
Author’s Accepted Manuscript

Time-domain seismic modeling in viscoelastic
media for full waveform inversion on
heterogeneous computing platforms with OpenCL

Gabriel Fabien-Ouellet, Erwan Gloaguen, Bernard
Giroux

PII: S0098-3004(16)30781-6
DOI: http://dx.doi.org/10.1016/j.cageo.2016.12.004
Reference: CAGEO3882

To appear in: Computers and Geosciences

Cite this article as: Gabriel Fabien-Ouellet, Erwan Gloaguen and Bernard Giroux,
Time-domain seismic modeling in viscoelastic media for full waveform inversion
on heterogeneous computing platforms with OpenCL, Computers and
Geosciences, http://dx.doi.org/10.1016/j.cageo.2016.12.004

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/cageo

http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.12.004
http://dx.doi.org/10.1016/j.cageo.2016.12.004

 1

Time-domain seismic modeling in viscoelastic media for full waveform inversion on 1

heterogeneous computing platforms with OpenCL 2

Gabriel Fabien-Ouellet*, Erwan Gloaguen, Bernard Giroux 3

INRS-ETE, 490, Rue de la Couronne, Québec, QC, Canada G1K 9A9 4

*Email address: Gabriel.Fabien-Ouellet@ete.inrs.ca 5

Abstract 6

Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings of the ground motion 7

with the direct solution of the wave equation. Modeling the wave propagation for realistic scenarios is computationally intensive, 8

which limits the applicability of FWI. The current hardware evolution brings increasing parallel computing power that can speed up 9

the computations in FWI. However, to take advantage of the diversity of parallel architectures presently available, new programming 10

approaches are required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the 11

many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D viscoelastic FWI in the time 12

domain. The code computes the forward and adjoint wavefields using finite-difference and outputs the gradient of the misfit function 13

given by the adjoint state method. To demonstrate the code portability on different architectures, the performance of SeisCL is tested 14

on three different devices: Intel CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed 15

up the computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although OpenCL allows 16

code portability, we show that some device-specific optimization is still required to get the best performance out of a specific 17

architecture. Using OpenCL in conjunction with MPI allows the domain decomposition of large models on several devices located on 18

different nodes of a cluster. For large enough models, the speedup of the domain decomposition varies quasi-linearly with the 19

number of devices. Finally, we investigate two different approaches to compute the gradient by the adjoint state method and show 20

the significant advantages of using OpenCL for FWI. 21

Keywords 22

OpenCL; GPU; Seismic; Viscoelasticity; Full waveform Inversion; Adjoint state method; 23

 2

1. Introduction 24

In recent years, parallel computing has become ubiquitous due to a conjunction of both hardware and software availability. 25

Manifestations are seen at all scales, from high-performance computing with the use of large clusters, to mobile devices such as 26

smartphones that are built with multicore Central Processing Units (CPU) (Abdullah and Al-Hafidh, 2013). Graphics processing units 27

(GPU) bring this trend to the next level, packing now up to several thousand cores in a single device. Scientific simulations have 28

benefited from this technology through general-purpose processing on graphics processing units and, for certain applications, GPUs 29

can speed up calculation over one or two orders of magnitude over its CPU counterpart. This has caused a surge in the use of GPUs 30

in the scientific community (Nickolls and Dally, 2010, Owens, et al., 2008), with applications ranging from computational biology to 31

large-scale astrophysics. Furthermore, GPUs are increasingly used in large clusters (Zhe, et al., 2004), and now several of the 32

fastest supercomputers on earth integrate GPUs or accelerators (Dongarra, et al., 2015). 33

 34

Nevertheless, GPUs are not fit for all kinds of scientific computations (Vuduc, et al., 2010). Potential gains from adopting GPUs 35

should be studied carefully before implementation. In particular, the algorithm should follow the logic of the single-program multiple-36

data (SPMD) programming scheme, i.e. many elements are processed in parallel with the same instructions. In geophysics, and 37

more precisely in the seismic community, GPU computing has been applied most successfully in modeling wave propagation with 38

Finite-Difference Time-Domain (FDTD) schemes. Indeed, the finite-difference method is well suited to GPUs because the solution is 39

obtained by independent computations on a regular grid of elements and follows closely the SPMD model (Micikevicius, 2009). For 40

example, Michéa and Komatitsch (2010) show an acceleration by a factor between 20 to 60 between the single-core implementation 41

of the FDTD elastic wave propagation and a single GPU implementation. Okamoto (2011) shows a 45 times speed-up with a single 42

GPU implementation and presents a multi-GPU implementation that successfully parallelizes the calculation, although with a sub-43

linear scaling. Both Rubio, et al. (2014) and Weiss and Shragge (2013) present multi-GPU FDTD programs for anisotropic elastic 44

wave propagation that shows the same unfavorable scaling behavior. Sharing computation through domain decomposition can be 45

problematic mainly because the memory transfers between GPUs and between nodes are usually too slow compared to the 46

computation on GPUs. GPU computing has also been applied successfully to the spectral element method (Komatitsch, et al., 2010), 47

the discontinuous Galerkin method (Mu, et al., 2013) and reverse time migration (Abdelkhalek, et al., 2009), among others. 48

 49

 3

Nearly all of the seismic modeling codes written for GPUs have been implemented with the CUDA standard (Nvidia, 2007). CUDA 50

allows easy programming on NVidia GPUs; however a CUDA program cannot run on devices other than NVidia GPUs. This can be 51

problematic and is a leap of faith that NVidia devices are and will remain the most efficient devices for seismic modeling. Also, 52

several clusters offer different types of GPU or, at least, a mix of GPU devices. Hence, the choice of CUDA limits the access to the 53

full power of a cluster. On the other hand, OpenCL (Stone, et al., 2010) is an open programming standard capable of using most 54

existing types of processors and is supported by the majority of manufacturers like Intel, AMD and Nvidia. On NVidia’ GPUs, 55

OpenCL performance is comparable to CUDA (Du, et al., 2012). Despite this advantage over CUDA, few published seismic modeling 56

codes use OpenCL: Iturrarán-Viveros and Molero (2013) uses OpenCL in a 2.5D sonic seismic simulation, Kloc and Danek (2013) 57

uses OpenCL for Monte-Carlo full waveform inversion and Molero and Iturrarán-Viveros (2013) perform 2D anisotropic seismic 58

simulations with OpenCL. 59

 60

Efficient seismic modeling is more and more needed because of the advent of full waveform inversion (FWI), see Virieux and Operto 61

(2009) for an extensive review. FWI is the process of recovering the Earth (visco)-elastic parameters by directly comparing raw 62

seismic records to the solution of the wave equation (Tarantola, 1984). Its main bottleneck is the numerical resolution of the wave 63

equation that must be repeatedly computed for hundreds if not thousands of shot points for a typical survey. For large-scale multi-64

parameter waveform inversion, FDTD remains the most plausible solution for seismic modeling (Fichtner, 2011). In addition to 65

forward seismic modeling, FWI requires the computation of the misfit gradient. It can be obtained by the adjoint state method 66

(Plessix, 2006), which requires only an additional forward modeling of the residuals. Hence, it is based on the same modeling 67

algorithm and the benefit of a faster FDTD code would be twofold. 68

 69

In this study, we investigate the use of OpenCL for modeling wave propagation in the context of time domain FWI. The main 70

objective is to present a scalable, multi-device portable code for the resolution of the 2D and 3D viscoelastic wave equation that can 71

additionally compute the gradient of the objective function used in FWI by the adjoint state method. This paper does not go into 72

specifics about the inversion process, as the gradient calculations calculated by our algorithm is general and can be used in any 73

gradient-based optimization approach. The seismic modeling program, called SeisCL, is available under a GNU General Public 74

License and is distributed over GitHub. The paper is organized in three parts. First, the equations for viscoelastic wave propagation, 75

its finite-difference solution and the adjoint state method for the calculation of the misfit gradient are briefly discussed. In the second 76

part, different algorithmic aspects of the program are presented in detail. The last section presents numerical results performed on 77

 4

clusters with nodes containing three types of processors: Intel CPUs, NVidia GPUs and Intel Xeon PHI. The numerical results show 78

the validation of the code, the computational speedup over a single threaded implementation and the scaling over several nodes. 79

 80

2. Theory 81

2.1 Finite difference viscoelastic wave propagation 82

FWI requires the solution of the heterogeneous wave equation. In this study, we consider the wave equation for an isotropic 83

viscoelastic medium in two and three dimensions. We adopt the velocity-stress formulation in which the viscoelastic effects are 84

modeled by generalized standard linear solid (Liu, et al., 1976). The symbols used in this article and their meaning are summarized 85

in table 1. The forward problem in 3D is a set of 9 + 6 simultaneous equations with their boundary conditions: 86

 87

 (1a) 88

 [
(1 + 𝜏𝑝)

(1 + 𝛼𝜏𝑝)

(1 + 𝜏𝑠)

(1 + 𝛼𝜏𝑠)
]

(+𝜏𝑠)

(+𝛼𝜏𝑠)
(+)

 (1b) 89

 +

𝜏
[(

𝜏𝑝

(+𝛼𝜏𝑝)

𝜏𝑠

(+𝛼𝜏𝑠)
) +

𝜏𝑠

(+𝛼𝜏𝑠)
(+) +] (1c) 90

 | (1d) 91

 |
 , (1e) 92

 |
 , (1f) 93

 () , (1g) 94

where Einstein summation convention is used over spatial indices and the Maxwell body indice . Equation 1a comes from 95

Newton’s second law of motion. Equation 1b is the stress-strain relationship for the generalized standard linear solid model with 96

Maxwell bodies, which becomes the generalized Hooke’s law when the attenuation is nil, i.e. when the attenuation levels 𝜏𝑠 and 𝜏𝑝 97

are set to zero. Equation 1c gives the variation of the so-called memory variables. Finally, the last four equations are the boundary 98

conditions, respectively a quiescent past for velocities, stresses and memory variables and a free surface. Those equations are 99

 5

discussed in more details in several papers, see for example Carcione, et al. (1988), Robertsson, et al. (1994) and Blanch, et al. 100

(1995). 101

 102

The attenuation of seismic waves is often described by the quality factor, defined as the ratio between the real and imaginary parts of 103

the seismic modulus (O'connell and Budiansky, 1978). In the case of a generalized standard linear solid, it is given by: 104

 (𝜏 𝜏)
 +∑

∑

 (2) 105

An arbitrary profile in frequency of the quality factor can be obtained by a least squares minimization over the relaxation times 𝜏 106

and the attenuation level 𝜏. Usually, two or three Maxwell bodies are sufficient to obtain a relatively flat quality factor profile over the 107

frequency band of a typical seismic source (Bohlen, 2002). The two variables involved have different influences on the frequency 108

profile of the quality factor: 𝜏 controls the frequency peak location of the Maxwell body, whereas 𝜏 controls the overall quality 109

factor magnitude. In FWI, an attenuation profile in frequency is usually imposed on the whole domain (Askan, et al., 2007, Bai, et al., 110

2014, Malinowski, et al., 2011) and it is the magnitude of this profile that is sought. For this reason, 𝜏 is taken here as a spatially 111

constant variable that is fixed before inversion, whereas 𝜏 is let to vary spatially and should be updated through inversion. 112

 113

To solve numerically equation 1, we use a finite-difference time-domain approach similar to (Levander, 1988, Virieux, 1986). In time, 114

derivatives are approximated by finite-difference of order 2 on a staggered grid, in which velocities are updated at integer time steps 115

 and stresses and memory variables are updated at half-time steps in a classic leapfrog fashion. In space, the standard staggered 116

grid is used. An elementary cell of the standard staggered grid is shown in Figure 1, summarizing the location of each seismic 117

variable. The forward
+ and backward

 differential operators of order are given by: 118

+ ()

∑ [(+) (+ 1)]

 (3a) 119

 ()

∑ [(+ 1) ()]

 (3b) 120

where is the spatial step and the coefficients are obtained by Holberg’s method (Holberg, 1987) which reduces dispersion 121

compared to the Taylor coefficients. The choice of the forward or backward operator obeys the following simple rule: in the update 122

equations (1a, 1b and 1c) of a variable “a”, to estimate the derivative of a variable “b”, the forward operator is used if variable “b” is 123

 6

located before variable “a” in the elementary cell (Figure 1) along the derivative direction. The backward operator is used otherwise. 124

For example, the update formula for is: 125

 +

1

(

+

+

+

)

(4)

The complete set of equations can be obtained with equations 1 and 3 and Figure 1. The reader is referred to the work of Bohlen 126

(2002) for the complete list. 127

 128

Finally, to emulate a semi-infinite half-space, artificial reflections caused by the edge of the model must be minimized. For this 129

purpose, two types of absorbing boundaries are implemented: the convolutional perfectly matched layer (CPML) (Roden and 130

Gedney, 2000) as formulated by Komatitsch and Martin (2007) for viscoelastic media and the dissipative layer of (Cerjan, et al., 131

1985). On the top of the model, a free surface condition is implemented by the imaging method of (Levander, 1988). 132

 133

 134

Figure 1 An elementary cell showing the node location for each seismic variable. 135

 136

Table 1 Symbols used in this article 137

Symbol Meaning

 () Particle velocity

 () Stress

 () Source term

 () Memory variable

 7

 ⃖ Adjoint variable

 () Density

 () P-wave modulus

 () Shear modulus

 () Quality factor

𝜏𝑝() P-wave attenuation level

𝜏𝑠() S-wave attenuation level

𝜏 Stress relaxation time of the lth Maxwell body

 Recorded particle velocities

T Recording time

 Number of time steps

 Cost function

 138

 139

2.2 Full waveform inversion 140

The goal of full waveform inversion is to estimate the elastic parameters of the Earth based on a finite set of records of the ground 141

motion , in the form of particle velocities or pressure. This is performed by the minimization of a cost function. For example, the 142

conventional least-squares misfit function for particle velocity measurements is: 143

 (𝜏𝑝 𝜏𝑠)
1

(())

 (())

+

(())

(()) (5) 144

where () is the restriction operator that samples the wavefield at the recorders’ location in space and time. As 3D viscoelastic full 145

waveform inversion may involve billions of model parameters, the cost function is usually minimized with a local gradient-based 146

method. However, due to the sheer size of the problem, the computation of the gradient by finite difference is prohibitive. Lailly 147

(1983) and Tarantola (1984) have shown that the misfit gradient can be obtained by the cross-correlation of the seismic wavefield 148

with the residuals back propagated in time (see Fichtner, et al. (2006) for a more recent development). This method, called the 149

adjoint state method, only requires one additional forward modeling. Based on the method of (Plessix, 2006), it can be shown 150

(Fabien-Ouellet, et al., 2016) that the adjoint state equation for the viscoelastic wave equation of equation 1 is given by: 151

 ⃖ +

 ⃖

 (6a) 152

 ⃖ + [
(1 + 𝜏𝑝)

(1 + 𝛼𝜏𝑝)

(1 + 𝜏𝑠)

(1 + 𝛼𝜏𝑠)
] ⃖ +

(1 + 𝜏𝑠)

(1 + 𝛼𝜏𝑠)
(⃖ + ⃖) + ⃖

[
(+𝜏𝑝)

(+𝛼𝜏𝑝)

(+𝜏𝑠)

(+𝛼𝜏𝑠)
]

 +

(+𝜏𝑠)

(+𝛼𝜏𝑠)
(1 +)

 (6b) 153

 8

 ⃖ +

𝜏
[(

𝜏𝑝

(+𝛼𝜏𝑝)

𝜏𝑠

(+𝛼𝜏𝑠)
) ⃖ +

𝜏𝑠

(+𝛼𝜏𝑠)
(⃖ + ⃖) + ⃖] (6c) 154

 ⃖ | (6d) 155

 ⃖ |
 , (6e) 156

 ⃖ |
 , (6f) 157

 () ⃖ , (6g) 158

with . Comparing equations 1 and 6, we see that both sets of equations are nearly identical, the only difference being the 159

sign of the spatial derivatives and the source terms (the terms involving the misfit function derivative). Hence, the adjoint solution for 160

the viscoelastic wave equation can be computed with the same forward modeling code, with the source term taken as the data 161

residuals reversed in time and with an opposite sign for the spatial derivatives. This allows using the same modeling code for the 162

forward and adjoint problem, with only minor changes to store or recompute the forward and residual wavefields. Once both 163

wavefields are computed, the gradient can be obtained by calculating their scalar product, noted here 〈 〉. The misfit gradient for 164

density, the P-wave modulus, the P-wave attenuation level, the shear modulus and the S-wave attenuation level are given 165

respectively by: 166

 167

 〈 ⃖ 〉 + 〈 ⃖ 〉 + 〈 ⃖ 〉 (7a) 168

 +
 (7b) 169

 𝜏𝑝
 𝜏𝑝

 + 𝜏𝑝
 (7c) 170

 +

 +

 +
 (7d) 171

 𝜏𝑠
 𝜏𝑠

 + 𝜏𝑠
 𝜏𝑠

 + 𝜏𝑠
 𝜏𝑠

 + 𝜏𝑠
 (7e) 172

with 173

 ⟨ ⃖
 + ⃖

 + ⃖
 (

 +
 +

)⟩, 174

 ⟨ ⃖ + ⃖ + ⃖ (1 + 𝜏)(+ +)⟩, 175

 ⟨ ⃖

 ⟩ + ⟨ ⃖

 ⟩ + ⟨ ⃖

 ⟩, 176

 9

 ⟨ ⃖
 ((1)

)⟩

 + ⟨ ⃖
 ((1)

)⟩ 177

 + ⟨ ⃖
 ((1)

)⟩, 178

 ⟨ ⃖ (1 + 𝜏) ⟩

 +⟨ ⃖ (1 + 𝜏) ⟩ 179

 +⟨ ⃖ (1 + 𝜏) ⟩, 180

 ⟨ ⃖ (1 + 𝜏) ((1))⟩

 + ⟨ ⃖ (1 + 𝜏) ((1))⟩ 181

 + ⟨ ⃖ (1 + 𝜏) ((1))⟩ (7f) 182

where ⃖ ∫ ⃖

,

 ∑

 and is the number of dimensions (2 or 3). Coefficients are given in the 183

appendix. The misfit gradients for the P-wave modulus and the P-wave attenuation level 𝜏𝑝 have the same structure and differ 184

only by the coefficients that weight the scalar products. The same relationship exists between and 𝜏𝑠. 185

In the time domain, the scalar product takes the form: 186

〈 () ()〉 ∫ () ()

 (8) 187

which is the zero-lag cross-correlation in time of the real-valued functions () and (). When discretized in time, it is the sum of 188

the product of each sample. Using Parseval's formula, the last equation can also be expressed in the frequency domain: 189

〈 () ()〉

∫ () ()

 (9) 190

where () and () are the Fourier transform of the functions () and () and indicates complex conjugation. The 191

formulation in frequency can be used to perform frequency domain FWI (Pratt and Worthington, 1990) with a time-domain forward 192

modeling code as done by Nihei and Li (2007). The frequency components of the seismic variables can be obtained with the discrete 193

Fourier transform: 194

 () ∑ () [

]

 (10) 195

where is the discrete function in time, A is the discrete function in the Fourier domain, is the time interval, is the frequency 196

interval and is the frequency label. The calculation of a frequency component with the discrete Fourier transform involves the sum 197

of all the time samples weighted by a time varying function given by the complex exponential. In the FDTD scheme, the running sum 198

 10

can be updated at each time step for all or a selected number of frequencies (Furse, 2000). Because FDTD must be oversampled to 199

remain stable (CFL condition), the discrete Fourier transform can be performed at a higher time interval to mitigate its computational 200

cost, e.g. several time steps can be skipped in equation 10, up to the Nyquist frequency of the highest selected frequency. Also, to 201

save memory and reduce computing time, only a handful of frequencies can be used during the inversion (Sirgue and Pratt, 2004). 202

 203

Once the gradient is computed, different algorithms can be used to solve the inversion system, from the steepest descent to the full 204

Newton method (Virieux and Operto, 2009). This issue is not the focus of this study. However, all of these local methods need at 205

least the computation of the forward model and the misfit gradient, both of which are the main computational bottlenecks. Hence, a 206

faster forward/adjoint program should benefit all of the local approaches of FWI. 207

 208

2.3 Background on heterogeneous computing 209

Heterogeneous computing platforms have become the norm in the high-performance computing industry. Clusters generally include 210

different kinds of processors (Dongarra, et al., 2015): the most common being CPUs, GPUs and Many Integrated Core (MIC), also 211

known as accelerators. Those devices may possess different architecture and usually codes written for one type of device is not 212

compatible with others. Writing a specific code for each type of processor can be tedious and non-productive. One solution is given 213

by OpenCL (Stone, et al., 2010), an open standard cross-platform for parallel programming. OpenCL allows the same code to use 214

one or a combination of processors available on a local machine. This portability is the main strength of OpenCL, especially with the 215

actual trend of massively parallel processors. For the moment, it cannot be used for parallelization on a cluster, but can be used in 216

conjunction with MPI. 217

 218

Even though OpenCL allows the same code to be compatible with different devices, the programmer always has to make a choice 219

with the initial design because code optimization can be very different for CPUs, GPUs or MICs architectures. The program 220

presented in this study was written for the GPU architecture, which is arguably the most efficient type of processor available today for 221

finite-difference algorithms. For a good summary of the concepts of GPU computing applied to seismic finite-difference, see (Michéa 222

and Komatitsch, 2010). Essential elements to understand the rest of the article are presented in this section, using the OpenCL 223

nomenclature. 224

 225

 11

A GPU is a device designed to accelerate the creation and manipulation of images, or large matrices, intended primarily for output to 226

a display. It is separated from the CPU (host) and usually does not directly share memory. The set of instructions that can be 227

accomplished on a GPU is different than on the CPU, and classical programming languages cannot be used. A popular application 228

programming interface for GPUs is CUDA (Nvidia, 2007). However, CUDA is a closed standard owned by NVIDIA that can only be 229

used with Nvidia GPUs. It is the main reason why OpenCL was favored over CUDA in this work. 230

 231

In order to code efficiently for GPUs, it is important to understand their architecture. The smallest unit of computation is a work item 232

(a thread in CUDA) and is executed by the processing elements (CUDA cores in the NVidia nomenclature). A single device can 233

contain thousands of processing elements that execute the same control flow (instructions) in parallel on different data in the single 234

instruction, multiple thread fashion. The processing elements are part of groups that are called compute units (thread blocks in 235

CUDA). In NVidia devices, the compute units contain 32 consecutive processing elements. In OpenCL, the programmer sends the 236

work items, organized into work groups, to be computed by the processing elements of a compute unit, located in a given device. 237

 238

Several levels of memory exist in a GPU. This is schematized in Figure 2, in the context of a GPU cluster. First, each processing 239

element has its own register (private memory), a limited in size but very fast memory. Second, inside each compute unit, threads 240

share a low-latency memory, called the local memory. This memory is small, usually in the order of several kilobytes. The main 241

memory, called global memory, is shared between all processing elements and is the place where the memory needed for the 242

different kernels is located. Usually, this memory is not cached and is very slow compared to the local or private memory. 243

One of the most important aspects of GPU programming is the access to the global memory. Depending on the memory access 244

pattern, read/write operations can be performed in a serial or a parallel fashion by the compute units. Parallel (coalesced) memory 245

access is possible when a number of consecutive work items inside a work group performing the same instructions are accessing 246

consecutive memory addresses. For most NVidia devices, consecutive work items, or what is called a warp, can read 32 floats in a 247

single instruction when memory access is coalesced. With finite-difference codes, the number of instructions performed between the 248

read/write cycles in global memory is fairly low, which means that kernels are bandwidth limited. The memory access pattern is then 249

one of the main areas that should be targeted for optimization. 250

 12

 251

Figure 2 OpenCL memory diagram used in conjunction with MPI in the context of a cluster, inspired by (Howes and Munshi, 2014). 252

 253

In practice, a program based on OpenCL is organized as follows, regardless of the type of processor used. First, instructions are 254

given to the host to detect the available devices (GPUs, CPUs or accelerators) and connect them in a single computing context. 255

Once the context is established, memory buffers used to transfer data between the host and the devices must be created. Then, the 256

kernels are loaded and compiled for each device. This compilation is performed at runtime. The kernels are pieces of code written in 257

C that contain the instruction to be computed on the devices. After that, the main part of the program can be executed, in which 258

several kernels and memory transfers occur, managed on the host side by a queuing system. Finally, buffers must be released 259

before the end of the program. Several OpenCL instances can be synchronized with the help of MPI, as shown in Figure 2. 260

 261

3. Program structure 262

This section describes the implementation of the finite-difference algorithm for viscoelastic modeling and the calculation of the adjoint 263

wavefield in an OpenCL/MPI environment. The program contains many kernels, and its simplified structure is shown in Algorithm 1. 264

 13

This algorithm presents a typical gradient calculation over several seismic shots, on a parallel cluster where each node contains 265

several devices. Its main features are discussed in the following sections. 266

 267

Algorithm 1 Pseudo-code for the parallel computation of the gradient with the adjoint state method. 268

Initialize MPI 269

Initialize OpenCL 270

Initialize model grid 271

1. for all groups in MPI do 272

2. for all shots in group do 273

3. for all nodes in group do 274

4. for all devices in node do 275

5. Initialize seismic grid (⃖ ⃖ ⃖) 276

6. Execute time stepping on shot 277

7. Compute residuals 278

8. Execute time stepping on residuals 279

9. Compute gradient 280

10. end for 281

11. end for 282

12. end for 283

13. end for 284

 285

3.1 Node and device parallelism 286

In order to take advantage of large clusters, we use the MPI interface to parallelize computations between the nodes of a cluster. A 287

popular approach to parallelizing finite-difference seismic modeling is domain decomposition (Mattson, et al., 2004). It consists of 288

dividing the model grid into subdomains that can reside on different machines. At each time step, each machine updates its own 289

velocity and stress sub-grids. As the finite-difference update of a variable at a given grid point requires the values of other variables 290

at neighboring grid points (see equations 3 and 4), values defined at grid points on the domain boundary must be transferred 291

between adjacent domains at each time steps. This is depicted in Figure 3. 292

 293

 14

 294

Figure 3 Domain decomposition for three devices for a finite-difference order of 2. Light gray cells are updated inside the device and transferred to the 295
dark gray cells of the adjacent device. 296

 297

Fast interconnects are needed for this memory transfer that occurs at each time step, otherwise the scaling behavior can become 298

unfavorable. For example, Bohlen (2002) observes super-linear scaling for up to 350 nodes on a cluster with 450 Mb/s interconnects, 299

but only linear scaling with up to 12 nodes on a cluster with 100 Mb/s interconnects. When using GPUs, not only transfers are 300

needed between nodes, but also between the devices and the host. This dramatically worsens performance. For example, Okamoto 301

(2011) observes a scalability between and . For this reason, we chose to implement two different parallelism schemes in 302

addition to the inherent OpenCL parallelization: domain decomposition and shot parallelization. 303

 304

Nodes of a cluster are first divided into different groups: within each group, we perform domain decomposition and each group is 305

assigned a subset of shots. Shot parallelism best corresponds to a task-parallel decomposition, and is illustrated in Algorithm 1 by 306

the loop on all the groups of nodes that starts at line 1, and by the loop on all shots assigned to the groups at line 2. Parallelizing 307

shots does not require communication between nodes and should show a linear scaling. Let’s mention that a typical seismic survey 308

involves hundreds if not thousands of shot points. This should be at least on par with the number of available nodes on large 309

clusters. On the other hand, domain decomposition is required to enable computations for models exceeding the memory capacity of 310

a single device. For this level of parallelism, MPI manages communications between nodes and the OpenCL host thread manages 311

the local devices. The communications managed by MPI and OpenCL are illustrated respectively by the loop on all nodes belonging 312

to the same group starting at line 3 of Algorithm 1 and by the loop on all devices found on the node starting at line 4. 313

 15

 314

To further mitigate the communication time required in domain decomposition, the seismic updates are divided between grid points 315

on the domain boundary that needs to be transferred and interior grid points that are only needed locally. This is described in 316

Algorithm 2. The grid points on the boundary are first updated, which allows overlapping the communication and the computation of 317

the remaining grid points, i.e. lines 3 and 4 and lines 7 and 8 of Algorithm 2 are performed simultaneously for devices supporting 318

overlapped communications. This is allowed in OpenCL by having two different queues for each device: one for buffer 319

communication and the other for kernel calls. 320

 321

Algorithm 2 Pseudo code showing the overlapping computation and memory transfer for domain decomposition. 322

1. while t < Nt 323

2. Call kernel_updatev on domain boundary 324

3. Transfer in boundary of devices, nodes 325

4. Call kernel_updatev on domain interior 326

5. Store () in seismo at t 327

6. Call kernel_updates on domain boundary 328

7. Transfer in boundary of devices, nodes 329

8. Call kernel_updates on domain interior 330

9. Increment t 331

10. end while 332

 333

3.2 GPU kernels 334

The main elements of the kernels used to update stresses and velocities are shown in Algorithm 3. For better readability, the 335

algorithm is simplified and does not include viscoelastic computations or CPML corrections. Note that the “for” loops in this pseudo-336

code are implicitly computed by OpenCL. The most important features of this algorithm are steps 3 and 4, where seismic variables 337

needed in the computation of the spatial derivatives are loaded from the global memory to the local memory. As the computation of 338

the spatial gradient of adjacent grid elements repeatedly uses the same grid points, this saves numerous reads from global memory. 339

To be effective, those reads must be coalesced. This is achieved by setting the local working size in the z dimension, which is the 340

fast dimension of the arrays, to a multiple of 32 for NVidias’ GPUs. Hence, seismic variables are updated in blocks of 32 in the z 341

dimension. In the x and y dimensions, the size of the local working size does not impact coalesced memory reading. They are set 342

equal to a magnitude that allows all the seismic variables needed in the update to fit in the local memory. This is illustrated in Figure 343

4. 344

 16

 345

Algorithm 3 Pseudo code for the seismic update kernels showing how local memory is used. 346

1. for all local_domains in global_domain do 347

2. for all grid point in local_domain do 348

3. Load () from global to local memory 349

4. Compute () from local memory 350

5. Update () in global memory 351

6. end for 352

7. end for 353

 354

 355

 356

Figure 4 Exploded view of the local memory containing a seismic variable during update (equations 1a and 1b), for the 2nd order scheme. White cells 357
are cells being updated and gray cells are loaded into local memory only to update white cells. 358

 359

3.3 Misfit gradient computation 360

The cross-correlation of the direct and residual fields requires both fields to be computed at the same time step (see equation 8). 361

This is challenging because forward computations are performed from time zero, whereas adjoint computations are performed from 362

 17

final time. Several strategies can be employed to achieve this task (see (Dussaud, et al., 2008, Nguyen and McMechan, 2015) for 363

comparisons between methods). 364

1. When propagating the direct field, the whole grid for the particle velocities and stresses at each time step or a subset of the 365

time steps can be saved into memory. When the residual field is propagated from final time, the direct field is read from 366

memory for all grid points and the scalar product is evaluated iteratively, time step per time step. 367

2. In the so-called the backpropagation scheme (Clapp, 2008, Yang, et al., 2014), only the outside boundary of the grid that is 368

not in the absorbing layer is saved at each time step. The direct field is recovered during the residual propagation by 369

propagating back in time the direct field from the final state, injecting the saved wavefield on the outside boundary at each 370

time step. As both the forward and adjoint wavefields are available at the same time step, the scalar products can be 371

computed directly with equation 8. 372

3. A selected number of frequencies of the direct and residual field can be stored. This is performed by applying the discrete 373

Fourier transform incrementally at each time step (equations 9 and 10), as done by (Sirgue, et al., 2008). The scalar product 374

is evaluated at the end of the adjoint modeling in the frequency domain with equation 9. An alternative way of computing the 375

chosen frequencies (Furse, 2000) seems to be advantageous over the discrete Fourier transform, but has not been tested 376

in this study. 377

4. In the optimal checkpointing method proposed by (Griewank, 1992, Griewank and Walther, 2000), and applied by (Symes, 378

2007), the whole forward wavefield is stored for a limited number of time steps or checkpoints. To perform the scalar 379

product, the forward wavefield is recomputed for each time step during the backpropagation of the residuals from the 380

nearest checkpoint. For a fixed number of checkpoints, an optimal distribution that minimizes the number of forward 381

wavefield that has to be recomputed can be determined. For this optimal distribution, the number of checkpoints and the 382

number of recomputed time steps evolve logarithmically with the number of total time steps. Further improvements of the 383

method have been proposed by (Anderson, et al., 2012) and by (Komatitsch, et al., 2016) in the viscoelastic case. 384

 385

The first option is usually impractical, as it requires a huge amount of memory even for problems of modest size. In 3D, it requires on 386

the order of (
) elements to be stored, which becomes quickly intractable. Let’s mention that the use of compression and 387

subsampling can be used to mitigate these high memory requirements (Boehm, et al., 2016, Sun and Fu, 2013). The 388

backpropagation scheme requires far less memory, on the order (
) in 3D, but doubles the computation task for the direct 389

field. Also, it is not applicable in the viscoelastic case. Indeed, in order to back-propagate the wavefield, the time must be reversed 390

 18

 and, doing so, the memory variable differential equation (equation 1c) becomes unstable. Hence, when dealing with 391

viscoelasticity, the frequency scheme and the optimal checkpointing scheme are the only viable options. The memory requirement of 392

the frequency scheme grows with the number of computed frequencies on the order of (). However, as is common in FWI, 393

only a selected number of frequencies can be used (Virieux and Operto, 2009). The optimal checkpointing method requires 394

 () where is the number of checkpoints. Because of the logarithmic relationship between the number of time steps, the 395

number of checkpoints and the number of additional computations, the required memory should stay tractable. For example, for 10 396

000 time steps, with only 30 buffers, the computing cost of this option is 3.4 times that of the forward modeling. In this work, we 397

implemented the backpropagation scheme for elastic propagation and the frequency scheme using the discrete Fourier transform for 398

both elastic and viscoelastic propagation. The implementation of the optimal checkpointing scheme or the hybrid 399

backpropagation/checkpointing scheme of (Yang, et al., 2016) is left for future work. 400

 401

The gradient computation involving the backpropagation of the direct field is illustrated in Algorithm 4. At each time step of the direct 402

field propagation, the wavefield value at grid points on the outer edge of the model is stored. Because of the limited memory capacity 403

of GPUs, this memory is transferred to the host. As mentioned before, this communication can be overlapped with other 404

computations with the use of a second queue for communication. After obtaining the residuals, the residual wavefield is propagated 405

forward in time using the same kernel as the direct wavefield. The back-propagation of the direct wavefield is calculated using the 406

same kernel, the only difference being the sign of the time step . Also, at each time step, the stored wavefield on the 407

model edges is injected back. With this scheme, both the residual and the direct fields are available at each time step and can be 408

multiplied to perform on the fly the scalar products needed to compute the gradient. 409

Algorithm 4 Pseudo code for the backpropagation scheme. 410

1. while t < Nt 411

2. Call kernel_updatev 412

3. Store in boundary of model 413

4. Call kernel_updates 414

5. Store in boundary of model 415

6. Increment t 416

7. end while 417

8. Calculate residuals 418

9. while t < Nt 419

10. Call kernel_updatev on ⃖ 420

11. Inject in boundary of model 421

12. Call kernel_updates on ⃖ 422

 19

13. Inject in boundary of model 423

14. Compute gradient 424

15. Increment t 425

16. end while 426

 427

The frequency scheme is illustrated in Algorithm 5. It first involves computing the direct wavefield and its discrete Fourier transform 428

on the fly at each time step, for each desired frequency (equation 10). Afterward, the residual wavefield is obtained in exactly the 429

same fashion. At the end, the scalar product needed for the gradients can be computed with the selected frequencies. 430

 431

Algorithm 5 Pseudo code for the frequency scheme. 432

1. while t < Nt 433

2. Call kernel_updatev for 434

3. Call kernel_updates for 435

4. Call DFT for for freqs 436

5. Increment t 437

6. end while 438

7. Compute residuals 439

8. while t < Nt 440

9. Call kernel_updatev for ⃖ 441

10. Call kernel_updates for ⃖ 442

11. Call DFT for ⃖ ⃖ for freqs 443

12. Increment t 444

13. end while 445

14. Compute gradients 446

 447

4. Results and discussion 448

This section shows several numerical results obtained with SeisCL. The following tests were chosen to verify the performance of 449

OpenCL in the context of FWI on heterogeneous clusters containing three different types of processors: Intel CPUs, Intel Xeon PHI 450

(MIC) and NVidia GPUs. 451

4.1 Modeling validation 452

In order to test the accuracy of our forward/adjoint modeling algorithm, two synthetic cases are presented. First, the finite-difference 453

solution of the viscoelastic wave equation is compared to the analytic solution. The analytic solution for the viscoelastic wave 454

propagation of a point source derived by Pilant (2012) is used here in the form given by Gosselin-Cliche and Giroux (2014) for a 455

 20

quality factor profile corresponding to a single Maxwell body. The source is a Ricker wavelet with a center frequency of 40 Hz, 456

oriented in the z direction. The viscoelastic model is homogeneous with 𝑝=3500 m/s, 𝑠=2000 m/s, =2000 m/s with a single 457

Maxwell body. We tested 4 attenuation levels 𝜏𝑝 𝜏𝑠 { 1 }, i.e. { 1 } at the center frequency of 458

40 Hz. Using a finite-difference stencil of order 4, a 6 m (8.33 points per wavelength) spatial discretization is used to avoid numerical 459

dispersion with a 0.5 ms time step for numerical stability. Figure 5 shows the comparison between the analytic solution and the 460

solution obtained with SeisCL. The traces represent the particle velocities in the z direction for an offset of 132 m in the z direction. 461

For the elastic case (𝜏=0), the analytical solution is perfectly recovered by SeisCL. Using higher attenuation levels does, however, 462

introduce some errors in the solution. This error increases with 𝜏 and for an attenuation level of 0.4, the discrepancy becomes 463

obvious for the offset used herein. It is, however, the expected drawback of using an explicit time domain solution and similar time-464

domain algorithms show the same behavior, see (Gosselin-Cliche and Giroux, 2014). Also, for reasonable attenuation levels, the 465

errors appear negligible and will not impact FWI results much. Accuracy could become an issue for very high attenuating media and 466

long propagation distances. 467

 468

The second test aims at validating the misfit gradient output of SeisCL. For this test, a synthetic 2D cross-well tomographic survey is 469

simulated, where a model perturbation between two wells is to be imaged. The well separation is 250 m and the source and receiver 470

spacing are respectively 60 m and 12 m (Figure 5). Circular perturbations of a 60 m radius for the five viscoelastic parameters were 471

considered at five different locations. The same homogeneous model as the first experiment is used with 𝜏 =0.2 and with 472

perturbations of 5 % of the constant value. Because significant crosstalk can exist between parameters, especially between the 473

velocities and the viscous parameters (Kamei and Pratt, 2013), we computed the gradient for one type of perturbation at a time. For 474

example, the P-wave velocity gradient is computed with constant models for all other parameters other than 𝑝. This eliminates any 475

crosstalk between parameters and allows a better appraisal of the match between the gradient update and the given perturbations. 476

Note that because the goal of the experiment is to test the validity of the approach, geological plausibility was not considered. As no 477

analytical solution exists for the gradient, the adjoint state gradient was compared to the gradient computed by finite-difference. The 478

finite-difference solution was obtained by perturbing each parameter of the grid sequentially by 2%, for all the grid position between 479

the two wells. The adjoint state gradient was computed with the frequency scheme using all frequencies of the discrete Fourier 480

transform between 0 and 125 Hz. 481

 482

 21

The results of this second experiment are shown in Figure 6. In this figure, each column represents a different perturbed parameter. 483

The first row shows the perturbation, the second the steepest descent direction (minus the misfit gradient) obtained by finite-484

difference and the third the steepest descent direction given by the adjoint state model. Note that the gradients were normalized in 485

this figure. As can be visually appraised, an excellent agreement is obtained between both methods, for all parameters. Although the 486

inversion has not been performed here, it should converge to the right solution in the five different cases, the update correction being 487

already in the right direction. This is expected considering the small value of the perturbation used in this experiment; the inverse 488

problem is more or less linear in such circumstances. The good agreement between the finite-difference and the adjoint state 489

gradients shows that the latter could be used in any gradient-based inversion approach. However, the adjoint approach is orders of 490

magnitude faster than the finite-difference approach: the first grows proportionally to the number of frequencies (see next section) 491

while the second grows linearly with the number of parameters. For this particular experiment, the adjoint approach required minutes 492

to complete whereas the finite-difference approach required days. 493

 494

 495

Figure 5 Comparison between the analytical solution and SeisCL results for different attenuation levels, from the elastic case (=0) to strong 496
viscoelasticity (=0.4). 497

0 50 100 150 200

t=0

v
z

Analytical solution

SeisCL

0 50 100 150 200

t=0.01

v
z

0 50 100 150 200

t=0.2

v
z

0 50 100 150 200

t=0.4

v
z

Time (ms)

 22

 498

 499

 500

 501

Figure 6 A cross-well experiment to test the validity of the misfit gradient. The red triangles represent the sources position and the red dots the 502
receiver positions. Each column represents a different parameter. The first row shows the location of the perturbation, the second row represents the 503
opposite of the misfit gradient obtained by finite-difference and the third row represents the opposite of the misfit gradient obtained by the adjoint 504
state method. 505

 506

4.2 Performance comparison 507

The effort required to program with the OpenCL standard would be vain without a significant gain in the computing performance. In 508

the following, several tests are presented to measure the performance of SeisCL. As a measure, one can compute the speedup, 509

defined here as: 510

 𝑠

 𝑠
 (11) 511

 23

Different baselines are used depending on the test. In order to show the OpenCL compatibility of different devices, all tests are 512

performed on three types of processors: Intel CPUs, Intel Xeon PHI (MIC) and NVidia GPUs. Unless stated otherwise, the CPU 513

device consists of 2 Intel Xeon E5-2680 v2 processors with 10 cores each at a frequency of 2.8 GHz and with 25 MB of cache. The 514

GPU is an NVidia Tesla K40 with 2880 cores and 12 GB of memory, and the MIC is an Intel Xeon Phi 5110P. 515

 516

 517

4.2.1- Speedup using SeisCL over a single threaded CPU implementation 518

As a baseline, SOFI2D and SOFI3D, the 2D and 3D implementations of Bohlen (2002) are used with a single core. This baseline can 519

be compared to SeisCL as both codes use the same algorithm. It is also representative of the speed that can be achieved for a 520

FDTD code written in C, arguably one of the fastest high level languages for the CPU. In Figure 7, the speedup is measured as a 521

function of the model size for the 3D and 2D cases, where the model size is a cube and a square respectively with edges of N grid 522

points. The speed-up varies significantly with the model size. The highest speedups are attained with the GPU, which ranges 523

between 50 to more than 80 in 3D and between 30 and 75 in 2D. Significant speedups are also obtained with CPUs, as high as 35 524

times faster. This is higher than the number of cores (20) available. We make the hypothesis that this is caused by a better cache 525

usage of the OpenCL implementation, i.e. usage of local memory increases significantly the cache hits during computation compared 526

to the C implementation of Bohlen (2002). The 2D implementation seems less impacted by this phenomenon and speedups are in a 527

more normal range, between 11 and 25. We also noted that the time stepping computation can be very slow in the first several 528

hundred time steps for the C implementation. This is the source of the strong variations in speedups observed in Figure 7. Finally, 529

the Xeon Phi speedups are disappointing compared to their theoretical computing capacity. However, SeisCL has been optimized for 530

GPUs, not for the Xeon Phi. Even if we have not tested it, it is possible that with small modifications of the code, improved 531

performance could be attained. This shows, however, the limits of device portability with OpenCL: code optimization is paramount to 532

achieve high performances and this optimization can be quite different for different devices. 533

 24

 534

Figure 7 Speedup of SeisCL over a single threaded CPU implementation for different model sizes in 3D (top) and 2D (bottom), for different processor 535
types. 536

 537

4.2.2- Performance of the gradient calculation 538

The next test aims at assessing the performance of the two different gradient schemes. For this experiment, the baseline is the time 539

required to perform one forward modeling run, without the gradient calculations. The computing times are measured for the 540

backpropagation scheme and the frequency scheme, for model sizes of 100x100x100 and 1000x1000 grid nodes in 3D and 2D 541

respectively. The results are shown in Figure 8. For the frequency scheme, the computing time increases linearly with the number of 542

frequencies. The cost rises faster in 3D than in 2D, which can be explained by the higher number of variables needed to be 543

transformed in 3D. Surprisingly, the computation time for the Xeon PHI seems to increase much slower than for the CPU or the GPU. 544

It is to be noticed that for testing purposes, the discrete Fourier transform was computed at every time step. However, significant 545

50 70 100 140 200 280
1

2

4

8

16

32

64

128

S
p

e
e
d

 u
p

N

100 200 400 800 1600 3200 6400
1

2

4

8

16

32

64

128

S
p

e
e

d
 u

p

N

GPU elastic

CPU elastic

PHI elastic

GPU viscoelastic

CPU viscoelastic

PHI viscoelastic

 25

savings could be achieved if it was computed near the Nyquist frequency. Nevertheless, this test shows that the cost of computing 546

the discrete Fourier transform during time stepping is not trivial but remains tractable. Finally, the backpropagation scheme has a 547

cost that is roughly 3 times the cost of a single forward modeling for all devices. Hence, in the elastic case, the backpropagation 548

scheme outperforms the frequency scheme no matter the number of frequencies. It also has the added benefit of containing all 549

frequencies. 550

 551

Figure 8 Ratio of the computing time between the forward modeling and the adjoint modeling in the frequency scheme for an increasing number of 552
frequencies. The dashed line denotes the back-propagation scheme for all devices. 553

 554

 555

4.2.3- Measure of the cost of using higher order finite-difference stencils on different devices 556

The baseline for this test is the computation time of the 2nd order stencil for each device. The slowdown is used here as a measure, 557

i.e. the inverse of the speedup. The same spatial and temporal step lengths were used for each order. As can be seen in Figure 9, 558

for all three types of device, the slowdown is quite low and does not exceed 1.5 for the highest order of 12 considered here, except 559

for the GPU in 3D where it exceeds 3 for an order of 12. Note that up to the 8th order, the GPU performance is comparable to the 560

other device types. The higher cost for the GPU in 3D for orders 10 and 12 is caused by the limited amount of local memory. Indeed, 561

for those orders, the amount of local memory required to compute the derivative of a single variable exceeds the device capacity. In 562

those circumstances, SeisCL turns off the usage of local memory and uses global memory directly. The abrupt slowdown is manifest 563

of the importance of using local memory. The reason why higher order stencils do not affect significantly the computing time of 564

SeisCL is that it is bandwidth limited: access to the memory takes more time than the actual computations. As memory access is 565

0 10 20 30 40
0

10

20

30

40

50

60

70

80

S
lo

w
d

o
w

n

Number of frequencies

GPU 3D

CPU 3D

PHI 3D

GPU 2D

CPU 2D

PHI 2D

Back prop

 26

locally shared, the higher number of reads required for higher finite-difference order does not increase significantly. The impact on 566

computation at each time step is thus marginal. In most cases, the advantages of using higher orders outweigh the computational 567

costs, because it allows reducing the grid size. For example, using a 6th order over a 2nd order stencil allows reducing the grid point 568

per wavelength from around 22 to 3, i.e. it reduces the number of grid elements by a factor of 400 in 3D. However, in some 569

situations, for instance in the presence of a free surface, topography or strong material discontinuities, higher order stencils introduce 570

inaccuracies (Bohlen and Saenger, 2006, Kristek, et al., 2002, Robertsson, 1996). Hence, the choice of the order should be 571

evaluated on a case-by-case basis. 572

 573

 574

Figure 9 Slowdown of the computation using higher finite-difference order compared to the 2nd order for different devices. 575

 576

4.2.4- Tests on heterogeneous clusters 577

To evaluate the scalability of our code over large clusters, a strong scaling test was performed. Here, strong scaling refers to the 578

variation of the computational time for a model of fixed sized for an increasing number of processors. The following results were 579

obtained for a grid size of 96x96x9000 elements and an increasing number of devices for the domain decomposition. This test was 580

performed on two different clusters: Helios of Laval University, Canada and Guillimin from McGill University, Canada. The Helios 581

nodes contain 8 NVidia K80 GPUs (16 devices). This cluster was used to test strong scaling for GPUs on a single node of a cluster, 582

which does not involve MPI. Two types of nodes were used on Guillimin: nodes containing two Intel Xeon X5650 with 6 cores each at 583

2 4 6 8 10 12
1

1.4

2

3

S
lo

w
d
o

w
n

FD Order

GPU 3D

CPU 3D

PHI 3D

GPU 2D

CPU 2D

PHI 2D

 27

2.66 GHz and 12 MB of cache and nodes containing 2 NVidia K20 GPUs in addition to the same two Xeon CPUs. This cluster was 584

used to test strong scaling across several nodes, which requires MPI communication. 585

 586

Results are shown in Figure 10. The best scaling behavior is shown by the nodes on Guillimin with two GPUs, which is very nearly 587

linear over the tested number of devices (blue triangles on Figure 10). Surprisingly, the scaling is slightly worse for many devices 588

located on the same node (Helios nodes, red stars in Figure 10). We interpret this result as being caused by the increasing burden 589

on the processor when a higher number of GPUs must be scheduled on the same nodes: at some point, the CPU becomes too slow 590

to keep all GPUs busy. Compared to Guillimin nodes using CPUs, Guillimin nodes using GPUs also scale better. Still, the CPU 591

scaling remains quite favorable and is higher than N4/5. Those results are better than the results reported by Okamoto (2011), Rubio, 592

et al. (2014), Weiss and Shragge (2013). We explain this favorable behavior by the separate computation of grid elements inside and 593

outside of the communication zone in our code. 594

The strong scaling tests show that for large models that fit only on multiple nodes and devices, SeisCL can efficiently parallelize the 595

computation domains with a minimal performance cost. Still, parallelization over shots should be favored when models fit in the 596

memory of a single device because no fast interconnects are needed in this situation, and because SeisCL is somewhat more 597

efficient when memory usage attains a certain level, as shown in Figure 7. In short, having both types of parallelization allows a 598

greater flexibility over the type of cluster that can be used with SeisCL. 599

 600

 601

Figure 10 Strong scaling tests for a grid size of 96x96x1000. Red corresponds to results from Helios. Green and blue to Guillimin. 602

1 2 4 8 16 32
1

2

4

8

16

32

N®

¬ N
4/5

S
p

e
e

d
 u

p

N devices

16 GPUs/node

2 GPUs/node

 2 CPUs/node

 28

 603

5. Conclusion 604

In this article, we presented a program called SeisCL for viscoelastic FWI on heterogeneous clusters. The algorithm solves the 605

viscoelastic wave equation by the Finite-Difference Time-Domain approach and uses the adjoint state method to output the gradient 606

of the misfit function. Two approaches were implemented for the gradient computation by the adjoint method: the backpropagation 607

approach and the frequency approach. The backpropagation approach was shown to be the most efficient in the elastic case, having 608

roughly the cost of 3 forward computations. It is, however, not applicable when viscoelasticity is introduced. The frequency approach 609

has an acceptable cost when a small number of frequencies is selected, but becomes quite prohibitive when all frequencies are 610

needed. Future work should focus on the implementation of the optimal checkpointing strategy, which is applicable to both elastic 611

and viscoelastic FWI and strikes a balance between computational costs and memory usage. 612

It was shown that using OpenCL speeds up the computations compared to a single-threaded implementation and allows the usage 613

of different processor architectures. To highlight the code portability, three types of processors were tested: Intel CPUs, Nvidia 614

GPUs and Intel Xeon PHI. The best performances were achieved with the GPUs: a speedup of nearly two orders of magnitude over 615

the single-threaded code was attained. On the other hand, code optimization was shown to be suboptimal on the Xeon PHI, which 616

shows that some efforts must still be spent on device-specific optimization. For the GPU, memory usage was the main area of code 617

optimization. In particular, the use of OpenCL local memory is paramount and coalesced access to global memory must be 618

embedded in the algorithm. 619

When using domain decomposition across devices and nodes of a cluster, overlapping communications and computations allowed 620

hiding the cost of memory transfers. Domain decomposition parallelization was shown to be nearly linear on clusters with fast 621

interconnects using different kinds of processors. Hence, SeisCL can be used to compute the misfit gradient efficiently for large 3D 622

models on a cluster. Furthermore, the task-parallel scheme of distributing shots allows flexibility when the speed of interconnects 623

between the nodes limits the computational gain. Together, both parallelization schemes allow a more efficient usage of large cluster 624

resources. 625

In summary, the very good performance of SeisCL on heterogeneous clusters containing different processor architectures, 626

particularly GPUs, is very promising to speed up full waveform inversion. Presently, the most efficient devices for SeisCL are GPUs, 627

but this can change in the future. The open nature and the flexibility of OpenCL will most probably allow SeisCL to use new hardware 628

developments. SeisCL is distributed with an open license over Github. 629

 29

 630

Apppendix A 631

This section lists the misfit gradient coefficients. First, some constants are defined: 632

𝛼 ∑

 𝜏

 +
 𝜏

 (A-1) 633

 (
(+𝜏𝑝)

(+𝛼𝜏𝑝)
 (1)

(+𝜏𝑠)

(+𝛼𝜏𝑠)
)

 (A-2) 634

 (
𝜏𝑝

(+𝛼𝜏𝑝)
 (1)

𝜏𝑠

(+𝛼𝜏𝑠)
)

 (A-3) 635

 636

The misfit gradient coefficients are given by: 637

(+𝜏𝑝)

(+𝛼𝜏𝑝)
 (A-4) 638

𝜏𝑝

(+𝛼𝜏𝑝)
 (A-5) 639

(+𝛼𝜏𝑠)

(+𝜏𝑠)
 (A-6) 640

(+)

(+𝜏𝑠)

(+𝛼𝜏𝑠)
 (A-7) 641

(+𝛼𝜏𝑠)

(+𝜏𝑠)
 (A-8) 642

(+𝛼𝜏𝑠)

𝜏𝑠
 (A-9) 643

(+)

𝜏𝑠

(+𝛼𝜏𝑠)
 (A-10) 644

(+𝛼𝜏𝑠)

𝜏𝑠
 (A-11) 645

 𝜏𝑝
 (1 𝛼)

(+𝛼𝜏𝑝)
 (A-12) 646

 𝜏𝑝

(+𝛼𝜏𝑝)
 (A-13) 647

 𝜏𝑠

(𝛼)

(+𝜏𝑠) (A-14) 648

 30

 𝜏𝑠

(+)

(1 𝛼)

(+𝛼𝜏𝑠) (A-15) 649

 𝜏𝑠

(𝛼)

 (+𝜏𝑠) (A-16) 650

 𝜏𝑠

 𝜏𝑠
 (A-17) 651

 𝜏𝑠

(+)

(+𝛼𝜏𝑠) (A-18) 652

 𝜏𝑠

 𝜏𝑠
 (A-19) 653

Acknowledgements 654

This work was funded by a Vanier Canada Graduate Scholarship and supported by the Canada Chair in geological and geophysical 655

data assimilation for stochastic geological modeling. 656

 657

 658

References 659

Abdelkhalek, R., Calandra, H., Coulaud, O., Roman, J. and Latu, G., 2009, Fast seismic modeling and Reverse Time Migration on a 660
GPU cluster, p. 36-43, 10.1109/hpcsim.2009.5192786. 661
Abdullah, D. and Al-Hafidh, M. M., 2013, Developing Parallel Application on Multi-core Mobile Phone: Editorial Preface, v. 4, no. 11. 662
Anderson, J. E., Tan, L. and Wang, D., 2012, Time-reversal checkpointing methods for RTM and FWI: Geophysics, v. 77, no. 4, p. 663
S93-S103, 10.1190/geo2011-0114.1. 664
Askan, A., Akcelik, V., Bielak, J. and Ghattas, O., 2007, Full Waveform Inversion for Seismic Velocity and Anelastic Losses in 665
Heterogeneous Structures: Bulletin of the Seismological Society of America, v. 97, no. 6, p. 1990-2008, 10.1785/0120070079. 666
Bai, J., Yingst, D., Bloor, R. and Leveille, J., 2014, Viscoacoustic waveform inversion of velocity structures in the time domain: 667
Geophysics, v. 79, no. 3, p. R103-R119, 10.1190/geo2013-0030.1. 668
Blanch, J. O., Robertsson, J. O. A. and Symes, W. W., 1995, Modeling of a constantQ: Methodology and algorithm for an efficient 669
and optimally inexpensive viscoelastic technique: Geophysics, v. 60, no. 1, p. 176-184, 10.1190/1.1443744. 670
Boehm, C., Hanzich, M., de la Puente, J. and Fichtner, A., 2016, Wavefield compression for adjoint methods in full-waveform 671
inversion: Geophysics, v. 81, no. 6, p. R385-R397, 10.1190/geo2015-0653.1. 672
Bohlen, T., 2002, Parallel 3-D viscoelastic finite difference seismic modelling: Computers & Geosciences, v. 28, no. 8, p. 887-899, 673
10.1016/s0098-3004(02)00006-7. 674
Bohlen, T. and Saenger, E. H., 2006, Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves: 675
Geophysics, v. 71, no. 4, p. T109-T115, 10.1190/1.2213051. 676
Carcione, J. M., Kosloff, D. and Kosloff, R., 1988, Viscoacoustic wave propagation simulation in the earth: Geophysics, v. 53, no. 6, 677
p. 769-777, 10.1190/1.1442512. 678
Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave 679
equations: Geophysics, v. 50, no. 4, p. 705-708, 10.1190/1.1441945. 680
Clapp, R. G., 2008, Reverse time migration: saving the boundaries, Technical Report SEP-136, Stanford Exploration Project, p. 137. 681
Dongarra, J. J., Meuer, H. W. and Strohmaier, E., 2015, Top500 supercomputer sites, http://www.top500.org/ (Accessed on 682
01/12/2015) 683

 31

Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G. and Dongarra, J., 2012, From CUDA to OpenCL: Towards a performance-684
portable solution for multi-platform GPU programming: Parallel Computing, v. 38, no. 8, p. 391-407, 10.1016/j.parco.2011.10.002. 685
Dussaud, E., Symes, W. W., Williamson, P., Lemaistre, L., Singer, P., Denel, B. and Cherrett, A., 2008, Computational strategies for 686
reverse‐ time migration, p. 2267-2271, 10.1190/1.3059336. 687
Fabien-Ouellet, G., Gloaguen, E. and Giroux, B., The Adjoint State Method for the Viscoelastic Wave Equation in the Velocity-stress 688
Formulation, in Proceedings 78th EAGE Conference and Exhibition 2016, May 2016, 10.3997/2214-4609.201600826. 689
Fichtner, A., 2011, Full Seismic Waveform Modelling and Inversion. 690
Fichtner, A., Bunge, H. P. and Igel, H., 2006, The adjoint method in seismology - I. Theory: Physics of the Earth and Planetary 691
Interiors, v. 157, no. 1-2, p. 86-104, 10.1016/j.pepi.2006.03.016. 692
Furse, C. M., 2000, Faster than Fourier: ultra-efficient time-to-frequency-domain conversions for FDTD simulations: IEEE Antennas 693
and Propagation Magazine, v. 42, no. 6, p. 24-34, 10.1109/74.894179. 694
Gosselin-Cliche, B. and Giroux, B., 2014, 3D frequency-domain finite-difference viscoelastic-wave modeling using weighted average 695
27-point operators with optimal coefficients: Geophysics, v. 79, no. 3, p. T169-T188, 10.1190/geo2013-0368.1. 696
Griewank, A., 1992, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation: 697
Optimization Methods and Software, v. 1, no. 1, p. 35-54, 10.1080/10556789208805505. 698
Griewank, A. and Walther, A., 2000, Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of 699
computational differentiation: ACM Transactions on Mathematical Software, v. 26, no. 1, p. 19-45, 10.1145/347837.347846. 700
Holberg, O., 1987, Computational Aspects of the Choice of Operator and Sampling Interval for Numerical Differentiation in Large-701
Scale Simulation of Wave Phenomena*: Geophysical Prospecting, v. 35, no. 6, p. 629-655, 10.1111/j.1365-2478.1987.tb00841.x. 702
Howes, L. and Munshi, A., 2014, The OpenCL Specification: Khronos OpenCL. 703
Iturrarán-Viveros, U. and Molero, M., 2013, Simulation of sonic waves along a borehole in a heterogeneous formation: Accelerating 704
2.5-D finite differences using [Py]OpenCL: Computers & Geosciences, v. 56, p. 161-169, 10.1016/j.cageo.2013.03.014. 705
Kamei, R. and Pratt, R. G., 2013, Inversion strategies for visco-acoustic waveform inversion: Geophysical Journal International, v. 706
194, no. 2, p. 859-884, 10.1093/gji/ggt109. 707
Kloc, M. and Danek, T., 2013, The Multi GPU Accelerated Waveform Inversion in Distributed OpenCL Environment, Emerging 708
Trends in Computing, Informatics, Systems Sciences, and Engineering, Springer, p. 237-244. 709
Komatitsch, D., Erlebacher, G., Göddeke, D. and Michéa, D., 2010, High-order finite-element seismic wave propagation modeling 710
with MPI on a large GPU cluster: Journal of Computational Physics, v. 229, no. 20, p. 7692-7714, 10.1016/j.jcp.2010.06.024. 711
Komatitsch, D. and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic 712
wave equation: Geophysics, v. 72, no. 5, p. SM155-SM167, 10.1190/1.2757586. 713
Komatitsch, D., Xie, Z., Bozdağ, E., Sales de Andrade, E., Peter, D., Liu, Q. and Tromp, J., 2016, Anelastic sensitivity kernels with 714
parsimonious storage for adjoint tomography and full waveform inversion: Geophysical Journal International, v. 206, no. 3, p. 1467-715
1478, 10.1093/gji/ggw224. 716
Kristek, J., Moczo, P. and Archuleta, R. J., 2002, Efficient Methods to Simulate Planar Free Surface in the 3D 4th-Order Staggered-717
Grid Finite-Difference Schemes: Studia Geophysica et Geodaetica, v. 46, no. 2, p. 355-381, 10.1023/a:1019866422821. 718
Lailly, P., The seismic inverse problem as a sequence of before stack migrations, in Proceedings Conference on inverse scattering: 719
theory and application, 1983, Society for Industrial and Applied Mathematics, Philadelphia, PA, p. 206-220. 720
Levander, A. R., 1988, Fourth‐ order finite‐ differenceP-SVseismograms: Geophysics, v. 53, no. 11, p. 1425-1436, 721
10.1190/1.1442422. 722
Liu, H.-P., Anderson, D. L. and Kanamori, H., 1976, Velocity dispersion due to anelasticity; implications for seismology and mantle 723
composition: Geophysical Journal International, v. 47, no. 1, p. 41-58. 724
Malinowski, M., Operto, S. and Ribodetti, A., 2011, High-resolution seismic attenuation imaging from wide-aperture onshore data by 725
visco-acoustic frequency-domain full-waveform inversion: Geophysical Journal International, v. 186, no. 3, p. 1179-1204, 726
10.1111/j.1365-246X.2011.05098.x. 727
Mattson, T. G., Sanders, B. A. and Massingill, B. L., 2004, Patterns for parallel programming, Pearson Education. 728
Michéa, D. and Komatitsch, D., 2010, Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics 729
cards: Geophysical Journal International, p. no-no, 10.1111/j.1365-246X.2010.04616.x. 730
Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA, p. 79-84, 10.1145/1513895.1513905. 731
Molero, M. and Iturrarán-Viveros, U., 2013, Accelerating numerical modeling of wave propagation through 2-D anisotropic materials 732
using OpenCL: Ultrasonics, v. 53, no. 3, p. 815-822. 733
Mu, D., Chen, P. and Wang, L., 2013, Accelerating the discontinuous Galerkin method for seismic wave propagation simulations 734
using the graphic processing unit (GPU)—single-GPU implementation: Computers & Geosciences, v. 51, p. 282-292. 735
Nguyen, B. D. and McMechan, G. A., 2015, Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse 736
time migration: Geophysics, v. 80, no. 1, p. S1-S18, 10.1190/geo2014-0014.1. 737
Nickolls, J. and Dally, W. J., 2010, The GPU Computing Era: IEEE Micro, v. 30, no. 2, p. 56-69, 10.1109/mm.2010.41. 738

 32

Nihei, K. T. and Li, X., 2007, Frequency response modelling of seismic waves using finite difference time domain with phase 739
sensitive detection (TD-PSD): Geophysical Journal International, v. 169, no. 3, p. 1069-1078, 10.1111/j.1365-246X.2006.03262.x. 740
Nvidia, C., 2007, Compute unified device architecture programming guide. 741
O'connell, R. and Budiansky, B., 1978, Measures of dissipation in viscoelastic media: Geophysical Research Letters, v. 5, no. 1, p. 5-742
8. 743
Okamoto, 2011, Accelerating large-scale simulation of seismic wave propagation by multi-GPUs and three-dimensional domain 744
decomposition: Earth, Planets and Space, v. 62, no. 12, p. 939-942, 10.5047/eps.2010.11.009. 745
Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E. and Phillips, J. C., 2008, GPU Computing: Proceedings of the IEEE, 746
v. 96, no. 5, p. 879-899, 10.1109/jproc.2008.917757. 747
Pilant, W. L., 2012, Elastic waves in the earth, Volume 11, Elsevier. 748
Plessix, R. E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: 749
Geophysical Journal International, v. 167, no. 2, p. 495-503, 10.1111/j.1365-246X.2006.02978.x. 750
Pratt, R. G. and Worthington, M., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-751
equation method: Geophysical Prospecting, v. 38, no. 3, p. 287-310, 10.1111/j.1365-2478.1990.tb01846.x 752
Robertsson, J. O. A., 1996, A numerical free‐ surface condition for elastic/viscoelastic finite‐ difference modeling in the presence of 753
topography: Geophysics, v. 61, no. 6, p. 1921-1934, 10.1190/1.1444107. 754
Robertsson, J. O. A., Blanch, J. O. and Symes, W. W., 1994, Viscoelastic finite‐ difference modeling: Geophysics, v. 59, no. 9, p. 755
1444-1456, 10.1190/1.1443701. 756
Roden, J. A. and Gedney, S. D., 2000, Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary 757
media: Microwave and Optical Technology Letters, v. 27, no. 5, p. 334-339, 10.1002/1098-2760(20001205)27:5<334::aid-758
mop14>3.0.co;2-a. 759
Rubio, F., Hanzich, M., Farrés, A., de la Puente, J. and María Cela, J., 2014, Finite-difference staggered grids in GPUs for 760
anisotropic elastic wave propagation simulation: Computers & Geosciences, v. 70, p. 181-189, 10.1016/j.cageo.2014.06.003. 761
Sirgue, L., Etgen, J. and Albertin, U., 3D frequency domain waveform inversion using time domain finite difference methods, in 762
Proceedings 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, 2008. 763
Sirgue, L. and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: 764
Geophysics, v. 69, no. 1, p. 231-248, 10.1190/1.1649391. 765
Stone, J. E., Gohara, D. and Shi, G., 2010, OpenCL: A parallel programming standard for heterogeneous computing systems: 766
Computing in science & engineering, v. 12, no. 1-3, p. 66-73. 767
Sun, W. and Fu, L.-Y., 2013, Two effective approaches to reduce data storage in reverse time migration: Computers & Geosciences, 768
v. 56, p. 69-75, 10.1016/j.cageo.2013.03.013. 769
Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics, v. 72, no. 5, p. SM213-SM221, 770
10.1190/1.2742686. 771
Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, v. 49, no. 8, p. 1259-1266, 772
10.1190/1.1441754. 773
Virieux, J., 1986, P-SVwave propagation in heterogeneous media: Velocity‐ stress finite‐ difference method: Geophysics, v. 51, no. 774
4, p. 889-901, 10.1190/1.1442147. 775
Virieux, J. and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, v. 74, no. 6, p. 776
WCC1-WCC26, 10.1190/1.3238367. 777
Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M. and Shringarpure, A., On the limits of GPU acceleration, in Proceedings 778
Proceedings of the 2nd USENIX conference on Hot topics in parallelism, 2010, USENIX Association, p. 13-13. 779
Weiss, R. M. and Shragge, J., 2013, Solving 3D anisotropic elastic wave equations on parallel GPU devices: Geophysics, v. 78, no. 780
2, p. F7-F15, 10.1190/geo2012-0063.1. 781
Yang, P., Brossier, R., Metivier, L. and Virieux, J., 2016, Checkpointing-assisted reverse-forward simulation: An optimal 782
recomputation method for FWI and RTM, p. 1089-1093, 10.1190/segam2016-13685603.1. 783
Yang, P., Gao, J. and Wang, B., 2014, RTM using effective boundary saving: A staggered grid GPU implementation: Computers & 784
Geosciences, v. 68, p. 64-72, 10.1016/j.cageo.2014.04.004. 785
Zhe, F., Feng, Q., Kaufman, A. and Yoakum-Stover, S., 2004, GPU Cluster for High Performance Computing, p. 47-47, 786
10.1109/sc.2004.26. 787
 788

 789

 790

 33

 791

 792

Highlights 793

 An open source software for viscoelastic full waveform inversion is presented. 794

 This software is based on OpenCL and can run on CPUs, GPUs and accelerators. 795

 On large clusters, MPI is used and a nearly linear scaling is achieved. 796

 Using GPUs, we obtain a speed-up of up to 80x over a single threaded CPU code. 797
 798

