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G e o p h y s i c a l  T u t o r i a l  —  C o o r d i n a t e d  b y  M a tt   H a l l

Colored inversion

Whether it is deterministic, band-limited, or stochastic, seismic 
inversion can bear many names depending on the algorithm 

used to produce it. Broadly, inversion converts reflectivity data to 
physical properties of the earth, such as acoustic impedance (AI), 
the product of seismic velocity and bulk density. This is crucial 
because, while reflectivity informs us about boundaries, impedance 
can be converted to useful earth properties such as porosity and 
fluid content via known petrophysical relationships.

Lancaster and Whitcombe (2000) published a fast method 
for band-limited inversion of seismic data known as colored 
inversion (CI) that generated widespread interest among inter-
preters. Recognizing that the popular sparse-spike inversion 
process could be approximated by a single operator, yielding 
relative impedance via simple convolution with the reflectivity 
data, the authors showed that this operator can be derived from 
well logs. Like other inversions, CI can help remove the smearing 
effects of the seismic wavelet and enhance features such as thin 
beds and discontinuities. What’s more, since CI is directly linked 
to seismic data, the relative impedance it produces can be used 
as a base for comparison with other inversion to see what kind 
of information is introduced by numerical constraints or the 
low-frequency model.

In this tutorial, we follow the steps presented by Lancaster 
and Whitcombe in their 2000 expanded abstract to achieve the 
so-called “fast-track colored inversion.” Using open-source algo-
rithms, we describe all the steps to go from reflectivity data to 
inverted cubes:

1)	 Fit a function to the log spectrum(s).
2)	 Get a difference spectrum by substracting the seismic 

spectrum.
3)	 Convert the difference spectrum to 

an operator.
4)	 Convolve the operator with the 

stacked seismic.
5)	 As a quality control (QC) step, 

check the residuals by comparing 
log and AI section spectrums.

The idea of this tutorial is to achieve 
a CI without any external software, just 
Python code with the NumPy and 
SciPy libraries. You can read and run 
the code for yourself from the repository 
at github.com/seg/tutorials-2017. This 
tutorial focuses on presenting the whole 
workflow in the simplest fashion rather 
than trying to optimize parameters to 
recover interpretable features. Prior to 
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running the workflow on your data, noise attenuation should be 
performed to ensure that the inversion process recovers frequencies 
associated only with the earth.

The data set
For our demonstration, we use one inline from the 1987 Dutch 

F3 volume (Figure 1) plus the AI log from the F02-1 well. Good 
descriptions of the geologic setting of this data set can be found 
in Sorensen et al. (1997) and Overeem et al. (2001). We use the 
dip-steered median filter stacked data set to get reduced noise on 
our input.

Fit a function to the log spectrum
Walden and Hosken (1985) observed that the reflectivity 

sequences in sedimentary basins display a logarithmic decay in 
amplitude as frequency increases. For the first step of our inversion, 
we look at the reflectivity spectrum and make sure it behaves as 
predicted. We load the F02-1 well, convert it to the time domain, 
and calculate the spectrum (Figure 2).

n_log = AI_f021.shape[0]
k_log = np.arange(n_log-1)
Fs_log = 1 / np.diff(time_f021/1000)
T_log = n_log / Fs_log
freq_log = k_log / T_log
freq_log = freq_log[range(n_log//2)]
spec_log = np.fft.fft(AI_f021) / n_log
spec_log = spec_log[range(n_log//2)]

We would like to simplify the spectrum, so we proceed to a 
regression. To make the process more robust, CI packages offer 
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Figure 1. F3 dip-steered median filtered stacked seismic data at inline 362 with well location and bounding 
horizons of the inverted region.
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one for the error function. We then use scipy.optimize to find 
the best fit, shown in Figure 3.

def linearize(p, x):
    return p[0] * x**p[1]
    
def error(p, x, y):    
    return np.log10(y) - np.log10(linearize(p, x))

args = (freq_log[1:2000], np.abs(spec_log[1:2000]))
qout, success = optimize.leastsq(error,
                                 (1e5, -0.8),
                                 args=args,
                                 maxfev=3000)

Compute the difference
Now we have a continuous function that mathematically 

approximates the well-log spectrum. The next major step of the 
workflow is to compute an operator that is representative of the 
difference between the log spectrum and the seismic spectrum.

We first define some boundaries to our modeled spectrum 
in the frequency domain. This is a critical part that will have 
great influence on the end result. We define a simple function to 
generate a 50-points Hanning-shaped taper at both ends of the 
spectrum; the result is shown in Figure 4. Then we take seismic 
traces at the well location, average them, and repeat the procedure 
we did on the well to get the spectrum. Figure 4 shows the resulting 
modeled spectrum. In this example, taper windows of 0–5 Hz 
and 100–120 Hz have been defined. It is important to note that 
our end result will be influenced greatly by this choice, and care 
should be applied at this stage.

After this step is completed, we simply substract the seismic 
spectrum from our modeled spectrum (Figure 5).

Convert to an operator
Now, continuing with Lancaster and Whitcombe’s methodol-

ogy, we can derive an inversion operator. We move back to the 
time domain with an inverse Fourier transform, then shift zero 
time to the center of the time window. Finally, we rotate the phase 
by taking the quadrature of the signal, represented by the imagi-
nary component and shown in Figure 5.

gap = spec_log_model - spec_seismic_model
operator = np.fft.ifft(gap)
operator = np.fft.fftshift(operator)
operator = operator.imag

Convolve operator with seismic
Once the operator is calculated a simple trace-by-trace convolu-

tion with the reflectivity data is needed to perform CI. NumPy’s 
apply_along_axis() applies any function to all columns of an 
array, so we can pass it the convolution:

def convolve(t):
    return np.convolve(t, operator, mode='same')

ci = np.apply_along_axis(convolve, axis=0, arr=seis)

Figure 2. F02-1 well data. (a) AI log and (b) calculated power spectrum.

Figure 3. F02-1 well spectrum approximated by a linear function in log space.

Figure 4. Comparison of well log, seismic, and modeled frequency power spectrum.

you the option of averaging this spectrum over all the available 
wells, but we can skip that as we are working with only a single 
well. To proceed to a linear regression, we define two simple 
functions, one that serves as the linearization of the problem and 
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Since the relative impedance result 
contains no low frequencies, it does not 
inform us about trends, so it makes more 
sense to look at the result in a single 
formation. We will focus on an area of 
interest of about 300 ms in thickness 
between two horizons; Figure 6 presents 
the resulting relative impedance section 
scaled (0–1) in this area.

Check the residuals
To make sure we did a good job 

defining our operator, we now look at 
the spectrum from the relative impedance 
result at the well location to see if we 
achieved a good fit with the well-log 
spectrum (Figure 7). It is to be noted 
that this fit was achieved with some 
arbitrary decisions, and the workflow 
could be iterated upon to try to minimize 
the difference between the two spectrums.

Conclusion
We have presented a straightforward application of CI using 

only Python with the NumPy and SciPy libraries. This open-
source workflow is documented at github.com/seg. It is called 
a “robust” process in the literature, but it is somewhat sensitive 
to the chosen frequency range. There are also choices to be made 
about the window of application and the number of traces used 
to compute the seismic spectrum. Notwithstanding all this, the 
process is simple and fast and yields informative images to 
interpreters. 

Acknowledgment
Thanks to Matt Hall for useful comments and suggestions 

on the workflow and manuscript.

Figure 5. (a) Resulting difference spectrum. (b) Associated operator.

Figure 6. Relative impedance result in a single stratigraphic unit.

Figure 7. QC of the CI workflow by comparison between input and output spectrums.

D
ow

nl
oa

de
d 

10
/0

3/
17

 to
 1

98
.7

3.
16

1.
13

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



October 2017     THE  LEADING EDGE      861

Corresponding author: martin.blouin@geolearn.ca

References
Lancaster, S., and D. Whitcombe, 2000, Fast-track ‘coloured’ inver-

sion: 70th Annual International Meeting, SEG, Expanded 
Abstracts, 1572–1575, https://doi.org/10.1190/1.1815711.

Overeem, I, G. J. Weltje, C. Bishop-Kay, and S. B. Kroonenberg, 
2001, The Late Cenozoic Eridanos delta system in the Southern 
North Sea Basin: A climate signal in sediment supply?: Basin 
Research, 13, no. 3, 293–312, https://doi.org/10.1046/j.1365-2117. 
2001.00151.x.

Sørensen, J. C., U. Gregersen, M. Breiner and O. Michelsen, 1997, 
High frequency sequence stratigraphy of upper Cenozoic deposits: 
Marine and Petroleum Geology, 14, no. 2, 99–123, https://doi.
org/10.1016/S0264-8172(96)00052-9.

Walden, A. T., and J. W. J. Hosken, 1985, An investigation of the spectral 
properties of primary reflection coefficients: Geophysical Prospecting, 
33, no. 3, 400–435, https://doi.org/10.1111/j.1365-2478.1985.
tb00443.x.

Suggestions for further reading
dGB Earth Sciences and TNO, 1987, F3 data set. Data set accessed 

31 August 2017 at http://opendtect.org/osr/.
Francis, A., 2014, A simple guide to seismic inversion: GEOExPro, 

10, no. 2, 46–50.

© The Author(s). Published by the Society of Exploration Geophysicists. All 
article content, except where otherwise noted (including republished material), is 
licensed under a Creative Commons Attribution 3.0 Unported License (CC BY-SA). 
See https://creativecommons.org/licenses/by-sa/3.0/. Distribution or reproduc-
tion of this work in whole or in part commercially or noncommercially requires full 
attribution of the original publication, including its digital object identifier (DOI). 
Derivatives of this work must carry the same license.

D
ow

nl
oa

de
d 

10
/0

3/
17

 to
 1

98
.7

3.
16

1.
13

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/


