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Abstract 18 

Several businesses and industries rely on rainfall forecasts to support their day-to-day 19 

operations. To deal with the uncertainty associated with rainfall forecast, some 20 

meteorological organisations have developed products, such as ensemble forecasts. 21 

However, due to the intensive computational requirements of ensemble forecasts, the 22 

spatial resolution remains coarse. For example, Environment and Climate Change 23 

Canada’s (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on 24 

a 1-degree grid (about 100 km), while those of the so-called High Resolution 25 

Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times 26 

finer). Potential users are then left with the option of using either a high-resolution 27 

rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of 28 

plausible rainfall values, but at a coarser spatial scale. The objective of this study was to 29 

evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) 30 

with ECCC products to provide accurate, precise and consistent rainfall estimates at a 31 

fine spatial resolution (10-km) within a forecast framework (6-hours). For 30, 6-h, 32 

rainfall events occurring within a 40,000-km
2
 area (Québec, Canada), results show that, 33 

using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields 34 

generated by GSDM were close to those of the 10-km reference field. However, in 35 

forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor 36 

performance when GEPS data were used as input, mainly due to the inherent rainfall 37 

depth distribution of the latter product. Better performance was achieved when the 38 

Regional Deterministic Prediction System (RDPS), available on a 10-km grid and 39 

aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed 40 



  

3 

 

ensemble forecasts were weakly consistent. Some areas of improvement are identified 41 

herein. 42 

Highlights 43 

• GSDM applied on reference data generates accurate and precise rainfall fields 44 

• GSDM inherits the forecast bias 45 

• Global ensemble forecasts (GEPS) are not consistent, with or without GSDM  46 

• GSDM performance was better with regional deterministic forecasts (RDPS) 47 

• Neighboring pixels should be considered when producing high-resolution 48 

ensembles 49 

Keywords 50 

Gibbs Sampling Disaggregation Model (GSDM), Canadian Precipitation Analysis 51 

(CaPA), Global Ensemble Prediction System (GEPS), Regional Deterministic Prediction 52 

System (RDPS), ensemble, high-resolution rainfall. 53 

  54 
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1 Introduction 55 

Numerous businesses and industries need consistent, precise and accurate, high-56 

resolution, short-term rainfall forecasts. For example, in urban areas, high-resolution 57 

rainfall forecasts are of interest for stormwater management (e.g., Gaborit et al., 2014). 58 

They are also important in rural areas where agricultural activities (e.g., fungicide 59 

applications, some herbicides applications, hay harvesting, manure application, irrigation 60 

management), that are affected by local rainfall depth, require up-to-the-hour information 61 

(e.g., Cai et al., 2007; Silva et al., 2010; Cai et al., 2011; Bendre et al., 2015). 62 

Thanks to advances in computational resources, understanding and parameterization of 63 

key physical processes, increased access to satellite data, and data assimilation 64 

techniques, meteorological models have made tremendous strides in the last decades 65 

(Bauer et al., 2015). One of the most spectacular changes that has occurred is an 66 

impressive increase in horizontal resolution. For example, the horizontal resolution of 67 

Environment and Climate Change Canada’s (ECCC) global deterministic prediction 68 

system has improved from approximately 150-km in 1990 to 25-km in 2013 (changes to 69 

ECCC’s operational model are documented at: 70 

http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/changes_e.html). 71 

Throughout Canada, deterministic forecasts are routinely issued on a grid having a 72 

horizontal resolution of 2.5 km. The accuracy of the forecasts has improved accordingly. 73 

For example, based on the root mean-squared-error (RMSE) of the 850 hPa temperature 74 

forecasts issued by ECCC over North America, a 3-day forecast issued in 2015 was about 75 

as accurate as a 1-day forecast issued in 1995, and a 5-day forecast issued in 2015 was 76 

about as accurate as a 3-day forecast issued in 1995. This corresponds to a gain of 77 
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approximately one day of lead time per decade, which is consistent with improvements 78 

reported by Bauer et al. (2015) for the European Centre for Medium-Range Weather 79 

Forecasts.  80 

Despite significant advances (e.g., COSMO forecast system; Baldauf et al., 2011), it 81 

remains difficult to get reliable rainfall forecasts for fine spatiotemporal scales. To 82 

circumvent this issue, meteorological organisations are developing ensemble products 83 

that provide several forecasts for a given timeframe; providing a spectrum of rainfall 84 

depths associated with model uncertainty. However, because of the ensuing 85 

computational requirements, the spatial resolution is generally coarser than that of a 86 

deterministic run. Furthermore, outputs are not always made available on the original 87 

model grid due to disk space constraints. For example, the Canadian ensemble forecasts 88 

from the Global Ensemble Prediction System (GEPS) of ECCC, which are issued on a 89 

50-km grid, are freely available on a 1-degree grid (about 100 km), while the spatial 90 

resolution of their High Resolution Deterministic Prediction System (HRDPS) is about 91 

40 times finer (2.5 km at 60°N). Thus, there is still a wide gap between available 92 

forecasts and stakeholder requirements, namely: (i) rainfall estimates close to actual, 93 

local-scale values, (ii) information about the uncertainty of local estimates, and for some 94 

applications, (iii) available data for short-term decisions.  95 

Meanwhile, rainfall and weather generators can both produce fine-scale rainfall fields 96 

from coarse meteorological and/or climate simulations (e.g., Paschalis et al., 2013; Peleg 97 

and Morin, 2014; Niemi et al., 2016). However, the goal of most applications is to 98 

generate scenarios for long-term predictions. Alternatively, disaggregation models which 99 
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can generate rapidly several fine-scale rainfall fields from one coarse scale field represent 100 

a promising avenue for short-term forecasts.   101 

During the past decades, several studies have focused on spatial distribution of rainfall at 102 

fine scale (Gupta and Waymire, 1993; Hubert et al., 1993; Kumar and Foufoula-103 

Georgiou, 1993a,b; Marsan et al., 1996; Olson and Niemczynowicz, 1996; among 104 

others). An approach commonly used by disaggregation models is to divide in cascade 105 

each grid cell in 2x2 pixels, which are then divided in 2x2 sub-pixels, so on so forth (e.g., 106 

Over and Gupta, 1996; Perica and Foufoula-Georgiou, 1996; Deidda, 2000; Harris and 107 

Foufoula-Georgiou, 2001; Badas et al., 2006; Deidda et al., 2006a,b; Gaborit et al., 2014; 108 

among others). These models are conceptually simple, but may lead to unrealistic rainfall 109 

fields with visible discontinuities, due to the discretization of the space (Lovejoy and 110 

Schertzer, 2010a,b). Gagnon et al. (2012) proposed a stochastic disaggregation model, 111 

hereafter referred to as the Gibbs Sampling Disaggregation Model (GSDM), which does 112 

not produce discontinuities, even for adjacent pixels from two different grid cells (Figure 113 

1). The model was adapted for orographic rainfall (Gagnon et al., 2013) and used to 114 

evaluate the impact of climate change on extreme rainfall events over a small watershed 115 

(Gagnon and Rousseau, 2014). Nevertheless, the model has never been applied for short-116 

term meteorological forecasts. 117 

The general objective of this study was to evaluate the capability of GSDM coupled with 118 

ECCC products to provide accurate, precise and consistent rainfall estimates within a 119 

short time frame. The specific objectives were to: 120 
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(i) Evaluate accuracy, precision and consistency of GSDM when applied on 121 

aggregated reference rainfall fields; 122 

(ii) Compare two freely-available ECCC rainfall forecasts, a deterministic and an 123 

ensemble forecast, to a reference rainfall product (namely CaPA, cf Section 2.2); 124 

(iii)Determine the added value of coupling GSDM to these ECCC forecasts; 125 

(iv) Identify possible modifications to GSDM potentially leading to improved 126 

forecasts. 127 

This study focused on 30, 6-h, rainfall events that occurred between July and November 128 

2015 over a 40,000-km
2
 area on the south shore of the St. Lawrence River, Québec, 129 

Canada.  130 

2 Materials and Methods 131 

2.1 Study Area 132 

The region of interest consists of an area approximately 200 x 200 km
2
, from 45 to 47° N 133 

and from 71 to 73° W, covering the watershed of the Bécancour River on the south shore 134 

of the St. Lawrence River in Québec, Canada (Figure 2). Primarily located in the St. 135 

Lawrence Lowlands, only the upstream southeastern portion is in the Appalachian 136 

Mountains. The climate is continental humid (Dfb under Köppen classification) with the 137 

highest precipitation during the months of July, August and September. Around 40% of 138 

the area, mainly in the Lowland sector, is occupied by agricultural activities that would 139 

benefit from better local-scale rainfall forecasts. With respect to GDSM data 140 

requirements, the modeled area spans from 44 to 48° N and from 70 to 74° W (study area 141 

± 1° in each direction). In this manuscript, a grid cell refers to the spatial unit of a grid 142 



  

8 

 

with 1° (about 100-km) resolution and pixel refers to a spatial unit of a 10-km grid (see 143 

Figure 2). 144 

2.2 Environment and Climate Change Canada products 145 

Three different ECCC products, all freely available on the web 146 

(https://weather.gc.ca/grib/index_e.html), were used. First, the Canadian Precipitation 147 

Analysis (CaPA; Fortin et al., 2015) was identified as the reference (pseudo-observed) 148 

precipitation. CaPA uses short-term forecasts as a background field and assimilates data 149 

from various sources (stations, radars, satellites). The background field is modified by 150 

spatial interpolation (kriging) of the difference between the forecast and the observations. 151 

The dataset has a spatial resolution of 10 km x 10 km on a polar stereographic grid 152 

covering North America. For this study, the computational domain consisted of a 40x40-153 

pixel grid (Figure 2) overlaying the area of interest (44-48°N and 70-74°W), oriented 154 

east-west, by taking the closest pixel from the original grid.  155 

Second, the Regional Deterministic Prediction System (RDPS; Caron et al., 2015) 156 

forecasts on the same grid as that of CaPA, similarly transposed on the 40x40-pixel grid 157 

oriented east-west. It is important to note that RDPS provides the background field to 158 

CaPA, the reference precipitation, and thus it could be an advantage for RDPS compared 159 

to another product. That being said, the dense observation network and the radar in the 160 

region analyzed provided sufficient data limiting the contribution of RDPS in CaPA. It is 161 

thus assumed that the advantage of RDPS, if any, is negligible for the studied region.  162 

The third and final product was the Global Ensemble Prediction System (GEPS; Charron 163 

et al., 2010; Houtemaker et al., 2014) which produces 21 forecasts on a 1° x 1° (about 164 

100 km x 100 km) grid. The 21 members are formed by one control member and 20 165 
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perturbed members, having different physical parameterization, data assimilation cycles 166 

and initial observed conditions. 167 

In addition to rainfall depth, three input atmospheric variables required by GSDM 168 

(Section 2.3) were obtained from RDPS and GEPS forecasts: (i) convective available 169 

potential energy (CAPE), (ii) wind speed and (iii) wind direction at the 700-hPa pressure 170 

level.  171 

CaPA and GEPS data are available at a 6-h time step, while RDPS data at a 3-h time step, 172 

but aggregated at 6-h time step (sum for rainfall depth, average for wind speed and 173 

CAPE). For GEPS, since simulations are launched twice a day, the required data covered 174 

two forecast periods: (i) the first 6 hours and (ii) from 6 to 12 hours following the start of 175 

the simulations. The same strategy is used for the RDPS, although RDPS forecasts are 176 

available four times per day. 177 

Two individual periods were analyzed for GSDM calibration and evaluation of rainfall 178 

products. The calibration period covered May through October 2014 as well as May and 179 

June 2015. Each CaPA grid point that received at least 1 mm of rain during a 6-h time 180 

step was retained for calibration, for a total of 208,766 pixels. Atmospheric variables 181 

(CAPE and wind at 700 hPa) were retrieved from RDPS forecasts. Evaluation of ECCC 182 

products (Section 2.4) spanned from July to November 2015. A total of 30, 6-h time steps 183 

with the largest mean GEPS forecasted accumulations were retained (Table 1). 184 

Note that ECCC has other forecast products that could be of interest, but were not 185 

included in the present study such as the High Resolution Deterministic Prediction 186 

System (HRDPS; Mailhot et al., 2010), having a 2.5-km resolution. Also, the Regional 187 
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Ensemble Prediction System (REPS; Charron et al., 2013) having grid spacing of 15-km 188 

and a lead time of 72-h, with two integrations per day and 21 ensemble members, was not 189 

included since the data is not freely available. Moreover, it could be difficult to retrieve 190 

in a timely fashion for actual short-term forecasts. 191 

2.3 Gibbs Sampling Disaggregation Model (GSDM) 192 

The model assumed that Ri,j, the rainfall depth at a given 10-km pixel (i,j) for a given 6-h 193 

period, is a random variable with expected value µ  and standard deviation σ given by 194 

(Gagnon, 2012; Gagnon and Rousseau, 2014): 195 
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wind speed (m/s), W is the 700-hPa wind direction (degree), C stands for CAPE (J/kg), 202 

and the five calibration parameters are: βd (dimensionless), βv (s/m), β0 (mm), β1 (mm 203 

kg/J), and β2 (dimensionless). As in many rainfall models (e.g., Over and Gupta, 1996; 204 

Fiorucci et al., 2001; Forman et al., 2008; Groppelli et al., 2011), a lognormal 205 

distribution is assumed for Ri,j. In these equations, it is assumed that strong 700-hPa 206 
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winds might lead to anisotropy and high CAPE values increase spatial variability (i.e., 207 

decrease the influence of the neighboring pixels). 208 

The model can disaggregate at any spatial resolution, but it is recommended to target a 209 

resolution at which rainfall depths are available for calibration. In this study, 10-km 6-h 210 

rainfall depths from 208,766 pixels from CaPA analyses were used for calibration 211 

(Section 2.2). The estimated values for parameters βd and βv of Equation (1) minimizes 212 

the sum of the squared differences between observed rainfall depths and expected rainfall 213 

depths calculated using Equation (1) for all pixels used for calibration (Gagnon, 2012; 214 

Gagnon et al., 2012). Then, groups were created from all calibration pixels; all pixels 215 

within a group had similar expected rainfall depths and CAPE values. For each group, 216 

mean expected rainfall depth and mean CAPE value were calculated. The estimated 217 

values for parameters β0, β1, and β2 of Equation (2) minimizes the sum of the squared 218 

differences between the observed 99.9% quantile of rainfall depths in each group and the 219 

99.9% quantile calculated using the lognormal distribution with mean expected rainfall 220 

depth for each group and standard deviation given by Equation (2) (with mean CAPE 221 

value for each group and calibration parameters). Fitting the 99.9% quantile was done to 222 

attenuate the underdispersion of the lognormal distribution for rainfall depth estimation 223 

(Gagnon et al., 2012; Gagnon and Rousseau, 2014). 224 

Equations (1) and (2) allow rainfall depths to be generated on a 10-km pixel when 225 

neighboring depths are known. However, in practice, only coarse scale (100 km in this 226 

study) data is available as input to the disaggregation model. An algorithm based on the 227 

Gibbs sampling theory (Geman and Geman, 1984; Roberts and Smith, 1994) was 228 

developed to circumvent this issue. First, as initial conditions, the rainfall depth for each 229 
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10-km pixel was set to the rainfall depth of the 100-km grid cell covering the pixel. Then, 230 

new rainfall depths were generated from the lognormal distribution using Equations (1) 231 

and (2) for each 10-km pixel, one at the time. An iteration is completed when all pixels 232 

have been updated once. After each iteration, a multiplicative factor (generally close to 1) 233 

was applied to ensure that the model preserved the exact rainfall depth of each 100-km 234 

grid cell used as input. Based on the Gibbs sampling theory (Geman and Geman, 1984; 235 

Roberts and Smith, 1994), the rainfall depth on each 10-km pixel is approximately 236 

distributed using the lognormal distribution along with Equations (1) and (2) after a 237 

sufficient number of iterations. In this study, 300 iterations were performed before 238 

retaining the first disaggregated rainfall field, referred to as the first realization. Since 239 

fields from consecutive iterations are autocorrelated, subsequent realizations were 240 

separated by 100 iterations. The model is not explicitly made to generate spatial rainfall 241 

intermittency (i.e., pixels without rain), but this can be achieved by setting to 0 those 242 

rainfall depths below a given threshold (0.1 mm in the present work). A detailed 243 

description of the algorithm is provided in Gagnon (2012), Gagnon et al. (2012) and 244 

Gagnon and Rousseau (2014). 245 

2.4 Products analyzed  246 

For each one of the 30, 6-h, rainfall events retained (Section 2.2), a total of 13 different 247 

rainfall products were analyzed (Table 2). These products were referenced with respect to 248 

the ECCC product used (“C” for CaPA analyses, “R” for RDPS forecasts and “G” for 249 

GEPS forecasts), whether aggregation and/or disaggregation was performed (“d” for 10-250 

km disaggregated product, “a” for 100-km aggregated product without disaggregation), 251 

and whether neighboring pixels were used to create an ensemble (“n” if so).  252 
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The original 10-km CaPA rainfall (C) became the reference (true value) for the 12 other 253 

series. GSDM was first applied with aggregated CaPA data (Ca) as input. The ensuing 254 

product (Cd) compared to the reference (C) evaluates the performance of the 255 

disaggregation model. Comparison of the outcomes of Cd with Ca was used to assess the 256 

added value of GSDM over a low-resolution product. 257 

One of the strength of GSDM is that it can generate realistic spatial patterns, even with 258 

100-km grid cells used as input. However, it cannot always be right at the exact location 259 

(10-km pixel) since no fine scale information is used as input. Thus, it was decided to 260 

evaluate another disaggregated ensemble product, which instead of considering only the 261 

rainfall depths generated at the target pixel (as for Cd), it also includes the rainfall depths 262 

in the neighboring area (Cdn; 100 model realisations x 121 pixels [+/- 5 pixels in each 263 

direction] = 12,100 rainfall depths per 10-km pixel per 6-h event). The ensembles Cd and 264 

Cdn were also compared with the ensemble formed by the CaPA rainfall depths in 120 265 

neighboring pixels (+/- 5 pixels in each direction - the target pixel; Cn, Table 2). This 266 

latter ensemble was used to evaluate whether neighboring pixels could actually be used 267 

for suitable estimation of the rainfall depth of the target pixel in this area.  268 

Eight forecast products were compared. For both RDPS and GEPS forecasts, analyses 269 

were performed on rainfall depths from raw products (referred to as R and G, 270 

respectively), in order to evaluate the actual forecasts available for an end user. Then, 271 

disaggregation at the target pixel (Rd and Gd) and disaggregation in the neighboring area 272 

(Rdn and Gdn) was performed to evaluate the added value of GSDM coupled with the 273 

forecasts. For RDPS, it required data aggregation (Ra) prior disaggregation. For a given 274 

pixel, RDPS outcomes in the neighboring area (+/- 5 pixels in each direction; Rn) were 275 
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also analyzed. The interest in Rn lies in the construction of an ensemble from a 276 

deterministic forecast requiring no additional computational time, contrary to 277 

disaggregation. 278 

2.5 Performance evaluation 279 

The performance of a product was assumed to vary depending on the reference rainfall 280 

depth (large rainfall depths being more difficult to correctly place spatially) and on the 281 

type of events (stratiform or convective events being governed by different physical 282 

processes). Seven groups, based on these two variables, were constructed (Table 3) and 283 

performance metrics calculated independently for each group.  284 

Three criteria were accounted for in the evaluation: accuracy, precision and, for 285 

stochastic products only, consistency. Accuracy refers to bias, that is the mean difference 286 

between simulated and observed values. Precision is defined in two ways. Precision of a 287 

probabilistic product is related to the variability (range) of the realizations. Precision of 288 

the error, for a deterministic or probabilistic product, is related to the variability of the 289 

difference between the prediction and the reference. Finally, consistency is when the 290 

reference value is indistinguishable from a randomly selected member of an ensemble 291 

(Anderson, 1997).  292 

For all products, deterministic or probabilistic, the Mean Squared Error (MSE) was 293 

calculated.  For a given group with n pixels (Table 3) and a given rainfall product, let x1, 294 

…, xn be the reference rainfall depths (C; Table 2) and y1, …, yn be the corresponding 295 

forecasted rainfall depths from the product. If the product is probabilistic, the mean 296 

forecast for each pixel was calculated to allow a comparison with deterministic products. 297 



  

15 

 

That is, yi = ∑
=

rn

j r

ji

n

y

1

, where nr is the number of probabilistic realizations (members) and yi,j 298 

is the simulated rainfall depth for j
th
 realization at the i

th
 pixel. The MSE was calculated 299 

as follows: 300 

MSE = 
( ) ( ) ( )( )

( )2

1 1

22

xy
n

xyxy

n

xyn

i

n

i

iiii
−+

−−−
=

−
∑ ∑

= =

 .  (3) 301 

The two terms on the right-hand side of the equation correspond to the variance of the 302 

error (precision of the error) and the squared of the bias (accuracy), respectively.  303 

For probabilistic products only, the Cumulative Rank Probability Score (CRPS; 304 

Matheson and Winkler, 1976) was calculated for each ensemble product and each group 305 

(Table 3) as follows: 306 

CRPS = ( ) ( )( )∑ ∫
=

∞

−∞=

−
n

i t

X

i

Y

i dttFtF
n 1

21
     (4) 307 

where ( )tFX

i  and ( )tFY

i  are, for the i
th
 pixel of the group, the empirical cumulative 308 

distribution functions of the reference (C) rainfall depth (= 1 if xi ≤ t ; = 0 otherwise) and 309 

of the ensemble forecasted rainfall depth, respectively. The CRPS allows for the 310 

evaluation of the mean accuracy of an ensemble product while also being sensitive to the 311 

width (precision of the probabilistic product) of the distribution (Hersbach, 2000).  312 

Consistency of probabilistic products was evaluated via rank histograms (Talagrand 313 

diagrams). They are drawn for pixels with stratiform rainfall depth between 0.1 and 5 mm 314 

(Group 2, Table 3), for pixels with stratiform rainfall depth larger than 10 mm (Group 4) 315 
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and for pixels with convective rainfall depth between 0.1 and 5 mm (Group 6). Rank 316 

histograms are not well suited for close-to-zero rainfall depths (Groups 1 and 5). Pixels 317 

with large convective rainfall depths (Group 7) were of interest, but there were not 318 

enough of them for rank histograms. Group 3 (pixels with stratiform rainfall depth 319 

between 5 and 10 mm) is not shown for sake of parsimony. 320 

3 Results 321 

3.1 Deterministic metric: MSE 322 

As illustrated in Equation (3), MSE was broken down in order to verify the mean (bias; 323 

Figure 3) and the standard deviation of the error (Figure 4). The results regarding the 324 

CaPA-derived products illustrate that GSDM (Cd) reduced bias compared to the low-325 

resolution product Ca, especially for large rainfall depths (Groups 4 and 7). The accuracy 326 

(Figure 3) and precision of the error (Figure 4) are also slightly higher for Cd compared 327 

to Cdn and even Cn, illustrating the ability of GSDM to generate rainfall depths close to 328 

the reference depth at fine scale. Note that all products underestimated the two pixel 329 

groups with the largest CaPA rainfall depths. 330 

For RDPS forecasts, the bias of the product evaluated with respect to the neighborhood 331 

(Rn) was similar, although slightly higher, to that of the raw product (R) (Figure 3). The 332 

standard deviation of the error was lower for Rn than for R (Figure 4). In all likelihood, 333 

the lower standard deviations for Rn were due to the difference in the MSE calculation 334 

method; that is for the mean of the 121 ensemble members for Rn and for the unique 335 

deterministic value for R (Table 2). Thus, the standard deviation for Rn is smoothed, but 336 

the error of the product is not necessarily more precise. The bias of R was lower than that 337 
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of the aggregated product (Ra), illustrating the added value of higher spatial-resolution 338 

forecasts. In all likelihood, the standard deviation of the error was smaller for Ra than for 339 

R, because the former values were spatially smoothed. Biases of the disaggregated RDPS 340 

products (Rd and Rdn) were similar to that of the raw product R. 341 

Biases for the GEPS-derived forecasts were all very high (Figure 3). The coarse spatial 342 

resolution of the raw GEPS product (G) did not lead to smaller and larger intra-tile 343 

rainfall depths. The bias of G was larger than that of Ra, which has the same spatial 344 

resolution (about 100 km), but built using a forecast with higher spatial resolution 345 

(RDPS). Disaggregation (Gd and Gdn) did not provide a way to reduce the bias. As 346 

mentioned earlier, a suitable application of GSDM requires an accurate (unbiased), low-347 

resolution, rainfall depth. Obviously, this assumption was not met for GEPS 348 

disaggregation. 349 

3.2 Probabilistic metrics: CRPS and rank histograms 350 

Ensembles produced by GSDM from aggregated CaPA analyses resulted in small CRPS 351 

values (Figure 5). Again, Cd slightly outperformed Cdn and even Cn; illustrating the 352 

ability of GSDM to produce accurate and precise ensemble rainfall depths at fine spatial 353 

scale. However, for stratiform events, Cdn outperformed Cd for consistency on pixels 354 

with rainfall depths between 0.1 and 5 mm (Figure 6) and larger than 10 mm (Figure 7). 355 

This latter figure shows that Cd too often underestimated pixels with large rainfall depths 356 

while Cdn did not have this issue. It suggests that GSDM may be not able to put the 357 

largest rainfall depths at the exact location, but it can generate these large rainfall depths 358 

in a neighboring area. For pixels with convective rainfall depths between 0.1 and 5 mm, 359 

consistency of Cd was better (Figure 8). 360 
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RDPS-derived forecasts had generally smaller CRPS values than those of GEPS-derived 361 

forecasts (Figure 5). For RDPS-derived forecasts, CRPS values were almost always 362 

smaller for Rd (RDPS disaggregated and evaluated at the target pixel) than for forecasts 363 

evaluated at the neighborhood pixels, disaggregated (Rdn) or not (Rn). However, Rd is 364 

not consistent for the three groups of pixels analyzed (Figures 6-8). For most of the pixels 365 

in each group, the reference value is either smaller than or equal to the first 5% or larger 366 

than the last 5% of the stochastic realizations. Rd overestimated too often pixels with 367 

stratiform rainfall depths between 0.1 and 5 mm (Figure 6). Rdn had better consistency 368 

than Rd, but just slightly lower than Rn (Figures 6-8). That being said, Rn overestimated 369 

pixels with convective rainfall depths between 0.1 and 5 mm (Figure 8). It suggests that 370 

RDPS produced too smooth forecasts for convective rainfall. 371 

For GEPS-derived forecasts, CRPS values for Gd were also smaller than those for Gdn 372 

for stratiform rainfalls, but not for convective rainfalls. Consistency was weak for all 373 

GEPS-derived forecasts (Figures 6-8), except for Gdn for pixels with stratiform rainfall 374 

depths larger than 10 mm (Figure 7). 375 

4 Discussion 376 

The above results demonstrated the capacity of GSDM to generate accurate and precise 377 

ensemble rainfall depths at a local scale (10 km) for cases when spatially averaged 378 

reference rainfall (Ca) was used as input. The bias and the standard deviation of the error 379 

of the disaggregated product Cd always remained smaller than for the low-resolution 380 

reference product Ca used as input (Figures 3 and 4). Also, CRPS values for Cd were 381 

smaller than the reference ensemble Cn formed from 120 neighboring pixels (+/- 5 in 382 
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each direction) (Figure 5). However, the disaggregated product Cd was not consistent for 383 

stratiform rainfall (Figures 6-7). Including the neighboring pixels in the disaggregated 384 

ensemble (Cdn) mitigated the lack of consistency, especially for large stratiform rainfall 385 

depths (Figure 7). For convective rainfall (Figure 8), Cd was consistent, thanks to the 386 

parameterization of GSDM which adjusts the spatial variability according to CAPE.  387 

For the ECCC forecast products analyzed, despite a high bias for large convective rainfall 388 

depths (Figure 3), the regional 10-km resolution product (RDPS; R) outperformed the 389 

global 100-km resolution ensemble product (GDPS; G) based on accuracy and precision 390 

of the error criteria. However, RDPS is a deterministic product and does not provide 391 

uncertainty bands for end users. This issue was circumvented by building an ensemble 392 

with the RDPS rainfall depths forecasted in the neighboring area (Rn). Rn was relatively 393 

consistent for small stratiform rainfall depths (Figure 6), but not as much for large 394 

stratiform (Figure 7) and convective rainfall depths (Figure 8). Furthermore, GDPS 395 

ensemble was clearly not consistent (Figure 6-8). 396 

While the added value of GSDM applied on low-resolution reference rainfall depths is 397 

clear, the added value of GSDM applied to ECCC forecasts was difficult to detect. 398 

GSDM did not reduce the bias of RDPS and GEPS forecasts (Figure 3). The Rd product, 399 

an ensemble at high-resolution (10 km) from the deterministic forecast RDPS, had 400 

smaller CRPS values than Rn, an ensemble formed by the raw RDPS rainfall depth in the 401 

neighboring pixels (Figure 5). However, consistency of Rd was not as strong compared to 402 

that of Rn (Figures 6-8). Including the neighboring pixels in the ensemble forecast (Rdn) 403 

increased the consistency. The added value of Rdn compared to Rn was the reduction of 404 

the bias for convective events (Figure 8). For GEPS, GSDM did not improve the forecast, 405 
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except for the consistency of large stratiform rainfall depths, provided that the depths 406 

generated in the neighboring pixels be included in the ensemble (Gdn, Figure 7). 407 

To summarize, none of the analyzed products provided entirely satisfactory outputs for 408 

short-term forecasts. That being said, there is potential for improvements.  Integration of 409 

a Bayesian approach in GSDM parameter estimation and data assimilation represent one 410 

potential improvement. Instead of having the same parameter set for all realizations, the 411 

parameter values could be selected from a predefined random distribution for each 412 

realization. This would add some randomness to the disaggregated field, while keeping 413 

spatial coherence. Similarly, the assumption that the low-resolution rainfall depth used as 414 

input is reliable, which is realistic for reanalyses, but not necessarily true in a forecast 415 

mode, could be relaxed. Random perturbations could be generated at each realization for 416 

the mean areal rainfall depth used as input, as well as for wind speed, wind direction and 417 

CAPE values. Finally, neighboring pixels could still be considered, but the number of 418 

neighboring pixels could be reduced and/or vary depending on the type of event 419 

(stratiform or convective). However, in-depth analyses on the extent of the neighboring 420 

area were beyond the scope of this study. 421 

From a wider perspective, ongoing improvements of meteorological modeling, including 422 

parameterization, data assimilation, spatial resolution, and uncertainty estimation, is at 423 

the heart of the matter. With better meteorological forecasts, new goals will become 424 

obtainable and spatial disaggregation models or other statistical downscaling techniques 425 

will remain of interest. Indeed, these techniques all need accurate input data. This work 426 

focused on derived products for end users by coupling GSDM with currently available 427 
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meteorological products from ECCC. Meteorological model improvement was beyond 428 

the scope of this study. 429 

5 Conclusion 430 

A total of 30, 6-h, rainfall events within an area of about 40,000 km
2
 were analyzed to 431 

evaluate  accuracy, precision and consistency of the Gibbs Sampling Disaggregation 432 

Model (GSDM, Gagnon, 2012; Gagnon and Rousseau, 2014) coupled with Environment 433 

and Climate Change Canada (ECCC) meteorological short-term forecasts. The goal was 434 

to produce reliable information at local scale (10 km) for end users. GSDM ran 435 

sufficiently fast to provide an ensemble of rainfall fields for short-term forecasts. 436 

Overall, GSDM applied with 100-km aggregated reference rainfall depths as input gave 437 

accurate (low bias) and precise (low variability of the error and low dispersion of the 438 

ensemble) 10-km fields. For small convective rainfall depths, GSDM was consistent 439 

(observed value indistinguishable of a randomly selected realization of the ensemble), but 440 

it could be improved for stratiform rainfall depths. When applied in forecast mode, 441 

GSDM inherited the bias of the meteorological forecast. In the end, the 10-km 442 

disaggregated rainfall depths from 100-km Global Ensemble Prediction System (GEPS) 443 

forecasts, which were found to be highly biased and imprecise, resulted in biased and 444 

imprecise information. 445 

The Regional Deterministic Prediction System (RDPS) provided 10-km rainfall depths 446 

with moderate biases. It is worth noting that by aggregating RDPS forecasts to a 100-km 447 

spatial scale, biases evaluated on 10-km pixels slightly increased compared to the raw 10-448 

km forecasts, but remained much smaller than those from 100-km GEPS forecasts. The 449 
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GSDM coupled with 100-km aggregated RDPS forecasts produced better results than 450 

with GEPS forecasts. However, despite this improvement, the disaggregated forecasts 451 

were not consistent. Including the 120 neighboring pixels in the disaggregated ensemble 452 

could help to mitigate the lack of consistency of the forecast, especially for convective 453 

rainfall.  454 

Possible areas for improvements were identified, such as a Bayesian estimation of GSDM 455 

parameters, random perturbations of GSDM inputs and inclusion of a variable number of 456 

neighboring pixels in the ensemble, where the exact number could depend on the type of 457 

events. These improvements, once ascertained, would remain of interest even if 458 

meteorological models were improved.  459 

The same analyses for different experimental set ups could produce different outcomes. 460 

In the present study, the area was mostly flat, except for the Appalachian Mountains in 461 

the south-east portion of the study region. Application in a more complex topographical 462 

region could require modifications to GSDM (Gagnon et al., 2013). Also, if one is 463 

interested in 6-h rainfall depths at longer lead times (3, 10, 30 days), the meteorological 464 

forecast bias and imprecision should increase, resulting in a decrease in the reliability of 465 

the disaggregated rainfall depths. This effect could be reduced if one is interested in 466 

cumulative rainfall depths instead of a specific 6-h period. Longer time steps would 467 

smooth out the spatial variability and might increase the reliability of the forecasts, 468 

disaggregated or not. 469 
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Tables 600 

Table 1. Main characteristics of the 30 GEPS events analyzed. The values are the averages from the four 100-km grid cells analyzed 601 

(2 x 2 central grid cells in Figure 2).  602 

Date/Time 

(UTC) 

Rainfall 

depth 

(mm/6h) 

CAPE 

(J/kg) 

Wind at 700 hPa 

Date/Time 

(UTC) 

Rainfall 

depth 

(mm/6h) 

CAPE 

(J/kg) 

Wind at 700 hPa 

Speed 

(m/s) 

Direction 

(°) 

Speed 

(m/s) 

Direction 

(°) 

2015-07-18 6:00 3.2 1 13.0 223 2015-09-14 6:00 3.2 16 5.9 198 

2015-07-18 12:00 5.6 108 14.3 260 2015-09-14 12:00 6.1 5 7.9 100 

2015-07-20 0:00 4.7 1475 13.8 273 2015-09-20 6:00 4.6 32 21.7 236 

2015-07-26 6:00 4.9 45 12.4 270 2015-09-20 12:00 4.9 0 15.6 253 
2015-07-26 12:00 10.0 79 10.3 248 2015-09-30 0:00 9.5 44 13.6 233 

2015-07-30 18:00 7.1 593 13.8 238 2015-09-30 6:00 8.1 9 11.2 253 

2015-08-04 0:00 4.1 392 15.0 224 2015-09-30 12:00 20.6 0 6.2 238 
2015-09-03 12:00 4.2 568 8.4 293 2015-09-30 18:00 11.0 0 4.4 211 

2015-09-09 0:00 3.6 305 10.5 239 2015-10-01 0:00 12.8 0 7.8 175 

2015-09-10 0:00 4.6 161 13.6 254 2015-10-17 12:00 3.4 0 12.7 238 
2015-09-11 12:00 4.1 2 4.9 240 2015-10-25 12:00 6.2 0 23.4 229 

2015-09-13 0:00 3.8 56 9.8 223 2015-10-29 0:00 8.2 0 28.9 226 

2015-09-13 6:00 8.9 24 10.0 193 2015-10-29 6:00 8.9 0 28.3 219 

2015-09-13 12:00 11.4 7 8.3 192 2015-10-29 12:00 14.2 75 21.5 223 
2015-09-14 0:00 3.3 154 9.2 197 2015-11-14 0:00 3.22 0 15.1 280 

 603 

  604 
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Table 2. Description of the rainfall series analyzed. Raw ECCC products appear in 605 

boldface. For rainfall products aggregated before disaggregation (Cd, Cdn, Rd, Rdn), 606 

wind and CAPE data were aggregated as well. 607 

ID Source Resolution Nr of members of the ensemble 

C CaPA 10 km 1 (deterministic, reference) 
Cn CaPA 10 km 120 neighboring pixels 

Ca CaPA aggregated 100 km 1 (deterministic) 

Cd CaPA aggregated/disaggregated 10 km 100 random realizations 

Cdn CaPA aggregated/disaggregated 10 km 
12,100 = 100 random realizations x 

121 neighboring pixels 

R RDPS 10 km 1 (deterministic) 
Rn RDPS 10 km 121 neighboring pixels 

Ra RDPS aggregated 100 km 1 (deterministic) 

Rd RDPS aggregated/disaggregated 10 km 100 random realizations 

Rdn RDPS aggregated/disaggregated 10 km 
12,100 = 121 neighboring pixels x 

100 random realizations 

G GEPS 100 km 21 members 
Gd GEPS disaggregated 10 km 105 = 21 members x 5 realizations 

Gdn GEPS disaggregated 10 km 
12,705 = 121 neighboring pixels x  

21 members x 5 realizations 

 608 

  609 
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Table 3. Groups of pixels on which performance metrics were calculated. 610 

Type of events 
Group ID CaPA rainfall depth 

(mm) 
Number of pixels 

Stratiform  

(CAPE < 500 

J/kg) 

1 [0, 0.1) 2180 

2 [0.1, 5) 4635 

3 [5, 10) 2000 

4 > 10 1885 

 Total stratiform 10,700 (111 tiles) 

Convective  

(CAPE > 500 

J/kg) 

5 [0, 0.1) 742 

6 [0.1, 5) 409 
7 > 5 149 

 Total convective 1,300 (13 tiles) 

 

 

Total 

12,000 (120 tiles =  

30 events x 4 
tiles/event) 

   611 

  612 
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Figure Captions 613 

Figure 1. Example of a 6-h rainfall event: depths from the 10-km reference data (left 614 

panel), the aggregated 100-km reference data used as input by GSDM (middle panel) and 615 

a realization of GSDM at 10-km (right panel). 616 

Figure 2. Study area with the 40 x 40 10-km pixels (dotted lines) in the 4 x 4 100-km grid 617 

cells (solid lines). The Bécancour watershed is shown for illustrative purposes. 618 

Figure 3. Absolute value of the mean error (bias) (i.e. rainfall depth difference with the 619 

reference depth C) of all products for the seven groups of pixels. IDs of the rainfall 620 

products are defined in Table 2. IDs of the seven groups of pixels are defined in Table 3. 621 

Figure 4. Standard deviation of the error of all products for the seven groups of pixels. 622 

IDs of the rainfall products are defined in Table 2. IDs of the seven groups of pixels are 623 

defined in Table 3. 624 

Figure 5. Mean CRPS values of the ensemble products for the seven groups of pixels. IDs 625 

of the rainfall products are defined in Table 2. IDs of the seven groups of pixels are 626 

defined in Table 3. 627 

Figure 6. Rank histograms of each ensemble product for group of pixels 2 (stratiform 628 

rainfall depth between 0.1 and 5 mm; 4635 pixels). The dashed line illustrates a rank 629 

histogram for a perfectly consistent ensemble product. 630 

Figure 7. Rank histograms of each ensemble product for group of pixels 4 (stratiform 631 

rainfall larger than 10 mm; 1885 pixels). The dashed line illustrates a rank histogram for 632 

a perfectly consistent ensemble product. 633 
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Figure 8 Rank histograms of each ensemble product for group of pixels 6 (convective 634 

rainfall depth between 0.1 and 5 mm; 409 pixels). The dashed line illustrates a rank 635 

histogram for a perfectly consistent ensemble product. 636 

  637 
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Highlights 638 

• GSDM applied on reference data generates accurate and precise rainfall fields 639 

• GSDM inherits of the forecast bias 640 

• Global ensemble forecasts (GEPS) are not consistent, with or without GSDM  641 

• GSDM performance was better with regional deterministic forecasts (RDPS) 642 

• Neighboring pixels should be considered when producing high-resolution 643 

ensembles 644 

 645 

 646 


