Dépôt numérique

Parameter Estimation of a Distributed Hydrological Model Using a Genetic Algorithm.

Boisvert, Jasmin; El-Jabi, Nassir; St-Hilaire, André; El Adlouni, Salah-Eddine (2016). Parameter Estimation of a Distributed Hydrological Model Using a Genetic Algorithm. Open Journal of Modern Hydrology , vol. 6 , nº 3. p. 151-167. DOI: 10.4236/ojmh.2016.63013.

Ce document n'est pas hébergé sur EspaceINRS.


Water is a vital resource, and can also sometimes be a destructive force. As such, it is important to manage this resource. The prediction of stream flows is an important component of this management. Hydrological models are very useful in accomplishing this task. The objective of this study is to develop and apply an optimization method useful for calibrating a deterministic model of the daily flows of the Miramichi River watershed (New Brunswick). The model used is the CEQUEAU model. The model is calibrated by applying a genetic algorithm. The Nash-Sutcliffe efficiency criterion, modified to penalize physically unrealistic results, was used as the objective function. The model was calibrated using flow data (1975-2000) from a gauging station on the Southwest Miramichi River (catchment area of 5050 km²), obtaining a Nash-Sutcliffe criterion of 0.83. Model validation was performed using flow data (2001-2009) from the same station (Nash-Sutcliffe criterion value of 0.80). This suggests that the model calibration is sufficiently robust to be used for future predictions. A second model validation was performed using data from three other measuring stations on the same watershed. The model performed well in all three additional locations (NashSutcliffe criterion values of 0.77, 0.76 and 0.74), but was performing less well when applied to smaller sub-basins. Nonetheless, the relatively strong performance of the model suggests that it could be used to predict flows anywhere in the watershed, but caution is suggested for applications in small sub-basins. The performance of the CEQUEAU model was also compared to a simple benchmark model (average of each calendar day). A sensitivity analysis was also performed.

Type de document: Article
Mots-clés libres: hydrological modeling; genetic algorithm; CEQUEAU model; beta Function; Miramichi River
Centre: Centre Eau Terre Environnement
Date de dépôt: 07 mai 2018 18:30
Dernière modification: 16 mai 2018 19:12
URI: http://espace.inrs.ca/id/eprint/5654

Actions (Identification requise)

Modifier la notice Modifier la notice