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Abstract 

In mineral exploration, traditional core logging is largely based on the visual inspection of drilled 
cores, a process which is often subjective and non-reproducible. However, a number of physical, 
chemical and mineralogical properties of rocks can now be measured at high spatial resolution on drill 
cores. The resulting large multiparameter databases can help geologists to quantitatively discriminate 
between lithologies, study hydrothermal alteration, and potentially vector towards mineralization. 
Multivariate statistical methods are important tools to assist geologists in interpreting such large 
databases. We present an application of model-based cluster analysis in the Matagami base metal 
mining district, more specifically to improve lithological discrimination at the zinc-rich Bracemac and 
McLeod volcanogenic massive sulfide (VMS) deposits. The model-based cluster analysis method is 
able to efficiently discriminate different geological units encountered, even in cases where two units 
are visually similar or in the presence of strong hydrothermal alteration.  
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1. Introduction 

Advanced mineral exploration programs are often 
characterized by extensive diamond drilling operations, 
resulting in vast repositories of rock core. Conventional 
core logging is based largely on visual descriptions by 
geologists, making the core logs subjective and often 
poorly reproducible. This can cause problems with 
geological interpretations and block models of the 
mineralization, and as a result a paradigm shift is 
required. The goal is not to replace the visual core log 
by geologists, but to make such logs less subjective and 
variable (e.g., Gazley et al., 2014) by adding other 
sources of information to the visual observations. 

Quantitative data are commonly acquired and used 
in the oil and gas industry in all the phases of the 
development of a reservoir, but this is not yet the case 
in metal mining and exploration. What is ideally 
needed in mineral exploration is a complete set of 
mineralogical, geochemical and physical property 

information, either using wireline logging (e.g., Keys, 
1979), or by working on drill cores when available, or 
on pulps. Applications include discriminating between 
different lithologies along the core even if they are 
visually similar, or characterization of hydrothermal 
alteration or mineralization. If many drill holes were 
logged with high-resolution multiparameter 
measurements, such data could be used to improve the 
understanding and modeling of the lithology and 
alteration in 3D. The measurements would also serve as 
hard data constraints in geophysical inversions (e.g., 
Tavakoli et al., 2012). Significant progress has been 
made in this direction using portable instruments such 
as magnetic susceptibility meters, visible and near-
infrared spectrometers, and portable X-ray fluorescence 
(pXRF) analyzers (e.g., Herrmann et al., 2001; Gazley 
et al., 2011; Yang et al., 2011; Durance et al., 2014; 
Fisher et al., 2014; Gazley and Fisher, 2014; Le 
Vaillant et al., 2014). Portable instruments can readily 



be taken to core storage sites, or even to the drill rig, to 
obtain information in a time-sensitive manner. Larger 
laboratories can also be utilized to study cores, either 
by bringing the core to the lab or the reverse. One well 
established example is the Hylogger from Australia, 
which quickly scans the core for alteration mineralogy 
(e.g., Tappert et al., 2011). INRS has been operating a 
trailer-hosted laboratory called LAMROC since 2010; 
this allows measurements of physical, mineralogical 
and geochemical properties at high spatialresolution 
(dm-scale), along with acquisition of line-scan images 
(Ross et al., 2013, 2014a, 2014b; Bourke and Ross, 
2015). LAMROC measures two physical parameters 
(density, magnetic susceptibility), about 20 
geochemical parameters using two pXRF analyzers, 
and alteration mineralogy using near-infrared 
spectrometry. Most of these instruments and sensors 
are integrated in a computer-controlled multi-sensor 
core logger (more methodological information is 
provided below). In this study we apply multivariate 
statistical analysis to take full advantage of the 
LAMROC data. 

Multivariate statistics have been shown in 
sedimentology and hydrocarbon exploration to 
objectively classify the data into lithological units or 
lithofacies (e.g., Rice et al., 1976; Delfiner et al., 1987; 
Bosch et al., 2002; Reátegui et al., 2005; Kaźmierczuk 
and Jarzyna, 2006; Tang and White, 2008; Rowe et al., 
2012). Since the early 1960s, several multivariate 
statistical techniques have been developed for 
automatic segmentation of log data (e.g., Testerman, 
1962; Gill, 1970; Hawkins, 1972; Hawkins and Ten 
Krooden, 1979). The main hypothesis is that 
measurements of specific physico-chemical properties 
on cores allows for the fullcharacterization of the 
lithology while automating, at least in part, its 
characterization (Kileen et al., 1997; Maerz and Zhou, 
1999; Bosch et al., 2002; Hill et al., 2015).  

The aim of this paper is to start to develop a 
multivariate statistical workflow applicable to igneous 
rocks and mineral exploration. We focus on the 
Bracemac-McLeod sector in the Matagami base metal 
mining district within the Abitibi Subprovince, Quebec, 
Canada. We concentrate on downhole lithological 
discrimination using the parameters measured by 
LAMROC and apply cluster analysis to differentiate 
protoliths along the drill cores. 

 
2. Geological context 

The Matagami mining district is located in the 
northern part of the Archean Abitibi Subprovince in 
Quebec (Figs. 1a, 1b). Matagami constitutes an 
important zinc district with more than 60 Mt of zinc-
rich ore (19 deposits and prospects, including 13 past 
and current producers). All of the known VMS deposits 
are spatially associated with extensive felsic bands that 

are divided into the North Flank, the South Flank and 
the West Camp (Fig. 1c). 

The Bracemac-McLeod mine, where this study is 
located, occurs in the SE corner of the South Flank. 
The general submarine volcanic stratigraphy of the 
South Flank, as proposed by Sharpe (1968) and 
validated by Piché et al. (1993) and Debreil (2014), is 
divided into the Watson Lake Group at the base and the 
Wabassee Group at the top (Fig. 2). 

The interface between these groups is marked by a 
tuffaceous unit known as the “Key Tuffite” (Genna et 
al., 2014, and references therein) which corresponds to 
the stratigraphic level of the major VMS deposits. The 
Watson Lake Group is composed of (1) a lower dacite 
(500 m thick minimum; Piché et al. 1993) and (2) an 
upper rhyolite (~1500 m thick; 2725.9±0.8 Ma; Ross et 
al. 2014c). The Wabassee Group (~3000 m thick) 
mostly comprises massive to pillowed lavas of basaltic 
to andesitic composition (Debreil, 2014). However, at 
least two felsic units are present in the Wabassee Group 
along the South Flank (Fig. 2). At the former 
Perseverance mine, the hanging wall is the Dumagami 
Dacite (up to 400 m thick), whereas the Bracemac 
Rhyolite (up to 70 m thick) is the immediate hanging 
wall of the Bracemac and McLeod deposits. The ages 
of these two rhyolites are 2725.4±0.7 and 2725.8±0.7 
Ma, respectively (Ross et al., 2014c). Both the Watson 
Lake and the Wabassee groups are locally crosscut by 
late phases of the underlying Bell River Complex, a 
large synvolcanic gabbro-anorthosite layered intrusion 
dated at 2724.6±2.5 Ma (Mortensen, 1993). This 
intrusion is generally interpreted as the thermal engine 
for the formation of the VMS deposits (Piché et al., 
1993; Maier et al., 1996; Carr et al., 2008). 

Figures 3 to 5 illustrate the Bracemac and McLeod 
sectors; the main ore lenses occupy the same 
stratigraphic level than the Key Tuffite. Other “tuffites” 
(volcano-exhalative horizons) are also present within 
the mafic to intermediate lavas. The hangingwall and 
footwall rhyolites can be quite similar to each other, 
both visually and chemically. Also, tholeiitic basalts 
are not always visually distinguishable from 
transitional andesites and/or mafic to intermediate, 
fine-grained intrusives in the Wabassee Group, 
especially if hydrothermal alteration is present. The 
whole sequence is cut by various intrusions. Intense 
chlorite-sericite alteration is present below (and 
sometimes above) the ore lenses. 
 
3. Multi-sensor core logging 

The dataset acquired in this study was measured 
using a high-resolution, semi-automated multi-sensor 
core logger housed in a mobile laboratory called 
LAMROC. The data acquisition sensors and methods 
are explained in Ross et al. (2013, 2014a), so only a 
brief summary is provided here. The drill cores are first 



cleaned and transferred into 1.5 m-long core boats. A 
geologist decides on the location of each measurement 
point, typically every 20 to 30 cm down core, ensuring 
that the selected spots are representative. In the multi-
sensor core logger (designed, manufactured and 
installed by Geotek Ltd of Daventry, England), the core 
sections are moved along a track by a computer-
controlled pusher. The core stops within, or below, 
each sensor and instrument, for the required time to 
make measurements. Volumetric magnetic 
susceptibility is determined using a loop-style MS2C 
Core Logging Sensor from Bartington Instruments Ltd. 
(Oxford, England). Rock density is based on 
attenuation of gamma rays passing through the core, 
using a gamma source and detector supplied by Geotek. 
Visible light and near-infrared spectrometry relies on a 
LabSpec 2600 visible/near-infrared spectrometer from 
Analytical Spectral Devices (ASD) Inc. (Boulder, 
Colorado), which measures reflections between 350 
and 2500 nm. Spectral resolution is 3 nm at a 
wavelength of 700 nm, 6 nm at 1400 nm and 6 nm at 
2100 nm. Automated mineralogical identification is 
done using the software “The Spectral Geologist” 
(TSG), Core version, commercialized by AusSpec 
International of Australia and New Zealand. Two Delta 
Premium pXRF analyzers from Olympus Innov-X 
(Woburn, Massachusetts) analyzers are used separately 
from the logger to save time. These analyzers have 
40kV, 4W, Rh X-ray tubes and large area silicon drift 
detectors. For the dataset presented here, the analyzers 
were both set to ‘mining plus’ mode and the integration 
time was 60 s per spot, i.e. 30 s per beam. The data 
from the two analyzers were leveled to compensate 
from inter-analyzer differences. The geochemical 
elements which are considered usable within this data 
set are Al, Ca, Cu, Fe, K, Mg, Mn, Si, Ti, Zn and Zr. 
Site- and analyzer-specific corrections factors were 
determined for Al, Fe, Mn, Si, Ti and Zr using 
traditional laboratory analyses for a range of lithologies 
from mafic to felsic. Ten diamond drill holes have been 
logged at Matagami with the multi-sensor core logger 
(Ross et al., 2011, 2012, 2013, 2014b) but here we 
focus on two NQ holes from the Bracemac-McLeod 
area. The dataset for those two drillholes represents 
3269 data points of density, magnetic susceptibility and 
geochemistry spread over 1761 meters of core. 
Drillhole MC-05-18 crosses the McLeod VMS deposit 
and the typical host lithologies there (Fig. 4). Drillhole 
BRC-08-72 crosses the Bracemac VMS deposit, which 
comprises three ore lenses, and the main lithologies and 
hydrothermal alteration zones (Fig. 5).  

 
4. Qualitative data analysis 

The main hypothesis we are testing is as follows: 
the measured parameters allow characterization of the 
lithology and alteration. Figures 6 to 8 illustrate multi-

parameter data for drill hole MC-05-18. Equivalent 
plots for drill hole BRC-08-72 are available in Fresia 
(2013) and Ross et al. (2013). 

Physical properties on their own give some 
lithological clues. For instance, felsic rocks are 
typically less dense than mafic ones; many gabbros 
have high magnetic susceptibilities; etc. (Fig. 6). 
However, intrinsic variability within lithologies and the 
effects of hydrothermal alteration mean that the 
physical properties of different rock types can partly 
overlap (Fig. 9). For example, the two rhyolites, 
Watson Lake and Bracemac, overlap, and some felsic 
dikes also have similar physical properties to these 
extrusive rhyolites. However, one specific felsic dike in 
MC-05-18 (near 300 m, Fig. 6) plots in a distinct field 
of low density and low magnetic susceptibility (Fig. 9, 
red squares).  

Geochemical measurements are critical to classify 
lithology. For example, downhole profiles of immobile 
element ratios such as Ti/Zr and Al/Zr allow quick 
identification of lithological contacts (Fig. 6). Major 
differences, such as between mafic and felsic units, are 
well identified in this manner but in some cases could 
not have been described during the visual inspection of 
the rocks, e.g., between 225 m and 350 m in MC-05-
18, where variations in ratios of immobile elements 
suggest the presence of intrusive rocks within the mafic 
volcanic sequence.  

Downhole elemental profiles show variations 
coming from both lithology and alteration (Fig. 7). In 
terms of lithology, the typical high Zr values, and low 
Ti values, of the Bracemac and Watson Lake rhyolites 
are obvious. These rhyolites also have higher Si but 
lower Mn than the mafic lithologies above. Felsic dikes 
are characterized by very low Fe and Mn. Chloritic 
alteration is associated with a decrease of Si and an 
increase of Fe in rhyolites, but this is much more 
obvious for drill hole BRC-08-72 (see Fig. 14 in Ross 
et al., 2013).  

Near-infrared mineralogy provides information on 
both lithologies and hydrothermal alteration (Fig. 8). 
The minerals most associated with hydrothermal 
alteration are chlorite and fine-grained white micas 
(“sericite”). Amphiboles, carbonates and epidote 
belong mainly to intrusive rocks and mafic to 
intermediate volcanic rocks.  
 
5. Model-based clustering for lithological 

discrimination 

To get the best lithological model from the muti-
parameter data, all relevant variables should be 
analyzed together. This can be done visually on 
downhole profiles combining physical properties with 
geochemical ratios (Fig. 6), but this approach is time-
consuming and subjective. Multivariate statistical 
approaches provide robust and quantitative algorithms 



for data classification and statistical modeling. The 
approach used here is cluster analysis, which permits 
the interpretation and the recognition of patterns and 
groups inside large datasets (e.g., Delfiner et al., 1987; 
Harris et al., 1999; Maerz and Zhou, 1999; Bosch et al., 
2002). 
 
5.1  Methods 

Cluster analysis aims to create subgroups in a 
dataset by linking or splitting the various samples 
according to the similarities of their multivariate 
characteristics, in our case their physico-chemical 
parameters. No strong assumption is made on linearity 
and these tools allow for more flexibility and accuracy 
in defining complex statistical relationships. This 
classification is typically obtained by the use of 
calculated similarity criteria, hence avoiding the use of 
prior assumptions or training datasets to pre-define the 
characteristics of each group. We use a model-based 
cluster analysis scheme (Fig. 10), implemented in 
Matlab, based on the work of Banfield and Raftery 
(1993) and Fraley and Raftery (2002), and described in 
Fresia (2013). Compared to more conventional cluster 
analysis methods, the main difference is a probabilistic 
approach for the calculation of similarity models of 
samples – until a statistically relevant number of 
groups is obtained – rather than a mathematical 
calculation of similarity criteria. 

Classification results greatly depend on the choice 
of the input variables. Because our goal was to 
distinguish different protoliths, we selected 
geochemical variables not strongly influenced by 
hydrothermal alteration (Al, Ti and Zr, which are 
immobile elements) as well as the ratio between 
density and magnetic susceptibility. Experience has 
shown that this physical property ratio is useful to 
separate classes of rocks having very similar chemical 
signatures (Fresia, 2013). A maximum number of 
classes is specified by the geologist at this stage, based 
on goals and local geological knowledge. The 
algorithm will produce statistical models with different 
numbers of classes up to the maximum number 
specified, and select the “best” model based on 
statistical considerations. 

The type of classification algorithm implemented is 
the expectation-maximization (EM) algorithm (Fraley 
and Raftery, 2002), which maximizes the probability of 
each measurement point belonging to a specific cluster 
(or class), creating several models depending on the 
classification parameters. The best model is chosen 
using a Bayesian Information Criterion (BIC) 
(Schwartz, 1978; Raftery, 1995). 

 
5.2 Application to the Bracemac-McLeod sector  

Figures 11 and 12 show the results of the model-
based clustering as pseudo-logs of the lithologies. The 

horizontal axis of the right-most column is the 
confidence that a given data point belongs to one class 
or the next, expressed from 0 to 1. If a point belongs 
65% to class 1 and 15% to class 2, the bar representing 
the classes is filled between 0% and 65% with the color 
of the first class and from 65% to 80% with the color of 
the second.  

The pseudo-logs (Figs. 11, 12) clearly differentiate 
the major lithologies encountered in the drillholes, and 
are little influenced by mineralization and alteration-
related variations in the rocks. Basalts (dark green in 
the pseudo-log) and andesites (light green) are properly 
discriminated, even if they were not in the visual core 
description. The two rhyolites, Watson Lake (yellow) 
and Bracemac (purple), are well separated by the 
statistical model, and so are various intrusive rocks.  

The pseudo-logs also highlight numerous small 
intrusions, especially in the more altered zones beneath 
the mineralization (212-240 m, and 575-595 m in BRC-
08-72; 200-450 m in MC-05-18). Those intrusions can 
be quite difficult to differentiate visually from lavas 
when both lavas and intrusions are fine-grained. The 
models show good ability to differentiate lavas from 
intrusions and the different types of intrusions.  

One weak point of cluster analysis is that the 
method does not allow to automatically assign a type of 
lithology to each class created, as opposed to some 
“training” statistical methods such as discriminant 
analysis. Numbered classes are therefore converted to 
interpreted lithologies based on local geological 
knowledge and a comparison with detailed 
geochemical investigations based on whole rock 
laboratory analyses (Debreil, personal communication, 
2013). 

There are some limitations to the models in the 
portions of the drill holes characterized by rapid 
lithological variations. For example, between 410 and 
485 m in BRC-08-72, the confidence in the model 
decreases (Fig. 11), due to the strong vertical variations 
in the Ti/Zr ratio and the overlapping multivariate 
signature of mafic to intermediate volcanic rocks and 
some gabbros. Another limitation is the grouping of 
tuffites with intrusions – e.g., 63-68 m and 78-80 m in 
BRC-08-72 (Fig. 11). In these cases, physico-chemical 
parameters are not sufficient and only visual 
observations can properly classify tuffites, which 
contain laminations and other typical textures. 

 
6. Discussion  

Cluster analysis is an efficient way to facilitate 
downhole lithological discrimination in two drill holes 
in the Bracemac-McLeod area of the Matagami mining 
district, and may be effective elsewhere. At Bracemac-
McLeod, the statistical model (pseudo-log) 
successfully identifies the main lithologies. It also 
separates the Lower Andesite from the Upper Basalt 



(Debreil, 2014), which are two visually identical 
volcanic units with different geochemical signatures. 
The model further separates mafic to intermediate 
intrusions from mafic to intermediate lavas based on 
physical properties and immobile element ratios. 
Although thick coarse-grained gabbros and diorites are 
readily distinguished from lavas based on their texture, 
thinner finer-grained intrusions can look very much 
like mafic to intermediate lava flows in drill core. 
Consequently, finer-grained intrusions were 
underestimated in the original logs. Finally, the pseudo-
log successfully separates the two rhyolites at 
Bracemac-McLeod, which look very much alike: one 
of these rhyolites is the footwall to most ore lenses 
whereas the other is the hangingwall, making the 
ability to sort them apart critical.  

One of the advantages of the model-based 
clustering algorithm used here is to provide a statistical 
estimate on the ideal number of lithologies in the 
dataset according to the raw data repartition (i.e. 
statistical data structure). Limits of these methods are 
reached for units with important variations in their 
intrinsic properties and for the tuffites. For those units, 
a visual interpretation is required or clustering based 
not only on a zero distance statistical relation, but also 
with the texture or spatial cross-covariance models. 

The use of additional physico-chemical parameters 
could improve the results of the cluster analysis if they 
are carefully chosen and are independent from the 
alteration. The semi-automation of the algorithm is thus 
useful as it allows a trial-and-error approach as the 
process can be repeated until the geologically most 
plausible results are obtained.  

Alternative statistical methods involving training 
sets such as factor analysis, random forest, or relevance 
vector machine could also be useful to interpret larger 
areas and cross-correlations between drill holes and 
sectors. But those methods require the existence of a 
large property database for well-defined geological 
units. 

Taking into account the “position” parameter during 
the calculation of the mathematical distances as 
proposed by Gowda and Krishna (1978) for example 
would also be helpful to position geological contacts. 
There is a higher probability that two neighboring data 
points belong to the same lithology than two distant 
points, but this is not taken into account in the current 
study. 
 
7. Conclusions 

Large databases of physical and geochemical 
properties can help discriminate between different 
lithologies even if visually similar, or if the protoliths 
are hidden by hydrothermal alteration such as is typical 
near VMS deposits. This allows a better understanding 
of the geological setting of mineral deposits and can 

help mineral exploration. To make full use of the data, 
multivariate statistic analyses can be utilized. 

  The model-based cluster analysis method is able to 
efficiently discriminate different geological units 
encountered in the present study. The model “decides” 
on the optimal number of classes based on statistics, 
without the need for preliminary knowledge (although 
the geologist must specify a plausible maximum 
number of classes). The variables to be used in the 
clustering exercise must be carefully selected as 
representative of the primary lithology (protolith), and 
not influenced by hydrothermal alteration. In the 
Bracemac-McLeod example, the main geological units 
are correctly identified by the pseudo-log, providing a 
first-order validation of the model. The pseudo-log 
however points out certain areas along the drill holes 
where the lithology appears to be different than that 
identified in the original company logs based largely on 
visual observations and widely spaced laboratory 
geochemistry. Such differences between the original 
log and the pseudo-log notably arise in areas of more 
intense chlorite alteration where the primary textures 
may be difficult to recognize, and thus exploration 
geologists do not tend to take many whole rock 
samples for geochemistry. 

The main limits of the implemented model-based 
cluster analysis are (1) the inability to take the sample 
position along the drill hole into account when 
assigning the classes; (2) the impossibility to sort of 
lithologies that are only dissociable by visual 
observations, and not by different physico-chemical 
properties (this will be a limitation of all statistical 
methods); (3) the inability to deal with large intra-unit 
variations in physico-chemical parameters (some of 
these apparent intra-unit variations are based on the 
measurement methods of the multi-sensor core logger, 
e.g., pXRF). 

Physico-chemical databases and multivariate 
statistical methods are unlikely to ever replace 
geologists. The textures and structures seen by 
geologists are not captured in these databases, as also 
noted by Gazley et al. (2014). Even in a statistical 
modeling context,  geological experience and judgment 
are needed to select relevant variables or number of 
classes for the models and interpret the results. In this 
study we produced a large number of cluster models for 
the studied drill holes, changing the parameters and 
maximum class numbers by trial-and-error. Only what 
we see as the best models, from a geological point of 
view, were presented. The results of statistical analyses 
remain models that ought to be validated using various 
approaches, observations and data as well as by the 
skills and the knowledge of the geologist. 
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FIGURES 

 
Figure 1: (a) Location of the Abitibi Subprovince in eastern Canada. (b) Location of the Matagami district in the 
Abitibi Subprovince. (c) Simplified geological map of the Matagami district and location of past and current 
producers (modified from Roy and Allard, 2006). Bracemac and McLeod are two VMS deposits that are currently 
mined together. 
 
Figure 2: Schematic geological succession of the South Flank. Simplified from Debreil (2014). Brc-McL = 
Bracemac-McLeod sector. 
 
Figure 3: Geological map of the Bracemac – McLeod sector highlighting the position of the two studied drill holes. 
 
Figure 4: Cross-section through the McLeod VMS deposit illustrating the position of drill hole MC-05-18, modified 
from Adair (2009). 
 
Figure 5: Cross-section through the Bracemac VMS deposit illustrating the position of drill hole BRC-08-72, 
modified from Adair (2009).  
 
Figure 6: Physical properties and geochemical ratios (pXRF) as a function of depth in MC-05-18.  n.d. = no data 
(massive sulfides missing); I1, I2, I3 = interpreted dykes (felsic, intermediate, mafic). ‘Basalt’ on figures 6-8 is a 
logging term that includes all mafic to intermediate volcanic rocks. 
 
Figure 7: Geochemical data (pXRF) as a function of depth in MC-05-18. n.d. = no data (massive sulfides missing).  
 
Figure 8: Near-infrared mineralogy as a function of depth in MC-05-18. In the plot of mineral groups automatically 
extracted by TSG Core, black lines show the main group whereas superimposed red squares are the subsidiary 
mineral groups. N.M.D. = no mineral detected.  
 
Figure 9: Magnetic susceptibility versus density for drill hole MC-05-18. A three point moving average has been 
applied to the data. 
 
Figure 10: Flowchart of the model-based cluster analysis method. BIC = Bayesian Information Criterion. 
 
Figure 11: Results of the cluster analysis compared to the original company log and to parameters used for the 
analysis, drill hole BRC-08-72. On the right (arrows), some results of geochemical classifications from J.-A. Debreil 
(personal communication, 2013). The statistical model (pseudo-log) shows the two more probable lithologies from 
the analysis with their confidence degrees in percent. N.D. = no data. Parameters are represented as raw data of 
physical parameters and ratios of chemical parameters for clarity. From Fresia (2013). 
 
Figure 12: Results of the cluster analysis compared to the original company log and to parameters used for the 
analysis, drill hole MC-05-18. N.D. = no data. Parameters are represented as raw data of physical parameters and 
ratios of chemical parameters for clarity. 
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