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Abstract

This study compares geostatistical interpolatiod stochastic simulation approaches for the
estimation of daily global solar radiation (GSR) arhorizontal surface in order to fill in
missing values and to extend short record lengtha ofeteorological station. A guideline to
select an approach is suggested based on this csompalhree geostatistical interpolation
models are developed using the nearest neighboy, (Nierse distance weighted (IDW), and
ordinary kriging (OK) schemes. Three stochasticutation models are also developed using
the artificial neural network (ANN) method with daitemperature (ANN(T)), relative
humidity (ANN(H)), and both (ANN(TH)) variables gsredictors. The six models are
compared at 13 meteorological stations locatedsacsouthern Quebec, Canada. The three
geostatistical interpolation models yield betterf@@nances at stations located in a high
density area of GSR measuring stations compardigetthree stochastic simulation models.
The guideline suggests an optimal approach by cdngpa threshold distance, estimated
according to a performance criteria of a stochastiwlation model, to the distance between a
target and its nearest neighboring station. Addéity, the spatial correlation strength of daily
GSRs and the at-site correlation strength betweely &6SRs and the predictor variables

should be considered.

Keywords: artificial neural networks, geostatistical intelggamn, global solar radiation, spatial

correlation, temperature, relative humidity.
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1. Introduction

Global solar radiation (GSR) on a horizontal swgfat the earth is an important variable for
many analyses involving agricultural and plant gigwair and water temperatures,
environmental and biological risk, and solar eiectgeneration. However, instruments
measuring solar irradiation (i.e., Kipp or Epplegragnometers) are relatively expensive and
difficult to manage [1], compared to those of conmmmeteorological variables such as air
temperature, precipitation, and relative humiditigerefore, meteorological stations for GSR
are generally less abundant than those for the @ymmeteorological variables. Furthermore,
observed GSR datasets are usually short timesartebave large gaps of missing values.

Geostatistical interpolation approaches can bgtadao fill in missing values and to
extend short record length of the GSR at a statising observed GSR data on the other
stations located near the desired station. KrigJ], nearest neighbor [4], and inverse
distance weighted average [5,8,9] approaches haea bpplied frequently for the spatial
interpolation.

At-site physical and statistical approaches can aks used for GSR simulations.
Physical models (e.g., [10-12]) use complex physid@ractions between the GSR and the
terrestrial atmosphere, such as the Rayleigh stajieradiative absorption by ozone and
water vapour and aerosol extinction. Stochasticuktion models (e.g., [13-20]) use
empirical relationships between GSR and meteorcédgiovariables such as sunshine hours,
temperature, and relative humidity at a desirediosta This study considers stochastic
simulation models as they are relatively simplel¢velop and require fewer input variables
compared to physical models [16,17]. Although Imaad non-linear regressions as well as
artificial neural networks (ANNSs) can be employeddrive empirical relationships between

the common meteorological variables and the GSRiyyrstudies [16-18,20-22] have shown
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the superiority of ANN approaches to regressioretagpproaches.

Sunshine duration, one of the most explanatoryabées for GSR simulation
[18,21,23], has not been recorded at most metegicalbstations in Canada since 1999 due to
its difficulty of measurement [1]. Temperature [183;17-19,24-28] and relative humidity
[18,21] are alternative covariables although thayehweaker correlation with GSR compared
to sunshine duration [18].

Geostatistical interpolation and statistical siatioin approaches for GSR estimation
have been applied separately in many studies, hawthey have been rarely compared in an
application study. Therefore, this study comparesstatistical interpolation and statistical
simulation approaches to fill in missing values &méxtend short record length of daily GSR
timeseries. The spatial interpolation approachesidered include the nearest neighbor, the
inverse distance weighted, and the ordinary krigmgthods. The stochastic simulation
models include three ANN-based models with dailyngerature and/or daily relative
humidity as input variables. The six models areliadpat 13 meteorological stations located
across southern Quebec (45.1~50.3 °N and 64.2<=¥@)0Canada. Furthermore, a guideline
to choose an approach between the geostatistimpoiation and the statistical simulation

approaches is provided for the estimation of d@i§R on the study area.

2. Methodologies

2.1 Geostatistical interpolation models

Three geostatistical interpolation models are dged based on nearest neighbor (NN),
inverse distance weighted (IDW), and ordinary krgg{OK) schemes for daily GSR. The NN
model employs the simplest algorithm among theettmedels. This model selects the value

of the nearest station to the location of inte@sti does not consider the other values of
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neighboring stations in order to yield a piecewgsestant interpolation map.

The IDW interpolation algorithm adopts the assuompthat the interpolation value at
a location of interest is inversely proportional ttee distances of nearby stations. The
interpolation value of the model is a weighted ager of the values of multiple stations and

the weight assigned to each nearby station dimesists the distance from the interpolation

point to that station increases. The IDW modelrjmates the daily GSR valu®(x,) at an

ungauged locationx, from observationsR(x) at locations x,,...,x, as follows:

RO6) = Y WR(X) @
= Y% is12.n )

Su/d,
=1

where fe(xo) is an interpolated value oR(X,) and d, represents distance betwe&{x,)
and R(x).

Kriging is a geostatistical interpolation technigbased on the linear least square
estimation algorithm. Ordinary kriging (OK) is thmaost common among many kriging

approaches. OK estimates the best linear unbiastadator based on a linear model. The

interpolation value of the OK at a locatiog is given by the following equation:

T

) W) (R(x)
R(x%) =] : ®3)
w, ) (R(x,)

n
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where w,,...,w, are the weights of the OK that fulfill the unbidssondition ZWi =1. The

i=1

weights are obtained by the below OK equation syste

W) (YOG e YO %) 1) 04 %)
w, ) V(%0 %) oo Y% %) 1| (%00 %)
U 1 .. 1 0 1

(4)

where u=ER(x)] is a Lagrange parameter employed to minimize tirgirlg error under

the unbias condition, which is assumed to be amowk constant in the OKy(x,X;) is a

variogram function to calculate the spatial depesgedetweenR(x) and R(x; ). Several

variogram functions are available such as expoak@iaussian, and spherical models. In this
study, the spherical variogram function is selediaded on trial and error examination. The
variogram is estimated for each day, based on vbdataily GSR dataset of nearby stations.
The detail descriptions of variogram models andnany kriging can be found in [29,30].

To verify the interpolation performances of theeth models, a leave-one-out cross-
validation approach is employed. Among the obsematatn stations, GSR values of one of

those stations are interpolated using the obsenatat the remaining-1 stations. This
process is repeated for all the observation statidhe interpolatedIfZ(xi) Is then compared
to the associated observatidR(x,) at each station in order to evaluate the perfoomanf

the interpolation models.

2.2 Stochastic simulation models
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Three stochastic simulation models are developedstonate daily GSR using the ANN
approach as a transfer function and daily maximuach minimum temperatures and/or daily
mean relative humidity as input variables. Feedwvéwmd ANNs have been frequently
employed to simulate GSR [16-18, 20, 21] from thetenrological input variables. This
study also employs a three-layer feed forward ANbdel, which includes an input layer, a
single hidden layer, and an output layer of comjoutanodes. The ANN models are trained
by the Bayesian regularization backpropagation (BRBlgorithm, which is a network
training function that updates the weight and biatues according to the Levenberg-
Marquardt optimization [31]. An important issue ANN modelling is the determination of
the number of hidden nodes. Fletcher and Goss §88¢ested that the optimal number of
hidden nodes could be within g2+ 0) ~ (2p+1), wherep and o are the numbers of
independent and dependent variables, respectiVhly.hyperbolic tangent sigmoid function
is employed for the hidden layer and the linearcfiom is used for the output layer. Detailed
descriptions of these various activation functiares provided in [31]. The three ANN models

used to simulate daily GSR series from daily metlegjical variables are as follows:

é = ANN (Tmax1Tmin ’ Ra) (5)
R=ANN(H,R)) (6)
é = ANN (Tmax1Tmin ’ H ’ Ra) (7)
where T, and T_,, are daily maximum and minimum temperatures (°K) &d is daily

mean relative humidity in a given dajhe ANN represents the three-layer feed forward

ANN trained by the BRBP algorithm. Th&, is the solar irradiation on a horizontal surface
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at the top of the atmosphere, which is a functibtadtude and Julian day of a site. It is
calculated by using the standard geometric methodiged by [33]. The details of the
method are also available in [20]. The three modets called ANN(T), ANN(H), and
ANN(TH) hereafter based on employed input variablése numbers of hidden nodes
selected for the ANN(T), ANN(H), and ANN(TH) are 3, and 5, respectively, based on a
trial-and-error procedure.

Daily GSR at ungauged stations that measure othedigtor variables can be
simulated using a regional ANN-based model. Thislehds calibrated based on all available
GSR and meteorological observations for the regibninterest, which allows for the
simulation of GSR at ungauged stations where calibes are available. For instance, Fortin
et al. [17] and Jeong et al. [20] tested a regiddiN-based model to simulate daily GSR for
regional areas located in eastern Canada. Thepratdd this model using observations
obtained from a set of stations and validated tbheehusing those obtained from a different
station set. Regional ANN(T), ANN(H), and ANN(TH)adels are also considered in this
study using a leave-one-out training procedurethis approach, the regional ANN models
are trained for a given station using observatiohsall the remaining stations for the

calibration period, which is repeated for all sia§. In the regional ANN models, mean GSR

varies according toR,, which is a function of the latitude of each siati

2.3 Model evaluation measures
Simulation performances are evaluated using thenrbé&ss error (MBE), root mean square
error (RMSE), and R-square (coefficient of detemtion). The MBE and RMSE are given by

the following equations:
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MBE=%§,(F§—R) (8)
RMSE=[->(R -R)7” (©)

where R and R are observed and simulated daily GSR values ands the record length.

R-square (coefficient of determination) is the sgdavalue of the (Pearson’s product-
moment) linear correlation coefficient between obsd and simulated values. It can provide
the proportion of explained variance of observatiby an applied model and is defined by

the following equation:

m

> (R-R)?
rP=1-=2 —— (10)
Y (R -R)?

i=1

where R is the mean of the observed GSR values.

3. Study area and data

Daily GSR, maximum and minimum temperatures, ad a®lmean relative humidity are
obtained from 13 meteorological stations of Envin@mt Canada (EC) located between
latitude 45.1°N to 50.3°N and longitude 64.2°W &@0PW (i.e. Southern Quebec, Canada).
The daily GSR and the two predictor variables dr@ioed for the analysis period from 2003

to 2010. Figure 1 shows the locations of the 18asta across southern Quebec, which have
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less than 10 % of missing data of daily maximum amdimum temperatures, relative
humidity, and GSR for the analysis period. The rfiiggalso distinguishes the GSR stations
excluded from this analysis due to more than 10fdnigsing values of any of the three
previously mentioned variables. Stations recordidgily maximum and minimum
temperatures and relative humidity are presenteenwhey have less than 50 % of missing
data for the analysis period. The south of Quebdlsed most populated and productive area in
the province and has higher density of observattations than the rest of the province. The
three stochastic simulation models are calibrateti\alidated on the 2003-2007 and 2008-
2010 periods, respectively. The three geostatisintarpolation models interpolate the daily
GSR for each observation station by using the leaeeout cross-validation method for the
2008-2010 period. Performances of the six modedsfiaally compared for the 2008-2010
validation period at the 13 selected stations.

Table 1 presents the information (station iderdiiien numbers, latitudes, longitudes,
and altitudes) of the 13 stations in ascendingroofiéheir latitudes. Annual and seasonal (i.e.,
DJF for winter, MAM for spring, JJA for summer, as®N for autumn) averages of daily
GSR for the 2003-2010 period are also providedydneral, it is known that GSR decreases
as latitudes increase; however, the annual or seh&SR of the stations do not show a clear
decrease as their latitudes increase becauseutiheatea covers a small range of latitude (5.2
degree). Furthermore, some stations are locatedomplex climate conditions directly
affected by the St-Lawrence River and convectioosfthe Atlantic Ocean (i.e., stations 8, 9,
11, and 13) or from the continent (i.e., station. s daily GSR and predictor variables are
not linearly correlated, linear correlation coafits between the solar transmissivity (i.e., the

ratio of incoming GSR on the surface of the eadhsolar irradiation at the top of the

atmosphere) and diurnal temperature range (DIFB;- Tmin) V(R/R,, DTR) series as well

10
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as between solar transmissivity and daily meantiveldhumidity y(R/R,, H) series are

presented. The solar transmissivity and DTR haa#tipe correlations since a cloudy day has
smaller GSR, and also a smaller DTR due to a |aGwgrduring the day by blocking sunlight
as well as a highér,, during the night by preventing radiative coolimgjen compared to a
clear day. However, the solar transmissivity ancaameaily relative humidity are negatively
correlated since a clear day has less humidity thaloudy day. Correlations between daily
GSR and DTR and relative humidity of station 11 \@eaker than those of the other stations.
This station is located on the south shore of tleevdr St-Lawrence valley, which has
complex climate conditions affected by the rived @onvections from the continent and the

Atlantic Ocean.

4. Results

4.1 Comparison of model performances

Table 2 presents performance measures of the ¢jetistd interpolation models for each
station for the 2008-2010 validation period. The,Nihich is the simplest approach, yields
the worst performance, whereas the OK, which isnlst sophisticated approach, shows the
best performance, although there is a larger magmiof MBE for OK than for IDW. The
three models generally produce larger MBE at statit0, 12, and 13, which have larger
differences in annual mean GSR values compareuetother stations (see Table 1 for values
of annual mean GSR and Figure 1 for station looa)ioThe three models yield small RMSEs
at stations located in the high density area (s&tions 1 to 9), whereas they yield large
RMSEs at stations located in the low density area, Gtations 10 to 13). In this low density
area, the nearest stations to the stations 104 3aated within a distance of 482.0, 235.2,

236.1, and 363.8 km, respectively, whereas thosiegetgtations 1-9 are located within 100 km.

11
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It is notable that the performance of the geogdtagisinterpolation models depends on the
density of the network of stations and on the stiaal homogeneity of GSR values.

Table 3 presents performances of the stochastiglation models for each station for
the calibration and validation periods. The differes of the performances between the
calibration and the validation periods are modest dach model and for each station,
implying that the three models are calibrated wahout overfitting and that they have good
generalization ability for a new data set. Averdgterences between the two periods are 0.35
MJ/mP/day for MBE, 0.20 MJ/fiday for RMSE, and 1.8 % for R-square. Among theeh
stochastic simulation models, the ANN(TH) uses ketihperature and relative humidity as
input variables and yields the best performance. ARKN(T) and the ANN(H), which employ
either temperature or relative humidity as an ingartable, yield similar performances for all
stations, except for the station 11, which showedweakest correlations between daily GSR
and predictors among the selected stations (Tgble 1

Figure 2 compares RMSEs of the geostatisticalrpolation and the stochastic
simulation models for each station at annual amd@®al scales for the validation period. The
geostatistical interpolation models generally shiogiter performance than the stochastic
simulation models for the stations located in thghhdensity area (i.e., stations 1 to 9).
However, these models perform differently for tketiens located in the low density area (i.e.,
stations 10 to 13). The poor performances of tlusigistical interpolation models in the low
density area are expectable as the models usealspatirelations, which exponentially
decrease as distance increase. Especially in spridgsummer, RMSEs of the geostatistical
models tend to be larger at stations 10, 12, andh&B the stochastic simulation models,
indicating that spatial correlation structures @Rsare weaker in spring and summer than in

winter and autumn. However, the stochastic simuathodels have similar performances for

12
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all stations, except for the station 11, as thely aise at-site relationship between the daily
GSR and the input variables.

Figure 3 presents scatter plots between observeédsiamnulated daily GSRs for the
validation period and for stations 7 and 13, whach located in the high density and the low
density (i.e., north-eastern boundary) areas, otisedy. In Figures 3a to 3f, the geostatistical
interpolation models show better agreement withItfieline than the stochastic simulation
models at the station 7. As shown in Tables 2 andh& OK model yields the best
performance among the six models at this statiavwever, the geostatistical interpolation
models tend to overestimate the observed valudkeastation because, on average, daily
GSRs at the station are smaller than its neighgaiations (see Table 1). In Figures 3g to 3,
the geostatistical interpolation models show waoageeement with the 1:1 line than the
stochastic simulation models at the station 13. RMN(TH) model yields the best
performance among the six models.

4.2 Guidelines for model selection

RMSEs and R-squares of daily GSR series betweargattand a neighboring station versus
their distance for all possible pairs of statiome presented in Figure 4, at an annual and
seasonal scales for the 2003-2010 period. In otlveds, the RMSEs and R-squares of the
NN method are calculated, under the assumptiontktigapair of stations includes the target
station and its nearest neighbor. Trend lines ofSB8l and R-squares are estimated by the
logarithmic and exponential functions respectiveding the non linear least square algorithm.
Equations and R-squares of the trend lines for anand season scales are provided in the
figures. Therefore, the trend lines provide apprate RMSEs or R-squares of the NN
method for a target station with its nearest neigtdn the study area. For instance, according

to the equation presented in Figure 4a, if an olesedaily GSR value is available at the

13
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nearest neighboring station located at a distariciO6km from a target station, the NN
method can approximately simulate the daily GSRhat target station with an expected
RMSE of 4.3 MJ/iday at an annual scale. Spatial correlation sthengary between
seasons. For instance, in winter and autumn, tagajgorrelation structures are stronger than
those in spring and summer. The study area usshtbyys more homogenized weather and
solar radiation conditions in winter and autumn paned to spring and summer seasons
because of less convection from Atlantic and/ottio@mtal sources.

Using the equations presented in Figure 4, allotdsdistance (TD) between a target
and its nearest neighboring station can be estinaiecording to a desired level of
performance (i.e., RMSE or R-square) based on tharddel. In Table 4, estimated TDs of
the NN model are presented based on the RMSEschf &&N(T), ANN(H), and ANN(TH)
models presented in Table 3. Based on the tableseymerformances of the NN models are
expected than the stochastic simulation modelgatiorss 10, 12, and 13 as their nearest
neighboring stations are located further than tA@s. Similarly, the NN model can vyield
slightly better performance than ANN(T) and ANN(H)t it can yield a worse performance
than ANN(TH) annually at station 11. This can belaimed by the NN model requiring
nearest neighboring stations to be within 263 kmANIN(T), 245 km for ANN(H), and 212
km for ANN(TH) at an annual scale, but the neastation (i.e., station 9) is actually at a
distance of 235.2 km from station 11.

The TDs presented in Table 4 can be used as alipgid® select an approach
between geostatistical interpolation and stochastuilation models by comparing estimated
TDs to the distances of the nearest neighboringoatawhen filling in missing values and
extending record length of daily GSR is requirechatobservation station. There are three

possible cases; (1) TD > distance of nearest neigidp station; (2) TD= distance of nearest

14
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neighboring station; (3) TD < distance of nearesigiboring station. For the first case,
applying the geostatistical interpolation modelsasommended. For instance, on average,
better annual performances of the NN model carxpeated than the ANN(T), ANN(H), and
ANN(TH) when a nearest neighboring station is withi62, 164, and 121 km, respectively.
However, the availability of predictor variablese(j temperature and/or humidity) of
statistical simulation models and the seasonaliapebrrelation strengths of geostatisical
interpolation models should be considered to seleaiptimal approach. As ANN(TH) yields
better performance than ANN(T) or ANN(H), the fomseTD is shorter than the latter's.
Shorter TDs are estimated in summer compared tavihier and autumn seasons due to a
weak spatial correlation structure in summer. k& dkcond case, applying more sophisticated
geostatistical interpolation models (e.g., IDW #&id) than the NN model is recommended.
As an example, at station 7, the IDW and OK mogdkl better performances, whereas the
NN model yield a worse performance compared toAN&(TH) annually (see Figure 3a).
Finally, in the third case, applying stochastic @@tion models is recommended as they
generally can perform better than geostatisticderpolation models. Since the best
performance model cannot always be applied foregiip period at a selected station due to
a lack of available predictor variables and obs#r@&SR values of neighboring stations, the
TD criterion of the proposed guideline can be useduggest an optimal approach. The
guideline and TD can also be used for other GSt#oatathat were excluded in this analysis
due to short record-length (Figure 1).

Under the assumption that a target station has prdgictor variables, regional
stochastic simulation models are developed usieg@BR and predictor variables measured
at the other stations. Table 5 presents annuabmeainces of regional models for the 13

stations and their TDs to the nearest neighboriagions to produce similar RMSEs to the
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regional models. Among the regional ANNs, ANN(THElds the best performance while
regional ANN(T) and ANN(H) yield similar performaes to each other. Again, station 11
shows the worst performance among the 13 statiims.RMSEs of the regional models are
0.21~0.27MJ/nf/day larger than those of the at-site models. The waesdormances of
regional ANNs are reasonable compared to the @tAINs as the regional ANNs at each site
do not use the observed GSR data of that sitehfomtodel calibrations. Consequently, the
TDs of the regional models are also 14.9~29.1 kngéo than those of the at-site models.
These TD values and the ones presented in Tabde Shas be used to select an appropriate
approach between geostatistical interpolation agional ANN simulation approaches in

order to estimate daily GSR at ungauged (or slemt+d) stations.

5. Concluding remarks
Geostatistical interpolation and stochastic simoilaapproaches are compared in this study to
fill in missing values and to extend short recoeddth of the daily global solar radiation
(GSR). However, it is notable that the comparisoonly based on the performances of two
approaches because they have different applicabostraints and algorithms to each other.
For instance, geostatistical interpolation appreacprovide interpolated values at any point
in a region including a target station; howevegytimeed observations of daily GSR on the
other stations located near the target stationstomate the spatial correlation structure.
Stochastic simulation approaches provide estimatddes only at the target station using
observed daily GSR series as a dependant variablg, daily temperatures as well as
humidity series as independent variables.

The simplest nearest neighbor (NN) model yiel@swvilorst performance, whereas the

most sophisticated ordinary kriging (OK) model skawe best performance among the three
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geostatistical interpolation models. The three gmssical interpolation models generally
yield smaller RMSEs at stations located in the tdghsity area (i.e., stations 1-9) than those
located in the low density area (i.e., stationsl3)- The difference of the performances of
geostatistical interpolation models between théldgd low density areas can be explained
by the exponential decrease of the spatial coroglstbetween stations as the distance
increase. Among the three at-site stochastic stmulapproach models, the ANN(TH) yields
better performance than the ANN(T) and ANN(H), whihe ANN(T) and ANN(H) yield
similar performances to each other. The three si&tahsimulation models produce similar
performances for all stations, except for the stafil, which is exposed to a complex climate
and showed weaker relationships between GSR aicfes. Regional stochastic simulation
models can simulate daily GSR series at statioheyevonly predictor variables are available;
however, the performances of the regionalized nsoaed worse than the at-site models.

In the comparison between the geostatistical iolatpn and the stochastic
simulation models, the geostatistical models perftretter at stations located in the high
density area, but they perform worse at stationatd in the low density area, compared to
the stochastic simulation models. Equations thatagproximately estimate the RMSE and
R-square based on the NN model using the distamteelbn a target and its nearest
neighboring station are presented. By using thgsate®ns, a guideline is suggested to select
an approach between the geostatistical interpolaia the stochastic simulation approaches.
A stochastic simulation approach is recommendedwhe distance between a target and its
nearest neighboring station is longer than thestiokl distance (TD) estimated according to
the RMSE of a stochastic simulation model. In tppasite case, when the TD is longer than
the distance between a target and its nearesthmmiigly station, a geostatistical interpolation

approach is recommended. When the TD is similahéodistance between a target and its
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405

nearest neighboring station, more sophisticatedtgéstical interpolation models (e.g., IDW
and OK) have generally proven to perform bettenthastochastic simulation model in this
study.

Although, this study suggests a guideline to sedacappropriate simulation approach
for daily GSR between geostatistical interpolateord stochastic simulation approaches, the
guideline is dependent on the spatial correlativength of daily GSRs and the at-site
correlation strength between daily GSRs and thdigt@ variables. It is proved that spatial
correlation strengths for seasonal scales havegroin winter and autumn compared to
those in spring and summer in the study area. Sitoual of sub-daily GSR will be considered
in future work as it is generally more importanaithdaily GSR to estimate solar energy

output due to the non-linear relationship betwdmnradiance and the energy output.
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494  Table 1
495  Station identification number, location informatifiatitude, longitude, and altitude) as well
496  as annual and seasonal averages of daily GSR o$dleeted stations for the 2003-2010

497  analysis period. Linear correlation coefficientstwmen solar transmissivity and diurnal
498  temperature range (DTRWR/R,, DTR)as well as between solar transmissivity and redativ
499  humidity p(R/R,,H) are also provided.

Average GSR
Lat Lon Altitude R R
No. Station # (MJ/nf/day) y(—,DTR) ¥(—,H)
N) (W) (m) R R,

Annual  Winter  Spring Summer Autumn

1 7022579 45.05 -72.86 152.4 11.61 4.97 14.58 18.39 8.51 0.53 -0.63

2 702FQLF 45.12 -74.29 49.1 12.83 6.21 16.00 19.91 9.21 0.54 -0.66

3 702LED4 45.29 -73.35 43.8 13.07 6.44 16.49 20.27 9.09 0.50 -0.63

4 7024280 45.37 -71.82 181.0 11.63 5.46 14.53 18.04 8.49 0.58 -0.65

5 702327X 45.72 -73.38 17.9 12.79 6.45 16.10 19.49 9.11 0.52 -0.68

6 7025442 46.23 -72.66 8.0 12.72 6.28 16.07 19.65 8.89 0.52 -0.62

7 7011983 46.69 -71.97 61.0 11.67 5.72 14.99 17.83 8.13 0.63 -0.68

8 701Q004 46.78 -71.29 91.4 11.50 5.44 15.26 17.77 7.54 0.53 -0.72

9 7041JG6 47.08 -70.78 6.0 11.97 5.56 15.29 18.57 8.48 051 -0.65

10 7086716 48.25 -79.03 318.0 11.83 5.39 15.96 18.49 7.49 0.54 -0.73

11 7056068 48.51 -68.47 4.9 12.16 4.99 16.02 19.49 8.15 0.29 -0.47

12 7065639 48.84 -72.55 137.2 12.63 6.21 17.09 18.78 8.44 0.52 -0.68

13 7044328 50.27 -64.23 11.0 11.28 4.18 15.46 17.92 7.56 0.58 -0.59

Avg. 46.86 -72.05 83.2 12.13 5.64 15.68 18.82 8.39 0.52 -0.65
500
501
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502 Table 2
503 Performance measures of the three geostatistitatpwiation models for the 2008-2010
504  period.

station # MBE (MJ/nf/day) RMSE (MJ/rfiday) R-squar¢100'%)
IDW OK NN IDW OK NN IDW OK

1 -0.67 -0.33 -045 253 234 215 0091 0.92  0.94

2 008 051 016 224 253 238 0.92 0.90 0.91

3 063 040 015 244 203 217 0.92 0.94  0.93

4 026 -050 -0.37 234 260 250 092 0.89  0.90

5 -0.24 018 -0.14  2.36 1.80 186 0.91 0.94  0.94

6 146 061 071  2.99 201 198 089 0.94  0.95

7 -1.03  -1.24 -1.14 232 217 2.01 093 0.94  0.95

8 -0.37 -013  0.09 2.24 191 189  0.92 0.95  0.94

9 026 022 026 260 268 249  0.90 0.90 0.91

10 -0.78 -042 -048 550 549 510  0.58 0.55  0.60

11 -048 -0.32 -020 455 418 379 073 0.76  0.80

12 034 055 0.67 493 422 375 067 073  0.79

13 -045 -0.82 -066 551 580 5.33  0.62 0.55  0.61

avg. -0.12 -0.10 011  3.27 3.06 288 0.83 0.84  0.86
505
506
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507 Table 3
508 Performance measures of the three stochastic diowlanodels during the 2003-2007
509 calibration and the 2008-2010 validation periods.
MBE (MJ/nf/day) RMSE (MJ/rfiday) R-squar¢100'%)
ANN(T) ANN(H) ANN(TH) ANN(T) ANN(H) ANN(TH) ANN(T) ANN(H) ANN(TH)
Calibration period (2003~2007)

1 0.03 0.31 0.02 3.76 3.82 3.19 0.76 0.76 0.83
2 -0.04 0.05 0.00 3.94 3.88 3.18 0.78 0.78 0.86
3 -0.06 -0.04 -0.04 4.48 4.49 3.86 0.74 0.74 0.81
4 -0.03 0.05 0.01 3.77 3.77 3.06 0.75 0.75 0.84
5 0.03 0.05 -0.01 3.77 3.72 3.14 0.79 0.79 0.85
6 0.00 -0.07 0.07 3.88 4.12 3.26 0.77 0.74 0.84
7 0.09 0.02 -0.04 3.77 3.94 3.01 0.78 0.76 0.86
8 -0.04 0.00 0.00 4.02 3.62 3.16 0.75 0.80 0.85
9 0.00 -0.01 0.01 4.39 4.35 3.64 0.72 0.72 0.80
10 -0.01 0.03 -0.02 3.62 3.14 2.78 0.80 0.85 0.88
11 0.04 0.00 -0.04 4.87 4.53 4.35 0.68 0.72 0.75
12 -0.07 0.10 0.03 3.83 3.66 3.20 0.78 0.80 0.85
13 -0.10 0.03 0.00 3.75 3.76 3.37 0.80 0.80 0.84

avg. -0.01 0.04 0.00 3.99 3.91 3.32 0.76 0.77 0.83
validation period (2008~2010)

1 0.66 0.78 0.53 3.92 4.08 3.37 0.79 0.77 0.84
2 -0.36 -0.09 -0.28 3.89 3.84 3.25 0.77 0.77 0.84
3 -0.75 -0.56  -0.66 3.65 3.80 3.22 0.81 0.79 0.85
4 -0.01 -0.27 -0.21 3.62 3.81 3.03 0.79 0.76 0.85
5 -0.34 0.21 -0.08 3.40 3.36 2.94 0.80 0.81 0.85
6 -0.07 -0.32  -0.09 3.81 3.89 3.12 0.77 0.77 0.85
7 -0.86 -0.42  -0.67 3.42 3.63 2.84 0.81 0.77 0.87
8 0.40 -0.40 -0.06 3.76 3.75 3.28 0.79 0.78 0.83
9 0.26 0.29 0.28 4.24 4.19 3.58 0.74 0.74 0.81
10 0.33 0.50 0.49 3.81 3.46 3.08 0.76 0.81 0.85
11 -0.52 -0.53  -0.60 4.76 4.63 4.32 0.69 0.71 0.75
12 0.36 0.08 0.25 3.77 3.57 3.18 0.78 0.79 0.84
13 0.18 0.70 0.51 3.79 4.11 3.54 0.79 0.77 0.82

avg. -0.05 0.00 -0.05 3.83 3.85 3.29 0.78 0.77 0.83
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510 Table 4
511  Threshold distances (TDs; in km) between the taagdtnearest neighboring station for the NN moodg@roduce same RMSEs as the
512  ANN(T), ANN(H), and ANN(TH), respectively. The TDare calculated by equations presented in Figurétll ttwve RMSESs of the
513 three stochastic simulation models at each staimheach time scale for the validation period prieskin Table 3.

ANN(T) ANN(H) ANN(TH)

annual winter spring summerautumn annual winter spring summer autumn annual winter springsummer autumn

1 167.0 356.1 209.9 1095 217.7 1819 2124 199.2 1458 2499 123.7 1943 146.3 885 168.2
2 164.0 303.6 196.6 1279 1839 160.1 1854 2240 104.7 214.1 1158 1586 158.8 752 154.6
3 1440 2315 1764 1011 207.8 156.2 157.3 221.6 944 2484 1140 1210 163.2 ©66.3 183.8
4 1420 2055 1709 108.8 1616 1569 130.0 201.3 112.1 2111 103.0 120.7 1333 721 1292
5 125.6 155.1 1421 102.6 154.7 1234 1264 1450 947 1786 98.2 99.2 126.1 71.8 118.8
6 157.2 183.8 197.3 116.7 1845 1639 106.6 183.2 1343 2504 108.2 1165 1278 854 1356
7 126.9 208.6 1455 845 1286 1422 119.7 1705 97.1 1327 927 99.3 1204 593 80.2
8 153.2 260.3 195.0 1158 168.3 152.1 137.2 207.1 122.2 1434 1178 1375 1555 96.2 102.8
9 198.4 3495 231.0 1481 2745 1928 2314 200.0 186.0 190.6 138.8 207.0 1535 123.2 1384
10 157.3 781 2121 1130 2018 1299 1126 1519 101.1 184.1 106.1 64.2 1352 810 1356
11 263.0 1625 2428 270.5 313.2 2456 1251 2536 2614 2378 206.8 116.2 2123 2168 212.2
12 153.8 1454 1743 1148 1941 1379 110.0 158.1 109.0 187.5 111.6 1075 1321 89.0 1241
13 155.2 994 1722 1535 1423 1847 1022 162.6 2184 134.1 136.1 79.7 1384 1457 1025

avg. 162.1 210.7 189.7 128.2 1949 163.7 1428 190.6 137.0 1971 121.0 1247 1464 97.7 1374

514
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515 Table5

516  Annual RMSEs of regional ANN(T), ANN(H), and ANN(THand their threshold distances

517 (TDs) of the nearest stations for the NN model todpce same RMSEs as the regional
518 models. The TDs are calculated by equations predant Figure 4 with the RMSEs of the

519  three regional models at each station during thidatton period.

regional ANN(T) regional ANN(H) regional ANN(TH)
RMSE D RMSE D RMSE D
(MJ/nf/day) (km) (MJ/nfiday)  (km) (MJ/nfiday) ~ (km)
1 3.89 164.0 4.14 187.7 3.48 131.4
2 3.97 171.1 3.91 165.8 3.30 119.4
3 3.65 144.3 3.77 153.9 3.19 112.4
4 3.98 172.2 3.93 168.1 3.38 124.6
5 3.46 130.3 3.37 124.0 2.97 99.6
6 3.89 164.4 3.84 160.1 3.16 110.5
7 4.47 225.1 3.64 143.7 3.39 124.8
8 3.75 152.1 4.10 183.4 3.23 114.8
9 4.28 202.7 4.19 193.0 3.63 142.3
10 3.81 157.4 3.72 149.9 3.20 112.7
11 5.66 428.8 5.43 377.4 5.63 421.5
12 3.97 171.2 3.82 158.3 3.44 128.7
13 3.78 154.6 4.92 286.3 4.34 209.2
avg. 4.04 187.6 4.06 188.6 3.56 150.1
520
521
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Fig. 1. Map of southern Québec, Canada. Statianpr@sented by red ‘+’ and black ‘x’ when
they have observed daily temperature and relatineidiity respectively, when they have less
than 50 % of missing data for the common analysisod (from 2003 to 2010). Blue filled
circles represent the selected meteorologicalostatiwhich have less than 10 % of missing
data of daily temperature, relative humidity, an8R5for the common analysis period. Blue
open circles represent the GSR stations excludettiignanalysis due to more than 10 %
missing values of any of the three previously nergd variables.
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(d) Summer
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555
556  Fig. 4. RMSE and R-square of daily GSR series betmaetarget and its neighboring stations
557  versus the distance between the two stations faoakible combinations during the analysis
558  period from 2003 to 2010. Trend lines of RMSEs Bnrslquares are estimated by logarithmic
559 and exponential functions, respectively. Equatiamsl R-squares of the trend lines are
560  presented on the figures. The dotted lines reptdberB5 % confidence interval of the trend
561 lines.
562
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Models for estimating daily global solar radiation are investigated.

Geostatistical interpolation and stochastic simulation approaches are compared.
Geostatistical models yield better performance at a high density measurement area.
Stochastic models show better performance at alow density measurement area.

A guideline to select an optimal estimation approach is then suggested.





