
Statistical classification methodology of SHOALS 

3000 backscatter to mapping coastal benthic habitats 

 

Antoine Collin, Antoine Cottin, Bernard Long 

Department of Geology 

INRS-ETE, University of Québec 

Québec, Canada 

Pim Kuus, John Hughes Clarke 

Department of  

University of New Brunswick 

Fredericton, Canada 

Phillippe Archambault 

Institut des Sciences de la mer 

Université du Québec à Rimouski 

Rimouski, Canada  

Gunho Sohn, John Miller 

Department of Applied Engineering 

York University 

Toronto, Canada 

 

 
Abstract— The Scanning Hydrographic Operational Airborne 

LiDAR Survey (SHOALS) consists of a bathymetric LiDAR 

system which provides high precision measurements of water 

depth. Even though the acquisition is focused on depth accuracy, 

the return signal, i.e. waveform, contains other relevant 

information because of integration signatures from the water 

surface, the water column and the sea-bed. This paper highlights 

the benthic characterization in extracting statistical parameters 

derived from the bottom backscatter. In applying multivariate 

analysis (K-means), it is significantly proven that signals derived 

from habitat, described as statistically homogeneous throughout 

ground-truth analysis, are (1) similar within an intra-habitat 

view, while they are (2) different between themselves.  
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I.  INTRODUCTION 

Airborne laser (or LiDAR) bathymetry (ALB) is a technique 
for measuring the depths of relatively shallow, coastal waters 
from the air using a scanning, pulsed laser beam [1-3]. Indeed, 
it is a well suited technique to the shore mapping because its 
laser system enables to provide accurate Digital Depth Model 
(DDM) in a 1-50 m vertical range with a 25 cm height 
precision. The depth detection essentially depends on water 
turbidity. Compared to passive remote-sensing systems, this 
active state-of-the-art technology can measure the depth at two 
to three times the Secchi depth [4]. Moreover, topographic 
surveys above the water surface can be conducted 
simultaneously, in order to draw seamless Digital Terrain 
Model (DTM), key-component of a better comprehension of 
the littoral structures and dynamics. 

Some researchers have begun to use the peak bottom signal 
parameter from the SHOALS waveform data. They used the 
intensity to map the marine environment by draping intensity 
images over DDM, or by combining intensity with passive 
image data using more sophisticated sensor or data fusion 
algorithms [5-9].  

 

Despite the presence of noise (optical sensors) and the 
integration of several parameters acting within the water 
surface, water column and bottom return, typical benthic 
waveform patterns are also evident, suggesting that laser 
temporal signal may indeed comprise important, ad hoc and 
added information related to the characterization of the shore 
habitat. The main objective of this paper is to investigate 
relationships between the bottom return waveform and related 
sediment and benthic-community patterns in four sites located 
near shore in Paspébiac, Gulf of St Lawrence, Canada (Fig. 1). 

II. SHOALS SYSTEM 

In hydrographic mode, the SHOALS emits the 532 nm and 

1064 nm wavelengths from a Nd-YAG laser with a beam 

divergence of 0.45 mrad. The first radiation (blue-green) is 

typically used for the sea-bed detection because of its high 

water penetration, while the second wavelength (near infrared) 

allows measuring the water surface because of its high water 

absorption. The transmitted laser pulses are partially reflected 

from the water surface and from the sea bottom back to the 

airborne receiver. In effect, distances to the sea surface and 

bottom can be calculated by measuring the times of flight of 

the pulses to those locations and knowing the speed of light in 

air and water. The SHOALS bathymetric scanning reaches 3 

kHz with a fixed nadir angle of 20°. In this paper the only 

density mode 4 m x 4 m was used. 

III. METHODOLOGY 

LiDAR intensity is the ratio of received energy to 
transmitted energy. Its physical meaning is linked with 
parameter measurements integrated during the beam path. The 
bathymetric SHOALS return may be divided into three main 
parts: the water surface, the water column, and the benthic 
(bottom) return [4]. As the nadir angle, the altitude and all the 
loss parameters were correctly sustained during the survey, the 
signal equation is:  

 



Figure 1.  Rasterization of maximum elevation derived from SHOALS return 

over Paspébiac (15.77 km2, 1 m resolution) 

 

PR = W PT R * e 
(-2KD)  

                      (1) 

PR : Received power of bathymetric LiDAR signal                 

W: Constant combining loss factors                                        

PT : Transmitted power                                                            

R: Benthic Reflectance                                                            

K: Diffusive attenuation coefficient of water                                         

D: Benthic depth 

 

Furthermore, transforming (1) with natural log, we can 

obtain an equation that is linear in depth (2): 

 
Ln PR = Ln (W PT R) – 2KD                   (2) 

Equation (2) stands for the framework of the 

normalization stage. 

A. Study site 

LiDAR data for this analysis were collected by SHOALS 
on July 2

nd
, 2006 over the subtidal nearshore of Paspébiac, 

southern Gulf of St. Lawrence, Quebec, Canada. Paspébiac is 
hydro- dynamically characterized by high energy. Two sand 
pits, nourished by quaternary deposits and the east swell, join 
themselves to draw a typical triangle. The study area was 
covered by a series of 16 eastwest overlapping flight lines at 
270 ± 5 m altitude enabling a swath width of 196 ± 3.6 m and a 
sample spacing of 4 m. LiDAR intensity was recorded in 
function of time. Only the blue-green deep channel (out to 4 
channels) was analyzed in this paper. The signal is delimited 
by 250 electroVolt and 160 nanoseconds (Fig. 2). 

For this experiment, only four subsets of the SHOALS data 
were chosen for exploratory data analysis. These four areas 
(100 m x 10 m) were specified by the information derived from 
ground truth. Seafloor photographs were extracted with a 
digital high-resolution (5 megapixels) camcorder fitted with a 
wide-angle lens and placed in a waterproof case. Two 250 W 
light sources allowed (1) adjustment of the illumination 
according to the water turbidity, (2) the position of the 
camcorder to the bottom, or (3) both factors. The system was 
mounted on a tetrapod frame that included a reference ruler to 
evaluate the size of material of the seabed. Throughout this 
study area, for each of these four stations surveyed, ten 0.16 m
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images of the seafloor were collected when the camcorder 
reached the bottom.  

Figure 2.  Segmentation of a typical raw bathymetric LiDAR backscatter. 

This one was acquired at 3.37 depth. 

B. Normalization 

Since SHOALS data were acquired at different depths, to 
compare echoes with one another, a depth normalization 
procedure was applied to correct both the strength of the 
recorded intensity values and the temporal spreading of the 
backscatters [10-11]. Note that since the laser beam is a cone, 
the size of the sampled area, or footprint, is physically linked to 
the acquisition depth.  

   

C. Data analysis 

In order to determine the relevant utility of the bathymetric 
laser data to discern differences in benthic characteristics, 
deviations in the composition of habitats, visualized with 
ground truth, were emphasized. This was processed in two 
steps. First, to quantify the surface covered by the sediment and 
the epi-macrobenthos, a grid of 100 uniformly distributed 
points was superimposed on the photographs, and what was 
under each point was identified to give an estimate of the 
percentages of the surface covered by each component [12]. 
Second, the aerial percentages were submitted to multivariate 
statistical analyses to classify the stations by their similarity. 
The matrix of 40 stations by 17 variables, corresponding to the 
species- and sediment-type aerial percentages, was used to 
compute similarity matrices on selected variables using the 
Bray-Curtis index [13]. The similarity matrices were then 
submitted to average linkage hierarchical clustering to classify 
the stations [14]. For each resulting classification, the mean 
relative aerial density and percentage of contribution to within 
groups similarity were computed for the main components of 
the group [13].  

After the depth-normalization, the signal processing consists 
of extracting the portion of the waveform which contains the 
relevant benthic information. The ad hoc portion is called 
“benthic return” (Fig. 2). The signal curvature is studied by the 
first derivative. As a result it becomes possible to retrieve the 
depth-normalized benthic signal. Then two approaches were 
used to extract variables from backscatters. The first approach 
computed a series of descriptive statistical variables (Ev) 
derived from normalized raw signals, and the second treatment 
dealt with the same statistical variables but derived from 
Gaussian-fitted curves. Both methods yield a data table of 11 



extracted variables (columns) and 164 backscatters (rows). 
Following an unsupervised classification, both data matrices 
were submitted to one type of multivariate statistical analysis. 
Indeed, a K-means clustering analysis was performed on the 
correlation matrices of the Ev variables.  

IV. RESULTS 

A. Ground-truth sampling 

The hierarchical clustering applied to the similarity matrix 

computed from the combination of sediments and epi-

macrobenthos aerial percentages identified four groups (Table 

1) from the photographs analysis. The four groups are actually 

mainly sorted by both their sediment and biological 

composition: group 1 (G1) can be related to Laminaria sp. on 

bedrock habitat, group 2 (G2) to fine sand habitat, group 3 

(G3) to Echinoidea on fine sand habitat and group 4 (G4) to 

Laminaria sp. and Zostera sp. on fine sand habitat.  

 

B. SHOALS classifications 

The results of the SHOALS classifications of both 
extraction methods are given in Table II. The resulting 
classifications showed a close correspondence between the 
laser pattern and the benthic habitat. Taking account into the 
discrimination of the four previous habitats, the number of 
clusters was determined for K = 4. For both methods, the 
optimal split level was reached at the third split and each of 
clusters stand for an inherent habitat. Moreover, Overall 
accuracies resulting from both batches were 100 %.  

Complementary to statistical reports (Table II), biplots of 
both clusterings (Fig. 3 and Fig. 4) bring information about 
scattering patterns of the return signals projected onto the two 
first principal components. Statistically, point clouds (Fig. 4) 
attributed to the three habitats comprising sand did not display 
any difference of the dispersion (G2-G3: Z = 1.18; G2-G4: Z = 
1.46; G3-G4: Z = 1.52; p = 0.001), while the algae on bedrock 
habitat showed a point cloud significantly more scattered (G1-
G2: Z = 8.34; G1-G3: Z = 9.02; G1-G4: Z= 4.35; p = 001).  

TABLE I.  THE RELATIVE AERIAL DENSITY AND CONTRIBUTION TO 

WITHIN-GROUP SIMILARITY FOR THE MACROBENTHOS AND SEDIMENTS AERIAL 

PERCENTAGES IN EACH GROUP IDENTIFIED WITH HIERARCHICAL CLUSTERING. 

TABLE II.  THE K-MEANS CLUSTERING SHOALS CLASSIFICATION 

SHOWING CLUSTER CHARACTERISTICS FOR BOTH EXTRACTION METHODS. 

Signal 

return 
Step Cluster Count 

Maximum 

distance 

1 41 8.4873487 

2 41 18.9516753 

3 41 8.36141694 
Raw curves 3 

4 41 8.25540441 

1 41 8.36366354 

2 41 8.25800532 

3 41 8.51652461 

Gaussian-

fitted curves 
3 

4 41 18.854871 
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Figure 3.  Clustering with a K-means approach applied to statistical 

parameters derived from normalized benthic backscatters [●: Laminaria sp. on 

bedrock (G1); □: Fine sand (G2); ■: Echinoidea on fine sand (G3); ○: 

Laminaria sp. and Zostera sp. on fine sand (G4)] 
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Figure 4.  Clustering with a K-means approach applied to statistical 

parameters derived from Gaussian curves fitted with normalized benthic 

backscatters [●: Laminaria sp. on bedrock (G1); □: Fine sand (G2); ■: 

Echinoidea on fine sand (G3); ○: Laminaria sp. and Zostera sp. on fine sand 

(G4)] 

Groups Features 
Relative aerial density 

(%) 

Contribution 

to 

similarity (%) 

Laminaria sp. 66.3 38.4 

Asteroidea 1.9 30.5 1 

Pebbles>80 mm 19.8 29.7 

2 Sand 98.6 97.2 

Echinoidea 26.6 51.3 

Laminaria sp. 7.2 2.3 3 

Sand 57.1 42.7 

Laminaria sp. 63.9 57.4 

Zostera marina 9.4 17.9 4 

Sand 10.3 21.3 

1 
3 

1 



DISCUSSION 

First, the ground-truth analysis of photographs showed that 
(1) the intra-site and (2) the inter-site variabilities of the 
sediment and benthic-community types were, respectively, 
sufficiently low and high to be statistically discriminated. 
Second, bathymetric LiDAR backscatters can significantly 
differentiate between the four characterized habitats.  

As the species encountered in our study live in preferred 
sediment types, we assumed that the sediment distribution was 
implicitly involved in the SHOALS discrimination of the 
benthic communities, but was generally not controlling the 
observed patterns. Some ancillary factors are also used to 
characterize a habitat such as water depth, seafloor 
geomorphology, habitat complexity, current speed, food 
supply, temperature range, predation pressure, and disturbance 
by fishing activities [15]. These environmental factors certainly 
influence the pattern of benthic-community distribution and 
should be taken into account in the interpretation of SHOALS 
classifications.  

Depth variation has been shown in the literature to affect 
our capacity to detect and differentiate remote sensed 
signatures [16-17]. Even with depth normalization that 
accounts for temporal spreading and power, it is not possible to 
compensate for the effect of surveying a large versus a small 
habitat area. Both classifications reached perfect accuracies, 
probably due to this depth-dependency. To assess the impact of 
such variation, depth-dependent data tables should be extracted 
and analyzed. Without a proper depth normalization procedure, 
the effects of uncorrected depth fluctuations are likely to 
overshadow the variation inherent in the nature of the seabed 
and fatally link the laser signatures to depth-related variables. 
To perform an accurate depth normalization, since the rate at 
which the light is absorbed as it travels through water was 
estimated instead of being precisely measured, corrective 
measures of the attenuation coefficient of water should be 
taken.  

In identifying a larger variability about the distance point-
seed on the Laminaria sp. on bedrock (G1) than the three sand 
habitats, this scattering can reveal biophysical aspects of the 
habitat sounded. Thus, the greater heterogeneity bound to algae 
on bedrock site can highlight the growth of entropy, while sand 
habitats, characterized by denser point clouds, show bio-
sediment sites more homogeneous, in this study. Within this 
outlook, it will be relevant to find out specific sets of extracted 
variables that could be used to correctly and significantly 
identify the nature of the habitat surveyed, based on SHOALS 
signatures.  
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