3
Groundwater (residential well) Zone 10R 2.3 14.0 0.6 0.8
Groundwater (observation well) F2 18.4 0.0 8.6 0.3
Groundwater (observation well) F7 40.2 7.7 28.7 0.0
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Figure 1. Map of the study area showing the locations of 8ant-Edouard region and

Haldimand sector (Gaspé) in the province of QuéBanada.

Figure 2. The distributions of naphthenic acids (NAs) in eg@antative samples from the Gaspé
(Haldimand reservoir oil, natural surface oil sd&PT2, groundwater from observation wells
PH-02 and POH-11-10) and Saint-Edouard (shale Fynglwater from residential well Zone
10R and observation wells F2 and F7) regions plotecording to carbon number, the
percentage of ©species class and Z value. NAs are defined bycldmsical chemical formula
ChH2n+0,, where n indicates the carbon number and Z is aem negative, even integer that

specifies the hydrogen deficiency resulting frongrfiormation.
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Figure 3. Principal Components Analysis (PCA) loadings (aj anores (b) carried out on log-
transformed (log(x+1)) species percentages NS, NxOx, NxOiS«, OiSs, O to Opand §) in

acid extractable organics (AEOs) determined in adahd sector oil (open square), natural seep
(solid red squares) and groundwater samples (iedeyellow triangles), and Saint-Edouard
region shale (black circles), residential well grdwater (solid blue triangles) and observation
well groundwater samples (open triangles). Thedsgieen diamond is the shale sample process

blank, and the open diamonds are the groundwateplegorocess blanks.

Figure 4. Stable carbon isotope ratios of acid extractabigamics (AEOsS) generated by
pyrolysis §"°Cpyr; solid colours) and bulk combustios{C: open symbols) in Haldimand sector
reservoir oil (red squares), natural surface @ps@ged diamonds) and groundwater samples (red
inverted triangles), and Saint-Edouard region estidl well (blue circles) and observation well

groundwater samples (blue triangles).
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Highlights:

* NAswere found in groundwater overlying undevel oped shale gas and tight oil plays.
* Most abundant NAs were straight-chain or monounsaturated C;6 and Cyg fatty acids.
» Alicyclic bicyclic NAs (Z = -4) were detected in several groundwater samples.

» Natural background source of organic contaminants prior to hydrocarbon extraction.



