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[1] Typical multivariate time series models may exhibit comovement in mean but not in
variance of hydrologic and climatic variables. This paper introduces multivariate
generalized autoregressive conditional heteroscedasticity (GARCH) models to capture the
comovement of the variance or the conditional covariance between two hydroclimatic time
series. The diagonal vectorized and Baba-Engle-Kroft-Kroner models are developed to
evaluate the covariance between drought and two atmospheric circulations, Southern
Oscillation Index (SOI) and North Atlantic Oscillation (NAO) time series during 1954–
2000. The univariate generalized autoregressive conditional heteroscedasticity model
indicates a strong persistency level in conditional variance for NAO and a moderate
persistency level for SOI. The conditional variance of short-term drought index indicates
low level of persistency, while the long-term index drought indicates high level of
persistency in conditional variance. The estimated conditional covariance between drought
and atmospheric indices is shown to be weak and negative. It is also observed that the
covariance between drought and atmospheric indices is largely dependent on short-run
variance of atmospheric indices rather than their long-run variance. The nonlinearity and
stationarity tests show that the conditional covariances are nonlinear but stationary.
However, the degree of nonlinearity is higher for the covariance between long-term drought
and atmospheric indices. It is also observed that the nonlinearity of NAO is higher than that
for SOI, in contrast to the stationarity which is stronger for SOI time series.
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1. Introduction

[2] Among natural hazards and disasters, drought is per-
haps the most complex but least understood phenomenon
with different characteristics in space and time which pro-
hibit us to define its beginning and end. Drought spatial
progress is slow and usually takes a long-time period to
pass by a region. In addition, drought direct and indirect
impacts on economic, social, and environmental systems
are destructive [i.e., Raziei et al., 2009, among others].
These characteristics may have been the reasons for the
development and application of a number of methods and
approaches for drought definition, monitoring, modeling,
and forecasting over the past decades [Mishra and Singh,
2011]. A large number of studies dealing with drought
characterization can be seen in the literature. Four main
types of droughts, namely, meteorological, hydrological,
agricultural, and socioeconomic droughts have been dis-

cussed in the literature, and a number of indices and meth-
ods have been developed to identify drought conditions and
characteristics for each type of drought.

[3] Among different approaches used for drought char-
acterization, linear autoregressive moving average
(ARMA) model is very popular in hydrology. The capabil-
ity of modeling the seasonal characteristic of hydrologic
variables, such as droughts, and an inherent advantage of
having a model with a few parameters but a reasonable
result have made the time series approaches popular for
drought time series modeling [Mishra and Desai, 2005;
Durdu, 2010].

[4] In spite of the popularity of multivariate analysis
such as multivariate frequency distribution functions (i.e.,
copula functions) for hydrologic and drought probabilistic
analysis [e.g., Chebana and Ouarda, 2007; Shiau and
Modarres, 2009; Shih-Chieh and Govindaraju, 2010], mul-
tivariate time series modeling approaches have not been
reasonably investigated for drought modeling and forecast-
ing. The recent review by Mishra and Singh [2011] on
drought modeling approaches indicates the lack of multi-
variate time series model application, such as a vector
ARMA model, in the literature for drought analysis. How-
ever, a few applications of simple multivariate autoregres-
sive time series model can be found for other hydrological
variables such as streamflow [Niedzielski, 2007; Sohail
et al., 2008; Chaleeraktrakoon, 2009]. Another gap is that
univariate and multivariate ‘‘nonlinear’’ time series models,
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which take into account the time-varying variance-covari-
ance or the conditional variance-covariance structure of
drought, have not been addressed in hydrologic and cli-
matic literature yet.

[5] The nonlinear time series modeling approach usually
refers to a popular econometrics generalized autoregressive
conditional heteroscedasticity (GARCH) model. The GARCH
model is widely used in finance for investigating the volatility
and time-varying risk of the assets, stock markets, and returns.
The theoretical aspects of the model were first introduced by
Engle [1982] and developed by Bollerslev [1986]. The
GARCH model has rarely been applied for hydrologic and
climatic variables. Wang et al. [2005] and Chen et al. [2008]
showed the advantage of univariate GARCH models over lin-
ear models. More recently, Modarres and Ouarda [2013]
indicated that the GARCH model does not have superiority
over seasonal autoregressive moving average model for rain-
fall time series modeling except for removing heteroscedastic-
ity from the residuals of the linear model.

[6] Based on the literature review and different categories
of time series methods (Figure 1), the multivariate generalized
autoregressive conditional heteroscedasticity (GARCH) mod-
els, which are very popular in financial time series modeling,
have not been applied in hydrology yet. The main application
of multivariate GARCH models in econometrics is the study
of the relationship between the conditional variances, the vol-
atility, of different markets [Bauwens et al., 2006].

[7] The aim of this study is to introduce and develop
univariate and multivariate GARCH models for drought con-
ditional variance-covariance, or volatility-covolatility, rela-
tionship with atmospheric indices. Furthermore, this study
also examines and compares the nonlinearity and nonstatio-
narity of drought and its link to atmospheric circulations.

[8] This paper is organized as follows: the theoretical
background of the univariate and multivariate GARCH
models is given in the following section. The simulation
procedure and testing methods applied in this study are pre-
sented in sections 3. and 4.. Section 5. is devoted to an
example of the models used for drought analysis. The last
sections are devoted to concluding remarks and recommen-
dations for future work.

2. GARCH Models

[9] Time series models can be classified based on the
space of variables (univariate or multivariate) and the hypoth-

esis of the underlying process (linear or nonlinear). Accord-
ing to this perspective, we have four types of time series
models (Figure 1). The focus of this paper is on univariate
and multivariate nonlinear GARCH time series modeling
approaches which have not been used for drought analysis
yet. These models are described in the following sections.

2.1. Univariate Model

[10] The univariate nonlinear model was first introduced
by Engle [1982] as a class of autoregressive conditional
heteroscedasticity (ARCH) model to capture the volatility
clustering of financial time series. In an ARCH model, the
conditional variance ðh2

t Þ of the shocks that occurs at time t
is a function of the squares of past shocks ðe2

t21; . . . ; e2
t2vÞ.

Therefore, the ARCH model of order v or ARCH(v) model
can be written as follows:

h2
t 5x1

Xv

i51

aie
2
t2v (1)

[11] Bollerslev [1986] suggested adding lagged condi-
tional variance to the ARCH model to generalize the effect
of past variances on the current variance, h2

t , in addition to
the previous shocks. This model or the GARCH(v,m)
model can then be specified as follows:

h2
t 5x1

Xv

i51

aie
2
t2v1

Xm

j51

bjh
2
t2m (2)

where x is a constant and a and b are parameters of the
model to be estimated. In this model, the short-run persis-
tency in conditional variance is defined by the ARCH
parameter (a), while the long-run persistency in conditional
variance is defined by (b) parameter. The high value of
(a 1 b) indicates a high intensity of persistence in the con-
ditional variance of the time series.

2.2. Multivariate Model

2.2.1. Overview
[12] Having a K-dimensional zero mean, serially uncor-

related process et5ðe1t; :::; eKtÞ
0
is represented as

et5H1=2
tjt21zt (3)

where zt is a K-dimensional independent and identically
distributed (i.i.d.) white noise, zt � i:i:dð0; IKÞ, then
we have Htjt21 as the conditional covariance matrix
of et, given et21, et22, . . . and E et½ jXt21�50 and
E ete

0
t

� ��Xt21�5Ht. The above definition of conditional
covariance matrix Ht needs to be parameterized now.

[13] Remembering the univariate GARCH(v,m) model,
in a multivariate case one may want to allow Ht to depend
on lagged shocks et2i, i51; : : : ; v (i.e., the ARCH pro-
cess of order v) and on lagged conditional covariance mat-
rices Ht2i, i51; : : : ; m (i.e., the GARCH process of
order m). Therefore, the general form of a multivariate
GARCH model is written as follows:

vechðHtÞ5W1A1vechðet21e
0
t21Þ1B1vechðHt21Þ (4)

where W is a 1=2K(K 11) 3 1 vector and A1 and B1 are
(1=2K(K 11) 3 1=2K(K 1 1)) parameter matrices. The VECH
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Figure 1. Categories of time series models.
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() denotes the operator which stacks the lower portion of a
matrix in a vector. As the conditional covariance matrix is

symmetric, VECH(Ht) contains all unique elements of Ht

and can therefore be written in a matrix form as follows:

vech
h2

11;tjt21 h2
12;tjt21

h2
21;tjt21 h2

22;tjt21

2
4

3
55

h2
11;tjt21

h2
12;tjt21

h2
22;tjt21

2
66664

3
777755

w10

w20

w30

2
66664

3
777751

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
66664

3
77775

e2
1;t21

e1;t21e2;t21

e2
2;t21

2
66664

3
777751

b11 b12 b13

b21 b22 b23

b31 b32 b33

2
66664

3
77775

h2
11;t21jt22

h12;t21jt22

h2
22;t21jt22

2
66664

3
77775 (5)

[14] The number of parameters of the vectorized
(VECH) model ðw; aii and bjjÞ is equal to

v1mð Þ K K11ð Þ
2

� �2
1KðK11Þ=2.

[15] The main drawback of the VECH specification is that
the number of parameters will become excessively large as
K and the order of the model (v and m) increase. For exam-
ple, the above bivariate GARCH(1,1) model has 21 parame-
ters, while the trivariate model has 78 parameters.
Estimation of this general model may therefore be quite
problematic. Therefore, some specific diagonal parameter-
izations are introduced to reduce the number of parameters
[Frances and van Dijk, 2000]. Among these specifications,
in this study we develop and apply the diagonal VECH and
diagonal Baba-Engle-Kroft-Kroner (BEKK) models. For
simplicity, we discuss only the case m 5 v 5 1.

2.2.2. Diagonal VECH Model
[16] As mentioned above, one of the main disadvantages

of the full VECH model is the large number of parameters.
To overcome this problem, Bollerslev et al. [1988] sug-
gested a model by constraining the matrices A1 and B1 in
(4) to be diagonal. In this case, the conditional covariance
between ei;t and ej;t depends only on lagged cross products
of the two shocks involved and lagged values of the covari-
ance itself :

Ht5W1A1 � ðet21e
0
t21Þ1B1 �Ht21 (6)

where � denotes the Hadamard or element-by-element
product. This model is called a diagonal VECH model and
has 3k(k 1 1)/2 parameters. For example, the bivariate
diagonal VECH(1,1) model can be given as follows:

vech
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2
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3
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2
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3
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2
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3
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2
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3
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2
4

3
5 h2

11;t21jt22

h2
21;t21jt22 h2

22;t21jt22

2
4

3
5 (7)

[17] This diagonal VECH model has 9 parameters to be
estimated which is much less than the full VECH model with
21 parameters. To get the conditional variance and covari-
ance equations from the above specification we can write

h2
11;t5W111a11e

2
1;t211b11h2

1;t21 (8)

h2
21t5W211e1;t21e2;t211b21h2

21;t21 (9)

h2
22;t5W221a22e

2
1;t211b22h2

1;t21 (10)

2.2.3. Diagonal BEKK Model
[18] BEKK is the acronym for the work by Baba, Engle,

Kraft, and Kroner which was the early version of Engle
and Kroner’s [1995] paper. The diagonal BEKK model is
an alternative for the diagonal VECH presentation.

[19] In this case, the diagonal BEKK(1,1) model can be
written in a diagonal form where the off-diagonal elements
are all equal to zero (apart from the constant term):

h2
11;tjt21 h2

12;tjt21

h2
22;tjt21

2
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3
55

w11 w12
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2
4
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2
4

3
5
0

e2
1;t21 e1;t21e2;t21

e2
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2
4

3
5 a11

a22

2
4

3
5

1

b11

b22

2
4

3
5
0

h2
11;t21jt22 h2

12;t21jt22

h2
22;t21jt22

2
4

3
5 b11

b22

2
4

3
5

(11)

[20] And therefore, the conditional variance and covari-
ance equations can be written as the followings [Baur,
2006]:

h2
11;t5W111a2

11e
2
1;t211b2

11h2
1;t21 (12)

h2
21t5W121a11a22e1;t21e2;t211b11b22h2

21;t21 (13)
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h2
22;t5W221a2

22e
2
1;t211b2

22h2
1;t21 (14)

[21] In this study, we develop and apply the two
diagonal multivariate GARCH specifications to establish
the covolatility relationship between drought and atmos-
pheric indices.

3. Simulation and Model Verification

[22] As multivariate GARCH specifications have been
developed to estimate the conditional covariance between
two time series, different specifications are supposed to
result in similar covariance estimation. The performance of
different multivariate GARCH models for estimating con-
ditional covariance is analyzed and compared using simula-
tion procedures and three performance criteria, normalized
bias (NBIAS), normalized root-mean-square error
(NRMSE), and Diebold and Mariano (DM) criteria.

[23] The NBIAS and NRMSE criteria allow one to sort
among models based on the covariance estimating accu-
racy. These criteria can be written as follows:

NBIAS5
1

k

Xk

i51

sCCOV 2eCCOV

eCCOV
(15)

NRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk

i51

ðsCCOV 2eCCOV

eCCOV
Þ2

vuut (16)

where sCCOV and eCCOV denote simulated and empirical
conditional covariances, respectively, and k is the number
of estimations.

[24] However, these criteria do not test if the improve-
ment in the conditional covariance estimation among dif-
ferent models is statistically significant or not. To
address this issue, the DM statistic is applied. The DM
test [Diebold and Mariano, 1995] is a common test in
financial time series modeling to compare different mod-
els with a basic model to evaluate if their outputs are dif-
ferent from the basic model or not [Mohammadi and Su,
2010]. The DM test is applied in this study in order to
evaluate if the conditional covariances estimated
by diagonal VECH and diagonal BEKK models are stat-
istically different from the simulated conditional
covariance.

[25] Having e1;t and e2;t, t 5 1, . . ., n, as the errors
between simulated and estimated covariances, respectively,
and gðe1;tÞ and gðe2;tÞ as their loss differential, and dt5g
ðe1;tÞ2gðe2;tÞ as the loss differential, Diebold and Mariano
[1995] defined the following statistic :

B5
dffiffiffiffiffiffiffiffiffiffiffi

2pfd ð0Þ
n

q �N 0; 1ð Þ (17)

where d is the sample mean, 2pfdð0Þ is the weighted sum
of the autocovariance of loss differential, and n is the num-
ber of observations, and the numerator of above equation is
the variance of the loss differential. The null hypothesis of
zero mean loss differential or the equal of conditional
covariance of different models is rejected if the test statistic
is negative and statistically significant.

4. Testing Procedures

4.1. Test for Stationarity

[26] Stationarity is one of the basic assumptions for a
number of hydrologic modeling approaches and further
tests such as linearity/nonlinearity testing. The stationarity
test is carried out in this study for drought and atmospheric
indices and the conditional variance-covariance between
them using the following two tests : augmented Dickey
Fuller (ADF) test and Phillips-Perron (PP) test [Dickey and
Fuller, 1979; Phillips and Perron, 1988]. The null hypoth-
esis (H0) of the ADF test is the existence of the unit root in
the time series (i.e., nonstationary time series). The null
hypothesis (H0) of the PP test is stationarity around a deter-
ministic trend (trend stationarity) and stationarity around a
fixed level (level stationarity).

4.2. Test for Nonlinearity

[27] Natural systems, such as atmospheric processes, are
commonly perceived as nonlinear. The nonlinear mecha-
nism acting on drought and atmospheric circulations and
their link is investigated in this study using the Brock-
Dechert-Scheinkman (BDS) test [Brock et al., 1996] which
has its roots in the chaos theory. It is based on the m-dimen-
sional correlation integral where m represents the embed-
ding space in the new series Xtf g,
Xt5ðxt; xt2s; . . . ; xt2 m21ð ÞsÞ, which is generated from a
scalar time series Ytf g of length N, and then we have

Cm;M rð Þ5
M

2

 !21 X
1�i<j�M

Hðr2Xi2Xj (18)

where M5N2 m21ð Þs is the number of embedded points
in m-dimensional space, r is the radius of a sphere centered
on Xi and H uð Þ is the Heaviside function [Abramowitz and
Stegun, 1972, p. 1020]. Therefore, the BDS statistic for m
> 1 is defined as

BDSm; M rð Þ5
ffiffiffiffiffi
M
p Cm rð Þ2Cm

1 ðrÞ
rm;M ðrÞ

(19)

where r is the standard deviation of the points in the
embedded m-dimensional space. Under the null hypothesis,

Xtf g is an i.i.d. process, and the BDS statistic converges to
a unit normal as M !1. This convergence requires large
samples for values of embedding dimension much larger
than m 5 2. Therefore, m is usually restricted to a range
from 2 to 5 [Wang et al., 2006]. Therefore, the null hypoth-
esis (H0) of the BDS test is that the time series under inves-
tigation have a linear variation in time.

5. Applications

5.1. Data Description

5.1.1. Drought Index
[28] Different indices have been developed for drought

analysis among which the Standardized Precipitation Index
(SPI) introduced by McKee et al. [1993] has received wide-
spread applications. The SPI can quantify the precipitation
deficit for different time scales and therefore, is a flexible
index to show the impact of drought on different types of
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water resources systems in space and time. The SPI has
also the advantage of statistical consistency and the ability
to describe both short- and long-term drought impacts on
water resources [Hayes et al., 1999]. Therefore, many stud-
ies on modeling drought characteristics such as severity,
duration, and frequency, drought forecasting, and drought
link to atmospheric and climatic indices have applied SPI
as a drought index [e.g., Bordi and Sutera, 2001; Vicente-
Serrano, 2005; Ozger et al., 2012].

[29] The drought data set in this study includes the 3
month and 12 month Standardized Precipitation Index

(SPI3 and SPI12, hereafter) time series for two stations in
the northwestern and southwestern territories of Iran,
namely, Oroomieh and Shiraz stations.

[30] The SPI time series are selected, rather than their
untransformed counterpart (rainfall), because of the impor-
tance of drought consequences on the agricultural and
water resources systems of Iran. It is therefore important to
investigate the temporal effect of atmospheric circulation
on drought occurrence in Iran. The two above stations are
located in the western territories of Iran where it is believed
to be more related to global climate than other parts of the
country.

[31] The SPI time series are calculated based on fitting a
Gamma distribution to the continuous monthly rainfall
time series during 1954–2010. The complete formulation
of the SPI calculation can be found in the paper of Loukas
and Vasiliades [2004].

[32] The location of two stations is illustrated in Figure 2
together with the climate zones of Iran classified based on
the United Nations Environment Program aridity index
[Raziei and Pereira, 2012]. The SPI time series of these
stations are illustrated in Figure 3. The SPI3 and SPI12
time series are selected in order to compare the heterosce-
dastic characteristics of both short- and long-term drought
indices.

5.1.2. Atmospheric Indices
[33] In this study, two major atmospheric indices which

are widely believed to influence the precipitation of Iran,
especially over the western and southwestern territories
[Nazemosadat and Ghasemi, 2004; Raziei et al., 2009], the
Southern Oscillation Index (SOI) and North Atlantic Oscil-
lation (NAO) are used for drought time series modeling.
These time series are obtained from National Weather
Service and are standardized index calculated based on the
mean of 1950–2000 period. The monthly time series for

Figure 2. Aridity index map of Iran and the location of
selected stations.

Figure 3. SPI time series for 1954–2010.
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atmospheric indices during 1954–2010 applied in this study
are given in Figure 4.

5.2. Preliminary Data Analysis

[34] The link between two atmospheric indices (i.e., SOI
and NAO) and drought conditions for the selected stations
is first investigated by unconditional correlation coeffi-
cients and cross-correlation coefficients in different lag
times. The (unconditional) monthly correlation coefficients
between oscillations and SPI time series are given in Figure
5. Figure 5 indicates a negative correlation between SOI
and SPI for both stations and for both SPI time series. How-
ever, the negative correlation is stronger for the autumn
(September, October, and November) and winter (Decem-
ber, January, and February) seasons than the other seasons.
Some positive (but weak) relationships are observed for the
summer season (June, July, and August). This is in agree-
ment with the observations by Nazemosadat and Ghasemi
[2004] who indicated a low intensity of winter drought dur-
ing El Nino events and also in agreement with the weak
correlation coefficients between SOI and SPI reported by
Raziei et al. [2009].

[35] On the other hand, the NAO-SPI link shows both
positive and negative associations for all seasons. It is
observed that the NAO-SPI association is temporally irreg-
ular comparing the SOI-SPI association and does not show
a strong seasonality. However, the winter drought (i.e.,
negative SPI) seems to be related to the negative NAO
phase, while the summer drought indicates both positive
and negative associations with NAO for both stations and
for both drought time scales.

[36] In addition, the cross-correlation coefficients given in
Figure 6a, indicate a weak lag time effect in SOI-SPI associ-
ation, but it is almost insignificant for the NAO-SPI associa-
tion. The association is usually weakening and becoming
insignificant for lag times k> 2 months. This suggests a
short-run memory in SOI-SPI and NAO-SPI relationship.
On the other hand, the cross correlation between the squared
SOI and SPI time series (Figure 6b) shows a weaker rela-
tionship than that for the original (i.e., nonsquared) data. The
most interesting feature in Figure 6 belongs to SPI time
series of Oroomieh station. For example, the negative insig-
nificant correlation coefficients between the original SPI3
and SOI time series have become positive and significant for
the squared time series, while this feature is not observed for
SOI-SPI12 association. The same condition is observed for
NAO-SPI connection at Oroomieh station where negative
correlations for the original data have become positive for
the squared time series. For Shiraz station, it is observed that
the correlation coefficients between squared time series are
always weaker than those for the original time series. This
suggests that the second-order moment or the variance of
atmospheric indices may have a different association to
drought than the first-order moment or the mean. This phe-
nomenon has not yet been considered in previous drought
studies and is interesting to be investigated.

5.3. Conditional Variance Models

[37] The univariate GARCH model is developed for
drought and atmospheric indices, and the parameters are

Figure 4. SOI and NAO anomalies time series for 1954–
2010.

Figure 5. Monthly correlation coefficients between oscil-
lation indices and SPI time series.
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estimated using the maximum likelihood method. The
order of the GARCH models and their parameters are illus-
trated in Table 1.

[38] Table 1 shows that the conditional variances of
atmospheric indices are different from each other. It can be
seen that the short-run persistency of SOI is much stronger
than that for NAO, while in the opposite, NAO shows a
long-run persistence as the b parameter is large. One can
also see that NAO has a stronger intensity of persistence
and variance memory than SOI as a 1 b is larger for NAO.
The conditional variance time series of atmospheric indices
are illustrated in Figure 7. Figure 7 shows that the condi-
tional variance of SOI is larger than that for NAO, and
extreme conditional variances are observed for SOI time
series. It should also be noted that no seasonal variation is
observed for the conditional variances of atmospheric indi-
ces. However, extreme conditional variances are usually
observed in the winter season.

[39] Table 1 also shows that the short-run persistence is
dominant for drought time series where the GARCH
parameter (b) is much smaller than the ARCH parameter
(a) (except for SPI12 at Shiraz station) in the models. The
ARCH parameters also indicate a stronger short-run persis-
tency in conditional variance for SPI12 than that for SPI3
time series, implying volatility clustering in long-term
drought. The conditional variance for SPI12 at both stations

shows a high degree of intensity of persistency according
to a 1 b measurement. The conditional variances of
drought time series are illustrated in Figure 8. Figure 8
shows that the conditional variance of short-term drought
varies (from low to high or vice versa) rapidly through
time, while the conditional variance of long-term drought
shows some sudden drastic increases in conditional var-
iance (e.g., 1998–2002) interspersed by periods of rela-
tively low fluctuation (e.g., 1974–1990). In addition, no
sharp seasonality is observed for drought conditional
variances.

[40] We next test the conditional variance of atmospheric
and drought indices for stationarity and nonlinearity using

Figure 6. Cross-correlation coefficients between (a) oscillation indices and SPI and (b) squared oscilla-
tion indices and squared SPI for lag times k 5 0–10.

Table 1. Univariate GARCH Model Estimations for Selected
Time Series

Data Series

Parameters Persistency
Measurement

Orderx a b a 1 b

Atmospheric
index

SOI 0.34 0.39 0.34 0.73 GARCH(1,1)
NAO 0.12 0.05 0.82 0.87 GARCH(1,1)

Oroomieh
drought

SPI3 0.51 0.50 0.07 0.57 GARCH(1,1)
SPI12 0.05 0.89 0.02 0.91 GARCH(1,1)

Shiraz
drought

SPI3 0.47 0.49 0.08 0.57 GARCH(1,1)
SPI12 0.04 0.70 0.29 0.99 GARCH(1,1)
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the ADF, PP, and BDS tests. The results are given in Table
2. The zero p values of the ADF test indicate that the non-
stationarity can be strongly rejected. The p values of the PP
tests indicate that we cannot reject stationary conditional
variance for all data series. It can also be seen that neither

level nonstationarity nor trend nonstationarity is observed
for the conditional variance of atmospheric indices. The
BDS test statistic (and related p values) show that we can
strongly reject the null hypothesis of linearity for the condi-
tional variance of drought and atmospheric indices for all
dimensions.

5.4. Conditional Covariance Models

[41] The bivariate model for conditional covariance
between SPI and atmospheric indices is developed using
two types of multivariate GARCH model diagonal specifi-
cations, the diagonal VECH and the diagonal BEKK mod-
els. The results for the two stations are given in the
following sections.
5.4.1. Model Development for Oroomieh Station

[42] The estimates of the parameters of the diagonal
VECH(1,1) model for Oroomieh station are given in Table
3. These parameters are estimated using maximum likeli-
hood method. It is observed that the elements of the matri-
ces, W, A, and B, are all statistically significant for SOI-
SPI relationship. However, some parameters for NAO-SPI
relationship in matrix B are not statistically significant.
Based on these estimations we can write the equations for
conditional covariances between drought and atmospheric
indices (Table 3).

[43] The diagonal VECH models show that the condi-
tional covariances depend greatly on the cross products of
the lagged shocks rather than the lagged covariances. We
can see that b parameters are negative, except for SOI-
SPI12, implying that the covariance at each time step, t,
has a negative association to the covariance at time step
t 2 1. The highest (negative) covariance link is observed
for NAO-SPI3 with b520:80. The highest intensity of per-
sistency is observed for SOI-SPI12 covariance where a1b
50:8 and the lowest belongs to NAO-SPI12 covariance
with a1b50:08.

Figure 7. Conditional variance (volatility) for atmos-
pheric indices.

Figure 8. Conditional variance (volatility) for SPI time series.
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[44] We next move to estimate the diagonal BEKK
model and its seven parameters (Table 4). The diagonal
matrices, A and B, are all significant indicating that both
SOI and NAO influence the conditional variance of the SPI
time series. The conditional covariance equations between
atmospheric indices and drought at Oroomieh station using
the diagonal BEKK model are given in Table 4. Similar to
the diagonal VECH model, these equations also indicate
that short-run persistency is much stronger than long-run
persistency in the covariance structure between drought

and atmospheric indices. The largest persistency is
observed between SOI and SPI12 (a 1 b 5 0.79) It is also
observed that the covariance between drought and NAO is
negative for both short- and long-term drought time series.
The only difference between BEKK and VECH estimation
is the b parameter for equation (26) which is much smaller
than the estimation of the VECH model.

[45] In order to verify and select one multivariate
GARCH model among diagonal models, we apply a simu-
lation procedure to simulate the conditional covariance
between SPI and atmospheric indices. The criteria values
for performance evaluation of multivariate GARCH models
for conditional covariance estimation are given in Table 5.
The NBIAS indicates that the diagonal VECH model per-
forms relatively better than the diagonal BEKK model for
estimating the conditional covariance. However, the
NRMSE shows a better performance for the diagonal
BEKK model to estimate the SOI-SPI3 and NAO-SPI12
conditional covariances. It is also observed that the uncer-
tainty of the covariance estimation is relatively higher for
the NAO-SPI relationship than that for SOI-SPI link
according to both criteria. This may be due to the weak
covariance structure between NAO and drought at both
stations.

[46] On the other side, the DM statistics reveal that the
estimated and simulated conditional covariances are statis-
tically different among the models, except for the covari-
ance between SOI and SPI12. In other words, the

Table 2. Results for PP and ADF Tests for Stationarity and BDS
Test for Nonlinearity of the Conditional Variance

Data Series

PP Level
Stationary

Test

PP Trend
Stationary

Test
ADF Unit Root

Test

Results
p

Value Results
p

Value Results
p

Value

Atmospheric
indices

SOI 212.5 >0.1 0.0001 0.29 29.57 0
NAO 28.03 >0.1 20.0002 0.28 26.49 0

Oroomieh SPI3 217.37 >0.1 0.0003 0.78 29.99 0
SPI12 24.13 >0.1 0.0003 0.65 23.65 0.02

Shiraz SPI3 214.21 >0.1 20.0008 0.25 214.88 0
SPI12 25.73 >0.1 20.001 0.22 26.07 0

BDS Test

Data Series

m 5 2 m 5 3 m 5 4

Statistic
p

Value Statistic
p

Value Statistic
p

Value

Atmospheric
indices

SOI 0.06 0 0.10 0 0.12 0
NAO 0.11 0 0.18 0 0.22 0

Oroomieh SPI3 0.05 0 0.08 0 0.10 0
SPI12 0.16 0 0.27 0 0.34 0

Shiraz SPI3 0.07 0 0.10 0 0.11 0
SPI12 0.16 0 0.27 0 0.34 0

Table 3. Diagonal VECH(1,1) Estimates for Oroomieh Stationa

Parameters

AICW A B

(a) SOI
SPI3 0:37 20:08

0:44

" #
0:37 0:48

0:42

" #
0:32 20:13

0:15

" #
5.49

SPI12 0:31 0:004

0:04

" #
0:42 0:56

0:85

" #
0:33 0:24

0:12

" #
4.58

(b) NAO
SPI3 0:11 0:01

0:48

" #
0:04 0:10

0:50

" #
0:84 0:80

0:03

" #
5.56

SPI12 0:04 0:02

0:05

" #
0:09 0:18

0:86

" #
20:13 0:10

0:05

" #
4.86

aEntries in bold are significant at the 10% level and less. Substituted
coefficients SOI: HSOI SPI3520:0810:48e1;t21e2;t2120:13HSOI SPI3;t21 ;
HSOI SPI1250:00410:56e1;t21e2;t2110:24HSOI SPI12;t21. Substituted coeffi-
cients NAO: HNAO SPI350:0110:10e1;t21e2;t2120:80HNAO SPI3;t21 ;
HNAO SPI1250:0210:18e1;t21e2;t2120:10HNAO SPI12;t21.

Table 4. Diagonal BEKK(1,1) Estimates for Oroomieh Stationa

Parameters

AICW A B

(a) SOI
SPI3 0:37 20:08

0:49

" #
0:64

0:68

" #
0:53

20:21

" #
5.49

SPI12 0:32 0:004

0:04

" #
0:64

0:88

" #
0:58

0:38

" #
4.57

(b) NAO
SPI3 0:11 0:02

0:45

" #
0:21

0:71

" #
0:91

20:26

" #
5.56

SPI12 0:13 0:02

0:05

" #
0:19

0:93

" #
20:91

0:21

" #
4.85

aEntries in bold are significant at the 10% level and less. Substituted
coefficients SOI: HSOI SPI3520:0810:41e1;t21e2;t2120:11HSOI SPI3;t21 ;
HSOI SPI1250:00410:57e1;t21e2;t2110:22HSOI SPI12;t21. Substituted coeffi-
cients NAO: HNAO SPI350:0210:15e1;t21e2;t2120:23HNAO SPI3;t21 ;
HNAO SPI1250:0210:18e1;t21e2;t2120:19HNAO SPI12;t21.

Table 5. Criteria Estimates for Conditional Covariance at
Oroomieh Station

Covariance
Series

Diagonal VECH Diagonal BEKK
DM

StatisticNBIAS NRSME NBIAS NRSME

SOI-SPI3 0.42 7.97 0.64 3.86 24.19a

NAO-SPI3 0.82 12.94 21.5 20.94 217.4a

SOI-SPI12 20.48 6.1 0.61 8.3 3.16
NAO-SPI12 20.63 17.08 20.8 8.7 27.31a

aSignificant at 5% level and better.
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difference between diagonal VECH estimation and simula-
tion (e1) as well as the difference between diagonal BEKK
estimation and simulation (e2) is statistically significant.
Therefore, there is a significant difference between the two
models for estimating the conditional covariance and the
VECH model seems to give a better covariance estimation.

[47] According to simulation results, the diagonal VECH
model is used to plot the time-varying conditional cova-
riances and correlations between drought and atmospheric

indices for Oroomieh station (Figure 9). Figure 9 illustrates
that SOI has a larger covariance link with drought than the
NAO for both short- and long-term drought time series.
The conditional correlation between drought and SOI is
much stronger than that between drought and NAO. The
conditional correlation between SOI and SPI is usually fall-
ing within 60.40, while they are usually falling within
60.2 for NAO. It should be noted that the correlation coef-
ficients outside 60.075 are statistically significant at 5%.

Figure 9. (left) Estimated conditional covariance and (right) conditional correlation between atmos-
pheric indices and SPI for Oroomieh station.
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[48] In addition, the seasonal variation in the link
between drought and atmospheric indices is investigated
through drawing monthly box plots of conditional correla-
tion coefficients (Figure 10). In Figure 10, each box plot
includes 57 correlation coefficients. Figure 10 indicates no
sharp seasonality in the correlation coefficients. However, a
few extreme (out of the 75% quantiles) correlation coeffi-
cients between NAO and SPI3 are observed from August to
January. One can see that these extreme coefficients are
mostly observed for the short-term drought index (SPI3),
while long-term drought (SPI12) does not show extreme
(positive or negative) correlation coefficients. This suggests
that the link between drought and atmospheric circulation
becomes stronger than normal condition, mostly for short-
term drought events at Oroomieh station.

[49] The annual variation of conditional correlation
between SPI and atmospheric indices is given in Figures 11
and 12 for SOI and NAO, respectively. In this figure each
box plot includes 12 correlation coefficients for 12 months.
This figure does not show a strong fluctuation between
SPI3 and atmospheric indices, but the link between SPI12
and atmospheric indices shows a weak 3–5 years periodic-
ity, especially for SPI12-SOI link.

[50] Finally, we come to compare the nonlinearity, sta-
tionarity, and unit root of conditional covariances using
BDS, PP, and ADF tests. The results are given in Table 6.
It is seen that the conditional covariances are stationary
regarding p values of both ADF and PP test results. How-

ever, a weak trend nonstationarity in the covariance of
NAO-SPI12 structure should be noticed where the p value
of the test statistic is on the level of hypothesis rejection
(p 5 0.05).

[51] The BDS test indicates that the linearity of the con-
ditional covariance between SPI and the atmospheric indi-
ces can be rejected as all p values are zero.
5.4.2. Model Development for Shiraz Station

[52] The same procedure is followed to estimate the con-
ditional covariance and correlation between SPI and the
atmospheric indices for Shiraz station. The estimated diag-
onal VECH models and their nine parameters are shown in
Table 7. It is clear that the conditional variance of SPI
depends on their own lags, lagged cross products of the
shocks, and lagged conditional covariance. However, the
conditional covariance parameters are not significant for
NAO-SPI12 link (same as for Oroomieh station). Based on
the parameters, the conditional covariances for drought at
Shiraz station (Table 7) show the same covariance structure
as the Oroomieh station. It is seen that b parameters are
negative for drought and NAO relationship, and the persis-
tency of the covariance structure is not very strong for
NAO. However, the covariance between drought and SOI
is significant and positive. The largest intensity is observed
for SOI-SPI12 relationship where a 1 b 5 0.74 which is
relatively high but not very strong (a 1 b< 0.90).

[53] In the following, we look at the estimates of the
diagonal BEKK models for Shiraz station (see Table 8).

Figure 10. Monthly conditional correlation coefficient box plots for Oroomieh station. Circles show
unconditional correlation coefficients.
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Figure 11. Annual conditional correlation box plots between (a) SPI3 and SOI as well as (b) SPI3 and
NAO for Oroomieh station.

Figure 12. Same as Figure 11 but for SPI12.
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The 2 3 2 parameter matrices are almost all significant for
both drought time series. According to the BEKK models
in Table 8, a weak covariance structure between drought
and atmospheric indices at Shiraz station is observed. The
SOI-SPI connection is stronger than NAO-SPI link. The
covariance between SOI and SPI seems to depend rela-
tively on cross products of shocks and weakly on lagged
covariances which is relatively small for SOI12 (b 5 0.19)
and almost nil for SPI3 (b 5 0.02). The covariance struc-
ture between NAO and SPI also depends dimly on cross
products of shocks. However, the lagged covariance struc-
ture between NAO and SPI is negative and nil (b 5 20.06).
Similar to Oroomieh station, the largest long-run persis-

tency is observed between SOI and 12 month SPI
(a 1 b 5 0.72).

[54] To select between VECH and BEKK models, the
performance criteria of the models are examined (Table 9).
It is clear from the DM statistics that the accuracy of the two
models is statistically different if we compare the simulated
and estimated conditional covariances. Following the DM
test results, both NBIAS and NRMSE criteria show a much
better performance of diagonal VECH model as compared
to diagonal BEKK model for estimating the conditional
covariance between drought and atmospheric indices. There-
fore, the diagonal VECH model is applied to present the
conditional covariance time series at Shiraz station.

[55] Using the diagonal VECH model, we give the time-
varying conditional covariances and correlation coefficients
for Shiraz station in Figure 13. Figure 13 shows no signifi-
cant temporal variation difference between SOI-SPI3 and
NAO-SPI3. However, the covariance for SOI-SPI12 link is
much stronger than that for NAO-SPI12. The correlation
coefficients show a much larger association between SOI
and drought than that between NAO and drought at Shiraz
station. Similar to Oroomieh station, the correlation coeffi-
cients outside 60.075 are statistically significant at 5%.

[56] The monthly and annual variation of conditional
correlation coefficients is also illustrated in Figures 14–16
through box plots. The monthly distribution of conditional
correlation coefficients is almost identical to what we
observed for Oroomieh station. However, the annual

Table 6. Results for PP and ADF Tests for Stationary and BDS
Test for Nonlinearity of Conditional Covariances at Oroomieh
Station

Indices
Series

Drought
Series

PP Level
Stationary

Test

PP Trend
Stationary

Test
ADF Unit
Root Test

Results
p

Value Results
p

Value Results
p

Value

SOI SPI3 217.4 >0.1 0.002 0.84 215.1 0
SPI12 29.7 >0.1 20.0006 0.47 27.8 0

NAO SPI3 229.2 >0.1 0.004 0.17 229.4 0
SPI12 226.1 >0.1 0.006 0.05 226.1 0

BDS Test

Indices
Series

Drought
Series

m 5 2 m 5 3 m 5 4

Statistic
p

Value Statistic
p

Value Statistic
p

Value

SOI SPI3 0.04 0 0.07 0 0.09 0
SPI12 0.10 0 0.18 0 0.22 0

NAO SPI3 0.01 0 0.02 0 0.03 0
SPI12 0.05 0 0.10 0 0.13 0

Table 7. Diagonal VECH(1,1) Estimates for Shiraz Stationa

Parameters

AICW A B

(a) SOI
SPI3 0:38 20:08

0:49

" #
0:37 0:38

0:47

" #
0:30 0:06

20:08

" #
5.27

SPI12 0:39 20:03

0:04

" #
0:38 0:50

0:84

" #
0:28 0:24

0:08

" #
4.53

(b) NAO
SPI3 0:15 0:05

0:47

" #
0:04 0:15

0:47

" #
0:79 20:37

20:06

" #
5.31

SPI12 0:97 20:01

0:05

" #
0:07 0:16

0:95

" #
20:04 20:14

20:01

" #
4.73

aEntries in bold are significant at the 10% level and less. Substituted
coefficients SOI: HSOI S PI3520:0810:38e1;t21e2;t2110:06HSOI SPI3;t21 ;
HSOI SPI12520:0310:50e1;t21e2;t2110:24HSOI SPI12;t21. Substituted coef-
ficients NAO: HNAO SPI350:0510:15e1;t21e2;t2120:37HNAO SPI3;t21 ;
HNAO SPI12520:0110:16e1;t21e2;t2120:14HNAO SPI12;t21.

Table 8. Diagonal BEKK (1,1) Estimates for Shiraz Stationa

Parameters

AICW A B

(a) SOI
SPI3 0:38 20:08

0:44

" #
0:59

0:67

" #
0:56

0:04

" #
5.27

SPI12 0:39 20:03

0:04

" #
0:58

0:91

" #
0:56

0:34

" #
4.59

(b) NAO
SPI3 0:15 0:04

0:43

" #
0:21

0:68

" #
0:89

20:07

" #
5.31

SPI12 0:11 20:02

0:04

" #
0:17

0:97

" #
0:92

20:06

" #
4.73

aEntries in bold are significant at the 10% level and less. Substituted
coefficients SOI: HSOI SPI3520:0810:40e1;t21e2;t2110:02HSOI SPI3;t21 ;
HSOI SPI12520:0310:53e1;t21e2;t2110:19HSOI SPI12;t21. Substituted coef-
ficients NAO: HNAO SPI350:0310:15e1;t21e2;t2120:06HNAO SPI3;t21 ;
HNAO SPI12520:0210:17e1;t21e2;t2120:06HNAO SPI12;t21.

Table 9. Criteria Estimates for Conditional Covariance at Shiraz
Station

Covariance
Series

Diagonal VECH Diagonal BEKK
DM

StatisticNBIAS NRSME NBIAS NRSME

SOI-SPI3 0.24 8.32 0.62 17.45 23.14a

NAO-SPI3 0.45 9.8 20.41 51.87 28.02a

SOI-SPI12 20.14 12.98 21.64 54.36 210.7a

NAO-SPI12 20.29 13.1 22.09 12.52 22.72a

aSignificant at 5% level and better.
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variation of the correlation coefficient seems to be more
irregular than that for Oroomieh station. This indicates that
the atmospheric circulations have more regular relationship
with drought at Oroomieh station than with drought at
Shiraz station.

[57] The stationarity and nonlinearity results for the con-
ditional covariance are given in Table 10. The results indi-
cate stationary covariances between drought and

atmospheric indices regarding p values of the ADF test
which rejects nonstationarity and PP test which cannot reject
stationarity. However, a nonstationarity trend is observed at
5% significance level for the SOI-SPI3 and NAO-SPI12
covariances. This is perhaps due to extreme drought events
which are strongly influenced by atmospheric indices.

[58] On the other hand, all covariances are nonlinear
according to BDS test results as all p values are zero and

Figure 13. (left) Estimated conditional covariance and (right) conditional correlation between atmos-
pheric indices and SPI for Shiraz station.
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reject the null hypothesis of linearity. In contrast to Oroo-
mieh station, it is observed that the nonlinearity is more or
less similar among different covariances at Shiraz station.

6. Summary and Conclusions

[59] This paper developed and applied univariate and
multivariate GARCH approaches, namely, diagonal VECH
and diagonal BEKK models, to investigate the time-
varying association between drought and atmospheric indi-
ces through a new conditional variance-covariance perspec-
tive. This study provides this new outlook by an example
of the association of SOI and NAO to short-term and long-
term SPI time series at two stations in Iran. For our case
study, we showed that conditional variance of drought and
atmospheric indices demonstrated different behaviors.
While NAO shows a high degree of memory in the condi-
tional variance, SOI does not show a strong long-run mem-
ory in the conditional variance. It is also observed that SPI
time series have a stronger short-run persistency than long-
run persistency for both short- and long-term SPI time
series. In addition, the conditional variance of the atmos-
pheric and drought indices seems to be stationary but non-
linear and suggests an inverse relationship between
intensity of nonlinearity and stationarity.

[60] It was shown that the diagonal VECH model with
nine parameters has less biased covariance estimations than

the diagonal BEKK model with seven parameters. Both
these models have reasonably fewer parameters than the
full VECH model with 21 parameters, but the diagonal
VECH model seems to give more accurate estimations for
conditional covariance regarding the simulation experi-
ment. Therefore, based on the diagonal VECH model out-
puts, a low level of covariance interaction between
atmospheric circulations (SOI and NAO) and SPI time
series for our two examples in Iran is observed. Both mod-
els show a weak long-run persistency link between the
second-order moment of atmospheric circulations and
drought. However, the short-run interaction is much stron-
ger and indicates a significant relationship between the
lagged cross products of the shocks, or random process, of
atmospheric and drought indices. This implies that the vari-
ation of SOI and NAO may have a rapid and short-run
influence on drought variation at the stations under investi-
gation. This short-run interaction is also observed from
conditional correlation coefficient time series which do not
remain at the same level (high or low) for the long time
before changing to the next (low or high) status. It was also
seen that the correlation coefficients do not show a sharp
seasonality and trend during 1954–2010.

[61] The results of the stationarity test for conditional
covariances reveal a stationary covariance between drought
and atmospheric indices for most cases during 1954–2010.
It may indicate that the change in the link between

Figure 14. Monthly conditional correlation coefficient box plots for Shiraz station. Circles show
unconditional correlation coefficients.
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atmospheric circulation and drought does not show a signif-
icant change during 1954–2010. However, some covarian-
ces cannot pass the trend stationarity test. Although the
nonstationarity around a trend could be overaffected by
some outlier data which makes the whole series nonstation-
ary around such a basic trend, further tests and careful anal-
ysis are necessary to reveal the exact reason for
nonstationarity around the trend for the connection between
drought and atmospheric indices.

[62] It should be noted that (econometric) multivariate
GARCH models show some advantages and disadvantages
over hydrological models, temporal models such as time
series models for the (conditional) mean and physically
based models for rainfall-runoff modeling. The advantage
of the proposed bivariate GARCH approach is incorporat-
ing the memory of the correlation between two time series
in the previous time steps, t 2 1, t 2 2, . . . , to the correla-
tion between them at time step t. This will improve our
understanding of the association between two time series,
i.e., drought and atmospheric indices. In other words, Fig-
ure 5 may show a weak association between drought and
atmospheric indices regarding unconditional correlation
coefficients. While, using the bivariate GARCH models
shows that the conditional correlation between drought and
atmospheric could be much stronger than what is inferred
from unconditional correlation.

[63] However, the number of parameters grows rapidly
with the order of the model, and parameter estimation
becomes a real problem.

[64] Instead of this disadvantage, it is recommended to
investigate the relationship between other atmospheric indi-
ces and other hydrologic and climatic variables such as other
types of drought, rainfall, or streamflow. It is also important
to examine the multivariate GARCH models for hydrologic
drought and its relationship to meteorological drought or
other atmospheric indices. In addition to examining the tem-
poral behavior of the variance-covariance structure between
drought and other atmospheric indices, it is important to
investigate the physical rules governing this conditional
variance-covariance structure in future studies. It would be
interesting to apply the multivariate GARCH approach to
investigate the effect of the time-varying variance of differ-
ent variables such as rainfall, streamflow, temperature, wind
speed, and evaporation on each other. The investigation and
evaluation of the volatility and covolatility between climate
and hydrologic variables in the context of climate change
are also vital as the second-order moment of hydrologic vari-
ables may show a higher degree of fluctuations and nonli-
nearity in the future. This change in a climate variable may
influence the other climatic and hydrologic variables in an
exponential manner in future. Moreover, the physical varia-
bles influencing conditional covariance and the parameters

Figure 15. Annual conditional correlation box plots between (a) SPI3 and SOI as well as (b) SPI3 and
NAO for Shiraz station.
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of the multivariate GARCH models in hydrologic applica-
tions remain an important challenge for further studies.

[65] It is very important to mention that the above con-
clusion and statements of this study are based on only two

stations in Iran. As the MGARH models and the stationar-
ity and nonlinearity results are reported here for the first
time for drought analysis, it is strongly recommended to
continue this work for drought analysis in other parts of the
world, especially the regions where are strongly influenced
by NAO and SOI variation such as Australia [e.g., Gallant
et al., 2012]. This will give a better understanding of the
conditional variance-covariance relationship between
drought and atmospheric indices and provides an outlook
of future climate change consequences on stationarity and
nonlinearity of this relationship.
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