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Abstract 6 

Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings of the ground motion 7 

with the direct solution of the wave equation. Modeling the wave propagation for realistic scenarios is computationally intensive, 8 

which limits the applicability of FWI. The current hardware evolution brings increasing parallel computing power that can speed up 9 

the computations in FWI. However, to take advantage of the diversity of parallel architectures presently available, new programming 10 

approaches are required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the 11 

many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D viscoelastic FWI in the time 12 

domain. The code computes the forward and adjoint wavefields using finite-difference and outputs the gradient of the misfit function 13 

given by the adjoint state method. To demonstrate the code portability on different architectures, the performance of SeisCL is tested 14 

on three different devices: Intel CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed 15 

up the computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although OpenCL allows 16 

code portability, we show that some device-specific optimization is still required to get the best performance out of a specific 17 

architecture. Using OpenCL in conjunction with MPI allows the domain decomposition of large models on several devices located on 18 

different nodes of a cluster. For large enough models, the speedup of the domain decomposition varies quasi-linearly with the 19 

number of devices. Finally, we investigate two different approaches to compute the gradient by the adjoint state method and show 20 

the significant advantages of using OpenCL for FWI.  21 

Keywords 22 

OpenCL; GPU; Seismic; Viscoelasticity; Full waveform Inversion; Adjoint state method;  23 



 

 2 

1. Introduction 24 

In recent years, parallel computing has become ubiquitous due to a conjunction of both hardware and software availability.  25 

Manifestations are seen at all scales, from high-performance computing with the use of large clusters, to mobile devices such as 26 

smartphones that are built with multicore Central Processing Units (CPU) (Abdullah and Al-Hafidh, 2013). Graphics processing units 27 

(GPU) bring this trend to the next level, packing now up to several thousand cores in a single device. Scientific simulations have 28 

benefited from this technology through general-purpose processing on graphics processing units and, for certain applications, GPUs 29 

can speed up calculation over one or two orders of magnitude over its CPU counterpart. This has caused a surge in the use of GPUs 30 

in the scientific community (Nickolls and Dally, 2010, Owens, et al., 2008), with applications ranging from computational biology to 31 

large-scale astrophysics. Furthermore, GPUs are increasingly used in large clusters (Zhe, et al., 2004), and now several of the 32 

fastest supercomputers on earth integrate GPUs or accelerators (Dongarra, et al., 2015). 33 

 34 

Nevertheless, GPUs are not fit for all kinds of scientific computations (Vuduc, et al., 2010). Potential gains from adopting GPUs 35 

should be studied carefully before implementation. In particular, the algorithm should follow the logic of the single-program multiple-36 

data (SPMD) programming scheme, i.e. many elements are processed in parallel with the same instructions. In geophysics, and 37 

more precisely in the seismic community, GPU computing has been applied most successfully in modeling wave propagation with 38 

Finite-Difference Time-Domain (FDTD) schemes. Indeed, the finite-difference method is well suited to GPUs because the solution is 39 

obtained by independent computations on a regular grid of elements and follows closely the SPMD model (Micikevicius, 2009). For 40 

example, Michéa and Komatitsch (2010) show an acceleration by a factor between 20 to 60 between the single-core implementation 41 

of the FDTD elastic wave propagation and a single GPU implementation. Okamoto (2011) shows a 45 times speed-up with a single 42 

GPU implementation and presents a multi-GPU implementation that successfully parallelizes the calculation, although with a sub-43 

linear scaling. Both Rubio, et al. (2014) and Weiss and Shragge (2013) present multi-GPU FDTD programs for anisotropic elastic 44 

wave propagation that shows the same unfavorable scaling behavior. Sharing computation through domain decomposition can be 45 

problematic mainly because the memory transfers between GPUs and between nodes are usually too slow compared to the 46 

computation on GPUs. GPU computing has also been applied successfully to the spectral element method (Komatitsch, et al., 2010), 47 

the discontinuous Galerkin method (Mu, et al., 2013) and reverse time migration (Abdelkhalek, et al., 2009), among others.  48 

 49 
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Nearly all of the seismic modeling codes written for GPUs have been implemented with the CUDA standard (Nvidia, 2007). CUDA 50 

allows easy programming on NVidia GPUs; however a CUDA program cannot run on devices other than NVidia GPUs. This can be 51 

problematic and is a leap of faith that NVidia devices are and will remain the most efficient devices for seismic modeling. Also, 52 

several clusters offer different types of GPU or, at least, a mix of GPU devices. Hence, the choice of CUDA limits the access to the 53 

full power of a cluster. On the other hand, OpenCL (Stone, et al., 2010) is an open programming standard capable of using most 54 

existing types of processors and is supported by the majority of manufacturers like Intel, AMD and Nvidia. On NVidia’ GPUs, 55 

OpenCL performance is comparable to CUDA (Du, et al., 2012). Despite this advantage over CUDA, few published seismic modeling 56 

codes use OpenCL: Iturrarán-Viveros and Molero (2013) uses OpenCL in a 2.5D sonic seismic simulation, Kloc and Danek (2013) 57 

uses OpenCL for Monte-Carlo full waveform inversion and Molero and Iturrarán-Viveros (2013) perform 2D anisotropic seismic 58 

simulations with OpenCL.  59 

 60 

Efficient seismic modeling is more and more needed because of the advent of full waveform inversion (FWI), see Virieux and Operto 61 

(2009) for an extensive review. FWI is the process of recovering the Earth (visco)-elastic parameters by directly comparing raw 62 

seismic records to the solution of the wave equation (Tarantola, 1984). Its main bottleneck is the numerical resolution of the wave 63 

equation that must be repeatedly computed for hundreds if not thousands of shot points for a typical survey. For large-scale multi-64 

parameter waveform inversion, FDTD remains the most plausible solution for seismic modeling (Fichtner, 2011). In addition to 65 

forward seismic modeling, FWI requires the computation of the misfit gradient. It can be obtained by the adjoint state method 66 

(Plessix, 2006), which requires only an additional forward modeling of the residuals. Hence, it is based on the same modeling 67 

algorithm and the benefit of a faster FDTD code would be twofold.  68 

 69 

In this study, we investigate the use of OpenCL for modeling wave propagation in the context of time domain FWI. The main 70 

objective is to present a scalable, multi-device portable code for the resolution of the 2D and 3D viscoelastic wave equation that can 71 

additionally compute the gradient of the objective function used in FWI by the adjoint state method.  This paper does not go into 72 

specifics about the inversion process, as the gradient calculations calculated by our algorithm is general and can be used in any 73 

gradient-based optimization approach. The seismic modeling program, called SeisCL, is available under a GNU General Public 74 

License and is distributed over GitHub. The paper is organized in three parts. First, the equations for viscoelastic wave propagation, 75 

its finite-difference solution and the adjoint state method for the calculation of the misfit gradient are briefly discussed. In the second 76 

part, different algorithmic aspects of the program are presented in detail. The last section presents numerical results performed on 77 
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clusters with nodes containing three types of processors: Intel CPUs, NVidia GPUs and Intel Xeon PHI. The numerical results show 78 

the validation of the code, the computational speedup over a single threaded implementation and the scaling over several nodes.   79 

 80 

2. Theory 81 

2.1 Finite difference viscoelastic wave propagation 82 

FWI requires the solution of the heterogeneous wave equation. In this study, we consider the wave equation for an isotropic 83 

viscoelastic medium in two and three dimensions. We adopt the velocity-stress formulation in which the viscoelastic effects are 84 

modeled by   generalized standard linear solid (Liu, et al., 1976). The symbols used in this article and their meaning are summarized 85 

in table 1. The forward problem in 3D is a set of 9 + 6  simultaneous equations with their boundary conditions:  86 

 87 
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where Einstein summation convention is used over spatial indices       and the Maxwell body indice  . Equation 1a comes from 95 

Newton’s second law of motion. Equation 1b is the stress-strain relationship for the generalized standard linear solid model with   96 

Maxwell bodies, which becomes the generalized Hooke’s law when the attenuation is nil, i.e. when the attenuation levels 𝜏𝑠 and 𝜏𝑝 97 

are set to zero. Equation 1c gives the variation of the so-called memory variables. Finally, the last four equations are the boundary 98 

conditions, respectively a quiescent past for velocities, stresses and memory variables and a free surface. Those equations are 99 



 

 5 

discussed in more details in several papers, see for example Carcione, et al. (1988), Robertsson, et al. (1994) and Blanch, et al. 100 

(1995).  101 

 102 

The attenuation of seismic waves is often described by the quality factor, defined as the ratio between the real and imaginary parts of 103 

the seismic modulus (O'connell and Budiansky, 1978). In the case of a generalized standard linear solid, it is given by: 104 

 (  𝜏   𝜏)  
 +∑
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  (2) 105 

An arbitrary profile in frequency of the quality factor can be obtained by a least squares minimization over the relaxation times 𝜏   106 

and the attenuation level 𝜏. Usually, two or three Maxwell bodies are sufficient to obtain a relatively flat quality factor profile over the 107 

frequency band of a typical seismic source (Bohlen, 2002). The two variables involved have different influences on the frequency 108 

profile of the quality factor: 𝜏   controls the frequency peak location of the     Maxwell body, whereas 𝜏 controls the overall quality 109 

factor magnitude. In FWI, an attenuation profile in frequency is usually imposed on the whole domain (Askan, et al., 2007, Bai, et al., 110 

2014, Malinowski, et al., 2011) and it is the magnitude of this profile that is sought. For this reason, 𝜏   is taken here as a spatially 111 

constant variable that is fixed before inversion, whereas 𝜏 is let to vary spatially and should be updated through inversion.  112 

 113 

To solve numerically equation 1, we use a finite-difference time-domain approach similar to (Levander, 1988, Virieux, 1986). In time, 114 

derivatives are approximated by finite-difference of order 2 on a staggered grid, in which velocities are updated at integer time steps 115 

   and stresses and memory variables are updated at half-time steps in a classic leapfrog fashion. In space, the standard staggered 116 

grid is used. An elementary cell of the standard staggered grid is shown in Figure 1, summarizing the location of each seismic 117 

variable. The forward   
+ and backward   

  differential operators of order    are given by: 118 

  
+ ( )  
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     (3b) 120 

where    is the spatial step and the    coefficients are obtained by Holberg’s method (Holberg, 1987) which reduces dispersion 121 

compared to the Taylor coefficients. The choice of the forward or backward operator obeys the following simple rule: in the update 122 

equations (1a, 1b and 1c) of a variable “a”, to estimate the derivative of a variable “b”, the forward operator is used if variable “b” is 123 



 

 6 

located before variable “a” in the elementary cell (Figure 1) along the derivative direction. The backward operator is used otherwise. 124 

For example, the update formula for    is: 125 
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(  

+   
      

+   
    

      

+   
    

      
)  

(4) 

The complete set of equations can be obtained with equations 1 and 3 and Figure 1. The reader is referred to the work of Bohlen 126 

(2002) for the complete list.  127 

 128 

Finally, to emulate a semi-infinite half-space, artificial reflections caused by the edge of the model must be minimized. For this 129 

purpose, two types of absorbing boundaries are implemented: the convolutional perfectly matched layer (CPML) (Roden and 130 

Gedney, 2000) as formulated by Komatitsch and Martin (2007) for viscoelastic media and the dissipative layer of (Cerjan, et al., 131 

1985). On the top of the model, a free surface condition is implemented by the imaging method of (Levander, 1988). 132 

 133 

 134 

Figure 1 An elementary cell showing the node location for each seismic variable. 135 

 136 

Table 1 Symbols used in this article 137 

Symbol Meaning 

  
 (   ) Particle velocity 

 (   ) Stress 

 (   ) Source term 

 (   ) Memory variable 
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    ⃖  Adjoint variable 

 ( ) Density 

 ( ) P-wave modulus 

 ( ) Shear modulus 

 ( ) Quality factor 

𝜏𝑝( ) P-wave attenuation level 

𝜏𝑠( ) S-wave attenuation level 

𝜏   Stress relaxation time of the lth Maxwell body 

  Recorded particle velocities 

T Recording time 

   Number of time steps 

  Cost function 

  
 138 

 139 

2.2 Full waveform inversion 140 

The goal of full waveform inversion is to estimate the elastic parameters of the Earth based on a finite set of records of the ground 141 

motion   , in the form of particle velocities or pressure. This is performed by the minimization of a cost function. For example, the 142 

conventional least-squares misfit function for particle velocity measurements is: 143 

 (      𝜏𝑝 𝜏𝑠)  
1

 
( (  )    )

 ( (  )    ) 

+
 

 
( (   )     )

 
( (   )     )  (5) 144 

where  ( ) is the restriction operator that samples the wavefield at the recorders’ location in space and time. As 3D viscoelastic full 145 

waveform inversion may involve billions of model parameters, the cost function is usually minimized with a local gradient-based 146 

method. However, due to the sheer size of the problem, the computation of the gradient by finite difference is prohibitive. Lailly 147 

(1983) and Tarantola (1984) have shown that the misfit gradient can be obtained by the cross-correlation of the seismic wavefield 148 

with the residuals back propagated in time (see Fichtner, et al. (2006) for a more recent development). This method, called the 149 

adjoint state method, only requires one additional forward modeling. Based on the method of (Plessix, 2006), it can be shown 150 

(Fabien-Ouellet, et al., 2016) that the adjoint state equation for the viscoelastic wave equation of equation 1 is given by: 151 
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  , (6f) 157 

  ( ) ⃖    , (6g) 158 

with       . Comparing equations 1 and 6, we see that both sets of equations are nearly identical, the only difference being the 159 

sign of the spatial derivatives and the source terms (the terms involving the misfit function derivative). Hence, the adjoint solution for 160 

the viscoelastic wave equation can be computed with the same forward modeling code, with the source term taken as the data 161 

residuals reversed in time and with an opposite sign for the spatial derivatives. This allows using the same modeling code for the 162 

forward and adjoint problem, with only minor changes to store or recompute the forward and residual wavefields. Once both 163 

wavefields are computed, the gradient can be obtained by calculating their scalar product, noted here 〈       〉. The misfit gradient for 164 

density, the P-wave modulus, the P-wave attenuation level, the shear modulus and the S-wave attenuation level are given 165 

respectively by: 166 

 167 
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where  ⃖     ∫  ⃖     
 

 
,     

      ∑     
 
  and    is the number of dimensions (2 or 3). Coefficients   are given in the 183 

appendix. The misfit gradients for the P-wave modulus   and the P-wave attenuation level 𝜏𝑝 have the same structure and differ 184 

only by the coefficients that weight the scalar products. The same relationship exists between   and 𝜏𝑠.  185 

In the time domain, the scalar product takes the form: 186 

〈 ( )   ( )〉  ∫  ( ) ( )   
 

 
  (8) 187 

which is the zero-lag cross-correlation in time of the real-valued functions  ( ) and  ( ). When discretized in time, it is the sum of 188 

the product of each sample. Using Parseval's formula, the last equation can also be expressed in the frequency domain: 189 

〈 ( )   ( )〉  
 

  
∫   ( ) ( )   

 

 
  (9) 190 

where  ( )  and  ( )  are the Fourier transform of the functions  ( )  and  ( )  and    indicates complex conjugation. The 191 

formulation in frequency can be used to perform frequency domain FWI (Pratt and Worthington, 1990) with a time-domain forward 192 

modeling code as done by Nihei and Li (2007). The frequency components of the seismic variables can be obtained with the discrete 193 

Fourier transform: 194 

 (   )    ∑  (   )    [ 
     

  
 ]

    
     (10) 195 

where   is the discrete function in time, A is the discrete function in the Fourier domain,    is the time interval,    is the frequency 196 

interval and   is the frequency label. The calculation of a frequency component with the discrete Fourier transform involves the sum 197 

of all the time samples weighted by a time varying function given by the complex exponential. In the FDTD scheme, the running sum 198 
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can be updated at each time step for all or a selected number of frequencies (Furse, 2000). Because FDTD must be oversampled to 199 

remain stable (CFL condition), the discrete Fourier transform can be performed at a higher time interval to mitigate its computational 200 

cost, e.g. several time steps can be skipped in equation 10, up to the Nyquist frequency of the highest selected frequency. Also, to 201 

save memory and reduce computing time, only a handful of frequencies can be used during the inversion (Sirgue and Pratt, 2004). 202 

 203 

Once the gradient is computed, different algorithms can be used to solve the inversion system, from the steepest descent to the full 204 

Newton method (Virieux and Operto, 2009). This issue is not the focus of this study. However, all of these local methods need at 205 

least the computation of the forward model and the misfit gradient, both of which are the main computational bottlenecks. Hence, a 206 

faster forward/adjoint program should benefit all of the local approaches of FWI.    207 

 208 

2.3 Background on heterogeneous computing 209 

Heterogeneous computing platforms have become the norm in the high-performance computing industry. Clusters generally include 210 

different kinds of processors (Dongarra, et al., 2015): the most common being CPUs, GPUs and Many Integrated Core (MIC), also 211 

known as accelerators. Those devices may possess different architecture and usually codes written for one type of device is not 212 

compatible with others. Writing a specific code for each type of processor can be tedious and non-productive. One solution is given 213 

by OpenCL (Stone, et al., 2010), an open standard cross-platform for parallel programming. OpenCL allows the same code to use 214 

one or a combination of processors available on a local machine. This portability is the main strength of OpenCL, especially with the 215 

actual trend of massively parallel processors. For the moment, it cannot be used for parallelization on a cluster, but can be used in 216 

conjunction with MPI. 217 

 218 

Even though OpenCL allows the same code to be compatible with different devices, the programmer always has to make a choice 219 

with the initial design because code optimization can be very different for CPUs, GPUs or MICs architectures. The program 220 

presented in this study was written for the GPU architecture, which is arguably the most efficient type of processor available today for 221 

finite-difference algorithms. For a good summary of the concepts of GPU computing applied to seismic finite-difference, see (Michéa 222 

and Komatitsch, 2010). Essential elements to understand the rest of the article are presented in this section, using the OpenCL 223 

nomenclature.  224 

 225 
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A GPU is a device designed to accelerate the creation and manipulation of images, or large matrices, intended primarily for output to 226 

a display. It is separated from the CPU (host) and usually does not directly share memory. The set of instructions that can be 227 

accomplished on a GPU is different than on the CPU, and classical programming languages cannot be used. A popular application 228 

programming interface for GPUs is CUDA (Nvidia, 2007). However, CUDA is a closed standard owned by NVIDIA that can only be 229 

used with Nvidia GPUs. It is the main reason why OpenCL was favored over CUDA in this work.  230 

 231 

In order to code efficiently for GPUs, it is important to understand their architecture. The smallest unit of computation is a work item 232 

(a thread in CUDA) and is executed by the processing elements (CUDA cores in the NVidia nomenclature). A single device can 233 

contain thousands of processing elements that execute the same control flow (instructions) in parallel on different data in the single 234 

instruction, multiple thread fashion. The processing elements are part of groups that are called compute units (thread blocks in 235 

CUDA). In NVidia devices, the compute units contain 32 consecutive processing elements. In OpenCL, the programmer sends the 236 

work items, organized into work groups, to be computed by the processing elements of a compute unit, located in a given device.  237 

 238 

Several levels of memory exist in a GPU. This is schematized in Figure 2, in the context of a GPU cluster. First, each processing 239 

element has its own register (private memory), a limited in size but very fast memory. Second, inside each compute unit, threads 240 

share a low-latency memory, called the local memory. This memory is small, usually in the order of several kilobytes. The main 241 

memory, called global memory, is shared between all processing elements and is the place where the memory needed for the 242 

different kernels is located. Usually, this memory is not cached and is very slow compared to the local or private memory.  243 

One of the most important aspects of GPU programming is the access to the global memory. Depending on the memory access 244 

pattern, read/write operations can be performed in a serial or a parallel fashion by the compute units. Parallel (coalesced) memory 245 

access is possible when a number of consecutive work items inside a work group performing the same instructions are accessing 246 

consecutive memory addresses. For most NVidia devices, consecutive work items, or what is called a warp, can read 32 floats in a 247 

single instruction when memory access is coalesced. With finite-difference codes, the number of instructions performed between the 248 

read/write cycles in global memory is fairly low, which means that kernels are bandwidth limited. The memory access pattern is then 249 

one of the main areas that should be targeted for optimization.    250 
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 251 

Figure 2 OpenCL memory diagram used in conjunction with MPI in the context of a cluster, inspired by (Howes and Munshi, 2014). 252 

 253 

In practice, a program based on OpenCL is organized as follows, regardless of the type of processor used. First, instructions are 254 

given to the host to detect the available devices (GPUs, CPUs or accelerators) and connect them in a single computing context.  255 

Once the context is established, memory buffers used to transfer data between the host and the devices must be created. Then, the 256 

kernels are loaded and compiled for each device. This compilation is performed at runtime. The kernels are pieces of code written in 257 

C that contain the instruction to be computed on the devices. After that, the main part of the program can be executed, in which 258 

several kernels and memory transfers occur, managed on the host side by a queuing system. Finally, buffers must be released 259 

before the end of the program. Several OpenCL instances can be synchronized with the help of MPI, as shown in Figure 2. 260 

 261 

3. Program structure 262 

This section describes the implementation of the finite-difference algorithm for viscoelastic modeling and the calculation of the adjoint 263 

wavefield in an OpenCL/MPI environment. The program contains many kernels, and its simplified structure is shown in Algorithm 1. 264 
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This algorithm presents a typical gradient calculation over several seismic shots, on a parallel cluster where each node contains 265 

several devices. Its main features are discussed in the following sections. 266 

 267 

Algorithm 1 Pseudo-code for the parallel computation of the gradient with the adjoint state method. 268 

Initialize MPI 269 

Initialize OpenCL 270 

Initialize model grid 271 

1. for all groups in MPI do 272 

2.    for all shots in group do 273 

3.       for all nodes in group do 274 

4.          for all devices in node do 275 

5.             Initialize seismic grid (            ⃖    ⃖      ⃖  ) 276 

6.             Execute time stepping on shot 277 

7.             Compute residuals 278 

8.             Execute time stepping on residuals 279 

9.             Compute gradient 280 

10.          end for 281 

11.       end for 282 

12.    end for 283 

13. end for 284 

 285 

3.1 Node and device parallelism 286 

In order to take advantage of large clusters, we use the MPI interface to parallelize computations between the nodes of a cluster. A 287 

popular approach to parallelizing finite-difference seismic modeling is domain decomposition (Mattson, et al., 2004). It consists of 288 

dividing the model grid into subdomains that can reside on different machines. At each time step, each machine updates its own 289 

velocity and stress sub-grids. As the finite-difference update of a variable at a given grid point requires the values of other variables 290 

at neighboring grid points (see equations 3 and 4), values defined at grid points on the domain boundary must be transferred 291 

between adjacent domains at each time steps. This is depicted in Figure 3.  292 

 293 
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 294 

Figure 3 Domain decomposition for three devices for a finite-difference order of 2. Light gray cells are updated inside the device and transferred to the 295 
dark gray cells of the adjacent device.  296 

  297 

Fast interconnects are needed for this memory transfer that occurs at each time step, otherwise the scaling behavior can become 298 

unfavorable. For example, Bohlen (2002) observes super-linear scaling for up to 350 nodes on a cluster with 450 Mb/s interconnects, 299 

but only linear scaling with up to 12 nodes on a cluster with 100 Mb/s interconnects. When using GPUs, not only transfers are 300 

needed between nodes, but also between the devices and the host. This dramatically worsens performance. For example, Okamoto 301 

(2011) observes a scalability between   and     . For this reason, we chose to implement two different parallelism schemes in 302 

addition to the inherent OpenCL parallelization: domain decomposition and shot parallelization. 303 

 304 

Nodes of a cluster are first divided into different groups: within each group, we perform domain decomposition and each group is 305 

assigned a subset of shots. Shot parallelism best corresponds to a task-parallel decomposition, and is illustrated in Algorithm 1 by 306 

the loop on all the groups of nodes that starts at line 1, and by the loop on all shots assigned to the groups at line 2. Parallelizing 307 

shots does not require communication between nodes and should show a linear scaling. Let’s mention that a typical seismic survey 308 

involves hundreds if not thousands of shot points. This should be at least on par with the number of available nodes on large 309 

clusters. On the other hand, domain decomposition is required to enable computations for models exceeding the memory capacity of 310 

a single device. For this level of parallelism, MPI manages communications between nodes and the OpenCL host thread manages 311 

the local devices.  The communications managed by MPI and OpenCL are illustrated respectively by the loop on all nodes belonging 312 

to the same group starting at line 3 of Algorithm 1 and by the loop on all devices found on the node starting at line 4.  313 
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 314 

To further mitigate the communication time required in domain decomposition, the seismic updates are divided between grid points 315 

on the domain boundary that needs to be transferred and interior grid points that are only needed locally. This is described in 316 

Algorithm 2. The grid points on the boundary are first updated, which allows overlapping the communication and the computation of 317 

the remaining grid points, i.e. lines 3 and 4 and lines 7 and 8 of Algorithm 2 are performed simultaneously for devices supporting 318 

overlapped communications. This is allowed in OpenCL by having two different queues for each device: one for buffer 319 

communication and the other for kernel calls.  320 

 321 

Algorithm 2 Pseudo code showing the overlapping computation and memory transfer for domain decomposition. 322 

1. while t < Nt  323 

2.     Call  kernel_updatev on domain boundary 324 

3.     Transfer    in boundary of devices, nodes 325 

4.     Call  kernel_updatev on domain interior 326 

5.     Store  (  ) in seismo at t 327 

6.     Call  kernel_updates on domain boundary 328 

7.     Transfer     in boundary of devices, nodes 329 

8.     Call  kernel_updates on domain interior 330 

9.     Increment  t 331 

10. end while 332 

 333 

3.2 GPU kernels 334 

The main elements of the kernels used to update stresses and velocities are shown in Algorithm 3. For better readability, the 335 

algorithm is simplified and does not include viscoelastic computations or CPML corrections. Note that the “for” loops in this pseudo-336 

code are implicitly computed by OpenCL. The most important features of this algorithm are steps 3 and 4, where seismic variables 337 

needed in the computation of the spatial derivatives are loaded from the global memory to the local memory. As the computation of 338 

the spatial gradient of adjacent grid elements repeatedly uses the same grid points, this saves numerous reads from global memory. 339 

To be effective, those reads must be coalesced. This is achieved by setting the local working size in the z dimension, which is the 340 

fast dimension of the arrays, to a multiple of 32 for NVidias’ GPUs. Hence, seismic variables are updated in blocks of 32 in the z 341 

dimension. In the x and y dimensions, the size of the local working size does not impact coalesced memory reading. They are set 342 

equal to a magnitude that allows all the seismic variables needed in the update to fit in the local memory. This is illustrated in Figure 343 

4. 344 
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 345 

Algorithm 3 Pseudo code for the seismic update kernels showing how local memory is used. 346 

1. for all local_domains in global_domain do  347 

2.     for all grid point in local_domain do 348 

3.         Load     (   ) from global to local memory 349 

4.         Compute      (     ) from local memory 350 

5.         Update      (  ) in global memory 351 

6.     end for 352 

7. end for 353 

 354 

 355 

 356 

Figure 4 Exploded view of the local memory containing a seismic variable during update (equations 1a and 1b), for the 2nd order scheme. White cells 357 
are cells being updated and gray cells are loaded into local memory only to update white cells.  358 

 359 

3.3 Misfit gradient computation 360 

The cross-correlation of the direct and residual fields requires both fields to be computed at the same time step (see equation 8). 361 

This is challenging because forward computations are performed from time zero, whereas adjoint computations are performed from 362 
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final time.  Several strategies can be employed to achieve this task (see (Dussaud, et al., 2008, Nguyen and McMechan, 2015) for 363 

comparisons between methods).  364 

1. When propagating the direct field, the whole grid for the particle velocities and stresses at each time step or a subset of the 365 

time steps can be saved into memory. When the residual field is propagated from final time, the direct field is read from 366 

memory for all grid points and the scalar product is evaluated iteratively, time step per time step.  367 

2. In the so-called the backpropagation scheme (Clapp, 2008, Yang, et al., 2014), only the outside boundary of the grid that is 368 

not in the absorbing layer is saved at each time step. The direct field is recovered during the residual propagation by 369 

propagating back in time the direct field from the final state, injecting the saved wavefield on the outside boundary at each 370 

time step. As both the forward and adjoint wavefields are available at the same time step, the scalar products can be 371 

computed directly with equation 8.  372 

3. A selected number of frequencies of the direct and residual field can be stored. This is performed by applying the discrete 373 

Fourier transform incrementally at each time step (equations 9 and 10), as done by (Sirgue, et al., 2008). The scalar product 374 

is evaluated at the end of the adjoint modeling in the frequency domain with equation 9. An alternative way of computing the 375 

chosen frequencies (Furse, 2000) seems to be advantageous over the discrete Fourier transform, but has not been tested 376 

in this study.  377 

4.  In the optimal checkpointing method proposed by (Griewank, 1992, Griewank and Walther, 2000), and applied by (Symes, 378 

2007), the whole forward wavefield is stored for a limited number of time steps or checkpoints. To perform the scalar 379 

product, the forward wavefield is recomputed for each time step during the backpropagation of the residuals from the 380 

nearest checkpoint.  For a fixed number of checkpoints, an optimal distribution that minimizes the number of forward 381 

wavefield that has to be recomputed can be determined. For this optimal distribution, the number of checkpoints and the 382 

number of recomputed time steps evolve logarithmically with the number of total time steps. Further improvements of the 383 

method have been proposed by (Anderson, et al., 2012) and by (Komatitsch, et al., 2016) in the viscoelastic case.  384 

 385 

The first option is usually impractical, as it requires a huge amount of memory even for problems of modest size. In 3D, it requires on 386 

the order of  (   
 ) elements to be stored, which becomes quickly intractable. Let’s mention that the use of compression and 387 

subsampling can be used to mitigate these high memory requirements (Boehm, et al., 2016, Sun and Fu, 2013). The 388 

backpropagation scheme requires far less memory, on the order  (   
 ) in 3D, but doubles the computation task for the direct 389 

field. Also, it is not applicable in the viscoelastic case. Indeed, in order to back-propagate the wavefield, the time must be reversed 390 



 

 18 

     and, doing so, the memory variable differential equation (equation 1c) becomes unstable. Hence, when dealing with 391 

viscoelasticity, the frequency scheme and the optimal checkpointing scheme are the only viable options. The memory requirement of 392 

the frequency scheme grows with the number of computed frequencies on the order of  (    ). However, as is common in FWI, 393 

only a selected number of frequencies can be used (Virieux and Operto, 2009). The optimal checkpointing method requires  394 

 (    ) where    is the number of checkpoints. Because of the logarithmic relationship between the number of time steps, the 395 

number of checkpoints and the number of additional computations, the required memory should stay tractable. For example, for 10 396 

000 time steps, with only 30 buffers, the computing cost of this option is 3.4 times that of the forward modeling. In this work, we 397 

implemented the backpropagation scheme for elastic propagation and the frequency scheme using the discrete Fourier transform for 398 

both elastic and viscoelastic propagation. The implementation of the optimal checkpointing scheme or the hybrid 399 

backpropagation/checkpointing scheme of (Yang, et al., 2016) is left for future work.  400 

 401 

The gradient computation involving the backpropagation of the direct field is illustrated in Algorithm 4. At each time step of the direct 402 

field propagation, the wavefield value at grid points on the outer edge of the model is stored. Because of the limited memory capacity 403 

of GPUs, this memory is transferred to the host. As mentioned before, this communication can be overlapped with other 404 

computations with the use of a second queue for communication. After obtaining the residuals, the residual wavefield is propagated 405 

forward in time using the same kernel as the direct wavefield. The back-propagation of the direct wavefield is calculated using the 406 

same kernel, the only difference being the sign of the time step       . Also, at each time step, the stored wavefield on the 407 

model edges is injected back. With this scheme, both the residual and the direct fields are available at each time step and can be 408 

multiplied to perform on the fly the scalar products needed to compute the gradient.  409 

Algorithm 4 Pseudo code for the backpropagation scheme. 410 

1. while t < Nt  411 

2.     Call  kernel_updatev 412 

3.     Store    in boundary of model 413 

4.     Call  kernel_updates  414 

5.     Store     in boundary of model 415 

6.     Increment  t 416 

7. end while 417 

8. Calculate residuals 418 

9. while t < Nt  419 

10.     Call  kernel_updatev on     ⃖   420 

11.     Inject    in boundary of model 421 

12.     Call  kernel_updates on      ⃖     422 
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13.     Inject     in boundary of model 423 

14.     Compute gradient 424 

15.     Increment  t 425 

16. end while 426 

 427 

The frequency scheme is illustrated in Algorithm 5. It first involves computing the direct wavefield and its discrete Fourier transform 428 

on the fly at each time step, for each desired frequency (equation 10). Afterward, the residual wavefield is obtained in exactly the 429 

same fashion. At the end, the scalar product needed for the gradients can be computed with the selected frequencies.  430 

 431 

Algorithm 5 Pseudo code for the frequency scheme. 432 

1. while t < Nt  433 

2.     Call  kernel_updatev for    434 

3.     Call  kernel_updates for     435 

4.     Call DFT for         for freqs 436 

5.     Increment  t 437 

6. end while 438 

7. Compute residuals 439 

8. while t < Nt  440 

9.     Call  kernel_updatev for  ⃖   441 

10.     Call  kernel_updates for  ⃖     442 

11.     Call DFT for  ⃖    ⃖     for freqs 443 

12.     Increment  t 444 

13. end while 445 

14. Compute gradients 446 

 447 

4. Results and discussion 448 

This section shows several numerical results obtained with SeisCL. The following tests were chosen to verify the performance of 449 

OpenCL in the context of FWI on heterogeneous clusters containing three different types of processors: Intel CPUs, Intel Xeon PHI 450 

(MIC) and NVidia GPUs. 451 

4.1 Modeling validation 452 

In order to test the accuracy of our forward/adjoint modeling algorithm, two synthetic cases are presented. First, the finite-difference 453 

solution of the viscoelastic wave equation is compared to the analytic solution. The analytic solution for the viscoelastic wave 454 

propagation of a point source derived by Pilant (2012) is used here in the form given by Gosselin-Cliche and Giroux (2014) for a 455 
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quality factor profile corresponding to a single Maxwell body. The source is a Ricker wavelet with a center frequency of 40 Hz, 456 

oriented in the z direction. The viscoelastic model is homogeneous with  𝑝=3500 m/s,  𝑠=2000 m/s,  =2000 m/s with a single 457 

Maxwell body. We tested 4 attenuation levels 𝜏𝑝  𝜏𝑠  {     1        }, i.e.   {      1   } at the center frequency of 458 

40 Hz. Using a finite-difference stencil of order 4, a 6 m (8.33 points per wavelength) spatial discretization is used to avoid numerical 459 

dispersion with a 0.5 ms time step for numerical stability. Figure 5 shows the comparison between the analytic solution and the 460 

solution obtained with SeisCL. The traces represent the particle velocities in the z direction for an offset of 132 m in the z direction. 461 

For the elastic case (𝜏=0), the analytical solution is perfectly recovered by SeisCL. Using higher attenuation levels does, however, 462 

introduce some errors in the solution. This error increases with 𝜏 and for an attenuation level of 0.4, the discrepancy becomes 463 

obvious for the offset used herein. It is, however, the expected drawback of using an explicit time domain solution and similar time-464 

domain algorithms show the same behavior, see (Gosselin-Cliche and Giroux, 2014). Also, for reasonable attenuation levels, the 465 

errors appear negligible and will not impact FWI results much. Accuracy could become an issue for very high attenuating media and 466 

long propagation distances.  467 

 468 

The second test aims at validating the misfit gradient output of SeisCL. For this test, a synthetic 2D cross-well tomographic survey is 469 

simulated, where a model perturbation between two wells is to be imaged. The well separation is 250 m and the source and receiver 470 

spacing are respectively 60 m and 12 m (Figure 5). Circular perturbations of a 60 m radius for the five viscoelastic parameters were 471 

considered at five different locations. The same homogeneous model as the first experiment is used with 𝜏 =0.2 and with 472 

perturbations of 5 % of the constant value. Because significant crosstalk can exist between parameters, especially between the 473 

velocities and the viscous parameters (Kamei and Pratt, 2013), we computed the gradient for one type of perturbation at a time. For 474 

example, the P-wave velocity gradient is computed with constant models for all other parameters other than  𝑝. This eliminates any 475 

crosstalk between parameters and allows a better appraisal of the match between the gradient update and the given perturbations. 476 

Note that because the goal of the experiment is to test the validity of the approach, geological plausibility was not considered. As no 477 

analytical solution exists for the gradient, the adjoint state gradient was compared to the gradient computed by finite-difference. The 478 

finite-difference solution was obtained by perturbing each parameter of the grid sequentially by 2%, for all the grid position between 479 

the two wells. The adjoint state gradient was computed with the frequency scheme using all frequencies of the discrete Fourier 480 

transform between 0 and 125 Hz.  481 

 482 
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The results of this second experiment are shown in Figure 6. In this figure, each column represents a different perturbed parameter. 483 

The first row shows the perturbation, the second the steepest descent direction (minus the misfit gradient) obtained by finite-484 

difference and the third the steepest descent direction given by the adjoint state model. Note that the gradients were normalized in 485 

this figure. As can be visually appraised, an excellent agreement is obtained between both methods, for all parameters. Although the 486 

inversion has not been performed here, it should converge to the right solution in the five different cases, the update correction being 487 

already in the right direction. This is expected considering the small value of the perturbation used in this experiment; the inverse 488 

problem is more or less linear in such circumstances. The good agreement between the finite-difference and the adjoint state 489 

gradients shows that the latter could be used in any gradient-based inversion approach. However, the adjoint approach is orders of 490 

magnitude faster than the finite-difference approach: the first grows proportionally to the number of frequencies (see next section) 491 

while the second grows linearly with the number of parameters. For this particular experiment, the adjoint approach required minutes 492 

to complete whereas the finite-difference approach required days. 493 

   494 

 495 

Figure 5 Comparison between the analytical solution and SeisCL results for different attenuation levels, from the elastic case ( =0) to strong 496 
viscoelasticity ( =0.4). 497 
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 498 

 499 

 500 

 501 

Figure 6 A cross-well experiment to test the validity of the misfit gradient. The red triangles represent the sources position and the red dots the 502 
receiver positions. Each column represents a different parameter. The first row shows the location of the perturbation, the second row represents the 503 
opposite of the misfit gradient obtained by finite-difference and the third row represents the opposite of the misfit gradient obtained by the adjoint 504 
state method.  505 

 506 

4.2 Performance comparison 507 

The effort required to program with the OpenCL standard would be vain without a significant gain in the computing performance. In 508 

the following, several tests are presented to measure the performance of SeisCL. As a measure, one can compute the speedup, 509 

defined here as: 510 

        
   𝑠     

    𝑠  
  (11) 511 
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Different baselines are used depending on the test. In order to show the OpenCL compatibility of different devices, all tests are 512 

performed on three types of processors: Intel CPUs, Intel Xeon PHI (MIC) and NVidia GPUs. Unless stated otherwise, the CPU 513 

device consists of 2 Intel Xeon E5-2680 v2 processors with 10 cores each at a frequency of 2.8 GHz and with 25 MB of cache. The 514 

GPU is an NVidia Tesla K40 with 2880 cores and 12 GB of memory, and the MIC is an Intel Xeon Phi 5110P.  515 

 516 

 517 

4.2.1- Speedup using SeisCL over a single threaded CPU implementation 518 

As a baseline, SOFI2D and SOFI3D, the 2D and 3D implementations of Bohlen (2002) are used with a single core. This baseline can 519 

be compared to SeisCL as both codes use the same algorithm. It is also representative of the speed that can be achieved for a 520 

FDTD code written in C, arguably one of the fastest high level languages for the CPU. In Figure 7, the speedup is measured as a 521 

function of the model size for the 3D and 2D cases, where the model size is a cube and a square respectively with edges of N grid 522 

points. The speed-up varies significantly with the model size. The highest speedups are attained with the GPU, which ranges 523 

between 50 to more than 80 in 3D and between 30 and 75 in 2D. Significant speedups are also obtained with CPUs, as high as 35 524 

times faster. This is higher than the number of cores (20) available. We make the hypothesis that this is caused by a better cache 525 

usage of the OpenCL implementation, i.e. usage of local memory increases significantly the cache hits during computation compared 526 

to the C implementation of Bohlen (2002). The 2D implementation seems less impacted by this phenomenon and speedups are in a 527 

more normal range, between 11 and 25. We also noted that the time stepping computation can be very slow in the first several 528 

hundred time steps for the C implementation. This is the source of the strong variations in speedups observed in Figure 7. Finally, 529 

the Xeon Phi speedups are disappointing compared to their theoretical computing capacity. However, SeisCL has been optimized for 530 

GPUs, not for the Xeon Phi. Even if we have not tested it, it is possible that with small modifications of the code, improved 531 

performance could be attained. This shows, however, the limits of device portability with OpenCL: code optimization is paramount to 532 

achieve high performances and this optimization can be quite different for different devices.  533 
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 534 

Figure 7 Speedup of SeisCL over a single threaded CPU implementation for different model sizes in 3D (top) and 2D (bottom), for different processor 535 
types.  536 

 537 

4.2.2- Performance of the gradient calculation 538 

The next test aims at assessing the performance of the two different gradient schemes. For this experiment, the baseline is the time 539 

required to perform one forward modeling run, without the gradient calculations. The computing times are measured for the 540 

backpropagation scheme and the frequency scheme, for model sizes of 100x100x100 and 1000x1000 grid nodes in 3D and 2D 541 

respectively. The results are shown in Figure 8. For the frequency scheme, the computing time increases linearly with the number of 542 

frequencies. The cost rises faster in 3D than in 2D, which can be explained by the higher number of variables needed to be 543 

transformed in 3D. Surprisingly, the computation time for the Xeon PHI seems to increase much slower than for the CPU or the GPU. 544 

It is to be noticed that for testing purposes, the discrete Fourier transform was computed at every time step. However, significant 545 
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savings could be achieved if it was computed near the Nyquist frequency. Nevertheless, this test shows that the cost of computing 546 

the discrete Fourier transform during time stepping is not trivial but remains tractable. Finally, the backpropagation scheme has a 547 

cost that is roughly 3 times the cost of a single forward modeling for all devices. Hence, in the elastic case, the backpropagation 548 

scheme outperforms the frequency scheme no matter the number of frequencies. It also has the added benefit of containing all 549 

frequencies.  550 

 551 

Figure 8 Ratio of the computing time between the forward modeling and the adjoint modeling in the frequency scheme for an increasing number of 552 
frequencies. The dashed line denotes the back-propagation scheme for all devices.  553 

 554 

 555 

4.2.3- Measure of the cost of using higher order finite-difference stencils on different devices 556 

The baseline for this test is the computation time of the 2nd order stencil for each device. The slowdown is used here as a measure, 557 

i.e. the inverse of the speedup.  The same spatial and temporal step lengths were used for each order. As can be seen in Figure 9, 558 

for all three types of device, the slowdown is quite low and does not exceed 1.5 for the highest order of 12 considered here, except 559 

for the GPU in 3D where it exceeds 3 for an order of 12. Note that up to the 8th order, the GPU performance is comparable to the 560 

other device types. The higher cost for the GPU in 3D for orders 10 and 12 is caused by the limited amount of local memory. Indeed, 561 

for those orders, the amount of local memory required to compute the derivative of a single variable exceeds the device capacity. In 562 

those circumstances, SeisCL turns off the usage of local memory and uses global memory directly. The abrupt slowdown is manifest 563 

of the importance of using local memory. The reason why higher order stencils do not affect significantly the computing time of 564 

SeisCL is that it is bandwidth limited: access to the memory takes more time than the actual computations. As memory access is 565 
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locally shared, the higher number of reads required for higher finite-difference order does not increase significantly. The impact on 566 

computation at each time step is thus marginal. In most cases, the advantages of using higher orders outweigh the computational 567 

costs, because it allows reducing the grid size. For example, using a 6th order over a 2nd order stencil allows reducing the grid point 568 

per wavelength from around 22 to 3, i.e. it reduces the number of grid elements by a factor of 400 in 3D. However, in some 569 

situations, for instance in the presence of a free surface, topography or strong material discontinuities, higher order stencils introduce 570 

inaccuracies (Bohlen and Saenger, 2006, Kristek, et al., 2002, Robertsson, 1996). Hence, the choice of the order should be 571 

evaluated on a case-by-case basis.  572 

 573 

 574 

Figure 9 Slowdown of the computation using higher finite-difference order compared to the 2nd order for different devices. 575 
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4.2.4- Tests on heterogeneous clusters 577 

To evaluate the scalability of our code over large clusters, a strong scaling test was performed. Here, strong scaling refers to the 578 

variation of the computational time for a model of fixed sized for an increasing number of processors. The following results were 579 

obtained for a grid size of 96x96x9000 elements and an increasing number of devices for the domain decomposition. This test was 580 

performed on two different clusters: Helios of Laval University, Canada and Guillimin from McGill University, Canada. The Helios 581 

nodes contain 8 NVidia K80 GPUs (16 devices). This cluster was used to test strong scaling for GPUs on a single node of a cluster, 582 

which does not involve MPI. Two types of nodes were used on Guillimin: nodes containing two Intel Xeon X5650 with 6 cores each at 583 
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2.66 GHz and 12 MB of cache and nodes containing 2 NVidia K20 GPUs in addition to the same two Xeon CPUs. This cluster was 584 

used to test strong scaling across several nodes, which requires MPI communication.   585 

 586 

Results are shown in Figure 10. The best scaling behavior is shown by the nodes on Guillimin with two GPUs, which is very nearly 587 

linear over the tested number of devices (blue triangles on Figure 10). Surprisingly, the scaling is slightly worse for many devices 588 

located on the same node (Helios nodes, red stars in Figure 10). We interpret this result as being caused by the increasing burden 589 

on the processor when a higher number of GPUs must be scheduled on the same nodes: at some point, the CPU becomes too slow 590 

to keep all GPUs busy. Compared to Guillimin nodes using CPUs, Guillimin nodes using GPUs also scale better. Still, the CPU 591 

scaling remains quite favorable and is higher than N4/5. Those results are better than the results reported by Okamoto (2011), Rubio, 592 

et al. (2014), Weiss and Shragge (2013). We explain this favorable behavior by the separate computation of grid elements inside and 593 

outside of the communication zone in our code.  594 

The strong scaling tests show that for large models that fit only on multiple nodes and devices, SeisCL can efficiently parallelize the 595 

computation domains with a minimal performance cost. Still, parallelization over shots should be favored when models fit in the 596 

memory of a single device because no fast interconnects are needed in this situation, and because SeisCL is somewhat more 597 

efficient when memory usage attains a certain level, as shown in Figure 7. In short, having both types of parallelization allows a 598 

greater flexibility over the type of cluster that can be used with SeisCL. 599 

 600 

 601 

Figure 10 Strong scaling tests for a grid size of 96x96x1000. Red corresponds to results from Helios. Green and blue to Guillimin. 602 
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 603 

5. Conclusion 604 

In this article, we presented a program called SeisCL for viscoelastic FWI on heterogeneous clusters.  The algorithm solves the 605 

viscoelastic wave equation by the Finite-Difference Time-Domain approach and uses the adjoint state method to output the gradient 606 

of the misfit function. Two approaches were implemented for the gradient computation by the adjoint method: the backpropagation 607 

approach and the frequency approach. The backpropagation approach was shown to be the most efficient in the elastic case, having 608 

roughly the cost of 3 forward computations. It is, however, not applicable when viscoelasticity is introduced. The frequency approach 609 

has an acceptable cost when a small number of frequencies is selected, but becomes quite prohibitive when all frequencies are 610 

needed. Future work should focus on the implementation of the optimal checkpointing strategy, which is applicable to both elastic 611 

and viscoelastic FWI and strikes a balance between computational costs and memory usage.  612 

It was shown that using OpenCL speeds up the computations compared to a single-threaded implementation and allows the usage 613 

of different processor architectures.  To highlight the code portability, three types of processors were tested: Intel CPUs, Nvidia 614 

GPUs and Intel Xeon PHI. The best performances were achieved with the GPUs: a speedup of nearly two orders of magnitude over 615 

the single-threaded code was attained. On the other hand, code optimization was shown to be suboptimal on the Xeon PHI, which 616 

shows that some efforts must still be spent on device-specific optimization. For the GPU, memory usage was the main area of code 617 

optimization. In particular, the use of OpenCL local memory is paramount and coalesced access to global memory must be 618 

embedded in the algorithm.  619 

When using domain decomposition across devices and nodes of a cluster, overlapping communications  and computations allowed 620 

hiding the cost of memory transfers. Domain decomposition parallelization was shown to be nearly linear on clusters with fast 621 

interconnects using different kinds of processors. Hence, SeisCL can be used to compute the misfit gradient efficiently for large 3D 622 

models on a cluster. Furthermore, the task-parallel scheme of distributing shots allows flexibility when the speed of interconnects 623 

between the nodes limits the computational gain. Together, both parallelization schemes allow a more efficient usage of large cluster 624 

resources.  625 

In summary, the very good performance of SeisCL on heterogeneous clusters containing different processor architectures, 626 

particularly GPUs, is very promising to speed up full waveform inversion. Presently, the most efficient devices for SeisCL are GPUs, 627 

but this can change in the future. The open nature and the flexibility of OpenCL will most probably allow SeisCL to use new hardware 628 

developments. SeisCL is distributed with an open license over Github.  629 



 

 29 

 630 

Apppendix A 631 

This section lists the misfit gradient coefficients. First, some constants are defined: 632 
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The misfit gradient coefficients are given by: 637 
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 792 

Highlights 793 

 An open source software for viscoelastic full waveform inversion is presented. 794 

 This software is based on OpenCL and can run on CPUs, GPUs and accelerators. 795 

 On large clusters, MPI is used and a nearly linear scaling is achieved. 796 

 Using GPUs, we obtain a speed-up of up to 80x over a single threaded CPU code. 797 
 798 




