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Abstract 

The delineation of hydrologically homogeneous regions is an important issue in regional 

hydrological frequency analysis. In the present study, an application of the Growing 

Neural Gas (GNG) network for hydrological data clustering is presented. The GNG is an 

incremental and unsupervised neural network, which is able to adapt its structure during 

the training procedure without using a prior knowledge of the size and shape of the 

network. In the GNG algorithm, the Minimum Description Length (MDL) measure as the 

cluster validity index is utilized for determining the optimal number of clusters (sub-

regions). The capability of the proposed algorithm is illustrated by regionalizing drought 

severities for 40 synoptic weather stations in Iran. To fulfill this aim, first a clustering 

method is applied to form the sub-regions and then a heterogeneity measure is used to 

test the degree of heterogeneity of the delineated sub-regions. According to the MDL 

measure and considering two different indices namely CS and Davies–Bouldin (DB) in 

the GNG network, the entire study area is subdivided in two sub-regions located in the 

eastern and western sides of Iran. In order to evaluate the performance of the GNG 

algorithm, a number of other commonly used clustering methods, like K-means, fuzzy C-

means, self-organizing map and Ward method are utilized in this study. The results of the 

heterogeneity measure based on the L-moments approach reveal that only the GNG 

algorithm successfully yields homogeneous sub-regions in comparison to the other 

methods. 

 

Keywords: Regional frequency analysis, Growing neural gas, Minimum description 

length, Clustering method, L-moments.  
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1. Introduction 

Regional frequency analysis (RFA) is commonly utilized in hydrology to circumvent the 

limitations of at-site statistical estimation procedures due for instance to the 

unavailability or the short length of the data series (Ouarda et al. 2001; Zhang et al., 

2012). The information obtained based on RFA is more valuable, flexible and accurate 

than the single-site analysis (Atiem and Harmancioglu, 2006). RFA usually has two main 

steps: the delineation of hydrologically homogeneous regions and the estimation of 

hydrological variables within each region (Leclerc and Ouarda 2007; Charron and 

Ouarda 2015; Wazneh et al., 2015: Abdi et al., 2016b, c). In the first step, the most 

complex and important one, the regions can be formed based on a clustering method and 

then tested by a heterogeneity measure (Abida and Ellouze, 2006; Ouarda et al., 2008; 

Basu and Srinivas 2014; García-Marín et al., 2015). 

Clustering algorithms are used to assemble objects into a set of specific groups with a 

maximum similarity between the members (Modarres, 2010). A number of clustering 

techniques are available, among which the most popular are the principal component 

analysis (PCA) (Iyengar and Basak 1994; Singh and Singh 1996; Chiang et al., 2002), 

Ward (Modarres, 2006; Kahya et al., 2008; Yang et al., 2010), K-means (KM) 

(Ngongondo et al., 2011; Dikbas et al., 2013; Rahman et al., 2013; Kulkarni, 2016), fuzzy 

C-means (FCM) (Rao and Srinivas, 2006a; Dikbas et al., 2012; Kar et al., 2012; Aydogdu 

and Firat, 2015) and self-organizing map (SOM) (Lin and Chen 2006; Razavi and 

Coulibaly, 2013). In addition, various methods can be obtained by using PCA in 

association with a clustering method [e.g., Ward (Dinpashoh et al., 2004; Awadallah and 

Yousry, 2012), KM (Satyanarayana and Srinivas, 2008), FCM (Shamshirband et al., 
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2015; Asong et al., 2015) and SOM (Chen et al., 2011)]. There is no agreement between 

researchers about the superiority of any particular method. Most of the clustering 

algorithms have problems in dealing with high-dimensional data sets and determining 

non-spherical shapes of clusters (Steinbach et al., 2003). Because of the arbitrary shapes 

of regions and the effects of various watershed related attributes, which are inevitable in 

hydrological regionalization, selecting the best method is important (Basu and Srinivas, 

2014). 

In this paper, we present an application of the Growing Neural Gas (GNG) network 

for hydrological data clustering. The GNG algorithm, which is based on unsupervised 

artificial neural networks, was first introduced by Fritzke (1995). The GNG network is a 

clustering algorithm that works incrementally, i.e., the number of neurons will increase 

during the training procedure without using a prior knowledge concerning the structure of 

the input patterns (Oliveira Martins et al., 2009; Angelopoulou et al., 2015; Fink et al., 

2015). Unlike classical clustering algorithms, the GNG algorithm has an adaptable 

network structure that makes it suitable for the task of learning the topology of high-

dimensional data sets (Zaki and Yin, 2008; Linda and Manic, 2009; Bouguelia et al., 

2015). This algorithm has gained significant interest in a number of fields, especially in 

the field of computer vision such as: image compression (García-Rodríguez et al., 2007); 

human gestures recognition (Angelopoulou et al., 2011; Botzheim and Kubota, 2012; 

García-Rodríguez et al., 2012), three-dimensional feature extraction (Donatti and Würtz, 

2009; Viejo et al., 2012; Morell et al., 2014), and three-dimensional surface 

reconstruction (Noguera et al., 2008; Cretu et al., 2008; Rêgo et al., 2010; Fišer et al., 

2013; Orts-Escolano et al., 2014; Jimeno-Morenilla et al., 2013, 2016). The GNG 
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algorithm is also gaining increasing interest in a number of other fields such as medicine 

(Cselényi, 2005; Oliveira Martins et al., 2009; Angelopoulou et al., 2015); robotics 

(Carlevarino et al., 2000; Ferrer, 2014); economics (Lisboa et al., 2000; Decker, 2005); 

industrial applications (Cirrincione et al., 2011; 2012); communications (Bougrain and 

Alexandre, 1999), astronomy (Hocking et al., 2015); geography (Figueiredo et al., 2007); 

and biology (Ogura et al., 2003). To the authors’ knowledge, there are still no studies that 

applied the GNG algorithm in the general fields of hydrology and water resources, and 

specifically to delineate homogeneous hydrological regions under the framework of RFA. 

The quality of the formed clusters and the optimal number of clusters for a given data 

set can be determined by using the cluster validity indices (Rao and Srinivas, 2006b; 

Goyal and Gupta, 2014). For this purpose, the minimum description length (MDL) 

principle, which has been widely applied in the field of neural networks, can be employed 

to evaluate the network’s ability through balancing the capability and complexity of the 

network (Tenmoto et al., 1998; Bischof et al., 1999; Qin and Suganthan, 2004, 2005). 

After the application of the GNG network, it is necessary to utilize a heterogeneity 

measure to determine the degree of heterogeneity of the delineated regions. In addition, 

the heterogeneity measure can offer a comparison between several clustering methods in 

order to find out which one yields regions that are more homogeneous (Basu and 

Srinivas, 2014). For this purpose, a number of heterogeneity measures have been 

proposed in the hydrologic literature. Among them, Hosking and Wallis (1993, 1997) 

proposed a measure based on the L-moments approach, which is known as the most 

powerful method in RFA (Viglione et al., 2007; Chebana and Ouarda, 2007; Ilorme and 

Griffis, 2013; Masselot et al, 2016). The L-moments method is widely used for the 
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regional analysis of extreme hydrologic events such as droughts (Abolverdi and Khalili, 

2010b; Núñez et al. 2011; Santos et al., 2011; Yoo et al., 2012), precipitations (Wallis et 

al., 2007; Satyanarayana and Srinivas, 2011; Hailegeorgis et al., 2013; Núñez et al., 

2016), and floods (Srinivas et al., 2008; Gaume et al., 2010; Ilorme and Griffis, 2013; 

Nguyen et al. 2014).  

In the present study, the GNG algorithm is applied for the RFA of drought severity in 

Iran during the period of 1971–2011. Then the results are compared by using the L-

moments approach to those of a number of conventional algorithms, including Ward, 

KM, FCM and SOM. For this purpose, drought severity is extracted from the recently 

developed drought index called Multivariate Standardized Precipitation Index (MSPI), 

proposed by Bazrafshan et al., (2014, 2015). The MSPI, which is calculated based on the 

standardized precipitation index (SPI) and the principal component analysis (PCA), has 

the ability to aggregate the various time scales of the SPI into a new time series. In order 

to represent seasonal variations of precipitation throughout the year, a monthly time scale 

is considered for the MSPI. 

 

2. Study area and data 

In this study, the monthly precipitation data of 40 synoptic weather stations located in 

Iran were analyzed. The study area, Iran, covers an area of about 1,648,000 km
2
, and lies 

between the latitudes 25° to 40° North and longitudes 44° to 64° East. The spatial 

distribution of the selected stations is fairly uniform across Iran. The selected stations 

have a record of 41 years covering the period from 1971 to 2011. 
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The two important mountain ranges of Iran are the Alborz and Zagros. Alborz, in 

located the northern part of Iran, extending along the southern Caspian Sea, while Zagros, 

is located in the western part of Iran, extending from the northwest to the southwest, 

impede Mediterranean moisture systems crossing through Iran (Shiau and Modarres, 

2009). Most of the eastern part of the Iran is comprised of two great deserts called Dasht-

e Kavir and Dasht-e Loot (Abolverdi and Khalili, 2010a). These mountain ranges and 

deserts have a great influence on the spatial and temporal distribution of precipitation and 

temperature over Iran (Dinpashoh et al., 2004).  

The map of the study area and the spatial distribution of the stations are illustrated in 

Fig. 1. Also, Table 1 presents the following attributes of the stations: names, geographical 

variables and mean of the annual precipitations. The data set was supplied by the 

Meteorological Organization of Iran. 

 

3. Methodology 

In this section, the methodology proposed for drought RFA is described. For this purpose, 

first, the steps of the analysis procedure are presented, and then the proposed approaches 

are given in the following subsections. The steps of the procedure are as follows: 

1. Consider a number of sites within the region, and assemble the monthly 

precipitation data for each site, 

2. Calculate the MSPI values and extract drought severities, 

3. Determine the sub-regions by using the clustering method and cluster validity 

index, 
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4. Compute the heterogeneity and discordancy measures using L-moments 

approach, 

5. Test the sub-regions for regional homogeneity,  

6. Adjust the heterogeneous sub-regions, and 

7. Specify the homogeneous sub-regions. 

 

3.1. Multivariate Standardized Precipitation Index (MSPI) 

Bazrafshan et al. (2014) recently developed the MSPI index for drought monitoring. The 

MSPI is based on the several time series of the Standardized Precipitation Index (SPI) 

and the Principal Component Analysis (PCA) as a multivariate approach. Unlike the 

MSPI index, the SPI index does not have the flexibility to consider a variety of time 

scales. So, this may result in a confusion in the identification of drought periods. On the 

other hand, relating a certain type of drought impact to the size of the time scale is still 

ambiguous. In this case, the PCA is utilized to aggregate a set of the SPI time series (i.e., 

the K original variables) into a new set of time series. Among these new variables, the 

first one (the first principal component, PC1) has a great percentage of variance of the K 

original variables. Because of the algebraic characteristic of PCA, the values of PC1 need 

to be standardized in proportion to the means and standard deviations of the different 

months of the year. Finally, the time sequence of the standardized values indicates the 

MSPI time series (Bazrafshan et al., 2014). 

The MSPI can be computed for every selected set of the SPI time scales. In this study, 

twelve time scales from 1 to 12 months are considered as the input variables. The 



  

9 

 

selected time scales represent seasonal variations of precipitation throughout the year 

(Bazrafshan et al., 2015). 

The MSPI time series can be calculated as follows 

• Compute the SPI time series for the time scales set of 1-12 months, 

• Determine the first principal component series (PC1), 

• Form the PC1ym matrix by subdividing the time series of the PC1 into 12 smaller series 

corresponding to 12 months (m) of year (y), 

• Standardize the PC1ym as follows: 

11 1

1

1 1

PC PC PC
Z

SD SD

mym ym

ym

m m

−
= ≈  (1) 

where Z1ym is the standardized value of the PC1ym in the y
th

 year and the m
th
 month, 

and 1PC m  and SD1m are the mean and the standard deviation of PC1 in the m
th

 month. 

Because of the negligible value of 1PC m , it can be omitted in the above equation. 

• Determine the MSPI time series by reshaping the Z1ym matrix into one vector with 

time sequence. 

Two main drought characteristics, namely, severity and duration, can be derived based on 

the MSPI series. Drought duration (DD) is defined as the number of consecutive intervals 

(months) for which the MSPI values are less than zero. Drought severity (DS) is 

computed based on the absolute value of cumulative MSPI values within the drought 

duration (Abdi et al., 2016a).  

The drought characterization such as duration and severity of the drought events and the 

time series of MSPI are illustrated in Fig. 2. 
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3.2. Growing Neural Gas (GNG) network 

The main idea of the GNG network is to successively add new nodes (neurons) to an 

initially small network in a growing structure (Cirrincione et al., 2011). In the GNG, the 

network’s neurons compete to determine the ones with the highest similarity to the input 

data set (Morell et al., 2014).  

The network is specified as (Fritzke 1995): 

• A set of neurons. Each neuron c has its associated reference vector 
d

c
w R∈ . The 

reference vector can be regarded as the neuron’s position in the input space. 

• A set of edges (connections) between pairs of neurons. These edges are used to define 

the topological structure.  

The GNG algorithm can be summarized in the following steps (Fritzke 1995): 

Step 1: Start with two neurons a and b at random positions wa and wb in the input space.  

Step 2: Present an input vector x from the training data set. 

Step 3: Find the nearest neuron s1 and the second nearest neuron s2. 

Step 4: Increment the age of all edges emanating from s1 to its neighbors. 

Step 5: Increase the local error of s1 by using the Euclidean distance between the two 

vectors as:  

1 1

2

s sE w x∆ = −  (2) 

Step 6: Move s1 and its direct topological neighbors towards x by learning rates εb and εn, 

respectively, of the total distance: 

( )
1 1s b s

w x wε∆ = −  (3) 

( )n n nw x wε∆ = −  (4) 
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where n represents all direct neighbors of s1. 

Step 7: If s1 and s2 are connected by an edge, set the age of this edge to zero. If such an 

edge does not exist, create it. 

Step 8: Remove edges with an age larger than amax. If this results in points having no 

emanating edges, remove them as well. 

Step 9: If the number of input vectors presented so far is an integer multiple of a 

parameter λ, insert a new neuron as follows: 

• Determine the neuron q with the largest error variable,  

• Find the neuron f with the largest error variable among the neighbors of the 

neuron q,  

• Insert a new neuron r halfway between q and f as ( )0.5
r q f

w w w= +  

• Create edges connecting the neuron r with neurons q and f, and remove the 

original edge between q and f, and  

• Decrease the error variables of q and f by multiplying them with a fraction α. Set 

the error variable of r with the new value of the error variable of q. 

Step 10: Decrease all error variables by multiplying them with a fraction β. 

Step 11: If a stopping criteria (e.g., the maximum number of neurons or any performance 

measure) is not yet fulfilled go to step 2. 

In summary, the age parameter considered in step 4 shows how strong the link between 

neurons is. In step 5, the neuron’s local error is used to identify areas where neurons are 

not sufficiently adapted to input vectors. The adaptation of the network to the input space 

takes place in step 6. The insertion of edges (step 7) between the two closest neurons to 

the input patterns is part of the topological structure construction process. The removal of 
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edges (step 8) is necessary to eliminate the edges between neurons that are no longer 

activated. In step 9, the new neuron is inserted in the areas of the input space by using the 

accumulated error (step 5). Finally, the network is continued until an ending condition is 

fulfilled (Cirrincione et al., 2011; Fišer et al., 2013; Morell et al., 2014; Quintana-

Pacheco et al., 2014). 

 

3.3. Minimum Description Length (MDL) measure 

Rissanen (1989) originally proposed the MDL principle as a model selection criterion. 

The MDL can be applied for determining the optimum number of clusters by minimizing 

the length of description of the training data set (Rao and Srinivas, 2008). The data set X 

can be divided in two subsets I and O, which are composed of inliers and outliers, 

respectively. The expression of the MDL criterion is formulated according to the set of 

cluster centroids W as follows: 

( ) ( ) ( )MDL( , ) mod , error , modX W I W I W OL L L= + +  (5) 

where mod L(I,W), error L(I,W) and mod L(O) represent the complexity of the entire 

model, the residual errors generated by describing all inlier data points I with set W, and 

the description length of the outlier set, respectively (Rao and Srinivas, 2008). 

The calculation of the MDL value can be instantiated by:  

2 2
1 1

MDL( , ) log max log ,1X W O
i

c d
k ik

i x S k

x w
c K N c Kκ

η= ∈ =

  
  

    

−
= + + +∑∑ ∑  (6) 

where c, d, N, η, Si and |O| represent the current number of neurons, the dimension of 

input vectors, the number of data samples, the resolution of the data source, the receptive 

field of neuron wi and the cardinality of the outlier set, respectively. The value of K is 
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computed based on the average value range of the input vectors and the data accuracy η 

as 2[log (range )]K η= . Parameter κ is used to balance the contribution of model 

complexity and model efficiency (Qin and Suganthan, 2004). 

The optimum number of clusters is determined by calculating the MDL values for a 

number of clusters (i.e., from 2 to 10) and saving the smallest value. 

 

3.4. Discordancy and heterogeneity measures 

Hosking (1986, 1990) proposed the L-moments as linear combinations of the probability 

weighted moments (PWM), which can be interpreted as measures of the location, scale, 

and shape of probability distributions. Based on the L-moments, Hosking and Wallis 

(1993) defined useful statistics in the RFA such as the discordancy and heterogeneity 

measures. 

The discordancy measure (Di) is used to recognize discordant site(s) in a region. This 

measure for the ith site in a region is defined as:  

( ) ( )
T 1

3
i i i

N
D u u S u u

−
= − −  (7) 

1

1 N

i

i

u u
N =

= ∑  (8) 

( )( )
1

N
T

i i

i

S u u u u
=

= − −∑  (9) 

where N is the number of sites, ui = [t
(i)

, t3
(i)

, t4
(i)

]
T
 is a vector of the L-moment ratios for 

the ith site. The components of the vector ui are: t as the L-coefficient of variation (L-

CV), t3 as the L-coefficient of skewness (L-CS) and t4 as the L-coefficient of kurtosis (L-

CK), respectively. The regional unweighted average of vectors ui for all sites is denoted
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u , and S is the matrix of sums of squares and cross-products. The critical discordancy 

measure is equal to 3 and the site becomes discordant when Di>3 (Hosking and Wallis, 

1993; 1997).  

The heterogeneity measure (Hi) is utilized to compute the degree of heterogeneity in a 

region. This measure can be computed as follows: 

( ) , 1, 2,3
i i v i vi

H V iµ σ= − =  (10) 

where Vi, µvi and σvi represent the V variables, the mean and the standard deviation of the 

simulated V variables, respectively. The V variables (Vi) for different values of i are given 

as:  

( )( )
0.5

2

1

1 1

N N
i R

i i

i i

V n t t n
= =

 
= − 
 
∑ ∑  (11) 

( )( ) ( )( ){ }
0.5

2 2

2 3 3

1 1

N N
i iR R

i i

i i

V n t t t t n
= =

= − + −∑ ∑  (12) 

( )( ) ( )( ){ }
0.5

2 2

3 3 3 4 4

1 1

N N
i iR R

i i

i i

V n t t t t n
= =

= − + −∑ ∑  (13) 

where 3 4, ,R R Rt t t and ni are the regional L-moment ratios and the sample size for site i, 

respectively.  

In order to compute the values of µvi and σvi, it is necessary to simulate the synthetic 

regions. For this purpose, the four-parameter Kappa distribution is fitted to the regional 

sample data. A large number (e.g., Nsim=1000) of synthetic regions are simulated by using 

the known parameters of the Kappa distribution. The simulated V variables are 

determined for each simulated region and then for these variables, the means (µv1, µv2 and 

µv3) and standard deviations (σv1, σv2 and σv3) are determined. 
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Hosking and Wallis (1993) suggested that a region is “acceptably homogeneous” if Hi 

is less than 1, “possibly heterogeneous” if Hi is between 1 and 2, and “definitely 

heterogeneous” if Hi is greater than 2. 

 

4. Results 

4.1. Drought characterization 

At first, the MSPI values are calculated using monthly precipitation data for all stations.  

According to the time series of the MSPI, the relative frequencies of three classes of 

drought, including moderate ( 1.5 MSPI 1.0− < ≤ − ), severe ( 2.0 MSPI 1.5− < ≤ − ), and 

extreme ( MSPI 2.0≤ − ) in all stations are given in Table 2. This Table illustrates that the 

MSPI can identify the extreme drought class in all stations. Then, drought characteristics 

such as drought severity and drought duration are derived based on the MSPI time series. 

Table 3 shows, for a number of drought events at all stations in the study area, the mean 

values of drought severity (DSM) and drought duration (DDM). 

 

4.2. Cluster Analysis 

It is necessary to normalize the input data set before applying the clustering method. This 

is due to the fact that results can be affected by the different units of the variables, 

including drought severities and the geographical attributes of each station. Based on the 

rescaled data set, the sub-regions can be determined by using the clustering methods. For 

this purpose, the new GNG method and the conventional Ward, KM, FCM and SOM 

methods are utilized in this study.  
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In order to find the optimum number of clusters (c), the MDL measure proposed for 

the GNG network and two different indices namely the CS index (Chou et al., 2004) and 

the Davies–Bouldin Index (DB; Davies and Bouldin, 1979) are used in the present study. 

Fig. 3 illustrates the values of the proposed indices for a number of clusters, by 

incrementally increasing c from 2 to 10. It can be seen from Fig. 3 that the optimum 

number of clusters is equal to two based on the minimum value for each of the three 

measures. In addition, the values of the MDL and the CS indices increase with the 

number of clusters. 

According to the value c=2 as the optimum number of clusters, the outputs of the 

clustering methods, namely GNG, KM, FCM, SOM and Ward, show that the study area 

is subdivided in two different sub-regions, located in the west and the east side of Iran. 

Figs. 4 to 8 illustrate the location of the stations in two different sub-regions identified by 

GNG, KM, FCM, SOM and Ward method, respectively. As it can be seen in the Figs. 4 

to 8, the results of these methods are different in some stations, which refer to the 

mechanism of the used clustering algorithms. In addition, sub-region 1 represents the 

eastern side of Iran, and sub-region 2 covers the western side of Iran. These results 

confirm the details mentioned in the previous section about the physiographic features of 

the study area, in which the eastern and western parts of Iran are comprised of deserts and 

mountain ranges, respectively. 

The parameters employed in the GNG algorithm are set as the typical values utilized 

in Daszykowski et al. (2002), Rêgo et al. (2010) and Fišer et al. (2013): εb=0.05, 

εn=0.0006, α=0.5, β=0.9995, λ=100 and amax=50. The parameters considered in the MDL 
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measure are chosen as: κ=1.3 and η=1×10
-4

. These parameters are constant during the 

training procedure. 

 

4.3. Regional homogeneity tests 

After the application of the clustering methods, the sub-regions are validated by testing 

their homogeneity through the obtained drought severities of the stations. In order to 

confirm the homogeneity of the sub-regions and to compare the efficiency of the 

clustering algorithms, the values of the heterogeneity measures and the identified 

discordant stations for each sub-regions are shown in Table 4. Results of the 

heterogeneity measures, which compare the L-moments of the observed and simulated 

data for the stations classified in two sub-regions, are different for all clustering methods. 

Therefore, Table 4 illustrates that sub-region 1 is ‘acceptably homogeneous’, whereas 

sub-region 2 is not homogeneous and needs adjustment. According to the results of Table 

4, station 11 is identified as a discordant station for the GNG, KM, FCM and SOM 

methods, while stations 11 and 18 are discordant in sub-region 2 for the Ward method. 

Furthermore, the values of the heterogeneity measures for sub-region 2 show that the 

GNG and Ward methods yield a sub-region that is ‘possibly heterogeneous’, while the 

sub-region determined based on the KM, FCM and SOM methods is ‘definitely 

heterogeneous’.  

In order to adjust sub-region 2 which is not ‘acceptably homogeneous’, the discordant 

stations can be removed. Table 5 illustrates the results of the heterogeneity measures after 

removing the discordant stations. According to Table 5, only the GNG algorithm yields 

an “acceptably homogeneous” sub-region 2 after removing the discordant stations. 
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Consequently, the GNG network is the best method for identifying the homogeneous two 

sub-regions with similar drought severities among several proposed clustering 

algorithms. 

The main difference between the GNG network and the KM, FCM, SOM and Ward 

methods is the algorithm’s structure. Unlike the rigid structure of conventional methods, 

GNG has a dynamic structure, and while training, the nodes are moved over the input 

data space toward the optimal clusters. In addition, inserting new nodes and constructing 

or removing edges are applied to enhance the results of GNG algorithm. These 

approaches are important to find cluster members, especially for the members located 

near the boundary regions of multiple clusters (e.g., stations 10, 15, 29, 31 and 32). On 

the other hand, the GNG network has an ability to adapt its structure based on the 

statistical characteristics of the data set. As a result, the shape and size of the KM, FCM, 

SOM and Ward methods do not change over time. Therefore, these methods result in 

considerable limitations for the obtained groups. 

 

5. Conclusions 

In the present study, a new clustering technique, the Growing Neural Gas (GNG) 

network, is introduced to fields of hydrology and water resources, and employed more 

specifically in regional drought frequency analysis. For this purpose, the values of the 

Multivariate Standardized Precipitation Index (MSPI) were calculated using the monthly 

precipitation time series of 40 synoptic weather stations located in Iran. The drought 

severities derived from the MSPI time series and the geographical attributes of all 

stations were utilized in the GNG algorithm and various clustering methods, namely K-
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means, fuzzy C-means, self-organizing map and Ward method. According to the 

Minimum Description Length (MDL) measure, the optimum number of sub-regions was 

found to be equal to two. Therefore, the outputs of the clustering algorithms considered in 

this study led to two different sub-regions, which are located in the eastern and western 

parts of Iran. Finally, by using the L-moments-based heterogeneity measure for testing 

the delineated sub-regions, the GNG algorithm was selected as the best clustering 

algorithm. The results of the present research effort pointed out to the dynamic and 

flexible structure of the GNG network, in contrast with the rigid structure of the 

conventional KM, FCM, SOM and Ward methods. 

This study presented a first application of the GNG network for drought 

regionalization. This method can be applied for the regionalization of the other 

hydrological variables, such as precipitations, floods, and suspended sediments. Future 

research efforts can focus on these directions along with other directions in the field of 

water resources. For instance, the rational definition of classes is of interest in the 

qualitative seasonal forecasting of precipitations.  

Future research can also focus on the combination of the GNG network approach with 

a number of regional estimation techniques to form a complete RFA procedure 

(delineation of homogeneous regions and estimation). The GNG approach can also be 

applied in a bivariate or multivariate framework. One regional estimation approach of 

special interest for combination with the GNG approach is the multivariate index flood or 

index-drought approach (see Chebana and Ouarda, 2009). The true potential of the GNG 

method can be assessed through its combination with other approaches and its application 

to real world complex regionalization problems. The flexibility of the GNG approach 
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should help it lead to improved results for a number of applications in the field of water 

resources planning and management.  
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Table 1 Attributes considered in this study 

Station  

number 

Station  

name 

Latitude 

(°N) 

Longitude 

(°E) 

Elevation 

(m) 

Mean annual 

precipitation (mm) 

1 Ahwaz 31.33 48.67 23 241.74 

2 Abadan 30.37 48.25 7 166.69 

3 Arak 34.10 49.77 1708 334.39 

4 Babolsar 36.72 52.65 −21 931.89 

5 Bam 29.10 58.35 1067 57.77 

6 Bandar Abbas 27.22 56.37 10 180.89 

7 Bandar Anzali 37.47 49.47 −26 1775.81 

8 Bandar Lengheh 26.53 54.83 23 141.53 

9 Birjand 32.87 59.20 1491 170.60 

10 Bushehr 28.98 50.83 20 261.36 

11 Dezful 32.40 48.38 143 409.62 

12 Esfahan 32.62 51.67 1550 126.62 

13 Fassa 28.97 53.68 1288 295.16 

14 Ghazvin 36.25 50.05 1279 326.45 

15 Ghorghan 36.85 54.27 13 585.68 

16 Hamedan 35.20 48.72 1680 333.32 

17 Iranshahr 27.20 60.70 591 115.23 

18 Kashan 33.98 51.45 982 139.32 

19 Kerman 30.25 56.97 1754 140.35 

20 Kermanshah 34.35 47.15 1318 462.09 

21 Khorramabad 33.43 48.28 1148 514.84 

22 khoy 38.55 44.97 1103 297.25 

23 Mashhad 36.27 59.63 999 260.23 

24 Oroomieh 37.53 45.08 1316 336.98 

25 Ramsar 36.90 50.67 −20 1207.15 

26 Sabzevar 36.20 57.72 977 200.22 

27 Saghez 36.25 46.27 1523 497.98 

28 Sanandaj 35.33 47.00 1373 457.47 

29 Semnan 35.58 53.55 1130 145.5 
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30 Shahrekord 32.28 50.85 2049 338.65 

31 Shiraz 29.53 52.60 1484 329.76 

32 Shahroud 36.42 54.95 1345 167.19 

33 Tabass 33.60 56.92 711 86.01 

34 Tabriz 38.08 46.28 1361 277.58 

35 Tehran 35.68 51.32 1191 244.82 

36 Torbate Heidarieh 35.27 59.22 1451 278.21 

37 Yazd 31.90 54.28 1237 60.12 

38 Zabol 31.03 61.48 489 59.07 

39 Zahedan 29.47 60.88 1370 79.28 

40 Zanjan 36.68 48.48 1663 307.59 
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Table 2 Relative frequencies of drought classes 

Station Md 
(1)

 Sd 
(2)  

 Ed 
(3)  

 Station Md Sd Ed 

1 8.1 3.8 3.5 21 9.4 5.2 2.5 

2 7.1 5.6 2.1 22 9.4 5.2 2.5 

3 9.8 4.4 1.7 23 9.0 6.3 1.5 

4 8.3 3.8 2.9 24 8.3 5.4 2.1 

5 11.7 3.5 2.3 25 9.6 6.3 1.5 

6 13.3 4.2 0.2 26 10.4 4.2 1.7 

7 10.4 3.8 2.1 27 9.4 3.1 2.7 

8 11.5 2.5 1.9 28 10.0 4.6 1.0 

9 11.7 2.5 0.4 29 6.7 4.0 2.7 

10 10.0 4.0 1.5 30 8.8 4.8 2.7 

11 8.8 4.0 3.1 31 9.8 3.3 2.7 

12 9.0 4.4 3.3 32 6.3 3.8 3.3 

13 8.8 4.0 3.8 33 10.2 5.2 2.7 

14 8.5 2.3 3.5 34 7.7 3.1 3.1 

15 10.2 3.5 1.3 35 9.6 3.8 2.9 

16 7.5 3.8 2.9 36 12.3 3.8 0.8 

17 10.6 4.2 1.0 37 10.6 3.8 2.1 

18 11.0 2.3 1.7 38 9.6 6.7 0.4 

19 6.3 4.2 3.3 39 5.8 6.3 1.3 

20 8.3 5.6 1.7 40 9.4 3.5 3.5 

(1)
 Moderately dry (Md) 

(2)
 Severely dry (Sd) 

(3)
 Extremely dry (Ed) 
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Table 3 Mean values of drought characteristics 

Station 
Number 

of event 
DSM 

(1)
 DDM 

(2)
 Station 

Number 

of event 
DSM DDM 

1 29 6.40 8.93 21 33 5.80 6.82 

2 35 5.45 6.80 22 19 10.34 12.37 

3 33 5.82 7.21 23 27 7.15 8.56 

4 34 5.44 7.24 24 24 7.99 9.88 

5 26 7.44 9.15 25 26 7.58 9.38 

6 25 7.81 9.08 26 30 6.39 8.03 

7 26 7.50 9.19 27 25 7.64 9.76 

8 27 7.13 8.96 28 31 6.03 7.58 

9 30 6.25 6.53 29 27 6.94 8.44 

10 28 6.53 8.68 30 22 8.71 10.27 

11 28 6.87 8.79 31 37 5.03 6.78 

12 24 8.14 9.17 32 27 6.78 8.85 

13 27 6.87 9.41 33 29 6.61 7.41 

14 27 6.78 8.48 34 28 6.68 8.54 

15 27 6.82 8.04 35 28 6.69 8.07 

16 26 7.17 9.65 36 31 6.14 7.39 

17 22 8.67 9.23 37 28 6.81 8.39 

18 28 7.06 8.86 38 27 7.21 8.85 

19 34 5.37 6.59 39 26 7.14 9.58 

20 28 6.51 7.93 40 20 9.78 11.25 

(1)
 Mean values of drought severity (DSM) 

(2)
 Mean values of drought duration (DDM) 
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Table 4 Results of heterogeneity measures before removing the discordant stations 

Cluster 
Clustering 

method 

Number 

of station 

Discordant 

Stations 

Heterogeneity measure Heterogeneity 

comment H1 H2 H3 

1 GNG 17 - 0.35 0.76 0.95 
Acceptably 

homogeneous 

 KM 16 - -0.94 -0.63 -0.02 
Acceptably 

homogeneous 

 FCM 18 - -0.79 0.11 0.84 
Acceptably 

homogeneous 

 SOM 16 - -1.05 -0.35 0.43 
Acceptably 

homogeneous 

 Ward 12 - -0.56 0.12 0.73 
Acceptably 

homogeneous 

2 GNG 23 11 1.26 0.54 0.22 
Possibly 

heterogeneous 

 KM 24 11 2.04 1.66 1.28 
Definitely 

heterogeneous 

 FCM 22 11 2.11 1.19 0.41 
Definitely 

heterogeneous 

 SOM 24 11 2.02 1.43 0.84 
Definitely 

heterogeneous 

 Ward 28 11, 18 1.59 0.87 0.53 
Possibly 

heterogeneous 
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Table 5 Results of heterogeneity measures after removing the discordant stations 

Cluster 
Clustering 

method 

Number 

of station 

Heterogeneity measure Heterogeneity 

comment H1 H2 H3 

1 GNG 17 0.35 0.76 0.95 
Acceptably 

homogeneous 

 KM 16 -0.94 -0.63 -0.02 
Acceptably 

homogeneous 

 FCM 18 -0.79 0.11 0.84 
Acceptably 

homogeneous 

 SOM 16 -1.05 -0.35 0.43 
Acceptably 

homogeneous 

 Ward 12 -0.56 0.12 0.73 
Acceptably 

homogeneous 

2 GNG 22 0.64 0.04 -0.05 
Acceptably 

homogeneous 

 KM 23 1.48 1.29 1.09 
Possibly 

heterogeneous 

 FCM 21 1.52 0.74 0.29 
Possibly 

heterogeneous 

 SOM 23 1.56 1.13 0.70 
Possibly 

heterogeneous 

 Ward 26 1.09 0.08 -0.22 
Possibly 

heterogeneous 
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Fig. 1 Map of the study area with location of the stations 
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Fig. 2 Definition of drought events 
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Fig. 3 MDL, CS and DB values versus the number of clusters
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Fig. 4 Location of stations in the sub-regions identified by GNG 
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Fig. 5 Location of stations in the sub-regions identified by KM 
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Fig. 6 Location of stations in the sub-regions identified by FCM 
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Fig. 7 Location of stations in the sub-regions identified by SOM 
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Fig. 8 Location of stations in the sub-regions identified by Ward 

 

  

45 50 55 60

25

30

35

40

Longitude

L
a

ti
tu

d
e

 

 

1

2

3

4

5

6

7

8

9

10

11 12

13

14
15

16

17

18

19

20

21

22

23

24

25

2627

28
29

30

31

32

33

34

35
36

37

38

39

40

Cluster 1

Cluster 2

N



  

48 

 

Highlights: 

 

• An application of the GNG network is presented for drought regionalization. 

• The optimal number of sub-regions is determined by the MDL measure. 

• The GNG algorithm is suitable for the RFA against the conventional methods. 

 

 


